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Redes RBF e de Máquinas de Kernel
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Resumo estendido

Avanços recentes em aprendizagem de máquina contemplam ampla variedade de

tarefas de inteligência computacional, que têm sido aplicadas em vários problemas

modernos de engenharia, economia, biomedicina, dentre outros. Tarefas como reco-

nhecimento de padrões, previsão de séries temporais, controle adaptativo e detecção

de falhas podem ser formuladas em termos da busca de dependências escondidas em

observações emṕıricas. Tal busca desempenha um papel central no contexto de apren-

dizagem de máquina, e corresponde ao problema de aprendizagem supervisionada.

Considerando que as observações emṕıricas são geralmente induzidas por variáveis

de entrada não observadas, cujas propriedades são desconhecidas, a aprendizagem

supervisionada deve ser tratada como um processo não-determińıstico nas condições

de incerteza. Isto, por sua vez, faz com que o complexo metodológico da aprendizagem

de máquina seja difundido para outros campos, tais como estat́ıstica, programação

matemática, teorias de informação e tomada de decisões.

Uma visão abrangente do problema de aprendizagem supervisionada é dada pela

teoria de aprendizagem estat́ıstica (SLT) [Vapnik, 1998], que estabelece os prinćıpios

de minimização emṕırica e estrutural do risco (ERM e SRM, correspondentemente). A

implementação destes prinćıpios encontra-se nos bem conhecidos conceitos de apren-

dizagem, tais como redes de regularização [Poggio and Girosi, 1990] e aprendizagem

Bayesiana [Neal, 1996], cuja combinação com as máquinas de vetores de suporte

(SVM) [Cortes and Vapnik, 1995] e métodos de kernel modernos [Scholkopf, 1999]

representam o estado da arte em aprendizagem de máquina.

Com o recente desenvolvimento da otimização evolucionária, tem havido crescente

interesse na aplicação do conceito de Pareto-optimality para estender as capacidades

dos algoritmos e modelos aprendizagem. Esses conceitos tem sido aplicados no desen-

volvimento de métodos de aprendizagem de máquina multi-objetivo (MOML) [Jin,

2006], em que a aprendizagem é considerada como um processo de tomada de decisão

no ambiente de múltiplos critérios conflitantes.

Do ponto de vista multi-objetivo, a aprendizagem supervisionada pode ser repre-

sentada como um problema de tomada de decisão entre dois objetivos conflitantes:

minimização de erro de treinamento (risco emṕırico) e complexidade de modelo. Den-

tro da abordagem tradicional (mono-objetivo), este processo corresponde à seleção

de modelos pelo prinćıpio SRM. Esta visão quanto ao problema de aprendizagem

supervisionada apresenta-se como o objeto de pesquisa deste trabalho.

A presente tese foi estruturada a partir de seis caṕıtulos e três apêndices que apre-

sentam uma introdução do tema, uma análise sistemática dos fundamentos teóricos

conhecidos, desenvolvimento da metodologia proposta, suas aplicações e resultados

dos testes realizados, além das conclusões finais.
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O Caṕıtulo 1 apresenta uma introdução aos problemas do presente trabalho,

com as suas motivações, justificativas iniciais e objetivos desta pesquisa.

As máquinas de aprendizagemmodernas, tais como SVM, são baseadas no prinćıpio

de regularização e, portanto, representam problemas convexos cujas soluções únicas

podem ser obtidas de maneira eficiente por meio da programação não-linear. Entre-

tanto, suas extensões aos mais amplos espaços de hipóteses (e.g., com introdução de

parâmetros de kernel), tradicionalmente, são efetuadas no ńıvel de seleção de modelo

através de uma busca no espaço de múltiplos hiper-parâmetros. Essa abordagem

de extensão, no entanto, não corresponde ao prinćıpio de SRM, que apresenta-se

como uma busca unidimensional de equiĺıbrio entre o erro e complexidade de mo-

delo. Por outro lado, a extensão correspondente ao prinćıpio de SRM é posśıvel com

a abordagem multi-objetivo. Entretanto, devido a não-convexidade dos problemas

de otimização associados, que são NP-completos, a aplicação de técnicas de soluções

aproximadas de programação global é requerida. Este fato explica porque a maioria

das soluções propostas da área MOML (e.g., [Liu. and Kadirkamanathan, 1995; Ha-

tanaka and Uosaki, 2003; Jin, Okabe, and Sendhoff, 2004; Bevilacqua, Mastronardi,

Menolascina, Pannarale, and Pedone, 2006; Yen, 2006; Kondo, Hatanaka, and Uosaki,

2006]) são orientadas para as técnicas de otimização evolucionária, prestando pouca

atenção à implementação dos prinćıpios fundamentais de aprendizagem estat́ıstica.

Como alternativa, nos trabalhos [Teixeira, Braga, Takahashi, and Saldanha, 2000;

Costa, Braga, Menezes, Teixeira, and Parma, 2003; Costa and Braga, 2006] foi de-

senvolvida a abordagem chamada MOBJ, para a aprendizagem multi-objetivo das

redes perceptron de múltiplas camadas (MLP). Neste caso, com o objetivo de con-

trole da generalização conforme [Bartlett, 1997], o erro de treinamento foi minimizado

junto com a norma Euclidiana dos pesos de rede através das técnicas de programação

não-linear de maneira determińıstica (não-evolucionária). Contudo, devido a não-

convexidade do problema tratado, a abordagem MOBJ desenvolvida nos trabalhos

supracitados pode apresentar soluções fracamente não-dominadas.

Conforme os resultados publicados, ambas as abordagens de multi-objetivo (evo-

lucionária e MOBJ) demonstram um bom potencial, enquanto a conexão com SRM

e utilização das capacidades de programação não-linear mostram as vantagens do

MOBJ. Então, sua certa evolução em direção à garantia de Pareto-optimality de

soluções e a implementação de SRM determina um caminho de desenvolvimento para

uma nova abordagem eficiente.

Por apresentar fundamentos teóricos associados com máquinas de kernel e regu-

larização, as redes de funções da base radial (RBF) foram escolhidas para o desen-

volvimento dos novos conceitos, métodos, e modelos de aprendizagem multi-objetivo

neste trabalho.
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O Caṕıtulo 2 apresenta os conceitos teóricos da aprendizagem estat́ıstica, redes

de regularização e RBF, máquinas de kernel e as suas interligações dentro de um

conceito unificado.

Do ponto de vista estat́ıstico, dada uma função de perda l(x, y, f(x)) como uma

medida de erro de classificação ou regressão, e o conjunto de N observações

ZN
tr :=

{
(xi, yi) ∈ X × Y | i = 1 . . . N

}
,

i.i.d. de acordo com a distribuição desconhecida P (x, y), o problema de aprendizagem

supervisionada é formulado como minimização do funcional de risco esperado

R[f ] :=

∫
X×Y

l(x, y, f(x))∂P (x, y) = E[l(x, y, f(x))], (1)

sobre o espaço de hipóteses Ω. O espaço Ω representa uma classe de funções f :

X → Y , suportadas pela máquina de aprendizagem, que mapeiam as observações do

domı́nio entrada X para domı́nio de sáıda Y . Devido a indisponibilidade de P (x, y), o

funcional (1) não pode ser minimizado diretamente, mas somente a sua aproximação

emṕırica

Remp[f ] :=
1

N

N∑
i=1

l(xi, yi, f(xi)), (2)

dispońıvel através do conjunto de observações ZN
tr . Entretanto, conforme [Vapnik

and Chervonenkis, 1989], a minimização do (2) que corresponde ao prinćıpio de mi-

nimização do risco emṕırico (ERM), leva a uma estimação consistente do mı́nimo

do risco esperado somente quando a convergência de Remp[f ] para R[f ] é uniforme,

assumindo a condição de que a capacidade da classe Ω seja limitada. Como mostra o

resultado de análise da convergência, existe um limite superior do risco esperado na

forma

R[f ] ≤ Remp[f ] + Ψ (Remp[f ], N,Ω, η) (3)

onde Ψ determina o intervalo de confiança que se mantém com a probabilidade maior

do que 1 − η. É posśıvel demonstrar que o risco emṕırico é uma função decrescente

da capacidade de Ω, e crescente para o intervalo de confiança (o mesmo fenômeno é

conhecido como o dilema bias-variance [Geman, Bienenstock, and Doursat, 1992]).

Então, existe um espaço Ω de certa capacidade que garante o menor risco esperado

através do limite (3). Esta idéia constitui a base do prinćıpio indutivo de minimização

estrutural do risco (SRM), que considera a construção de uma estrutura de conjuntos

aninhados,

∅ ⊂ Ω1 ⊂ Ω2 ⊂ . . . ⊂ Ω
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na ordem de crescimento das suas capacidades. Posteriormente, a hipótese final a

ser escolhida corresponde ao mı́nimo de Remp em um determinado subconjunto Ωi,

cuja complexidade leva ao menor risco emṕırico, sendo este garantido por seu limite

superior. Desta maneira, o problema de aprendizagem supervisionado é visualizado

como uma busca de equiĺıbrio entre o mı́nimo de risco emṕırico (menor erro de trei-

namento) e menor capacidade de espaço de hipóteses de máquina de aprendizagem

(complexidade do modelo).

É posśıvel mostrar que o problema do aprendizado supervisionado, tratado como

um problema ill-posed com o método de regularização [Tikhonov, 1943], corresponde

à implementação do prinćıpio de SRM na forma de minimização do funcional risco

regularizado

Rreg[f ] := Remp[f ] + λQ[f ], (4)

onde Q[f ] = ∥Df∥2 é o termo estabilizador (regularizador) baseado em um operador

linear diferencial D, e λ é o parâmetro da regularização. Como foi mostrado em [Pog-

gio and Girosi, 1990] e [Scholkopf, Herbrich, Smola, and Williamson, 2001], no caso

mais geral, o mı́nimo global de (4) está contido no espaço de Hilbert do kernel re-

produtivo [Aronszajn, 1950] (RKHS) Hk. Os elementos do RKHS são funções que

admitem uma expansão

f(x) =
∑
i

αik(x, xi), (5)

onde

k(x, x′) := ⟨Φ(x),Φ(x′)⟩ = ⟨x̃, x̃′⟩

é a função de kernel definido positivo, correspondente ao produto escalar das imagens

de seus argumentos através de um mapeamento não-linear Φk : X → Hk, e associada

com operador autoadjunto D̃D como sua função de Green. Assim, o termo Q através

do operador D unicamente determina o kernel k e seu espaço RKHS Hk associado de

funções (5). É posśıvel mostrar que as funções (5) podem ser evolúıdas como produto

escalar

f(x) = ⟨k(x, ·), f⟩Hk
(6)

em RKHS ou na forma geral

f(x) =
⟨
x̃, f̃

⟩
(7)

em qualquer outro espaço de Hilbert, isomórfico ao Hk, onde

f̃ :=
∑
i

αix̃i,

é a imagem da hipótese f em seu espaço caracteŕıstico induzido por Φk. Desta

maneira, uma classe de funções não-lineares (5) que contêm soluções do problema

de aprendizagem, colocada na forma da regularização (4), pode ser representada no
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espaço de hipóteses lineares Hk, cujos associados hiperplanos de separação (decisão)⟨
x̃, f̃

⟩
= 0 são determinados através dos coeficientes de expansão αi, i = 1, . . . , N .

Isto, por sua vez, permite uma extensão dos algoritmos e modelos lineares de apren-

dizado a uma ampla variedade de funções não-lineares de maneira eficiente através

de kernels.

Assim, a escolha do kernel corresponde à determinação do espaço caracteŕıstico

para uma máquina de aprendizagem linear. No ponto de vista da regularização, a

penalização por termo regularizador Q implica a suavidade da função através das

propriedades espectrais do operador D, garantindo a solução única do problema com

a restrição de capacidade do conjunto de hipóteses. No espaço caracteŕıstico Hk ou

outro espaço de Hilbert isomórfico dele, o termo

Q[f ] = ∥Df∥2 = ∥f̃∥2 = ∥f∥2k

também corresponde ao quadrado de comprimento do vetor normal f̃ do hiperplano

de separação, determinando o inverso de margem geométrica dele. Desta forma, a

regularização se relaciona com o conceito de maximização da margem, que é uma

base da classe de algoritmos, bem-conhecidos como SVM [Cortes and Vapnik, 1995].

Na interpretação Bayesiana de minimização do risco regularizado (4), a escolha da

função de perda l(x, y, f(x)), o valor do parâmetro de regularização λ, e o termo Q[f ]

(chamado de prior) correspondem ao fornecimento de informações a priori sobre o

modelo de rúıdo, sua variância, e distribuição de probabilidade das hipóteses [Girosi,

Jones, and Poggio, 1993], respectivamente. Assim, considerando uma escolha a priori

de l(x, y, f(x)) e Q[f ] (ou seu correspondente kernel k) a solução do problema de

aprendizagem pela minimização de (4) pode ser unicamente determinada pelo escolha

de λ como

fλ = KM(ZN
tr , Remp, λQ[·]), (8)

onde KM é o resultado de um algoritmo de kernel genérico que fornece o extremo

de (4) dado um conjunto de treinamento ZN
tr e os termos Remp e Q. Desta maneira,

o problema se reduz à estimação do hiper-parâmetro λ pelo processo de seleção de

modelo

λ = arg min
λ∈R+

ζ (fλ) (9)

através de um critério ζ, que também corresponde a implementação de prinćıpio SRM

quando ζ é uma estimativa do risco esperado.

Devido à incerteza associada com Remp e Q, de maneira geral, as suas escolhas

são efetuadas junto com λ através de uma busca estendida

(θR, θQ) = arg min
(θR,θQ)∈Θ

ζ
(
fθR,θQ

)
(10)
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no espaço Θ de múltiplos hiperparâmetros θR e θQ correspondentes à função de perda

e prior Q (incluindo o parâmetro de regularização), respectivamente, que determinam

a hipótese estendida na forma

fθR,θQ = KM(ZN
tr , RempθR

[·], QθQ [·]),

semelhante a (8). Na prática, é comum escolher l(x, y, f(x)) empiricamente, quando

λ e os hiperparâmetros de Q (que são os parâmetros de kernel) são estimados através

de (10). Neste caso, somente o processo da estimação de λ corresponde à escolha da

capacidade do espaço de hipóteses de uma estrutura aninhada em Hk induzida com

Q, que corresponde a uma implementação do SRM, enquanto a estimação dos hiper-

parâmetros do prior Q é considerada como um ńıvel de inferência mais alto [Guyon,

Saffari, Dror, and Cawley, 2010].

Por outro lado, a parametrização do prior pode ser considerada como uma extensão

do espaço de hipóteses da máquina de aprendizagem ao conjunto de múltiplos RKHSs

onde, conforme prinćıpio SRM, somente uma busca unidimensional é necessária para

determinar o equiĺıbrio entre o risco emṕırico e complexidade do modelo. Assim,

a busca (10) é considerada redundante cujo espaço pode ser reduzido, reduzindo

também a incerteza do problema de aprendizagem. Isto levará ao aumento de con-

fiança dos parâmetros estimados e, como sua conseqüência, o aumento de qualidade

da generalização obtida. Este ponto justifica a necessidade de desenvolvimento dos

novos métodos e modelos de aprendizagem.

O Caṕıtulo 3 introduz os conceitos básicos de otimização multi-objetivo e deter-

mina os elementos principais da abordagem desenvolvida, tais como formulação do

problema de otimização e o método determińıstico da sua solução.

Visualizando o problema de aprendizado supervisionado como um processo de

decisão multicritério, é posśıvel formular um procedimento geral para solução do

problema de acordo com o esquema seguinte: avaliar o conjunto de todas alternativas

Pareto-ótimas e tomar decisão de escolha de um único elemento. O primeiro passo

corresponde à redução da região de incerteza do domı́nio do problema que, no caso

de objetivos conflitantes, representa o trade-off : aumento do ńıvel de satisfação de

um objetivo exige a redução do ńıvel de satisfação do outro.

No contexto de SEM, em domı́nio de um RKHS Hk, os objetivos conflitantes são o

risco emṕırico Remp e o prior Q (que desempenha o papel da medida de complexidade

do modelo), enquanto a região do trade-off corresponde ao conjunto Pareto [Pareto,

1896] do problema de minimização bi-objetivo

min
f∈Hk

ϕ[f ] = (Remp[f ], Q[f ]), (11)

onde ϕ é o vetor-funcional minimizado.
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Formalmente, o conjunto Pareto de um problema de minimização multi-objetivo

de ϕ no domı́nio Ω é dado por conjunto não-dominado,

P(Ω, ϕ) :=
{
x ∈ Ω | ∀x′ ∈ Ω : x

ϕ

≼ x′
}
, (12)

onde a relação x
ϕ

≼ x′ significa “x domina x′ com relação a ϕ” e corresponde à uma

relação de ordem lexicográfica das imagens de x e x′ sobre ϕ.

No contexto do problema bi-critério (11), é posśıvel mostrar que obtenção dos

elementos Pareto-òtimos P(Hk, ϕ) pelo método de soma ponderada [Geoffrion, 1968]

equivalente a minimização do risco regularizado (4) para os todos valores de λ ∈ R+,

enquanto a decisão correspondente ao mı́nimo de ζ em P(Hk, ϕ) é equivalente a seleção

de modelo na forma (9). Na mesma maneira, é posśıvel superar a desvantagem da

busca estendida (10) com a abordagem multi-objetivo, implementando o prinćıpio

de SRM em um espaço de hipóteses estendido de múltiplos RKHSs com uma busca

dentro do correspondente conjunto Pareto.

Especialmente, introduzindo uma famı́lia de kernels

K ⊂
{
k ∈ RX 2

}
ao seu correspondente espaço de hipótese

HK :=
∪
k∈K

Hk, (13)

induzido pela união dos associados RKHSs, é posśıvel substituir (10) com o procedi-

mento multi-objetivo

fmobj = arg min
f∈P(HK ,ϕ)

ζ[f ], (14)

que corresponde à uma máquina de aprendizagem com a capacidade de escolha de

kernel (e seus hiperparâmetros) implementando o prinćıpio de SRM. A forma proposta

de solução do problema de aprendizagem pode considerada como uma evolução da

abordagem chamado MOBJ, desenvolvida nos trabalhos recentes [Teixeira, Braga,

Takahashi, and Saldanha, 2000; Costa, Braga, Menezes, Teixeira, and Parma, 2003;

Costa and Braga, 2006].

Contudo, para colocar a abordagem MOBJ proposta em (14) na prática, é ne-

cessário resolver dois problemas.

Primeiramente, precisa-se definir certa medida de complexidade Q no espaço es-

tendido HK . Infelizmente, como é demonstrado neste trabalho, para um caso geral

de famı́lia de kernels K, a medida de complexidade não pode ser um prior e, por isso,
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é necessário um tratamento especial na sua derivação. Este problema está sendo tra-

tado nos Caṕıtulos 4 e 5 com duas abordagens diferentes, cada uma correspondente

ao seu resultado independente.

Em seguida, é necessário desenvolver ummétodo de obtenção das hipóteses Pareto-

ótimas P(HK , ϕ) de uma forma determińıstica. Devido à não-convexidade do domı́nio

HK e, conseqüentemente, do problema multi-objetivo, a sua solução não pode ser ob-

tida pela aplicação do método de soma ponderada cuja aplicação é adequada somente

para problemas estritamente convexos [Das and Dennis, 1997]. Contudo, a aplicação

do método ϵ-restrito [Haimes, Lasdon, and Wismer, 1971; Chankong and Haimes,

1983] é posśıvel, mas não eficiente devido à necessidade de busca dos mı́nimos glo-

bais. Então, como solução foi proposto ummétodo de decomposição dos conjuntos não

dominados que permite decompor o problema MOBJ em conjunto de sub-problemas

convexos na forma,

P(HK , ϕ) = P

(∪
k∈K

P(Hk, ϕ), ϕ

)
, (15)

que possibilita reconstruir o conjunto Pareto P(HK , ϕ) no domı́nio global através dos

conjuntos não-dominados P(Hk, ϕ), k ∈ K cujos elementos podem ser obtidos pela

programação convexa minimizando uma certa forma de (4). Na prática, aproximando

K com o número finito de elementos, o método de decomposição permite gerar um

subconjunto finito de hipóteses Pareto-ótimos P(HK , ϕ) em um tempo garantido na

forma determińıstica.

Assim, a abordagem proposta pode ser considerada como um conceito generali-

zado de aprendizagem supervisionada para uma classe geral de máquinas de kernel

na forma de um algoritmo MOBJ, baseado em procedimento de seleção de modelo

multi-objetivo (14) que implementa o prinćıpio SRM dado uma certa medida de com-

plexidade, e cujos resultados podem ser obtidos de maneira eficiente e determińıstica

através da decomposição (15).

No Caṕıtulo 4, a medida de complexidade proposta é baseada no conceito de sua-

vidade que, em combinação com a abordagem MOBJ desenvolvida, leva ao algoritmo

de aprendizagem para redes RBF.

Em regularização, a complexidade da hipótese é refletida pelo termo regularizador,

que no domı́nio Fourier corresponde ao filtro de passa-alta, implicando certo grau de

suavidade à função f . A suavidade de uma função, no entanto, pode ser determinada

de maneira expĺıcita, fora do contexto do regularizador (prior, ou seu correspondente

kernel). Uma medida de complexidade pode ser obtida para o espaço de hipóteses

arbitrário, inclusive para HK induzido por uma famı́lia K.

Neste trabalho, uma análise de suavidade baseada na norma no espaço de Sobolev

é feita para a classe de hipóteses em Hk, associados com os modelos RBF f : Rn → R,
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dados pela expansão

f(x) =
m∑
i=1

αikσ(x, ci),

onde ci são os centros das funções RBF kσ(x, ci) = kσ(x − ci) = κ(x−ci
σ

) de largura

σ. Em particular, é mostrado que a norma ∥f∥q,p no espaço de Sobolev Wq,p possui

o limite superior

∥f∥q,p ≤ ∥α∥1 · ∥kσ∥q,p, (16)

onde α = (α1, α2, . . . , αm)
T é o vetor de coeficientes da expansão (pesos) da rede RBF

correspondente ao f . Baseado em uma modificação de (16), a medida de complexidade

Qrbf[f ] = σ−n
p ∥α∥1

∑
|s|=q

∥Dskσ∥p, (17)

foi proposta, onde

Ds :=
∂|s|

∂xs11 ∂x
s2
2 · · · ∂xsnn

é o operador diferencial generalizado sobre o espaço RRn
, dado pelo multi-́ındice

s ∈ Zn.

Supondo que as funções kσ são Gaussianas, i.e., κ(u) = exp(−1
2
∥u∥2), e a or-

dem do diferencial da norma de Sobolev q = 2, é posśıvel mostrar que a medida de

complexidade (16) se reduz à forma simples

Qrbf[f ] =
∥α∥1
σ2

. (18)

Tal forma permite descrever o problema de aprendizagem MOBJ no espaço de

hipóteses

F :=
{
f : Rn → R | f(x) =

∑
i

αikσ(x− ci)
}
, (19)

correspondente a todas as posśıveis redes RBF com m ∈ N funções bases, centros

ci ∈ Rn, larguras σ ∈ R+ e pesos αi ∈ R. Para obter uma aproximação finita do

conjunto Pareto

P(F, ϕ), ϕ[f ] = (Remp[f ], Qrbf[f ]) (20)

de maneira eficiente, a redução do domı́nio F ao

F̃ =
∪
σ∈Sσ

Fσ,CM
,

foi proposta, onde Fσ,CM
são os elementos de F associados às redes RBF cujos centros

correspondem a padrões distintos do conjunto de treinamento. Assim, aplicando a

9



decomposição (15) ao F̃ é posśıvel obter uma aproximação determińıstica de (20) na

forma

P
(
F̃ , ϕ

)
= P

( ∪
σ∈Sσ

P(Fσ,CM
, ϕ), ϕ

)
, (21)

onde Sσ = (σj)j é um grid de larguras, cuja quantidade de elementos determina a

qualidade da aproximação de (20).

Como as estruturas (camadas escondidas) das redes RBF associadas com Fσ,CM

são iguais, o problema de busca dos elementos não-dominados P(Fσ,CM
, ϕ) é convexo.

Assumindo uma função de perda quadrática l(x, y, f(x)) = (y−f(x))2, este problema

pode ser resolvido no domı́nio RM minimizando

Rreg(α) = ∥Y −Hα∥2 + λ∥α∥1, (22)

onde Y = (y1, y2, . . . , yN)
T é o vetor das sáıdas desejadas do conjunto de treinamento

ZN
tr e H = {kσ(xi, cj)}, i = 1, . . . , N , j = 1, . . . ,M é a matriz N ×M da camada

escondida.

Sabe-se que (22) correspondente à regressão LASSO [Tibshirani, 1996], cujas

soluções são esparsas e seu caminho de regularização (minimizadores de (22) cor-

respondentes a todos λ ∈ R+) é uma curva linear em trechos no RM . O caminho

de regularização do LASSO, que no contexto do presente problema representa o con-

junto não-dominado P(Fσ,CM
, ϕ), pode ser inteiramente calculado através do algo-

ritmo LARS [Efron, Hastie, Johnstone, and Tibshirani, 2004]. Assim, a aproximação

do conjunto Pareto (20) pode ser obtida diretamente de (21) através dos correspon-

dentes resultados de múltiplas execuções do LARS. Assim, a utilização do conjunto

(21) em um esquema (14) da abordagem MOBJ, levou ao algoritmo MOBJ-RBF de-

senvolvido, que é capaz de determinar os pesos, larguras, centros e quantidades de

funções-bases das redes RBF de acordo com principio SRM.

Em combinação com os critérios de informação AIC [Akaike, 1974] e BIC [Schwarz,

1978], adaptados para seleção de modelo no contexto de regressões LASSO, o algo-

ritmo proposto demonstrou alto desempenho de generalização para diversos proble-

mas comumente usados como benchmark.

OCaṕıtulo 5 apresenta uma extensão multi-objetivo do conceito de maximização

da margem para o contexto do espaço de hipóteses HK , associado aos múltiplos

RKHSs.

Como foi mostrado na análise préliminar do problema, a escolha da medida de

complexidade em HK como o prior Q[f ] = ∥f∥2k (relacionado com a largura da mar-

gem geométrica num subespaço Hk correspondente), não é adequada para o caso de

uma famı́lia de kernels K arbitrária. Assim, os conjuntos aninhados

Ωi := {f ∈ HK | ∥f∥2k ≤ ϵi},

10



induzidos pela medida de complexidade Q[f ] = ∥f∥2k, não necessariamente corres-

pondem à ordem das suas capacidades. Além disso, a ordem induzida é altamente

dependente da normalização dos kernels em K, enquanto o espaço das funções, repre-

sentadas por HK , continua sendo independente. Desta maneira, a organização de K

influencia o conjunto de hipóteses Pareto-ótimas sem influenciar suas propriedades da

generalização. Assim, ∥f∥2k não representa uma medida de complexidade adequada

em HK .

Do ponto de vista dos espaços de caracteŕıstica, a violação do SRM com a escolha

Q[f ] = ∥f∥2k é causada pelas diferenças de suas topologias, que levam à incompati-

bilidade das métricas. Assim, o problema pode ser resolvido por certa equiparação

dos espaços. Especialmente, uma das técnicas de equiparação desenvolvida é a nor-

malização dos tamanhos dos vetores caracteŕısticos, que leva à seguinte medida de

complexidade normalizada

Qnorm[f ] :=
∑
i

∑
j

αiαj

√
k(xi, xi)k(xj, xj)k(xi, xj). (23)

No caso espećıfico, quando os vetores caracteŕısticos associados ao kernel k têm com-

primentos iguais (e.g., como no caso de kernel RBF Gaussiano), o valor do Qnorm[f ]

corresponde ao quadrado de norma RKHS de uma hipótese f ′, cujo kernel induz ve-

tores caracteŕısticos unitários, equivalente ao f . No caso do kernel geral, a hipótese

f ′ não necessariamente é equivalente a f , mas a medida Qnorm[f ] é invariante aos

escalamentos dos espaços de caracteŕıstica associados com f .

De fato, é posśıvel demonstrar que a capacidade do espaço RKHS é influenci-

ada não somente pelos comprimentos de vetores caracteŕısticos, mas também pela

sua topologia angular. Por exemplo, é fácil verificar que os kernels suaves induzem

vetores caracteŕısticos fracamente angulados. Assim, a equiparação dos espaços de

caracteŕıstica a partir da normalização dos vetores caracteŕısticos pode não ser sufi-

ciente para representar as complexidades das hipóteses na forma adequada. Por isso,

foi proposta outra abordagem de equiparação, baseada na idéia de representar todas

as hipóteses em único espaço de caracteŕısticas de forma equivalente. Esta técnica

denominada equalização, é formulada a partir do prinćıpio a seguir.

Dado um mapeamento Φ◦ : X → H◦ fixo ao espaço de referência H◦ assumimos

que é posśıvel representar qualquer kernel k ∈ K na forma do produto escalar em H◦

k(x, x′) = ⟨Φ◦(x),Φ∗
k(x

′)⟩H◦ = ⟨ ◦
x,

∗
x′⟩ para os todos (x, x′) ∈ X 2, (24)

onde Φ∗
k(x

′) : X → H◦ é um mapeamento auxiliar associado com k. Assim, qualquer

hipótese f ∈ HK pode ser representada na forma equivalente pelo produto escalar no

11



espaço de caracteŕısticas de referência como

f(x) =
⟨

◦
x,

∗
f
⟩

(25)

através da sua imagem auxiliar

∗
f =

∑
i

αi
∗
xi. (26)

Na forma da hipótese (7), ambos componentes do produto escalar são dependentes

do mapeamento Φk. Em contrapartida, a forma equivalente (25) considera os ve-

tores caracteŕısticos de referência
◦
x, independentes do kernel e comuns para todas

as hipóteses. Assim, os elementos HK podem ser analisados num espaço de carac-

teŕısticas equalizado, com as suas propriedades expressas em termos das correspon-

dentes imagens auxiliares
∗
f .

A análise do paradigma das hipóteses no espaço de referência mostrou que a

margem geométrica do hiperplano de separação corresponde ao inverso do com-

primento do vetor
◦
g, que representa a projeção ortogonal de

∗
f no espaço linear

S◦ := span{ ◦
xi}Ni=1, gerado pelas combinações lineares dos vetores caracteŕısticos de

referência. Por outro lado, foi demonstrado que a introdução da medida de comple-

xidade baseada na largura da margem, tal como ∥ ◦
g∥2 ou ∥

∗
f∥2, leva a degenerações

do espaço de hipóteses da máquina de aprendizagem e, por isso, não representa a

escolha aceitável. Esta conclusão justificou a necessidade do desenvolvimento de uma

extensão do conceito de margem geométrica a uma propriedade de hiperplano de

separação mais geral.

Seguindo uma conhecida interpretação de margem larga como a estabilidade pa-

ramétrica do modelo, o critério de estabilidade leave-one-out do hiperplano de se-

paração foi proposto. Particularmente, dado um hiperplano de separação pelo seu

vetor normal f na forma da combinação linear

f =
N∑
j=1

αjxj (27)

dos N vetores-suporte xj, j = 1, . . . , N , a sua estabilidade é definida pelo critério

E(f) :=
N∑
i=1

e2i , (28)

onde

e2i = ∥f − g(i)∥2 (29)

12



é obtido por mı́nimos quadrados da distância entre o vetor original f e a sua apro-

ximação

g(i) :=
N∑

j=1,j ̸=i

β
(i)
j xj

considerando os N − 1 vetores-suporte, após a exclusão do i-ésimo. A partir da

transformação realizada, foi mostrado que o critério (28) possui a forma compacta

E(f) =
N∑
i=1

α2
i

di
, (30)

onde (d1, d2, . . . , dN) = diag(G−1) são os elementos diagonais do inverso da matriz de

Gram G = XTX, associada com os vetores-suporte X = (x1, x2, . . . , xN).

É posśıvel mostrar, que o critério proposto (30) está diretamente ligado a norma

∥f∥2 (que reflete a largura da margem geométrica) e, além disso, considera o volume

de informação mútua na descrição do vetor f , no sistema de vetores-suporte dado

por X. Desta forma, o critério (30) pode ser interpretado como uma medida de

complexidade dentro do conceito de minimum description length (MDL) [Wallace

and Boulton, 1968], sendo uma medida do volume de informação necessário para

descrição do modelo de um classificador, representado por f , com certa precisão.

Como o critério (30) também é dependente da métrica num espaço de Hilbert, as-

sociado com f , a medida de complexidade baseada em (30) para o espaço de hipóteses

HK exige a equiparação dos correspondentes RKHSs. Assim, aplicando a técnica de

equalização desenvolvida, foi proposta a medida de complexidade de referência

Qref[f ] :=
N∑
i=1

α2
i

di
, (31)

que é baseada no critério de estabilidade do hiperplano de separação dos padrões em

S◦ associado com f ∈ Hk. Em (31), os elementos diagonais

(d1, d2, . . . , dN) = diag
(
G−1

k Gk◦G
−1
k

)
são calculados a partir das matrizes de Gram G−1

k e Gk◦ , associadas com o kernel k

e o kernel de referência k◦, respectivamente.

O kernel de referência k◦ é associado com Φ◦ através dos produtos escalares dos ve-

tores caracteŕısticos
◦
xi. Por isso, a sua escolha influencia na medida de complexidade

Qref. Se por um lado, a escolha de um Φ◦ deve garantir a existência dos mapeamentos

auxiliares Φ∗
k para todos os elementos da famı́lia K, fornecendo a possibilidade de re-

presentação equivalente de todas as hipóteses em HK na forma (25); por outro lado,

13



é posśıvel mostrar que a projeção ortogonal
◦
g de

∗
f no espaço linear S◦ não depende

do mapeamento Φ∗
k. Apesar disso, a análise feita no Apêndice A mostra a existência

dos mapeamentos auxiliares e a abordagem prática para suas derivações, inclusive

nas formas fechadas dos kernels associados. Utilizando estes resultados, foi proposta

a escolha universal de mapeamento de referência Φ◦ com o kernel

k◦(xi, xj) = δji =

{
1, i = j

0, se contrário

sendo a função delta de Kronecker, que leva a uma forma prática de medida Qref para

qualquer HK .

Para confirmar a adequação da abordagem desenvolvida, um algoritmo MOBJ no

domı́nio de soluções de SVM, baseado no esquema (14) com as medidas de comple-

xidade propostas (23) e (31) foi comparado com a busca (10) pelo grid equivalente,

numa série de experimentos extensivos. A análise estat́ıstica dos resultados obtidos

com experimentos confirmou as propriedades esperadas da medida Qref, juntamente

com a redundância das buscas exaustivas (10) no espaço de hiperparâmetros, como

foi teoricamente previsto no Caṕıtulo 2. Este resultado justifica a necessidade de

desenvolvimentos futuros da abordagem MOBJ.

O Caṕıtulo 6 conclui o presente trabalho resumindo os resultados teóricos e

práticos obtidos, junto com a discussão das perspectivas de desenvolvimentos futuros.

Os resultados dos Caṕıtulos 3 e 4 desse trabalho foram apresentados em con-

gressos nacionais e internacionais, e também publicados em periódicos revisados. Os

resultados de Caṕıtulo 5 encontram-se em fase de preparação para submissão.
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Abstract

As known from statistical learning theory, the training error and complexity of a
model must be simultaneously minimized and yet certainly balanced for a valid gen-
eralization. Modern learning algorithms, such as support vector machines, achieve
this goal by means of regularization and kernel methods, whose combination provides
possibilities for analysis and construction of efficient nonlinear learning machines.

In such algorithms, due to the non-convexity of the learning problem when the
kernel is not fixed, the choice of the kernel is commonly addressed using sophisticated
techniques of model selection, in a manner, different from the original idea of balance
between the error and complexity. In contrast, the search of balance between the
error and complexity in non-convex learning problems can be treated within the
multi-objective framework, by viewing the supervised learning as a decision process
in the environment of two conflicting goals. However, modern methods of multi-
objective learning are focused on evolutionary optimization, paying a few attention
to implementation of key learning principles.

This work develops a multi-objective approach to supervised learning as an exten-
sion of the traditional (single-objective) concepts, such as regularization and margin
maximization, to the cases of non-convex hypothesis spaces, induced with multiple
kernels. In the proposed learning scheme, approximate solutions to generally non-
convex problems are obtained from their decompositions into the subsets of convex
subproblems, where the application of deterministic nonlinear programming is effi-
cient. Aiming for implementation of the principle of structural risk minimization,
there are several complexity measures derived, each one inducing a particular multi-
objective algorithm.

In particular, the proposed smoothness-based complexity measure for the Gaus-
sian radial-basis function (RBF) networks led to an efficient multi-objective algorithm,
which is capable of finding the weights, widths, locations, and quantities of basis
functions in a deterministic manner. In combination with the Akaike and Bayesian
information criteria, the developed algorithm demonstrates a high generalization ef-
ficiency on several synthetic and real-world benchmark problems. Aiming to extend
the concept of margin maximization to supervised learning with multiple kernels,
the techniques of feature normalization and equalization were proposed. The further
analysis shows the necessity in extension of the concept of margin to the more general
property of a separation hyperplane, such as its stability. As the result, the proposed
stability-based complexity measure, which reliability has been experimentally con-
firmed, allows a construction of multi-objective algorithms for arbitrary classes of
kernels.

Keywords: multi-objective,model selection, regularization, kernel machines, radial-
basis functions.
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Resumo

Conforme a teoria de aprendizagem estat́ıstica, o erro de treinamento e a complexi-
dade de modelos de aprendizado devem ser certamente equilibrados para uma genera-
lização válida, além de serem minimizados. Os algoritmos de aprendizagem modernos,
tais como máquinas de vetores de suporte, atingem esta meta por meio da regula-
rização e dos métodos de kernel. A sua combinação permite de maneira eficiente
analisar e construir máquinas de aprendizagem não-lineares.

Nestes algoritmos, devido à não-convexidade do problema de aprendizagem quando
o kernel não é fixo, a escolha do kernel é efetuada por meio das técnicas sofisticadas
de seleção de modelos, diferentemente da ideia original de equiĺıbrio entre o erro e a
complexidade. Por outro lado, a busca de equiĺıbrio entre o erro e a complexidade de
problemas não-convexos pode ser tratada de maneira multi-objetiva, considerando a
aprendizagem supervisionada como o processo de decisão no ambiente de dois obje-
tivos conflitantes. Contudo, métodos modernos de aprendizagem multi-objetiva são
voltados à otimização evolucionária, prestando pouca atenção à implementação dos
prinćıpios fundamentais de aprendizagem estat́ıstica.

Neste trabalho foi desenvolvida uma abordagem multi-objetiva de aprendizagem
supervisionada baseada na extensão dos conceitos tradicionais, tais como regula-
rização e maximização de margem, aos casos de espaços de hipótese não-convexos,
induzidos com múltiplos kernels. No esquema de aprendizagem proposto, as soluções
aproximadas dos problemas, geralmente não-convexos, sao obtidos por meio de certa
decomposição em conjuntos de sub-problemas convexos, nos quais a programação não
linear pode ser eficientemente aplicada de maneira determińıstica. Com o objetivo
de implementação do prinćıpio de minimização do risco estrutural, várias medidas
de complexidade foram propostas, induzindo os correspondentes algoritmos multi-
objetivos.

Entretanto, a medida de complexidade baseada em suavidade para as redes de
função da base radial (RBF) permitiu a construção de um algoritmo multi-objetivo,
com a sua capacidade de definição dos pesos, larguras, centros e quantidades de
funções-bases. Em combinação com os critérios de informação de Akaike e Bayes,
o algoritmo proposto demonstrou um alto desempenho de generalização em vários
problemas-testes de natureza diversa. Com o objetivo de extensão do conceito de
maximização de margem ao aprendizagem supervisionada com múltiplos kernels, as
técnicas de normalização e equalização dos espaços de caracteŕısticas foram propos-
tas. As suas análises mostraram a necessidade de formulação de conceito de margem
com uma caracteŕıstica mais geral de hiperplano de separação, tal como sua estabili-
dade. Como resultado, a medida de complexidade baseada no critério de estabilidade
desenvolvido, cuja adequação foi confirmada com experimentos, permite a construção
de algoritmos multi-objetivos para as classes de kernel arbitrários.

Palavras-chave: multi-objetivo, seleção de modelo, regularização, máquinas de
kernel, redes RBF.
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Chapter 1

Introduction

In the middle of the twentieth century, the innovative work [McCulloch and Pitts,

1943] brought a new way of understanding and modeling of cognitive processes with

the connectionist approach, known as artificial neural networks (ANNs). With the

rapid development of computers in the mid-80s, ANNs receive much attention from

scientists as a powerful computational intelligence tool, whose evolution furthered the

development of machine learning as a discipline.

Recent advances in machine learning embrace a wide range of computational intel-

ligence tasks, whose ever-growing demand arises from a variety of modern problems

in engineering, economics, and bio-medicine. Most of these tasks are associated with

induction of models from data. For instance, such tasks as pattern recognition, time-

series prediction, adaptive control, and fault detection may be formulated in terms

of a search for hidden dependencies in empirical observations. Within the machine

learning framework, the latter corresponds to a setting of the supervised learning

problem, which plays a central role in the discipline.

Since the empirical observations are induced by objects whose properties are gen-

erally unknown, the solution to a supervised learning problem requires dealing with

nondeterministic processes under conditions of uncertainty. That in turn relates the

methodology complex of machine learning to other fields, such as statistics, mathe-

matical programming, decision, and information theories.
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A comprehensive look at learning is given by the well-known Statistical Learning

Theory (SLT) [Vapnik, 1998], which establishes the methodology of consistent learn-

ing by the key principles of empirical and structural risk minimization (ERM and

SRM). These principles are closely related to regularization [Poggio and Girosi, 1990]

and Bayesian learning [Neal, 1996], whose combination with the support vector (SV)

machines [Cortes and Vapnik, 1995] and modern kernel methods [Scholkopf, 1999]

represents the state-of-the-art machine learning framework.

Within the context of supervised learning in its traditional formulation, one en-

sures the consistency of learning by controlling the training error (empirical risk) and

model complexity (capacity of the hypothesis class) via minimization of a certain loss

function. In such a way, one implements the principle of SRM by maintaining the

error and complexity in a certain balance, determined with the choice of hyperpa-

rameters (e.g., regularization parameter). The latter provides a priori information

about the solution to the learning algorithm, which is usually unavailable due to un-

certainty. Hence, the problem of hyperparameter estimation arises at the next level

of inference, referred to as model selection.

With the recent development of evolutionary optimization, an increasing interest

has been seen in application of the Pareto-optimality concept to machine learning

aiming to extend the capabilities of existing learning models and algorithms. This

approach led to the development of multi-objective machine learning (MOML) [Jin,

2006] methods, where learning is viewed as a decision process within the environ-

ment of multiple and competitive goals, representing trade-offs. Within the MOML

framework, the uncertainty of the supervised learning problem is represented with the

trade-off region between minimization of the error and complexity objectives, whereas

the decision towards a single solution corresponds to model selection.

1.1 Motivation and goals

When there is a single hyperparameter, both the single-objective and multi-objective

concepts are equivalent and correspond to the same implementation of the SRM

principle. When there is more than one hyperparameter, the traditional approach
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requires several levels of estimation, as recently depicted in [Guyon, Saffari, Dror, and

Cawley, 2010] with the unified multi-level inference model of learning. For example,

when estimation of the regularization parameter stays at the second level after the

model parameters, the estimation of kernel parameters 1 corresponds to the third level

of multi-level inference hierarchy. The drawback of a such multi-level scheme is that

only transformation of the uncertainty occurs between levels, instead of its reduction,

leading to the necessity in exhaustive search within the space of hyperparameters.

The typical example is the grid search techniques, widely applied for selection of

hyperparameters in combination with the diverse validation criteria.

From the SRM point of view, an introduction of multiple hyperparameters (e.g.,

kernel parameters) can be considered as an extension of hypothesis space of a learning

machine (space of available models), whereas the learning goals (minimum error and

model complexity) remain the same. Hence, in the MOML formulation the super-

vised learning problem remains bi-objective that always requires only two levels of

inference: estimation of model parameters and finding the balance between the error

and complexity.

It is noteworthy that a similar approach in a single-objective form is also possi-

ble. In particular, the so-called multiple kernel learning has been recently developed

in [Bach, Lanckriet, and Jordan, 2004; Micchelli and Pontil, 2005; Ong, Smola, and

Williamson, 2005], where the variety of kernels is represented by a single hyper-prior,

instead of the set of hyperparameters. In such a formulation, the learning problem

is convex and solved by a certain form of regularization, where only a single hy-

perparameter determines the regularization strength. This approach demonstrates

implementation of the SRM on the hypothesis space associated with multiple kernels,

however, relies on computationally heavy optimization to ensure sparsity of solutions

while maintaining the convexity of the problem.

In contrast to regularization, the multi-objective formulation of supervised learn-

ing is not limited to convex problems, whereas both permit the SRM implementation.

Moreover, for convex problems it can be shown that both approaches are equivalent.

Consequently, a unification of supervised learning with the methodology of MOML

1Also known as kernel selection, in regularization and SV learning, and selection of the prior, in
Bayesian learning.
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can be viewed as a generalized learning framework. However, when allowing gen-

erally non-convex multi-objective problems, one has to deal with NP-completeness,

addressing them with approximation techniques. One of the earliest approaches of

such multi-objective treatment of supervised learning was developed in [Liu. and

Kadirkamanathan, 1995], where a genetic algorithm was used for finding of approx-

imate solutions to the problem of multi-objective minimization of the training error

of a neural network, along with several norms of its weights, playing the role of com-

plexity measures. The later developments [Hatanaka and Uosaki, 2003; Jin, Okabe,

and Sendhoff, 2004; Bevilacqua, Mastronardi, Menolascina, Pannarale, and Pedone,

2006; Yen, 2006; Kondo, Hatanaka, and Uosaki, 2006] followed similar ideas, rely-

ing on evolutionary programming as the means of approximate solutions of generally

non-convex multi-objective problems. Alternatively, application of nonlinear pro-

gramming techniques has been shown in [Teixeira, Braga, Takahashi, and Saldanha,

2000; Costa, Braga, Menezes, Teixeira, and Parma, 2003; Costa and Braga, 2006] for

multi-objective supervised learning of multilayer perceptron (MLP) networks, where

their complexities were expressed by the Euclidean norms of their weights, aiming

to control the generalization according to [Bartlett, 1997]. Such an approach, called

MOBJ, concerns treatment of multi-objective problem on the non-evolutionary basis,

taking advantage of deterministic learning algorithms.

The above examples of both evolutionary and non-evolutionary (MOBJ) multi-

objective approaches demonstrated good results in practice. Although the evolution-

ary MOML algorithms are focused on optimization techniques, their theoretical basis

is mostly heuristic and weakly connected to learning concepts. On the other hand,

the existing MOBJ approach addresses multi-objective problem with regularization-

like procedures, whose connections to the SRM could be revealed, but the Pareto-

optimality of resulted solutions is weak due to the non-convexity of learning problems

addressed with convex programming. Therefore, the evolution of ideas of the MOBJ

towards their theoretical groundings from both the SRM and Pareto-optimality points

of view represents a novel perspective in the field of MOML.

As known, kernel methods provide the methodology for analysis and construction

of various learning machines, such as SV machines, regularization networks (RN), and

radial-basis function (RBF) networks; in the aspects of statistical learning, informa-
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tion, and optimization theories. Consequently, the above learning machines or their

modifications are the appropriate choice for the detailed multi-objective analysis and

extension to the SRM-consistent MOBJ framework. Finally, the presented above line

of motivations gives rise to the following goals of the current work:

• Develop the methodology of the generalized MOBJ framework for supervised

learning, aimed to implement the SRM in a general, deterministic (non-evolutionary)

scheme, taking advantages of the nonlinear programming;

• Determine and implement the components of MOBJ learning algorithm for

particular neural network architectures;

• Demonstrate reliability of the proposed theoretical basis in practice and outline

its further development.

1.2 Thesis outline

The dissertation thesis has the following structure.

Chapter 2 provides overview and systematic analysis of existing results on the

statistical and regularization learning, their connections and applications to the RBF

networks and kernel machines. The unified view on supervised learning with ker-

nel machines concludes the chapter by a discussion of the problem of estimation of

hyperparameters, motivating further developments.

Chapter 3 starts with the formal introduction of the principle of Pareto-optimality,

then passes to the formulation of concepts of the bicriteria supervised learning

(MOBJ), which play a central role in the current research. The complexity mea-

sure and method of convex decomposition are introduced as the key elements of the

proposed generalized learning framework, resulting in the scheme of the MOBJ al-

gorithm. The chapter ends with the conclusion of necessity in a special complexity

measure, providing two alternative approaches for its derivation. The following two

chapters represent two corresponding studies, addressing the derivation of complexity

measures with different approaches.
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Chapter 4 follows the smoothness-based approach to the complexity measure, deal-

ing with the idea of its expression via the properties of functions in Sobolev spaces. In

application to the hypothesis space of RBF networks with Gaussian basis functions,

the proposed complexity measure induces the MOBJ-RBF algorithm, which is capa-

ble of finding of efficient solutions to the supervised learning problem determining

the weights, widths, centers and quantities of the basis functions in a deterministic

and computationally-efficient manner. A special attention is paid to adaptation of

the information criteria for model selection, that provide a high generalization per-

formance to the MOBJ algorithm at almost no computational costs. The capabilities

of the proposed MOBJ algorithm are demonstrated in a series of benchmark tests.

Chapter 5 aims to extend the concept of margin maximization to multi-objective

learning in the context of multiple kernels by means of the derivation of correspond-

ing complexity measure. The chapter starts with the detail analysis of the argument,

earlier formulated in Chapter 3, that a traditional definition of the margin via the

norm in a feature space is not a valid complexity measure in the multi-kernel context,

from the SRM point of view. Consequently, new techniques of normalization and

equalization of feature spaces are proposed, demonstrating the necessity in further

extension of the concept of geometrical margin. The corresponding extension is pro-

posed using the stability interpretation of the margin maximization. Its formalization

leads to the development of new complexity measure, based on the stability proper-

ties of separation hyperplanes. The theoretical results are examined in the extensive

experiment, whose statistical analysis confirms the reliability of the proposed MOBJ

approach.

Chapter 6 concludes the thesis, summarizing results and outlining their possible

ways of further development.



Chapter 2

Theoretical background

Starting from the basic concepts of machine learning, this chapter provides a brief

introduction to the fundamental learning principles and several common learning

techniques, serving as a point of reference for further developments. In detail, the

subjects of the chapter are covered in [Vapnik, 1995; Haykin, 1999; Scholkopf and

Smola, 2001].

2.1 Introducton

The classical machine learning discipline distinguishes several scenarios of the learning

process: supervised, unsupervised, semi-supervised, reinforcement, and transductive.

In spite of principal differences, they all can be viewed in a general actor-environment

scheme, where the learner (actor) interacts with a learning object (environment) by

means of observations. Commonly, when observations are represented by certain

mathematical objects, the learner’s goal is to find a hypothesis function, which pro-

vides a certain response to input observations. In the above scheme, the scenario of

interaction and the sought hypothesis depends on the kind of learning task. Tasks,

such as pattern recognition, function approximation, prediction, control, and filtering

are usually associated with the scenario of supervised leaning, lying in the scope of

current work.

In supervised learning, the learner’s aim is an induction from observations. Namely,

given a finite training set of the observed inputs and corresponding target outputs
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of the learning object, the learner provides a hypothesis function, whose response to

an unseen input observation (not from the training set) predicts a response of the

learning object. In other words, the learner performs generalization of the training

data with the hypothesis.

Most supervised learning tasks are reduced to classification (pattern recognition)

or regression. Moreover, the former can be seen as a specific case of the latter. In the

case of classification, the input observation consists of characteristics of the object

(features), whose class is denoted by the label and contained in the corresponding

target output. Hence, a good hypothesis is supposed to classify previously unseen

objects by providing the correct label of their class. In the case of regression, the

target response is usually a real-valued scalar or vector and, thus, the hypothesis is

supposed to reproduce (approximate) the unknown function, from which the training

set was sampled.

The learner is usually represented by a certain algorithm, referred to as learning

machine. Learning machines can be distinguished by the arsenal of available hypoth-

esis functions they implement and the way these functions are implemented. The

former determines a hypothesis space of a learning machine, whereas the latter splits

learning algorithms into several classes.

Lazy algorithms perform generalization of the training set at the moment of eval-

uation of a hypothesis function and, consequently, require significant computational

resources each time the response is produced. The opposite, eager algorithms, gener-

alize the data at the training phase. Also, the algorithms can be split into instance-

and model-based. Instance-based algorithms rely on comparison of unseen obser-

vations with the training set and, thus, are also lazy. Such algorithms often require

memorization of the training set, e.g., the well-known k-nearest neighbor (k−NN) [Fix

and Hodges, 1951] algorithm. Model-based algorithms are usually eager and general-

ize the data by means of a model. The common examples of model-based algorithms

are decision trees [Quinlan, 1986], adaptive liner elements (Adalines) [Widrow and

Stearns, 1985], multilayer neural networks [Haykin, 1999], and kernel machines [Hof-

mann, Schöolkopf, and Smola, 2008].

In practice, the learning object is usually nondeterministic and, generally, nonsta-

tionary with unknown properties. The learning process in such conditions becomes



2 Theoretical background 9

a difficult task and requires dealing with several kinds of uncertainty. Within the

model-based approach, the uncertainty is usually divided into structural and para-

metrical components, giving rise to the problems of model selection and parameter

estimation, respectively.

2.2 Elements of statistical learning theory

Statistical Learning Theory (SLT) [Vapnik, 1995, 1998], also known as VC theory

due to Vladimir Vapnik and Alexey Chervonenkis, is an essential machine learning

framework, which is based on statistical interpretation of a learning process. As its

major contribution, SLT establishes fundamental definitions and principles of learn-

ing, addressing the problems of parameter estimation and model selection in the

nondeterministic environment.

2.2.1 Problem setting

Let the hypothesis space Ω be a class of functions f : X → Y , which map input ob-

servations from X into the target space Y , and let the scalar loss function l(x, y, f(x))

stand for the measure of regression or classification errors. Then, the fundamental

problem of supervised learning can be stated as the minimization of the expected error

over Ω. Specifically, one seeks in Ω for the minimizer of the expected risk functional

R[f ] :=

∫
X×Y

l(x, y, f(x))∂P (x, y) = E[l(x, y, f(x))], (2.1)

where the joint probability distribution P (x, y) describing the learning object is un-

known, but only the training set

ZN
tr :=

{
(xi, yi) ∈ X × Y | i = 1 . . . N

}
of N samples i.i.d. with respect to P (x, y) is given.
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2.2.2 Regression as density estimation

Let the problem of regression given by the squared error loss function l(x, y, f(x)) =

(y − f(x))2. Then, the risk functional (2.1) can be rewritten as

R[f ] =

∫
X

∫
Y
(y − f(x))2p(x, y)∂y∂x,

where p(x, y) is the joint probability density function. Introducing the conditional

expectation g(x) = E[y|x] =
∫
Y yp(y|x)∂y, one may write

R[f ] =

∫
X

∫
Y
(y − g(x) + g(x)− f(x))2 p(x, y)∂y∂x

=

∫
X

∫
Y
(y − g(x))2 p(x, y)∂y∂x+

∫
X

∫
Y
(f(x)− g(x))2 p(x, y)∂y∂x

−2

∫
X

∫
Y
(y − g(x)) (f(x)− g(x)) p(x, y)∂y∂x

=E
[
(y − g(x))2

]
+ E

[
(f(x)− g(x))2

]
−2

∫
X
(f(x)− g(x)) p(x)

∫
Y
(y − g(x)) p(y|x)∂y∂x.

As seen, the term ∫
Y
(y − g(x))p(y|x)∂y =

∫
yp(y|x)∂y − g(x) = 0

vanishes, hence the expected risk turns to be the sum of the two expectation terms

R[f ] = E[(y − g(x))2] + E[(f(x)− g(x))2],

where the former depends only on the unknown p.d.f. and the latter depends on the

hypothesis f . Finally, one can conclude that

f ◦(x) = E[y|x]

is the unique minimizer of R[f ]. Consequently, the problem of supervised learn-

ing in current regression setting is equivalent to the problem of estimation of the

conditional expectation E[y|x] (or conditional density p(y|x)) from the set of em-

pirical observations. It is noteworthy that the global minimum of the expected risk
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R[f ◦] = E[(y − g(x))2] is a constant of a particular learning problem, commonly

interpreted as the variance of sampling noise.

2.2.3 Empirical risk minimization

The uncertainty of the distribution P (x, y) prevents explicit minimization of the ex-

pected risk R[f ]. However, approximation of P (x, y) with the empirical distribution,

available from the training set ZN
tr , allows one to minimize the empirical risk

Remp[f ] =
1

N

N∑
i=1

l(xi, yi, f(xi)), (2.2)

instead.

Obviously, the empirical risk converges to the expected risk as the number of

observations grows infinitely large, i.e.,

lim
N→∞

Remp[f ] = R[f ]. (2.3)

This basic assumption lies in the basis of the empirical risk minimization (ERM)

principle. However, the fundamental study [Vapnik and Chervonenkis, 1989] claims

that the fact of convergence (2.3) is not sufficient for a consistent learning with ERM,

since the convergence of the empirical minimum Remp(f
∗|N) to R(f◦) is not uniform.

As the result, the ERM is proved to be consistent iff the empirical risk converges

uniformly to the expected risk in the worst-case scenario

lim
N→∞

Pr

{
sup
f∈Ω

|R[f ]−Remp[f ]| > ε

}
= 0, for all ε > 0. (2.4)

The condition (2.4) is also known as the nontrivial consistency principle, which is

schematically demonstrated in Fig. 2.1.

The necessary and sufficient conditions of consistency are given in [Vapnik and

Chervonenkis, 1968] by the concept of the growth functions. Namely, (2.4) holds iff

lim
N→∞

G(N)

N
= 0, (2.5)
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N ∞

R(f ◦)

Remp(f
∗|N)

R(f ∗|N)

Figure 2.1: Demonstration of the non-trivial consistency principle of empirical risk
minimization.

where G(N) is the growth function. For instance, if l(x, y, f(x)) is the indicator1

function, the growth function is then defined as

G(N) := ln max
ZN∈XN×YN

D(ZN),

where D(ZN) is the number of all possible dichotomies (shatterings) of the set ZN

of N observations by the loss function l(x, y, f(x)) on Ω. The growth function G(N)

is the upper bound of the term lnE[D(ZN
tr )], called Vapnik’s entropy, where the

expectation is taken with respect to the unknown distribution P (x, y). Vapnik’s

entropy represents the capacity of a learning machine with respect to P (x, y), whereas

G(N) provides its distribution-independent bound.

It is easy to see thatD(ZN
tr ) is bounded from above with 2N , which is the maximum

possible number of dichotomies of N samples. Consequently, for a particular learning

machine, there exists such a positive constant h, that for all N ≤ h the identity

G(N) = N ln 2 holds. It means that the learning machine, after training on ZN
tr

of length N ≤ h with arbitrary labels, will classify all samples correctly, inducing

false generalizations. This situation is called overfitting, which must be avoided by

increasing N (a larger data-set) or by reducing h (smaller capacity of the hypothesis

1For example, in the problem of binary classification with labels Y :=
{
−1, 1

}
the error loss

function l(x, y, f(x)) = 1
2 (1− yf(x)) is indicator.
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space). As shown in [Vapnik and Chervonenkis, 1989], the growth of G(N) after

N > hmust slow down, which is sufficient for satisfying the condition (2.5). Therefore

it can be seen that (2.5) is satisfied when there exists a finite h. The value of h is

also known as VC-dimension and represents the distribution-independent measure of

capacity of a learning machine.

Another interpretation of the consistency of ERM can be given within the con-

text of Shannon’s sampling problem [Shannon, 1949], where the problem of super-

vised learning can be viewed as the reconstruction of the unknown signal f , which

is sampled N times with a certain frequency (see e.g., [Vapnik, 1995]). Then, the

Nyquist-Shannon sampling theorem states that the reconstruction is possible when

the sampling frequency (controlled by N) is sufficiently large for a given signal band-

width (capacity of the a learning machine).

2.2.4 Bounds on uniform convergence

Several different learning machines may consistently implement ERM, providing dif-

ferent solutions to a particular learning problem. However, the value of the minimized

empirical risk does not reflect quality of the achieved generalization, while the true

value of the expected risk cannot be computed. Therefore, within the SLT frame-

work, the quality of generalization is evaluated through the analysis of the uniform

convergence results in Pr
{
supf∈Ω |R[f ]−Remp[f ]| > ε

}
namely, as the form

R[f ] ≤ Remp[f ] + Ψ (Remp[f ], N,Ω, η) (2.6)

of the upper bound on the expected risk. Here η determines the confidence level,

such that (2.6) holds with the probability of at least 1 − η, and the term Ψ is the

corresponding confidence interval. The bound (2.6) is also known as a generalization

bound, since it tells us how well the expected risk is approximated.

Generalization bounds can be expressed in a variety of ways, depending on set-

tings. For instance, if the classification problem is set for indicator loss functions, the

VC-bound is given by the confidence interval

ΨV C =
ε

2

(
1 +

√
1 +

4Remp[f ]

ε

)
,
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where ε = a1
(
h(ln(a2

N
h
) + 1)− ln(η

4
)
)
/N . Here the coefficients 0 < a1 ≤ 4 and

0 < a2 ≤ 2 must be empirically chosen [Vapnik, 1995]. The VC-bounds demonstrate

that a good generalization can be achieved when the ratio N
h
is large enough, so that

ε is small and, as the consequence, a small empirical risk implies a small expected

risk as well.

Generalization bounds can be also formulated without a certain dimension-like

measure of capacity. For instance, an extension of Vapnik’s results for arbitrary

hypothesis space Ω and bounded loss function l(x, y, f(x)) ≤ τ is also possible within

the concept of metric entropy. For example, [Alon, Cesa-Bianchi, Ben-david, and

Haussler, 1997] proposed the bound

Pr

{
sup
f∈Ω

|R[f ]−Remp[f ]| > 6ετ

}
≤ 12NE

[
N
(
ε,Ω, ℓX

2N

∞

)]
exp

(
−ε2N

)
, (2.7)

where N
(
ε,Ω, ℓ

Z2N
tr∞

)
denotes the ε−covering number2 of the hypothesis class Ω with

ℓ∞ metric on Ω w.r.t. double sample 3. In (2.7), the expectation is taken with respect

to the unknown distribution of the training sample. Hence, one usually constructs

the distribution-independent form of (2.7) with

Nm (ε,Ω) = sup
x1...xm∈X

N
(
ε,Ω, ℓX

m

∞
)

under the assumption

E
[
N
(
ε,Ω, ℓX

2N

∞

)]
≤ N 2N (ε,Ω) , (2.8)

giving rise to the practical bound

Pr

{
sup
f∈Ω

|Remp[f ]−R[f ]| > 6ετ

}
≤ 12NN 2N (ε,Ω) exp

(
−ε2N

)
. (2.9)

Then, the confidence interval in the form (2.6) is Ψ (Remp[f ], N,Ω, η) = 6ετ , which

2Given the set Ω and the metric d(·, ·) on it, the ε−covering number N (ε,X, d) is the minimum
number of ε-balls sufficient to cover entire Ω

3The ℓ∞ matric on functions in Ω on double sample id d(f, f ′) = ∥f − f ′∥ℓX2N
∞

=

maxi=1...2N |f(xi)− f ′(xi)|
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can be calculated by solving

η = 12NN 2N (ε,Ω) exp
(
−ε2N

)
with respect to ε, given the confidence probability level 1− η.

In order to take advantage of (2.9), the confidence interval 6ετ must be evidently

lower than the trivial bound |Remp[f ] − R[f ]| ≤ τ , hence one is interested in ε ≤ 1
6
.

Also, the bound (2.9) is meaningful only when η ≤ 1, since η is a probability. Then, it

is easy to see that in the optimistic case with the minimum possible covering number

N 2N(ε,Ω) = 1 the bound (2.9) becomes useful, starting with the length N > 294

of the training set. Under realistic conditions, when the bound (2.8) is not tight and

the desired confidence level η is small enough, the minimum required sample size

may be sufficiently larger than that available. Similar situation may occur with the

VC-bounds, where the precise estimation of the VC-dimension is difficult. This is a

significant limitation of the application of the uniform convergence bounds approach

in practice.

2.2.5 Structural risk minimization

In spite of the practical difficulties of application of bounds on uniform-convergence,

the analysis of generalization bounds (2.6) led to a fundamental approach for con-

trolling the generalization properties of a learning machine by minimizing both the

empirical risk and confidence interval terms. This idea lies at the basis of the induc-

tive learning principle, called the structural risk minimization (SRM), developed by

Vapnik [Vapnik, 1982].

In its original setting, SRM relies on the construction of the structure of nested

hypothesis subsets

∅ ⊂ Ω1 ⊂ Ω2 ⊂ . . . ⊂ Ω,

following the order of their learning capacity, i.e., the VC-dimensions hi of the corre-

sponding subclases Ωi that must satisfy the order 0 ≤ h1 ≤ h2 ≤ . . . ≤ h. Then, the

minimizers f1, f2, . . . , f of the empirical risk Remp over the corresponding elements

of the structure represent alternatives, from which one selects the final hypothesis in

accordance with the lowest risk bound, ensuring minimum of the guaranteed risk.
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ΩΩiΩ1

Figure 2.2: Illustration of the structural risk minimization principle

As seen from the general form of the bounds (2.6), the empirical risk decreases

and the term Ψ (Remp[f ], N,Ω, η), playing the role of the confidence interval, increases

simultaneously with the growth of capacity and vice versa. This paradigm depicts

the main trade-off of learning, where minimization of the one of the learning objec-

tives leads to increase of another. Similar phenomenon is also demonstrated with

the known bias-variance dilemma [Geman, Bienenstock, and Doursat, 1992], where

behavior of the empirical risk and capacity of the hypothesis class corresponds to a

tradeoff between the bias and variance of the expected risk, the same as correspond-

ing components in (2.6). Hereby, aiming to reach the best generalization to the given

data-set, one should perform the search for a certain equilibrium between the empiri-

cal risk and capacity of the hypothesis class. This principle is usually put in practice

with the application of model selection techniques, discussed below in 2.5.2.
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2.3 Radial-basis function networks

The radial-basis function (RBF) networks are inspired by a kind of biological neu-

rons, whose responses are concentrated in a narrow band of the input signal range.

The earliest developments of the RBF architecture and its learning algorithm appear

in [Moody and Darken, 1989]. The RBF networks are closely related to the non-

parametric and kernel regression techniques [Nadaraya, 1964] and also proved to be

universal approximators [Park and Sandberg, 1991], as an alternative to the popular

multilayer perceptrons (MLP).

Figure 2.3: Architecture of the RBF network

2.3.1 Architecture

Analogous to MLP, the feed-forward architecture of an RBF network is composed of

two layers: the hidden layer of non-linear units and linear output layer (Fig. 2.3).

The n-input single-output4 RBF network of m hidden units implements the function

f : Rn → R with

f(x) =
m∑
i=1

αik(∥x− ci∥) + b, (2.10)

where k(∥x−ci∥) is the i-th radial-basis function with the center parameter ci (some-

times called prototype or centroid); αi is the weight (or expansion coefficient) and b

is the bias parameter.5 Usually, basis functions are also parametrized. For instance,

4Without loss of generality, hereafter only single-output architectures are considered.
5For the sake of simplicity, the term +b is omitted. As common, it is considered as the weight,

corresponding to the unit basis function a constant output. However, when such representation is
not convenient, parameter b is estimated separately from the weights (see e.g., 4.3.3 for details).
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the most common are the Gaussian basis functions

kσ(∥x− ci∥) = exp

(
−∥x− ci∥2

2σ2

)
, (2.11)

with the width parameter σ.

As known, the RBF architecture is connected with Cover’s theorem [Cover, 1965],

which states that given any nonlinearly-separable training set of patterns in Rn, there

exists such a nonlinear map ϕ : Rn → Rm, m ≥ n, that the images of training

patterns under ϕ are linearly-separable. In other words, there is a hyperplane in

Rm that separates N training samples in an arbitrary way. Within the context of

RBF architecture, the hidden layer performs a nonlinear mapping from Rn into Rm,

whereas the vector α = (α1, α2, . . . , αm)
T of expansion coefficients determines the

separation hyperplane. Such connection with Cover’s theorem immediately gives a

clue for the choice m ≥ n of the number of basis functions. However, there is another

perspective on Cover’s theorem, further discussed in 2.4.1.

2.3.2 Connection with kernel regression

As shown earlier in 2.2.2, the problem of regression with the squared loss reduces to

the problem of estimation of the conditional expectation

f(x) = E[y|x] =
∫
yp(y|x)∂y,

which implies estimation of the unknown density p(y|x). Applying the Bayes’ rule,

one can express the conditional density via the joint p.d.f. as p(y|x) = p(x,y)
p(x)

, giving

rise to the alternative form of the optimal regression function:

f(x) = p(x)−1

∫
Y
yp(x, y)∂y. (2.12)

Now, the unknown densities can be estimated by means of non-parametric methods,

such as the Parzen-Rosenblatt [Parzen, 1962] estimator. The estimates of p(x) and

p(x, y) are

p̂(x) =
1

Nσx

N∑
i=1

k

(
x− xi
σx

)
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and

p̂(x, y) =
1

Nσxσy

N∑
i=1

k

(
x− xi
σx

)
k

(
y − yi
σy

)
,

respectively, where σx, σy are the smoothing (width) constants and k(·),
∫
k(x)∂x = 1

is the density kernel. Substitution of the unknown densities by their corresponding

estimates in (2.12) leads to the estimated regression function

f̂(x) = p̂(x)−1

∫
Y
yp̂(x, y)∂y = p̂(x)−1 1

Nσxσy

N∑
i=1

k

(
x− xi
σx

)∫
Y
yk

(
y − yi
σy

)
∂y,

or

f̂(x) =

∑N
i=1 yik

(
x−xi

σx

)
∑N

i=1 k
(

x−xi

σx

) , (2.13)

after simplification.6

After choosing the density kernel k to be translation- and rotation-invariant and

introducing the RBF function kσ(∥x∥) = k(x
σ
), one recovers the RBF network

f̂(x) =
N∑
i=1

αikσ(∥x− xi∥)

from the estimate (2.13). Here, the centers of the basis functions correspond to the

training patterns and the weights correspond to the relation

αi = yi

(
N∑
i=1

kσ(∥x− xi∥)

)−1

.

Moreover, introducing the normalized basis functions

k′σ(∥x∥) = kσ(∥x∥)

(
N∑
i=1

kσ(∥x− xi∥)

)−1

the regression function

f̂(x) =
N∑
i=1

yik
′
σ(∥x− xi∥)

6The identity
∫
Y yk

(
y−yi

σy

)
∂y = σyyi is straightforward, since

∫
k(x)∂x = 1.
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receives the form of the Nadaraya-Watson [Nadaraya, 1964] estimator, which also

corresponds to the normalized RBF network [Xu, Krzyzak, and Yuille, 1994].

2.3.3 Regularization networks

Another theoretical basis of RBF networks arises from the regularization framework,

where the supervised learning is viewed as an ill-posed (underdetermined) curve-

fitting problem in a high-dimensional space: the training set is sparse in Rn and

therefore there are infinitely many interpolations possible. In this case, the method

of regularization [Tikhonov, 1943] treats such a problem by a completion with a

certain prior knowledge to “stabilize” the solutions, so that a unique optimal solution

is guaranteed and the problem becomes well-posed.

In applications to neural networks, Tikhonov’s regularization approach has been

developed in [Poggio and Girosi, 1990] where the assumption of smoothness of the

regression function f is used to stabilize solutions. In particular, the empirical risk

functional (2.2) is extended by the regularized risk functional

Rreg[f ] :=
N∑
i=1

(yi − f(xi))
2 + λ∥Df∥2. (2.14)

Here the first term of the sum (2.14) stands for the approximation error and corre-

sponds to NRemp[f ] with the squared loss. The second term λ∥Df∥2 in (2.14) is the

regularization term, often called as stabilizer, where λ is the regularization parameter

and D is a linear differential operator.

The results of [Poggio and Girosi, 1990] show that a unique minimizer of (2.14)

is given by the expansion

f(x) =
N∑
i=1

αiG(xi, x) (2.15)

of Green’s functions G(xi, x), associated with D̃D 7, with the expansion coefficients

αi, i = 1, . . . , N , satisfying

αi =
1

λ
(yi − f(xi)). (2.16)

7 Functions satisfying D̃DG(xi, ·) = δxi , where δxi(x) = δ(xi − x) is Dirac’s delta function,

centered at xi, and D̃ is the adjoint operator to D
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Note, since D̃D is self-adjoint, the Green’s functions are symmetric, i.e G(xi, x) =

G(x, xi).

Combination of (2.15) with (2.16) leads to the system of linear equations, whose

solution with respect to the vector α = (α1, α2, . . . , αN)
T of the expansion coefficients

is

α = (G+ λI)−1Y, (2.17)

where G = G(xi, xj) is the N ×N Green’s matrix, Y = (y1, y2, . . . , yN)
T is the target

response vector and I is the identity matrix of corresponding size. One can show

that given an arbitrary square matrix G there exist such positive λ, that G + λI is

invertible, hence the solution is always possible at a certain regularization strength.

The effect of regularization depends on properties of the differential operator D,

which determines Green’s functions. In detail, the smoothing effect of regularization

in frequency domain is demonstrated in [Girosi, Jones, and Poggio, 1995] via the

Fourier analysis of D. Also, some properties of D directly determine the class of

Green’s functions. For instance, if D is translational- and rotational-invariant, the

Green’s functions G(xi, x) = G(∥xi−x∥) are radial-basis. For example, one can show

that the differential operator

(Df)(·) =
∞∑

|r|=n

σ2n

n!2n
∂n

∂r1x1∂r2x2 · · · ∂rnxn

induces the Gaussian RBF (2.11) with the width σ. That, in turn, demonstrates

that regularization with the Gaussian functions implies smoothness by penalizing all

partial derivatives of f up to infinite order.

As seen from (2.15) and (2.16), the minimizer of the regularized risk (2.14) is

expressed in terms of Green’s functions and does not require evaluation of D, hence

the solution to the regularization can be found for any symmetric G(xi, x), which

admits the existence of the corresponding differential operator D.
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Taking a closer look at the stabilizer term, it is straightforward to show that

∥Df∥2 = ⟨Df,Df⟩ =
⟨
f, D̃Df

⟩
=

⟨
N∑
i=1

αiG(xi, ·),
N∑
j=1

αjδxj

⟩

=
N∑
i=1

N∑
j=1

αiαj

⟨
G(xi, ·), δxj

⟩
=

N∑
i=1

N∑
j=1

αiαjG(xi, xj) = αTGα,

(2.18)

from where one concludes that with the growth of regularization strength λ, the

expansion coefficients are getting more penalized and their magnitudes decrease.

Hence, an infinite λ results in a flat regression function. On the other hand, as

seen from (2.17), if G is invertible, the regression function f interpolates the training

set, which corresponds to the known interpolation technique [Powell, 1985; Light,

1992]. It worth mentioning that according to Michelli’s theorem [Michelli, 1986], the

matrix G is invertible for certain classes of RBF functions, if the input vectors xi

(which are the centers of RBF functions) are distinct.

With the radial-basis Green’s functions the expansion (2.15) corresponds to the

architecture of the RBF network, while the regularization solution (2.17) determines

its weights. The combination of the RBF architecture with such a learning procedure

into a learning machine, is often called regularization network (RN). The key advan-

tage of RN in contrast to other neural networks is the possibility of direct computation

of the unique and optimal solution to the learning problem.

RNs are deeply related to the theory of reproducing kernels [Aronszajn, 1950],

which serves as a bridge connecting RBF networks to the class of kernel machines

(2.4) and also establishes their relation with the SRM [Girosi, Jones, and Poggio,

1995; Niyogi and Girosi, 1996]. These relations are discussed further in 2.5.1.

2.3.4 Generalized regularization networks

RNs were shown to be highly effective, but not always computationally affordable.

This is due to the requirement of Green’s matrix inversion, which computation be-

comes prohibitively expensive and numerically instable for large N . To overcome this
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obstacle Poggio and Girosi [1990] proposed a method of the generalized regularization

network (GRN) as an approximation of the RN (2.15), where the structure of an RBF

network is allowed to be incomplete, i.e., the number of basis functions m ≤ N .

Assuming that m basis functions are previously determined, the output response

vector of the RBF network can be written in matrix form

Ŷ = Hα, (2.19)

where H = {hji} is the N ×m design matrix with the elements hji = k(∥xj − ci∥).
Now, the regularized risk functional (2.10) can be rewritten with respect to the vector

of expansion coefficients α, namely

Rreg(α) =∥Y − Ŷ ∥2 + λ∥Df∥2

=∥Y −Hα∥2 + λαTG0α

=(Y −Hα)T (Y −Hα) + λαTG0α

=Y TY − 2Y THα + αT (HTH + λG0)α,

(2.20)

where G0 is the m×m Green’s matrix. The minimizer of (2.20) is then a solution of

the system of linear equations

∂Rreg(α)

∂α
= −2HTY + 2(HTH + λG0)α = 0,

leading to the optimal vector of expansion coefficients

α = (HTH + λG0)
−1HTY, (2.21)

which coincides with the solution to a linear regularization problem [Tikhonov, 1963].

The choice of λ = 0 leads to the common pseudo-inversion form of the ordinary

least squares (OLS) estimate. A closely related estimate called ridge regression can be

recovered from (2.21) when G0 = I is assumed. In this case, the regularization prob-

lem corresponds to penalization of the squared Euclidean norm ∥α∥2 of the weights.

Such an approach corresponds to Tikhonov’s regularization in the space of expansion

coefficients, also known as coefficient-based regularization, where the stabilizer ∥α∥2

is not connected with any Green’s functions, but also imposes smoothness.
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The choice of parameter λ, similarly to the case of RN, plays a key role in gener-

alization properties of RBF networks and has its direct connection with the principle

SRM, further discussed in 2.5.2.

2.3.5 Overview of learning strategies

The traditional concept of regularization addresses only estimation of the parameters

of the linear output layer, assuming the selection of basis functions and their param-

eters to be done a priori by the choice of the corresponding differential operator.

Then, given a fixed design matrix H whose columns are regressors, the techniques of

model selection for linear regression are supposed to be employed for estimation of

the regularization parameter λ (see 2.5.2 for further discussion). However, the con-

tent of H, which is the structure of RBF network, also determines its generalization

properties and must be therefore considered during the model selection process.

Within the concept of linear regression, the structure of RBF network can be de-

termined with the techniques of subset selection, which assumes a selection of certain

regressors from H into the model instead of all. An example of such approach is

the regularized forward selection (RFS) [Orr, 1993] and its computationally efficient

analogue, the regularized orthogonal least squares (ROLS) [Chen, Chng, and Alkad-

himi, 1996]. The latter is based on the technique of orthogonal least squares [Chen,

Cowan, and Grant, 1991], which consists of the sequential orthogonalization of H,

providing information of the next regressor that must be included (or excluded) at

each step. Such an approach led to development of a variety of the forward selection

and backward elimination algorithms for RBF networks.

As an alternative to the subset selection, other strategies exist, not directed at

minimization of the training error by selection of centers. First of all, there are var-

ious heuristic rules, such as random selection of centers from the training set [Lowe,

1989]. Another universal heuristics are based on filling the hyperbox of the input

space with a grid of centers, however this approach suffers from the known “curse of

dimensionality” due to the exponential blowup of the covariance matrix HTH. In a

combination with the above procedures for the selection of centers, the widths of basis

function can be tuned either by heuristical rules (e.g., as the distance between cen-

ters) or by gradient procedures, such as the conventional back-propagation algorithm
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and its second-order extensions, e.g., the Levenberg-Marquardt algorithm [Shepherd,

1997], widely used for training of MLPs.

The known equivalence of RBF networks to certain classes of fuzzy-inference sys-

tems [Wang, 1992; Jang and Sun, 1993; Jang, Sun, and Mizutani, 1997] allows ap-

plication of the so-called hybrid learning [Moody and Darken, 1989]. Within this

concept, the hidden layer, corresponding to a system of fuzzy rules, is constructed

in the unsupervised manner by means of clustering algorithms, such as the popular

k-means [MacQueen, 1967] and its fuzzy c-means (FCM) [Bezdek, 1981] analogue.

Moreover, among the the sophisticated clustering algorithms are the subtractive clus-

tering [Chiu, 1994], mountain clustering [Yager and Filev, 1994], and robust clus-

tering [Bodyanskiy, Kokshenev, Gorshkov, and Kolodyazhniy, 2006; Bodyanskiy,

Gorshkov, Kokshenev, and Kolodyazhniy, 2010]. Existing recurrent modifications

of the latter clustering algorithms, in combination with the recurrent least squares

procedures, allow the application of RBF networks to the class of evolving systems,

as mechanisms of nonlinear identification in the on-line mode, which can be used for

the adaptive control, filtering, and prediction under non-stationary signal conditions.

2.4 Kernel machines

A deeper study of regularization learning within the functional-analytic framework

makes a bridge to kernel methods. With the growing popularity of SV machines,

the kernel methods received much attention in the machine learning community and

brought the understanding of learning process into a new level.

2.4.1 Kernel trick

Consider the class of learning machines, whose hypothesis space consists of functions

f : H → R, such that

f(x̃) = ⟨x̃, w⟩ , (2.22)

where x̃ is the vector of features in a dot product space H and w ∈ H is the vector of

model parameters (weights). With a slight adaptation of (2.22), such as addition of

the bias term +b and application of the sign(·) function, one recovers the hypothesis of



2 Theoretical background 26

a linear classifier, where the vector w determines a normal of the decision hyperplane

⟨x̃, w⟩+ b = 0 and −b determines its shift from the origin.

Now, assume that there exists a nonlinear feature map Φ : X → H such that the

feature vector x̃ = Φ(x) is the image, corresponding to the input observation from

X . In the view of Cover’s theorem [Cover, 1965], the observations from X might

be linearly-separable in H if its dimensionality is sufficiently large. Accordingly, the

hypotheses (2.22) extended on X by means of Φ in the form f(x) = ⟨Φ(x), w⟩ may

correspond to a nonlinear learning machine, constructed on the basis of a learning

algorithm for the class of linear functions (2.22) on H.

However, adopting such direct extension, the learning algorithm becomes com-

putationally unaffordable as it suffers from the “curse of dimensionality”, when the

required dimensionality of H (number of features) is high. Instead of imposing limi-

tations on dimensionality of H and reducing the power of a learning machine, let us

allow H to be a general (possibly infinite-dimensional) Hilbert space, endowed with

the norm ∥ · ∥ =
√

⟨·, ·⟩. Next, consider the form

f(x) =
⟨
x̃, f̃

⟩
(2.23)

of nonlinear hypothesis, where the vector of weights

f̃ =
∑
i

αix̃i (2.24)

lies within the span{x̃1, x̃2, . . .} of a countable set of feature vectors. Using the bilinear
property of the dot product, the nonlinear function (2.23) can be rewritten in the form

f(x) =
⟨
x̃, f̃

⟩
=

⟨
x̃,
∑
i

αix̃i

⟩
=
∑
i

αi ⟨x̃, x̃i⟩

=
∑
i

αik(x, xi),

(2.25)

where computation of the dot product is encapsulated within the kernel function

k(x, x′) := ⟨x̃, x̃′⟩ = ⟨Φ(x),Φ(x′)⟩ . (2.26)
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Such a form of hypothesis representation with a kernel, often called “kernel trick”,

induces a class of learning algorithms referred to as kernel machines.

The existence of the closed form of a kernel function permits one to construct

computationally affordable learning algorithms with up to infinite-dimensional fea-

ture spaces. Hence, the feature space is usually determined a priori by specifying a

certain kernel function. In this case, the feature map Φ does not need to be calcu-

lated explicitly and only the function k instead. However, a proper choice of k must

ensure the existence of the underlying feature map Φ, satisfying the so-called positive

definiteness condition 8

∑
i

∑
j

αiαjk(xi, xj) ≥ 0, for all αi ∈ R and xi ∈ X. (2.27)

Assuming N feature vectors in the expansion (2.24), the condition (2.27) can be also

given in the matrix form

αTGkα ≥ 0 for all α ∈ RN and xi ∈ X,

where α = (α1, α2, . . . , αN)
T is vector of expansion parameters and

Gk :=
{
k(xi, xj)

}
,

is the square N ×N Gram matrix 9 associated with k, from where one can infer that

k is positive definite iff the Gram matrix Gk is non-negative definite.

With the traditional meaning of the dot product, the value of the kernel k(x, x′)

receives interpretation of the correlation-based similarity measure between the fea-

tures, associated with the observations x and x′. Therefore, many linear algorithms

can be extended to a wide class of nonlinear functions, i.e., “kernelized”, by means

of the kernel trick with Gk, playing the role of the correlation matrix. For example,

in such manner, the method of principal component analysis (PCA) [Pearson, 1901]

transforms into the kernel-PCA [Schölkopf, Smola, and Müller, 1998].

8The condition is given for real-valued kernels.
9The Gram (or Grammian) matrix is the matrix of all possible dot products within a set of

vectors. In the current context, dot products are computed with the kernel function k, that is why
the matrix Gk sometimes referred in literature to as kernel matrix.
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The equivalence of the hypothesis (2.25) to the function implemented by the

architecture of RBF network allows one to include RBF networks and some of their

learning algorithms into the class of kernel machines, when radial-basis functions play

the role of translation- and rotation-invariant positive definite kernel.

2.4.2 Feature maps

The map Φ determines a content of features available for a kernel machine and, thus,

strongly influences its generalization properties. Feature maps are not unique. Indeed,

there are infinitely many feature maps satisfying (2.26) for a given k and X [Minh,

Niyogi, and Yao, 2006]. The theory of reproducing kernels [Aronszajn, 1950] and

Mercer’s theorem [Mercer, 1909] establish two fundamental views on feature maps

and spaces of positive definite kernels.

For a given positive definite kernel k, there is a Hilbert space Hk ⊂ RX , whose

dot product is characterized by the reproducing property

⟨k(x, ·), f⟩Hk
= f(x), (2.28)

where k(x, ·) and f are the vectors in Hk. As proved in [Aronszajn, 1950], the space

Hk, called the reproducing kernel Hilbert space (RKHS), contains expansions (2.25)

with the dot product

⟨f, f ′⟩Hk
:=

⟨∑
i

αik(xi, ·),
∑
j

α′
jk(x

′
j, ·)

⟩
Hk

=
∑
i,j

αiα
′
jk(xi, x

′
j) = αTGkα

′,

(2.29)

and is unique for a given k.

It follows directly from (2.28) that

⟨k(x, ·), k(x′, ·)⟩Hk
= k(x, x′), (2.30)
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which immediately yields the feature map

Φ : X → RX

Φ(x)(·) := k(x, ·)

into the RKHS Hk and, also, the symmetry property k(x, x′) = k(x′, x) of the kernel.

Another view via Mercer’s theorem provides the representation of a positive defi-

nite kernel in a uniformly convergent series

k(x, x′) =
∑
j

λjψj(x)ψj(x
′), (2.31)

where (λj)j and (ψj)j are sequences of the corresponding non-zero eigenvalues for the

integral operator

(Tkf)(·) :=
∫
X
k(·, x)f(x)∂x. (2.32)

As known, the operator Tk is compact for the symmetric real positive definite

k ∈ L∞(X 2) on the non-empty closed subset X ⊂ Rn. Thus, the eigenspectrum of

Tk is discrete and there exists a countable set of real positive eigenvalues (λj)j ∈
ℓ1, corresponding to the orthonormal basis (ψj)j of square-integrable functions (see

e.g., [König, 1986] for proofs). Consequently, the series (2.31) can be written in the

form of the dot product (2.26) in ℓ2, with the corresponding feature map

Φ : X → ℓ2,

Φ(x) :=
(√

λjψj(x)
)
j
.

(2.33)

Note, that f̃ = f within the context of the RKHS. Also, the identity f(x) =
⟨
x̃, f̃

⟩
is irrelevant for the specification of a particular feature map associated with k. Hence,

due to an obvious isometry between different feature spaces, associated with the same

kernel, it is convenient to omit their specification, by the introduction of the notation

∥f∥k =
√⟨

f̃ , f̃
⟩
=
√
αTGkα (2.34)

of the norm of f in Hk or any other feature space associated with k.
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2.4.3 Regularization in RKHS

Recall the setting of the regularization problem (see 2.3.3) and the form f(x) =∑N
i=1 αiG(xi, x) of its unique solution, where G(xi, x) is a Green’s function, corre-

sponding to the linear operator D̃D and satisfying the condition

(D̃DG(x′, ·))(x) = δx′(x), for all (x, x′) ∈ X . (2.35)

Now, with the identity (2.35) it is straightforward to show that

G(x, x′) = ⟨G(x, ·), δ′x⟩ =
⟨
G(x, ·), D̃DG(x′, ·)

⟩
= ⟨DG(x, ·), DG(x′, ·)⟩

or G(x, x′) = ⟨Φ(x),Φ(x′)⟩ with Φ(x) = DG(x′, ·). Therefore, the Green’s function

G(x, x′) is a positive definite kernel. Connection of Green’s function of D̃D with the

kernel k leads to a conclusion that RN, in fact, is a kernel machine, whose hypothesis

space is the RKHS of k. Moreover, one can identify the regularization term ∥Df∥2

with the squared RKHS norm of f , namely,

∥Df∥2 = ⟨Df,Df⟩ =
⟨
f, D̃Df

⟩
=

⟨
N∑
i=1

αik(xi, ·),
N∑
j=1

αjδxj

⟩
=
∑
i=1

∑
j=1

αiαjk(xi, xj) = ∥f∥2k,
(2.36)

which can also be seen after identifying the Gram matrix Gk in (2.29) with Green’s

matrix in (2.18).

Hence, the problem of minimization of regularized risk functional (2.14) can be

viewed as the form of Tikhonov’s regularization [Tikhonov, 1943] in Hk:

min
f∈Hk

Rreg[f ] =
N∑
i=1

(yi − ⟨x̃i, f⟩)2 + λ∥f∥2k, (2.37)

giving another interpretation of the regularization term, namely, the “size” of the

hypothesis f in a feature space.

Note that according to the unique solution of regularization problem (2.15), the

solution to (2.37) for the given training set ZN
tr is the expansion of the corresponding

feature vectors x̃i, i = 1, . . . , N with at most N nonzero coefficients.
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2.5 A big picture

2.5.1 Unified learning framework

The well-known representer theorem in its modern setting [Scholkopf, Herbrich,

Smola, and Williamson, 2001] allows a generalization of regularization learning to

the case of arbitrary convex loss function l(y, x, f(x)) and the penalty term η(∥f∥k),
when stating that the minimizer of Rreg[f ] = Remp[f ]+η(∥f∥k) is unique and belongs

to Hk, where η(·) is a strictly monotonically increasing function. Therefore, a gen-

eral regularization-based kernel machine can be given with the algorithm, solving the

minimization problem

min
f∈Hk

Rreg[f ] = Remp[f ] + λQ[f ], (2.38)

where Q[f ] = η(∥f∥k).

Formally, the problem (2.38) can be equivalently represented in the form of con-

strained minimization

min
f∈Hk

Q[f ] s.t. Remp[f ] ≤ ξ, (2.39)

where the parameter ξ has a one-to-one correspondence with λ. Such a representa-

tion of (2.38) induces the class of SV machines10, where Q[f ] = ∥f∥2k corresponds

to the inverse of the geometrical margin of a decision hyperplane. In particular, a

choice of the so-called hinge loss function l(x, y, f(x)) = max(0, 1 − yf(x)) or the

ε−insensitive loss function l(x, y, f(x)) = |y− f(x)|ε, one implements the algorithms

of soft-margin SV classification (C-SVC) or SV regression (ε-SVR), respectively, de-

veloped in [Cortes and Vapnik, 1995]. Thereby, the learning problem (2.38) with

Q[f ] = ∥f∥2k simultaneously represents both concepts of regularization and margin

maximization.

Another equivalent constrained form of (2.38) and (2.39)

min
f∈Hk

Remp[f ] s.t. Q[f ] ≤ ϵ, (2.40)

10In practice, the problem (2.39) is usually solved in its dual form, where the constraint ξ is
transformed into a sum of slack variables, whose penalization strength is controlled by another
regularization parameter C.
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directly illustrates the principle of structural risk minimization (SRM) [Vapnik, 1995],

where the empirical risk Remp is minimized within the structure of nested subsets

Ωi :=
{
f ∈ Hk : Q[f ] < ϵi

}
in the RKHS of k, induced by Q[f ]. In particular case

of Q[f ] = ∥f∥2k, the empirical risk is minimized within the structure of nested balls

in the RKHS of k, whose radii naturally represent their capacity.

The equivalence between the principles of regularization, margin maximization

and SRM is widely discussed in literature (see e.g., [Evgeniou, Pontil, and Poggio,

2000]). The generalization of the above concepts is also possible within the Bayesian

framework, which leads to the probabilistic (Bayesian) interpretations of Remp[f ] and

Q[f ].

Consider the maximum a posteriori probability (MAP) estimate of the ran-

dom variable f from its noised sample ZN
tr . Introducing the posterior probability

Pr
{
f | ZN

tr

}
, one seeks for the estimate

f̂ = argmax
f

Pr
{
f | ZN

tr

}
. (2.41)

Application of Bayes’ theorem allows one to substitute the posterior probability term

in (2.41) by the proportion

Pr
{
f | ZN

tr

}
∝ Pr

{
ZN

tr |f
}
Pr{f}, (2.42)

where Pr
{
ZN

tr |f
}
and Pr{f} are the likelihood and prior probabilities, respectively.

Assuming that ZN
tr is sampled from the underlying f with a normal zero mean and

σ2 variance noise, the likelihood term is

Pr
{
ZN

tr | f
}
= exp

(
− 1

2σ2

N∑
i=1

(yi − f(xi))
2

)
= exp

(
− N

2σ2
Remp[f ]

)
,

which is the well-known connection between the maximum likelihood estimation and

ERM. Now, assuming also that a prior distribution is known and given in the form

Pr{f} = exp (−Q[f ]), the estimate (2.41) corresponds to the minimizer of

− ln
(
Pr
{
ZN

tr |f
}
Pr{f}

)
=

N

2σ2
Remp[f ] +Q[f ],



2 Theoretical background 33

where, after multiplication by 2σ2

N
, one recovers the regularization functional (2.38)

with λ = 2σ2

N
(see e.g., [Girosi, Jones, and Poggio, 1993]). Within this context, the

penalty term Q[f ], commonly referred to as prior, supplies a priori information about

the distribution of f , whereas the parameter λ reflects a priori knowledge of the noise

variance.

2.5.2 Hyperparameters and model selection

The combination of the concepts discussed above represents a unified framework for

construction and analysis of modern learning algorithms, such as the state-of-the-art

SV machines. Within this framework, the uncertainty of the learning problem can

be split into the structural and parametrical parts, associated with the choice of the

prior Q and regularization parameter λ, respectively.

Although both of them determine the generalization performance of a learning

machine and must be addressed with model selection, only selection of λ corresponds

to the principle of SRM. Therefore, within the SRM context the empirical risk Remp

and prior Q functionals are assumed to be specified a priori, whereas the minimizer

of (2.38) for the given training data-set ZN
tr is uniquely determined by λ in the form

fλ = KM(ZN
tr , Remp, λQ[·]), (2.43)

where KM is the generic kernel algorithm, solving the learning problem (2.38) in

the one of its equivalent forms. In this setting, instead of expansion coefficients, the

hypothesis fλ is defined in terms of a single hyperparameter λ.

For implementation of the SRM, the selection of λ must correspond to the best

estimate of the expected risk. Such estimates, of course, are not limited to gener-

alization bounds (see 2.2.4), but also include a variety of techniques for selection of

regularization parameters as well as the techniques for linear regression, available from

statistics. Among them are the generalized cross-validation (GCV) estimate [Golub,

Heath, and Wahba, 1979], Akaike (AIC) [Akaike, 1974] and Bayesian (BIC) [Schwarz,

1978] information criteria, and other heuristic criteria, such as L-curve [Hansen and

O’Leary, 1993].
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In general, model selection can be formulated with the concept of minimization

of a certain criterion ζ over some set of hypotheses. Using the hyperparameter no-

tation (2.43), the estimation of λ can be therefore formulated with the procedure

λ = argmin
λ
ζ(fλ). (2.44)

Depending on setting, more hyperparameters may appear. For instance, the clas-

sical SV regression technique requires a priori determination of ε, the hyperparameter

of the ε-insensitive loss function, giving rise to the hypothesis

fλ,ε = KM(ZN
tr , Rempε[·], λQ[·])

of the ε-SVR machine having two hyperparameters.

In the above example, hyperparameters control properties of the solution within

the same hypothesis space Hk, while the kernel k, as well as its corresponding prior Q,

remains fixed. For obvious reasons, however, the introduction of kernel parameters,

such as the kernel width σ (or its equivalent11 γ), is essential in practice. In this

case, a kernel machine extends to the multi-kernel context and the problem of kernel

selection arises as a part of the whole model selection process.

A direct extension of the hypothesis space of a learning machine to the multi-kernel

context by parametrization of the prior cannot be considered within a single regular-

ization scheme. This is due to the problem becoming generally non-convex: there is

already a unique optimal solution, associated with each choice of the prior. Therefore,

kernel parameters are usually treated as additional hyperparameters resulting in the

general form

fθR,θQ = KM(ZN
tr , RempθR

[·], QθQ [·]) (2.45)

of the hypothesis, where θR and θQ are the vectors of hyperparameters associated with

the loss function and the prior (including the regularization parameter), respectively.

Within the context of multiple hyperparameters, including the parameters of the

prior, the problem of model selection cannot be addressed with criteria for linear

11In SV machine literature, the Gaussian RBF kernel is commonly defined as k(x, x′) =
exp(−γ∥x − x∥2), where γ determines the bandwidth of kernel or scaling factor applied to the
input space.
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regression and requires the application of another risk estimates in the minimization

scheme

(θR, θQ) = arg min
(θR,θQ)∈Θ

ζ
(
fθR,θQ

)
, (2.46)

were Θ is the combined space of hyperparameters θR and θQ associated with the loss

function and the prior, respectively. Since Θ involves one or more hyperparameters

different to λ, the scheme (2.46) does not implement the SRM on the whole hypothesis

space, associated with Θ. Therefore, estimation of the hyperparameters, such as

parameters of the prior Q, corresponds to another level of inference [Guyon, Saffari,

Dror, and Cawley, 2010], for which the unbiased risk estimates are required.

2.5.3 Validation techniques

As known, the validation techniques can be used for the estimation of parameters of

arbitrary learning algorithms. For example, one can consider the minimization of the

validation error (MVE) criterion

ζvalZval
[f ] =

1

Nv

Nv∑
i=1

l(xi, yi, f(xi)), (2.47)

calculated for observations from the separate validation data-set Zval = {(xi, yi)}Nv
i=1.

However, the MVE criterion becomes biased, suffering from a loss of representability

when the validation set is not large enough or is not i.i.d. from the same distribution

as the training set.

Another validation technique, not requiring an additional data-set, is the T -fold

cross-validation (CV). Basically, it consists of splitting of the training set ZN
tr into T

non-overlapping subsets Zl, l = 1 . . . T of equal length and computing of the validation

error on each subset, after training on the rest T − 1. Formally, the T -fold CV

procedure for the selection of hyperparameters in Θ can be described in the extended

form of (2.46), namely

(θR, θQ) = arg min
(θR,θQ)∈Θ

T∑
l=1

ζvalZl

(
KM(ZN

tr \Zl, RempθR[·], QθQ [·])
)
. (2.48)
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If the training set contains N observations, the N -fold CV, also known as the leave-

one-out error estimate, is the unbiased estimate of the expected risk on N − 1 sam-

ples [Luntz and Brailovsky, 1969]. That is why CV is more reliable than a single

validation pass (2.47). However as seen from (2.46), N -fold CV requires N runs of

the learning algorithm per each combination of hyperparameters, ultimately leading

to a significant computational load on large data-sets. Therefore, applications of the

less accurate but faster 5-fold or 10-fold CV are most common in practice.

2.5.4 Overview of kernel selection techniques

The problem of kernel selection is commonly approached by selection of the corre-

sponding hyperparameters in the T -fold CV scheme (2.48), where the space of hy-

perparameters Θ is usually approximated on multi-dimensional grid Θgrid. Although

such grid search procedures are the most used in practice, they become computation-

ally unacceptable when the number of kernel parameters is more than several, due

to the exponential growth of the number of grid elements and high computational

requirements of the CV.

One of the alternatives to such exhaustive search by CV is the application of

optimization techniques in combination with the computationally affordable approxi-

mates of the leave-one-out error. For instance, the proposed in [Chapelle and Vapnik,

1999; Chapelle, Vapnik, Bousquet, and Mukherjee, 2002; Keerthi, 2002] techniques

of kernel selection for SV machines optimize the radius/margin bound [Vapnik and

Chapelle, 2000] on leave-one-out error with gradient procedures. However, this ap-

proach may suffer from both the non-convexity of the leave-one-out error with respect

to hyperparameters and biasedness of the radius/margin bound.

The novel techniques [Bach, Lanckriet, and Jordan, 2004; Micchelli and Pontil,

2005] and [Ong, Smola, and Williamson, 2005] brought the concept in kernel selection

by the formulation of the problem in a convex form, referred to as multiple kernel

learning. In particular, the kernel associated with the hypothesis is allowed to be an

arbitrary convex combination of predetermined basis kernels. In terminology of [Ong,

Smola, and Williamson, 2005] such a learning problem with multiple kernels is viewed

as a regularization with the corresponding hyperprior, which solution depends on a

single regularization parameter. The solution of such regularization problems are
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associated with the quadratically-constrained quadratic programs (QCQP), whose

efficient solutions are yet to be found.

2.6 Discussion and further motivation

The unified framework for kernel machines provides a methodology for the construc-

tion and analysis of efficient learning algorithms with various neural architectures,

including the RBF and certain cases of MLP networks12. As discussed in section 2.5,

when the learning problem is given by the empirical risk (loss function) and prior

functionals, the method of regularization determines a unique and optimal solution

in correspondence with the choice of the regularization parameter. Such solution

simultaneously corresponds to the maxima of geometrical margin and a posteriori

probability, and, in combination with the model selection procedures for determina-

tion of regularization parameter, implements the principle of SRM.

Nevertheless, a further extension of the hypothesis space by multiple kernels re-

quires a selection of kernel hyperparameters within the model selection scheme (2.46),

which does not implement the SRM for the whole problem, but only at the level of

regularization learning with a fixed prior. On the other hand, the trade-off between

empirical risk and learning capacity can be resolved with a search along a single

dimension, according to the SRM. Therefore, minimization of the model selection

criterion over the complete space of hyperparameters is redundant. Since even an

unbiased estimate of the expected risk involves some sort of uncertainty, the redun-

dance of the search adds extra degrees of freedom into the problem of hyperparameter

estimation, thereby reducing the precision.

Multiple kernel learning as the regularization with a convex hyperprior demon-

strates one of the possibilities SRM on a hypothesis space of multiple kernels, by

the search along the dimension of a single hyperparameter. However, the SRM itself

is not restricted to the class of convex problems. The above facts being combined

together serve as a motivation for development of the general learning framework,

which provides an SRM-consistent learning scheme for possibly non-convex problems

of learning with multiple kernels.

12The MLP with a linear output layer corresponds to the kernel architecture with the sigmoidal
kernel k(x, x′) = tanh(⟨x, x′⟩+ b), which is positive definite for certain choices of b.



Chapter 3

Multi-objective learning

The present chapter plays a central role in this study connecting the apparatus of

statistical and regularization learning with the methodology of multi-objective ma-

chine learning (MOML). The first part of the chapter briefly introduces basic concepts

of multi-objective optimization, which are necessary for the development of a multi-

objective framework for supervised learning. Second part, deals with the methodology

and main components of a non-evolutionary multi-objective algorithm for supervised

learning, aimed at the construction of the multi-kernel and SRM-consistent learning

machines.

3.1 Introduction

In a conventional (single-objective) setting of the learning problem, the solution is

usually assumed to be a single hypothesis as the result of optimization of a single cost

function, whose hyperparameters determine the point of balance between the empir-

ical risk and capacity of the hypothesis class a priori. For example, in regularization

learning, the trade-off between the goodness of fit and smoothness of hypothesis func-

tion is resolved by the choice of the regularization hyperparameter. Since the choice

of hyperparameters is uncertain at the level of error minimization, higher level strate-

gies are employed (e.g., diverse model selection techniques). In contrast, the MOML

addresses problems of trade-offs between two or more learning goals dealing with

multiple objective functions explicitly [Jin, 2006; Jin and Sendhoff, 2008].
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Within the multi-objective framework, the learning problem is formulated as a

multi-criteria decision process, where a resolution of uncertainty is carried out through

the analysis of all possible alternatives (outcomes) and its reduction to their efficient

subset. Specifically, the solution of a general multi-criteria problem includes the

following steps:

1. Evaluation of all efficient outcomes, representing the trade-off of the problem;

2. Decision towards a specific efficient outcome with respect to the information

supplied by the decisor.

In the context of the regularization example, the results of the first step correspond

to the minimizers of the regularized risk for all possible choices of the regulariza-

tion parameter, whereas the second step corresponds to the application of a model

selection criterion, playing the role of decisor. In this particular case, the results

of the multi-criteria decision process are equivalent to those of the model selection

procedure (2.44), discussed in the previous chapter.

In its general setting, determination of efficient outcomes in the environment of

multiple goals leads to the multi-objective optimization problem, whose solution is

based on the so-called Pareto-optimality principle originally formulated by Pareto

[1896].

3.1.1 Principle of Pareto-optimality

Formally, the unconstrained r-objective optimization problem on the domain Ω is

given by the vector-objective function ϕ : Ω → Rr. Without loss of generality,

assume that all components of ϕ are aimed at minimization. Then, the problem of

minimization of ϕ on Ω can be denoted as

min
x∈Ω

ϕ(x) = (ϕ1(x), ϕ2(x), . . . , ϕr(x)).

Introducing the relation x
ϕ

≼ x′ of weak dominance on Ω, the solution to the above

problem can be given by the nondominated set set

P(Ω, ϕ) :=
{
x ∈ Ω | ∀x′ ∈ Ω : x

ϕ

≼ x′
}

(3.1)
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of elements in Ω. Here, x
ϕ

≼ x′ holds iff vectors ϕ(x) and ϕ(x′) follow the lexico-

graphical order, i.e., ϕ(x) ≼ ϕ(x′), where ≼ is the lexicographical order relation on

Rr. In the current minimization setting, the lexicographical relation u ≼ v, u ∈ Rr,

v ∈ Rr, holds iff all components of the difference vector v − u are nonnegative 1.

In other words, one should read x
ϕ

≼ x′ as “x dominates or is equivalent to x′ with

respect to ϕ”, implying that x is equivalent or preferable to x′ from the point of view

of ϕ. Given the weak dominance relation, it is also possible to define the strict form

x
ϕ
≺ x′, which holds iff x

ϕ

≼ x′ and x′
ϕ

� x simultaneously.

The set (3.1) is often called the Pareto set having Pareto-optimal elements. Note

that a Pareto set is nondominated, whereas the opposite may not hold, unless the

nondominance is global on whole domain Ω. All Pareto-optimal elements can be

considered equivalent with respect to ϕ, since any improvement by the one of the

objectives requires a certain loss at the rest. In other words, Pareto-optimal elements

are efficient outcomes representing the trade-off, which play a central role in solutions

of the game and multicriteria problems [Karlin, 1959; Liu, Yang, and Whidborne,

2003; Jahn, 2004].

The space Rr is called objective space and the image of the Pareto set in it referred

to as Pareto frontier (or front). The latter stands for the “spectrum” of all possible

trade-off outcomes and can be denoted as

ρ (Ω, ϕ) :=
{
p ∈ Rr | ∃x ∈ P(Ω, ϕ) : ϕ(x) = p

}
,

or

ρ (Ω, ϕ) = ϕ(P(Ω, ϕ))

with a simpler notation. The relation between Pareto set and its frontier is schemat-

ically demonstrated in Fig. 3.1 for the bi-dimensional case of r = 2. The Pareto

front is bounded with the axis-parallel hyperbox with vertices corresponding to r

extrema points, including the so-called ideal point (also known as “utopia” point).

The extrema points y◦i = ϕ(x◦i ), i = 1, . . . , r correspond to the independent min-

imizers x◦i = argminx∈Ω ϕi(x) of each objective function, whereas the ideal point

1 Note that under the lexicographical relation u ∈ Rr and v ∈ Rr is a totally ordered space,
hence the relation ≤ is transitive (if u ≼ v′ and v′ ≼ v, then u ≼ v), antisymmetric (if u ≼ v and
v ≼ u then u = v) and total (u ≼ v either v ≼ u), and is also has a number of linear properties (if
u ≼ v then u− v ≼ 0, −u ≽ −v, etc.)
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Ω

P(Ω, ϕ)

x◦2

x◦1

xa

xb
ϕ(xa)

ϕ(xb)

ϕ2

ϕ1ϕ1(xb)ϕ1(xa)

ϕ2(xb)
ϕ2(xa)
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ϕmin
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1

ρ (Ω, ϕ) ⊂ R

Figure 3.1: Schematic illustration of the Pareto-optimality principle and relations
between the problem domain (left) and the objective space (right) on example of the
following elements: xa is Pareto-optimal; xb is dominated; x◦1 = argminx∈Ω ϕ1(x) and
x◦2 = argminx∈Ω ϕ2(x) are the extrema; yI and yN are the ideal and nadir points,
respectively.

yI = (ϕ1(x
◦
1), ϕ2(x

◦
2), . . . , ϕr(x

◦
r)) represents the unreachable minimum, bounding the

Pareto front from below. As an opposite to the ideal point yI , the so-called nadir

point yN corresponds to the main-diagonal reflection of yI that bounds the Pareto

front from above. In case of r = 2, the nadir point is simply given by the vector

yN = (ϕ1(x
◦
2), ϕ2(x

◦
1)).

Denoting the image of Ω under ϕ as ϕ(Ω), one can give an alternative definition

of the Pareto front in terms of the lexicographical infinum of ϕ(Ω). Depending on the

topology of ϕ(Ω), the Pareto front may be non-convex and generally noncompact.

The convexity of the Pareto front is a commonly desired property. According to

the one of possible definitions, the Pareto front is said to be convex iff all its elements

belong to the boundary of the convex hull of ϕ(Ω), i.e., when the following holds:

ρ (Ω, ϕ) ⊆ ∂hull{ϕ(Ω)}. (3.2)

It is straightforward to show that the Pareto front belongs to the boundary of ϕ(Ω),

i.e., ρ (Ω, ϕ) ⊆ ∂ϕ(Ω). On the other hand, a convex image ϕ(Ω) implies the identity
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∂hull{ϕ(Ω)} = ∂ϕ(Ω). Therefore, the convexity of ϕ(Ω) is the sufficient condition for

obtaining of the convex Pareto front, which, in turn, is achieved by the convex ϕ on

a convex domain Ω.

3.1.2 Basic scalarization techniques

Solution of the multi-objective problem with the a posteriori decisor requires finding

all elements of P(Ω, ϕ). The direct application of the Pareto-optimality principle

by means of pairwise comparison (or sorting) of the elements in Ω for obtaining the

whole Pareto set is possible only when Ω is finite and computationally affordable

when the number of elements is relatively small. When Ω is the open subset of a cer-

tain vector space (discrete or continuous), the multi-objective problem can be solved

with the conventional (single-objective) apparatus of mathematical programming by

means of the so-called scalarization techniques. One of the scalarization approaches is

the minimization of a certain aggregate objective function. For instance, the popular

weighted-sum method assumes the minimization of the convex combination (convo-

lution) of the objectives ϕ in the form

x◦w = argmin
x∈Ω

⟨w, ϕ(x)⟩ , (3.3)

providing the Pareto-optimal solution x◦w ∈ P(Ω, ϕ), where w ∈ Rr is the vector

of non-negative weights (usually normalized such that ∥w∥1 = 1). However, the

known limitation of the weighted-sum method (see e.g, [Das and Dennis, 1997]) is

that solutions corresponding to non-convex parts of the Pareto front are unreachable.

Moreover, in order to guarantee the uniqueness of the solution of (3.3), the weighted-

sum wTϕ(x) must be strictly convex on Ω.

There is a number of theorems relating the weighted-sum method with the con-

vexity of ϕ(Ω) and ρ (Ω, ϕ) (see e.g., [Ehrgott, 2005], ch. 3). The known example

is [Geoffrion, 1968], stating that the solution of (3.3) is unique and strictly Pareto-

optimal for arbitrary non-negative weight vector w ∈ Rr iff ϕ(Ω) is strictly convex.

Therefore, one infers that application of the weighted-sum method is suitable only

for convex multi-objective problems, i.e., when the convex combination wTϕ(x) and

consequently, the Pareto front are strictly convex.
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Another common scalarization method is the so-called ϵ-constraint [Haimes, Las-

don, and Wismer, 1971; Chankong and Haimes, 1983], which consists in transfor-

mation of a multi-objective problem into the form of the constrained minimization

x◦ϵ = argmin
x∈Ω

ϕs(x), s.t.

ϕi(x) ≤ ϵi,

i = 1, . . . , s− 1, s+ 1, . . . r

(3.4)

of an arbitrary objective function from ϕ subject to r − 1 constraints on the others,

where ϵ = (ϵ1, . . . , ϵs−1, ϵs+1, . . . , ϵr) stands for is the constraint vector. The solutions

of (3.3) associated with admissible choices of ϵ are Pareto-optimal. In contrast with

the weighted-sum method, the convexity of the problem is not a limitation of the

ϵ-constraint method. However for a generally non-convex ϕ, the procedure (3.4)

requires global optimization, which brings a multi-objective problem into the class of

NP-complete problems.

3.1.3 Overview of approximate methods

In most practical cases, solutions to multi-objective problems cannot be drawn ana-

lytically but only numerically. However, the Pareto set may contain infinitely many

elements and therefore a complete evaluation of its elements cannot be achieved.

Hence, the multi-objective problem should be solved approximately with the repre-

sentative finite subset of Pareto-optimal elements. The representativeness here means

a uniform-like coverage of the whole Pareto set with a sufficient number of solutions.

Formally, one can approximate P(Ω, ϕ) by its ε-cover found for a certain metric on Ω.

However in practice, when ϕ is smooth, one usually finds an empirically large number

of points, evenly-spaced on the Pareto front. Such an approximate Pareto-optimal set

can be found directly by solving the weighted-sum (3.3) or ϵ-constraint (3.4) problems

for the finite number of parameter choices on a certain multidimensional grid.

Another kind of approximation is needed when the optimization problem can not

be solved exactly. These are mostly the cases when the problem is non-convex and

its exact global solution is not computationally affordable due to NP-completeness.

Therefore, the exploration of evolutionary optimization techniques, such as genetic

algorithms (GA) and particle swarm optimization (PSO) became popular tools for
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solving multi-objective problems [Forrest, 1993; Fonseca and Fleming, 1995; Hanne;

Tan, Lee, and Khor, 2002]. In contrast to the finite-set approximation with exact

Pareto-optimal solutions, the evolutionary approximations are nondeterministic2 and

result in populations of nondominated solutions close to the Pareto-optimum.

3.2 MOBJ: bicriteria supervised learning

Consolidation of the theoretical canvas of Chapter 2 with the multi-objective ap-

proach exhibits the supervised learning problem as the bicriteria decision process of

minimization of the empirical risk and capacity of a hypothesis class. As mentioned

in the above motivation in section 1.1, such a view on supervised learning for MLP

networks, called MOBJ, has been demonstrated in [Teixeira, Braga, Takahashi, and

Saldanha, 2000; Costa, Braga, Menezes, Teixeira, and Parma, 2003; Costa and Braga,

2006], by addressing the problem of multi-objective optimization with the techniques

of nonlinear programming.

In fact, the concept of the MOBJ learning can be generally extended to a hypoth-

esis space with arbitrary objective functions, defined on it. However from the SLT

point of view, they must reflect the empirical risk and hypothesis capacity, respec-

tively, in order to ensure the consistency of the MOBJ as the method of supervised

learning. This claim defines the principal direction of current research.

3.2.1 Generalized learning concept

Coming back to the generalized form of regularization (2.38) discussed in 2.5, one can

rewrite its equivalent MOBJ formulation as

min
f∈Hk

ϕ[f ] = (Remp[f ], Q[f ]). (3.5)

It can be readily shown that the solution of (3.5) with the weighted-sum method (3.3)

resembles the regularized risk functional (2.38) and exactly reproduces the set of its

optimal solutions corresponding to all choices of the regularization parameter λ. It

2Commonly, evolutionary algorithms involve randomization to maintain the diversity of popula-
tions, which brings the nondeterministic nature to the solutions.
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is not surprising that solution of (3.5) with the ϵ−constraint (3.4) scheme leads to

the forms of margin maximization (2.39) and SRM (2.40). Similarly, the usage of the

model selection criterion in place of the decisor for choosing the final solution from

P(Hk, ϕ) leads to the procedure (2.44) for estimation of the regularization parameter

(see 2.5.2).

While the application of regularization learning in its weighed-sum form is limited

only to strictly convex functionals Remp and Q, the ϵ−constraint solutions of the

problem (3.5) follow the principles of margin maximization and SRM beyond the

assumption of convexity. Therefore, one can consider the MOBJ as an extension of

regularization on generally non-convex problems.

Following the motivation of section 2.6, a model selection search (2.46) within the

space of multiple hyperparameters must be reduced to the search within the Pareto

optimal set of the corresponding MOBJ problem, which follows the principle of SRM

independently on the convexity of the problem and number of hyperparameters (the

MOBJ problem remains bicriteria).

For the construction of such a MOBJ algorithm, one should first determine a

corresponding decision space (domain) of the problem. Aiming for construction of

a learning machine which is capable of automatic kernel selection (otherwise the

problem is strictly convex and can be therefore directly solved with the regularization

or its equivalents), let us introduce the family

K ⊂
{
k ∈ RX 2

}
of available kernels. Now, the hypothesis space of the multi-kernel machine can be

given by the union

HK :=
∪
k∈K

Hk (3.6)

of the multiple RKHSs induced with the elements of K. Next, the model selection

procedure (2.46) for kernel selection can be substituted by the MOBJ procedure

fmobj = arg min
f∈P(HK ,ϕ)

ζ[f ], (3.7)
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where the model selection criterion ζ plays the role of the a posteriori3 decisor and

the components of the vector-functional ϕ stand for the empirical risk Remp and a

certain measure Q of the capacity of a hypothesis class. Within the context of MOBJ,

the measure Q, usually called a complexity measure, induces the capacity order on

HK according to the SRM.

Note that in contrast to the conventional model selection procedure (2.46), the

MOBJ procedure (3.7) minimizes the model selection criterion only over the Pareto-

optimal subset of HK , which corresponds to reduction of the uncertainty.

3.2.2 Complexity measure and priors

In the MOBJ setting (3.5), corresponding to the learning machine with a fixed ker-

nel, the prior functional Q stands for the complexity measure on Hk. In this case,

as outlined above in section 3.2.1, the equivalence between MOBJ, SRM, regular-

ization, and margin maximization (with model selection) holds. In contrast, kernel

selection (2.46) involves the parametrized prior QθQ [·], whose hyperparameters θQ

determine the kernel. However, the MOBJ procedure (3.7) must be endowed with a

fixed complexity measure Q : HK → R on the whole problem domain HK .

From the SRM point of view, the complexity measure Q must induce the nested

subsets of HK , in the order of their learning capacity. Therefore, Q must be a kernel-

invariant measure and, generally, cannot be a prior (such as the RKHS norm). This

claim can be demonstrated by the following counterexample. Suppose that the family

of kernels consists of two different kernels K = {k1, k2} and assume the complexity

measure to be the corresponding prior, i.e., the squared RKHS norm Q[f ] = ∥f∥2k.
Hence, the complexities of hypotheses f1 ∈ Hk1 and f2 ∈ Hk2 are ∥f1∥2k1 and ∥f2∥2k2 ,
respectively. At this point, one can already note that the norms ∥ · ∥k1 and ∥ · ∥k2 are

metrics in different spaces and therefore the order relation ∥f1∥2k1 ≤ ∥f2∥2k2 may be

meaningless, unless a certain normalization is applied. Now, let us assume that kernels

are linearly dependent such that k1(x, x
′) = c · k2(x, x′), c > 0 and the hypotheses f1

3 The decision is taken after all Pareto-optimal elements are found and thus is posterior.
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and f2 are equivalent, i.e.,

f1(x) =
∑
i

αik1(x, x
′)

=
∑
i

α′
ik2(x, x

′) = f2(x), for allx ∈ X .

This in turn yields α′
i = c · αi and

∥f2∥2k2 =
∑
i

∑
j

α′
iα

′
jk2(x, x

′)

=
∑
i

∑
j

c2αiαj
1

c
k1(x, x

′)

=c∥f1∥2k1 ,

(3.8)

depicting the contradiction:

f1 = f2, Q[f1] ̸= Q[f2]. (3.9)

Consequently, the above expressions (3.8) and (3.9) demonstrate that there are in-

finitely many choices of c, such that Q[f1] ≤ Q[f2] either Q[f1] ≥ Q[f2] holds, whereas

the hypotheses f1 and f2 are equivalent. Therefore, the squared RKHS norm or any

other prior (which is a monotonic function of the RKHS norm by definition) cannot

be a complexity measure on HK , if K contains arbitrary kernels. This conclusion is

further extended in 5.1.1 to the case of families of linearly-independent kernels.

Accordingly, one should derive the complexity measure on the basis of a certain

capacity concept, instead of using multiple priors.

3.2.3 Method of convex decomposition

The result of the MOBJ procedure (3.7) critically depends on the solution of the

underlaying multi-objective problem, which, assuming that the functionals ϕ[f ] =

(Remp[f ], Q[f ]) are properly chosen, consists of finding the elements of P(HK , ϕ).

However, the application of nonlinear programming techniques for finding P(HK , ϕ)

is hampered by the fact that the decision space HK is not a linear vector space.
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Moreover, one can immediately conclude that HK is non-convex since the convex

combination

αf1 + (1− α)f2

of two elements f1 ∈ Hk1 and f2 ∈ Hk2 is not contained in HK , whereas k1 ̸= k2,

k1 ∈ K, and k2 ∈ K. Consequently, even when Remp and Q are convex, the problem

remains to be generally non-convex.

In order to avoid a global programming, it is proposed to decompose the problem

into multiple convex subproblems in accordance with the following lemma:

Lemma 3.2.1 (Decomposition of nondominated sets): Let the decision space be the

union of l subsets Ω =
∪l

i=1 Ωi, then the identity

P(Ω, ϕ) = P

(
l∪

i=1

P(Ωi, ϕ)

)

holds.

Proof Define Pi := P(Ωi, ϕ) for short and choose an arbitrary x ∈ P(Ω, ϕ). Since

x ∈ Ω and Ω =
∪l

i=1 Ωi, there exists at least one subset Ωj that contains x, i.e.,

x ∈ Ωj. Also, since x is globally nondominated on Ω and Ωj ⊆ Ω, x is nondominated

on Ωj as well. Thus x ∈ Pj and, consequently, x ∈
∪l

i=1 Pi. Hence, P(Ω, ϕ) ⊆
∪l

i=1 Pi.

Now, consider x′ ∈ P
(∪l

i=1 Pi, ϕ
)
. Since x′ is nondominated on

∪l
i=1 Pi, same

holds for any subset of
∪l

i=1 Pi, including P(Ω, ϕ). Thus, the nondominated set

P
(∪l

i=1 Pi, ϕ
)

must contain P(Ω, ϕ). Since P(Ω, ϕ) in nondominated on Ω, same

holds for its nondominated superset.�

The application of the above lemma to the union (3.6) allows one to decompose

the Pareto set with the relation

P(HK , ϕ) = P

(∪
k∈K

P(Hk, ϕ), ϕ

)
(3.10)

into a number of nondominated subsets P(Hk, ϕ), k ∈ K. Therefore, a generally

non-convex problem of finding P(HK , ϕ) can be split into the subproblems of finding
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P(Hk, ϕ). The latter, in fact, are defined on convex Hk domains, and can be solved

by means of the weighted-sum method, if Remp and Q are strictly convex on Hk, for

all k ∈ K.

In such a way, assuming a finite number of kernels in K, one can directly find the

Pareto set P(HK , ϕ) from (3.10) with the elements of P(Hk, ϕ), k ∈ K found exactly

by means of minimization of the corresponding regularized risk functionals (2.38).

Therefore, a combination of (3.10) with the general MOBJ procedure (3.7) allows

one to construct an efficient and deterministic MOBJ algorithm that takes advantage

of convex optimization.

3.3 Summary

Supervised learning and its fundamental concepts such as regularization, margin max-

imization, and the SRM are generalized into a common MOBJ scenario of the deci-

sion process within the environment of two conflicting goals. While the regularization

method is restricted to the class of convex learning problems, the method of MOBJ

can be efficiently applied to the non-convex cases as well, while preserving the imple-

mentation of the SRM.

For instance, endowed with a certain complexity measure, the MOBJ procedure

implements the SRM within the multi-kernel context, in contrast to the conventional

kernel selection approach. In this case, the non-convex bicriteria optimization prob-

lem can be efficiently solved with the proposed method of decomposition, taking

advantage of convex programming for finding of exact solutions, in contrast to non-

deterministic approximation via evolutionary programming. Such the multi-kernel

MOBJ algorithm can be constructed from the following components:

1. Hypothesis space HK induced with the family of available kernels K;

2. Empirical risk functional Remp associated with a convex error loss function;

3. Complexity measure Q on HK (convex on Hk, for all k ∈ K);

4. Procedure for finding the elements of nondominated set P(Hk, ϕ);

5. Model selection criterion (decisor) ζ on HK .
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In view of the discussion in section 3.2.2, all elements from the above list can be bor-

rowed from existing single-objective kernel algorithms, except the complexity measure

Q, which cannot be a prior associated with a variable kernel but also must induce

the correct order on HK . Consequently, the complexity measure is a cornerstone of

the MOBJ algorithm whereas there is no off-the-shelf receipt for its derivation.

Within the context of learning with a single kernel, both the smoothness and

margin capacity concepts are equivalent since associated with the same complexity

measure, playing the role of the prior determining the kernel. The extension to the

context of multiple available kernels requires a definition of the complexity measure

of a higher level. In this case, the capacity concepts may remain connected (i.e.,

hypotheses with a large margin represent smooth functions), but no longer equivalent.

Therefore, the sought complexity measure can be derived on the basis of a single

concept of capacity, represented with the smoothness or margin.



Chapter 4

Multi-objective algorithm for RBF

networks

The smoothness of functions can be expressed explicitly by means of a certain mea-

sure of curvature. Following this general formulation of smoothness, the capacity of

arbitrary hypotheses classes can be measured explicitly in the manner, invariant to

their parametrization and structure. The development of such idea for the hypothesis

space of RBF networks is presented in current chapter. As a result, the smoothness-

based complexity measure and the corresponding MOBJ algorithm are proposed. The

algorithm is capable of finding efficient solutions to the supervised learning problem

by determining the weights, widths, centers and quantities of basis functions in a

deterministic and computationally-efficient manner. 1

4.1 Smoothness-based complexity measure

There is no unique definition of the smoothness of a function. In fact, smoothness

can be viewed in many perspectives. Most of them are associated with the oscillatory

nature or with the curvature of a function. The former perspective commonly leads

to the analysis in the frequency domain, whereas the latter can be addressed with the

notion of weak-differentiability and Sobolev spaces [Adams and Fournier, 2003].

1This chapter contains an extended version of results, published in [Kokshenev and Braga, 2007,
2008a,b, 2010]
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4.1.1 Sobolev spaces and smoothness

The Sobolev space Wq,p(Ω) on the open domain Ω ⊂ Rn is the subspace of functions

in Lp(Ω), whose all weak partial derivatives up to order q are also in Lp(Ω). Let us

introduce the generalized partial differential operator

Ds :=
∂|s|

∂xs11 ∂x
s2
2 · · · ∂xsnn

on RRn
, where s ∈ Zn is the nonnegative multi-index, i.e., s = (s1, s2, . . . , sn), |s| =

s1 + s2 + . . .+ sn. Then, the Sobolev space can be denoted as

Wq,p(Ω) :=
{
f ∈ RΩ

∣∣∣∑
|s|≤q

∥Dsf∥p <∞
}

with the norm

∥f∥q,p =
∑
|s|≤q

∥Dsf∥p, (4.1)

or its equivalent2

∥f∥′q,p = ∥f∥p +
∑
|s|=q

∥Dsf∥p. (4.2)

One can show that Wq,p(Ω) is complete under the norms (4.1)-(4.2) for all 1 ≤
q < ∞ and thus is a Banach space. Moreover, in the case of p = 2, the space Wq,2

becomes a Hilbert space of smooth square-integrable functions with the dot product

⟨f, g⟩q,2 :=
∑
|s|≤q

⟨Dsf,Dsg⟩L2
.

In fact, as shown in [Girosi, Jones, and Poggio, 1993], the Sobolev space W2,2 is the

RKHS associated with the Laplacian kernel, which also corresponds to the regular-

ization term Q[f ] = ∥f∥2,2.

However, aiming for the kernel-invariant complexity measure, the reproducing

properties of the Sobolev spaces are intentionally omitted. Instead, assuming that

the hypotheses’ functions are smooth, i.e., belong to a certain Wq,p, one can consider

the complexity measure on the basis of the Sobolev norm ∥ · ∥q,p.
2Since D0f = f , the condition

∑
|s|=q ∥Dsf∥p < ∞ is sufficient for all partial derivatives of lower

order to be in Lp.
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4.1.2 Bounds on smoothness

Assume that the hypothesis f : Rn → R is given with the expansion

f(x) =
m∑
i=1

αikσ(x, ci)

of m translation invariant basis functions kσ(x, ci) = kσ(x−ci) = κ(x−ci
σ

), with center

and width parameters ci and σ, respectively. Here κ : Rn → R is the generating

function which induces the family of available basis functions, usually positive definite

kernels.

Assuming f ∈ Wq,p and using the Minkowski inequality [Minkowski, 1953] it is

straightforward to show that the Sobolev norm of f , being a certain sum of Lp norms,

is bounded from above with

∥f∥q,p ≤
m∑
i=1

∥αikσ(·, ci)∥q,p,

and the bound is tight. On the other hand, one can show that

∥αikσ(·, ci)∥q,p = |αi| · ∥kσ(·, ci)∥q,p

and the term ∥kσ(·, ci)∥q,p is invariant to ci due to the translational invariance of kσ.

Hence, the term ∥kσ(·, ci)∥q,p = ∥kσ∥q,p depends only on kσ and can be taken out from

the sum, giving rise to the bound

∥f∥q,p ≤ ∥α∥1 · ∥kσ∥q,p. (4.3)

In the above expression (4.3), the 1-norm ∥α∥1 reflects the size of the expansion

parameters (neural network’s weights) and therefore is expected to be a part of the

complexity measure. However, the term ∥kσ∥q,p includes at least one Lp norm term

which, unfortunately, grows as O(σn) while the opposite trend of the complexity

measure is expected: by increasing the width of radial-basis functions one is dealing

with a smoother class of functions, thus its complexity must decrease. Therefore, the

complexity measure should reflect a curvature of f in terms of ∥f∥q,p while suppressing
its growth with σ. Such an adaptation is possible using the relation of (4.3) to the
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“size” of the basis function in place of the complexity measure. Namely, one can

denote the general smoothness-based complexity measure as

Q[f ] := ∥α∥1
∥kσ∥q,p
∥kσ∥p

. (4.4)

The combination of (4.4) with the definition (4.2) of the equivalent Sobolev norm,

results in the complexity measure

Qrbf[f ] := ∥α∥1

∑
|s|=q ∥Dskσ∥p
∥kσ∥p

. (4.5)

It is straightforward to show that

∥kσ∥p = σ
n
p ∥κ∥p,

where the term ∥κ∥p does not depend on the hypothesis’ parameters and, thus, can

be treated as a constant for a given learning problem. Hence, the complexity mea-

sure (4.5) can be rewritten in the simplified form

Qrbf[f ] = σ−n
p ∥α∥1

∑
|s|=q

∥Dskσ∥p. (4.6)

Note, that the sum of remaining Lp terms in (4.6) is associated with the derivatives

of order q, representing the curvature, whereas the multiplier σ−n
p provides normal-

ization.

4.1.3 Second order curvature of Gaussian RBF

Let us consider the family of Gaussian functions choosing the generator function

to be κ(u) = exp(−1
2
∥u∥2) and the differential order q = 2, corresponding to the

common definition of curvature with second order derivatives. The second order

partial derivatives of kσ with respect to i-th and j-th coordinates are given by

∂2kσ(x)

∂xixj
=

1

σ2
kσ(x) ·

{
x2
i

σ2 − 1, i = j,
xixj

σ2 otherwise
=

1

σ2
kσ(x)

(xixj
σ2

− δij

)
,
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where δij is the Kronecker delta. Hence, one can expand Sobolev’s term in (4.6) as

∑
|s|=2

∥Dskσ∥p =
n∑

i=1

n∑
j=1

∥∥∥∥∂2kσ(x)∂xixj

∥∥∥∥
p

=
1

σ2

n∑
i=1

n∑
j=1

(∫
Rn

∣∣∣kσ(x)(xixj
σ2

− δij

)∣∣∣p ∂x) 1
p

,

which yields

∑
|s|=2

∥Dskσ∥p =
1

σ2

n∑
i=1

n∑
j=1

(
σn

∫
Rn

κp(u) (uiuj − δij)
p ∂u

) 1
p

,

after switching the variable of integration to u = x
σ
. Since in current setting κ is

symmetric in all directions, the above expression reduces to

∑
|s|=2

∥Dskσ∥p = σ
n
p
−2C(n, p), (4.7)

where

C(n, p) = (n2 − n)

(∫
Rn

(κ(u)uiuj)
p ∂u

) 1
p

+ n

(∫
Rn

κ(u) (uiuj − δji)
p ∂u

) 1
p

is the multiplier depending only on κ, p, and n, which all are fixed in the context of

a given learning problem. Hence, C(n, p) is a constant and thus is irrelevant for the

measure of complexity. It is noteworthy that the measure is irrelevant on p.

Finally, the combination of (4.7) with (4.6) (omitting C(n, p)) yields the simple

expression of the complexity measure

Qrbf[f ] =
∥α∥1
σ2

(4.8)

for the class of hypothesis of RBF networks with the Gaussian basis functions. As

expected, Qrbf[f ] is a decreasing function of σ and increasing function the weights’

magnitudes.
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4.2 Pareto set of RBF networks

The derived complexity measure (4.8) for the class of RBF networks with Gaussian

basis functions, in fact, is not a regularization stabilizer (prior) covered by the repre-

senter theorem (see. 2.5.1).

Hence, even though the empirical risk Remp and complexity measure Qrbf are

strictly convex on the RKHS Hkσ (associated with basis function of particular width

σ), the minimizer of Remp[f ] + λQrbf[f ] (which is, in turn, the element of P(Hk, ϕ))

is the expansion

f(x) =
m∑
i=1

αikσ(x− ci),

where the number of basis functions m and their centers ci, i = 1, . . . ,m do not

necessary correspond to N training samples, same as in case of GRN (see 2.3.4).

Therefore, one should start solving the multi-objective problem with a consideration

of the general hypothesis space of RBF networks, containing all possible numbers of

basis functions and locations of their centers.

4.2.1 Problem setting

Consider the general hypothesis class of RBF networks, implementing the functions

F :=
{
f : Rn → R | f(x) =

∑
i

αikσ(x− ci)
}
, (4.9)

where m ∈ N, ci ∈ Rn, σ ∈ R+, and αi ∈ R. It is assumed that the class F contains

functions corresponding to all possible RBF networks, starting with the empty m = 0

and finishing up by infinitely large number of the Gaussian basis functions.

Given the mean squared error

Remp[f ] =
1

N

N∑
i=1

(yi − f(xi))
2 ,

playing the role of the empirical risk functional on the training set ZN
tr and the com-

plexity measure (4.8), one aims to find elements of the Pareto set

P(F, ϕ), ϕ[f ] = (Remp[f ], Qrbf[f ]) (4.10)
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of the corresponding MOBJ problem (see 3.2.1 for details).

It can be shown that F is the subset of the multi-kernel hypothesis space HK

induced with the family K =
{
kσ|σ ∈ R+

}
of Gaussian kernels. Then following the

decomposition idea developed in 3.2.3, the MOBJ problem can be split into a number

of subproblems on Hkσ for various σ. In particular, it is possible to represent F with

the union

F =
∪

σ∈R+

∪
m∈N

∪
Cm∈Rn×m

Fσj ,Cm , (4.11)

where

Fσj ,Cm =
{
f ∈ F | σ = σj, (c1, c2, . . . , cm) = Cm

}
is the subset of all possible RBF networks with the given n×m centroid matrix Cm of

m basis functions of width σj. Hence, all the RBF networks in Fσj ,Cm correspond to

the same design matrix and thus both Remp and Qrbf are strictly convex with respect

to the vector of weight α = (α1, α2, . . . , αm)
T , while the rest of hypothesis parameters

are fixed. Therefore, the application of the decomposition (3.10) to (4.11) allows

one to reconstruct the Pareto set (4.10) from the elements of P
(
Fσj ,Cm , ϕ

)
, whose

corresponding weight vectors in Rm can be found by means of convex optimization.

4.2.2 Refinement of the hypothesis space

Even though the whole problem of finding (4.10) is decomposed into a number of

smaller and convex subproblems on Rm, the application of decomposition (3.10) re-

quires carrying out the union over the infinite number of subsets, corresponding to a

Cartesian of σ ∈ R+, m ∈ N, and Cm ∈ Rn×m. While the approximation of σ ∈ R+

with a finite grid permits one to cover the range of widths in a representative way,

the similar approach to approximation of Cm ∈ Rn×m is not affordable due to a high

dimensionality of its domain. On the other hand, it can be always assumed that input

observations in the training set localized within the closed subset of Rn. Hence, the

choice of centers outside the closure of input observations is likely to lead to inefficient

(dominated) hypotheses. Therefore, the domain of Cm can be significantly reduced to

proper subsets associated with potentially nondominated hypotheses. This reduction

is done in two steps: first, by fixing the number of basis functions m, and then fixing

the centroid matrix.
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Intuitively, it does make sense to limit m ≤ M by the number of distinct input

patterns M ̸= N . In fact, when all patterns are distinct, M = N radial basis func-

tions are sufficient for an arbitrary approximation of ZN
tr , including its interpolation

(see 2.3.3 for details). The next straightforward conclusion is that

∪
Cm∈Rn×m

Fσj ,Cm ⊆
∪

CM∈Rn×M

Fσj ,CM

holds when m ≤ M since Rn×m ⊆ Rn×M allows to consider only the cases of exactly

M basis functions, since all smaller networks are contained within Fσj ,Cm . Therefore,

the reduction of basis functions to the fixed number m = M does not reduce the

representability of the hypothesis space F .

Next, one can consider the approximation of the domain of CM with the set of

distinct input vectors from the training set. Let the centroid matrix

XM = (x1, x2, . . . , xM)

consist of M distinct training input vectors and the centroid matrix

CM = (c1, c2, . . . , cM)

contain at least one vector ci ̸∈ XM , different from the training set. Assume that the

hypothesis f , associated with CM and a certain σ, is nondominated in Fσ,CM
, i.e.,

f ∈ P(Fσ,CM
, ϕ), ϕ[f ] = (Remp[f ], Qrbf[f ]).

Formally, the choice of the centroid matrix XM would be preferable to CM , if another

hypothesis f ′ ∈ P(Fσ,XM
, ϕ) dominating f , i.e., f ′

ϕ

≼ f , exists.

Unfortunately, the existence of f ′ cannot be shown analytically for an arbitrary

learning problem. Otherwise, this would be equivalent to the proof of the representer

theorem for the case of coefficient-based regularization with Qrbf. However, it can

be demonstrated that the hypotheses in Fσ,XM
likely dominate those in Fσ,XC

for the

particular case when all training patterns are distinct, i.e. M = N .
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Let f ′ be equivalent to f with respect to the empirical risk, i.e., Remp[f
′] = Remp[f ].

Then, it is sufficient to consider the identity

HXα
′ = HCα, (4.12)

where HX and HC are the design matrices associated with f ′ and f , and α′ and α

are the corresponding vectors of expansion coefficients, respectively. Since the basis

functions are Gaussian, it is straightforward to show that tr(HX) = N since all

diagonal elements of HX are unit due to identity kσ(0) = 1. Then, since there exists

ci ̸∈ XM , HC has at least one diagonal element kσ(xi− ci) < 1 and thus tr(HC) ≤ N .

Therefore, the traces of design matrices satisfy

tr(HC) ≤ tr(HX).

Since the magnitudes of α′ and α grow inversely proportional to the eigenvalues of

the corresponding design matrices, one infers that the situation when

∥α′∥1 < ∥α∥1

may occur more likely than the opposite, implying that f ′
ϕ

≼ f . Similar conclusion

can be extended to the case of M < N with a consideration of singular values of the

corresponding design matrices. However the above argument is sufficient to consider

the choice of the centroid matrix

CM = (x1, x2, . . . , xM) = XM

to be an efficient heuristic strategy.

The above considerations combined together lead to the refinement of the hypoth-

esis space F to the smaller and finite subset of hypotheses

F̃ =
∪
σ∈Sσ

Fσ,CM
,

where Sσ = (σj)j is the one-dimensional sequence (grid) of widths and CM is the

centroid matrix of M distinct training vectors from ZN
tr . Finally, the application of
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the decomposition (3.10) for F̃ yields the finite-set approximation

P
(
F̃ , ϕ

)
= P

( ∪
σ∈Sσ

P(Fσ,CM
, ϕ), ϕ

)
(4.13)

of P(F, ϕ), where the length of Sσ (number of elements of the grid) and its elements

control the approximation quality.

Note that at this point other heuristic strategies for selection of centers also can

be used. For instance, the application of clustering procedures (see 2.3.5) may be

useful in practice for further approximation of XM having a smaller number of basis

functions then M , especially on large data-sets. Therefore, it is hereafter assumed

that the center vectors in CM belong to a distinct subset input vectors from the

training set.

4.3 Learning algorithm

After the objective functions are defined and the learning problem is decomposed into

a finite number of convex bi-objective subproblems, one requires the computational

procedure for finding the elements of P(Fσ,CM
, ϕ) for the construction of the MOBJ

algorithm for RBF networks.

4.3.1 Convex subproblem

The domain of the optimization subproblem P(Fσ,CM
, ϕ) contains the RBF networks

of M Gaussian basis functions with σ widths centered at distinct training input

vectors (or their certain subset), corresponding to the common N ×M design ma-

trix H = {hij} with the elements hij = kσ(xi − xj).
3 Therefore, the RBF net-

works can be represented only by their corresponding M × 1 vectors of weights

α = (α1, α2, . . . , αM)T , leading to the representation of the bi-objective problem

P(Fσ,CM
, ϕ) on RM with P

(
RM , ϕ

)
. Here, the complexity measure (4.8) is a function

of α

Qrbf(α) =
∥α∥1
σ2

, (4.14)

3Without loss of generality, it is assumed here that the training set is ordered, such that the first
M input vectors are distinct.
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and the mean squared error on RM can be given in the matrix form

Remp(α) = ∥Y −Hα∥2 , (4.15)

where Y = (y1, y2, . . . , yN)
T is the vector of target values from the training set ZN

tr .

Due to the obviously strict convexity of the both objective functions, the mini-

mizers of

Rreg(α) = ∥Y −Hα∥2 + λ∥α∥1, (4.16)

corresponding to all λ ∈ R+, are the sought Pareto-optimal elements of P
(
RM , ϕ

)
and therefore is a corresponding solution of the convex subproblem associated with

P(Fσ,CM
, ϕ).

In fact, (4.16) is the well-known form of linear regularization with 1−norm penalty

term, also known as the least absolute shrinkage and selection operator (LASSO)

regression [Tibshirani, 1996], which posses several useful properties.

4.3.2 Regularization path of the LASSO

There is a certain similarity between the LASSO and ridge regressions, as both are

shrinking least squares estimators. As known, the Euclidean norm shrinkage operator

used in ridge regression (see e.g, 2.3.4), also corresponds to Tikhonov’s regularization.

In the LASSO regression, the shrinkage operator is the 1−norm operator, which not

only penalizes the length of the coefficient vector but also implies its sparsity.

Geometrically, the sparsity is explained by the minimizers of (4.16) located at

the edges of the 1-norm restriction polytope, whose coordinates are zeros for certain

dimensions. As the restriction strength increases with λ thereby reducing the poly-

tope size, more weights shrink to zero. Within the statistical framework, the LASSO

regression is viewed as the subset selection process [Efron, Hastie, Johnstone, and

Tibshirani, 2004], where the regressors (columns of the design matrix H) are sequen-

tially selected in the order of their decreasing correlation with Y until reaching a

certain stopping criterion. In this interpretation, the sparsity of the LASSO solutions

is associated with discarded regressors. Therefore, the sparse solutions, associated

with large λ resulting in small complexity Qrbf, simultaneously imply smaller number

of the basis functions than M , naturally reduce the structure of RBF networks.
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Another remarkable property of the LASSO solutions is their piecewise-linear

regularization path [Park and Hastie, 2007]. The regularization path of (4.16) is the

set of its minimizers for all choices of λ ∈ R+, which is in turn the set of weight

(coefficient) vectors associated with the Pareto-optimal solutions P(Fσ,CM
, ϕ) of the

corresponding convex subproblem.

Since the regularization path is piecewise-linear, all its elements can be represented

exactly by a finite sequence of its nodes. The latter can be efficiently calculated by

means of the so-called least angle regression shrinkage (LARS) algorithm developed

in [Efron, Hastie, Johnstone, and Tibshirani, 2004]. Given the N ×M design matrix

H of regressors and the N × 1 target vector Y , the LARS procedure

(pj)j = LARS(H,Y ) (4.17)

computes the sequence (pj)j of vectors in RM , corresponding to nodes of the piecewise-

linear path. The first node of the path is the null vector p0 = 0 and the last element

is the OLS solution pols = (HTH)−1HTY . The connection of the piecewise-linear reg-

ularization path of the LASSO with the front of Pareto optimal solutions is demon-

strated schematically in Fig. 4.1 for the two-dimensional case.

Figure 4.1: Schematic demonstration of the the LASSO regularization path (left) and
the corresponding Pareto front (right).
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Any element of the regularization path can be calculated exactly from the linear

interpolation between the corresponding pair of nodes. In particular, the complete

Pareto set of the convex subproblem P(Fσ,CM
, ϕ) in the domain RM can be expressed

in terms of the sequence (pj)j, namely,

P
(
RM , (Remp, Qrbf)

)
=
{
βpj + (1− β)pj+1

∣∣∣β ∈ [0, 1], (pj, pj+1) ∈ (pj)j

}
, (4.18)

which can be determined entirely with a single run of the LARS algorithm.

According to the definitions (4.14) and (4.15), the objective functions Qrbf(α)

and Remp(α) are linear and quadratic functions of α, respectively. Hence, the entire

Pareto front curve in R2 can also be determined exactly via interpolations of the

corresponding orders. Introducing the precomputed vectors

ρ0 =

[
Y TY

∥pj∥1

]
, (4.19)

ρ1(pj, pj+1) =

[
−2Y TH(pj+1 − pj)

∥pj+1∥1 − ∥pj∥1

]
, (4.20)

and

ρ2(pj, pj+1) =

[
∥H(pj+1 − pj)∥2

0

]
(4.21)

which are parameters of the quadratic segments, the Pareto front curve associated

with the convex subproblem P(Fσ,CM
, ϕ), is given by

ρ
(
RM , ϕ

)
=
{
ρ0+βρ1(pj, pj+1)+β

2ρ2(pj, pj+1)
∣∣∣β ∈ [0, 1], (pj, pj+1) ∈ (pj)j

}
. (4.22)

In such a way, both the Pareto set (4.18) and its frontier (4.22) of the convex

subproblem are determined in terms of the results of the LARS algorithm for their

further incorporation into the global Pareto set by means of decomposition, associated

with the MOBJ problem.
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4.3.3 Treating the bias parameter

In the very beginning of current development, the class of functions (4.9) of RBF

networks is introduced without the bias term (+b), which is of great practical impor-

tance.

Since the bias parameter does not affect smoothness, the complexity measure Qrbf

obviously remains independent on it. However, the introduction of the bias parameter

affects the empirical risk Remp, influencing the mean squared error. Hence, after the

introduction of the bias parameter b as the additional parameter of hypothesis one

should provide its estimation, that may need rewriting the whole chain of develop-

ment. Instead, it can be shown that b = 0 always corresponds to the optimal least

squares estimate of the bias when the data (design matrix H and the target vector

Y ) are centered. Consequently, regression procedures can be applied to the centered

data without the bias parameter, whose value can be restored later.

Suppose the minimizer of (4.16) is found for the centered design matrix

H = H − Uµ(H)

and centered target vector

Y = Y − Uµ(Y ).

Here, µ(H) is the 1 ×M mean row vector of H, µ(Y ) is the scalar mean of Y , and

U = (1, 1, . . . , 1)T is the N × 1 vector of units. For arbitrary α, the mean squared

error Remp(α) of the hypothesis response

Ỹ = Hα + b

can be rewritten as

Remp(α) =
∥∥∥Y − Ỹ

∥∥∥2 = ∥Y −Hα− b∥2

=
∥∥Y −Hα

∥∥2 = ∥Y −Hα− Uµ(Y ) + Uµ(H)α∥2 ,

providing the bias parameter

b = µ(Y )− µ(H)α. (4.23)
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Consequently, when the centered matrices H and Y are passed to the LARS proce-

dure (4.17) and the bias parameters are later restored with (4.23) for the elements of

the regularization path, the resulting hypothesis’ parameters α and b are minimizers

of

Rreg(α) = ∥Y −Hα− b∥2 + λ∥α∥1. (4.24)

This in turn corresponds to the solution of particular convex subproblem P(Fσ,CM
, ϕ)

obtained for the class of hypotheses functions

f(x) =
∑
i

αikσ(x− ci) + b

with the bias parameter b.

4.3.4 MOBJ-RBF algorithm

Before combining the components of the MOBJ algorithm together, it is necessary

to introduce several additional parameters. First, one should define the grid for a

search along σ, that can be an arbitrary finite discrete sequence (σj)j. For example,

the exponentially spaced grids, such as

log2 σj =

(
1− j

Rσ

)
log2 σmin +

j

Rσ

log2 σmax, j = 0 . . . Rσ (4.25)

are common. Here Rσ determines the size (resolution) of the grid and σmin and σmax

determine its range. While Rσ characterizes only a resolution and thus has a weak

influence on the results, both σmin and σmax must be determined more carefully, in

order to cover the whole range of Pareto-efficient solutions or at least its important

part4, associated with the distribution of distances in the particular data-set. The

range parameters σmin and σmax can be selected either empirically or using a certain

heuristic rule. For instance, one can select σmin and σmax proportional to the minimum

and maximum distances between distinct training input vectors, respectively. Also,

one can consider the more robust heuristic, based on the empirical distribution of

distances in the data-set. For instance, the selection of σmin and σmax according to

4Usually, one is not interested in evaluation of extreme solutions. Instead, the solutions near the
ideal point are likely to represent good decisions [Forrest, 1993].
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10th and 90th percentiles of the distance distribution, respectively, provides an outlier

resistant estimate for width range.

The matrix of centers must contain distinct training vectors. However, in order

to ensure numerical conditionality of design matrices, it is necessary to consider ε-

distinct vectors instead, where ε is a small constant. For example, the choice of

ε = σmax

√
−2 log(1− l)

guarantees that any two Gaussian basis functions do not overlap at a level higher

than 1− l, and thus the elements of the design matrix are l-distinct.

The second useful parameter is the maximum complexity limit Qmax. The regu-

larization path of LASSO regression spreads from the empty solution (null weights)

until reaching the most complex one, OLS estimate. The OLS solution is not regular-

ized and, thus, is usually ill-conditioned and associated with infinitely large weights,

making the LARS algorithm numerically instable at the end of regularization path.

Since the solutions that, close to the ill-conditioned OLS point, unlikely represent a

good generalization, they can be discarded without a loss of representability of the

hypothesis space. Therefore, the stopping condition ∥α∥1 > σ2Qmax must be consid-

ered within the LARS procedure in order to ensure numerical safety of the results

and also to reduce the time of computation. The value of Qmax also can be selected

empirically (note that the norm of the weights ∥α∥1 ≤ ∥Y ∥1 is likely to be sufficient

for approximations of Y with the Gaussian functions) or increased progressively, until

reaching the critical numerical precision of the results.

Aiming at application of the central idea of decomposition (4.13), the search of

nondominated elements within the union of P
(
Fσj ,CM

)
, j = 1, . . . , Rσ generally re-

quires one to find all intersections of the corresponding piecewise-quadratic Pareto

fronts (4.22). As the result, the final Pareto front of the MOBJ problem is also

piecewise-quadratic. However, due to numerical nature of the most model selection

criteria, there is no benefit in dealing with analytical representation of the Pareto

front with a number of continuous segments. Instead, it is sufficient to introduce the

linear grid (qi)i ∈ [0, Qmax] of complexity levels with the resolution RQ. Then, the

nondominated elements of the whole problem can be computed by means of find-

ing the minimum of the training error Remp, within the equicomplex elements, while
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the Pareto-optimal elements corresponding to the points (rij, qi) ∈ ρ
(
Fσj ,CM

)
can be

found from (4.22) for each j-th subproblem and i-th complexity value.

Finally, gathering up the above considerations, the MOBJ-RBF algorithm can be

stated as follows:

1. Initialization: given the training set ZN
tr =

{
< xi, yi >

}
, and the parameters

Qmax, RQ and Rσ do:

(a) Find the (M × n)-matrix CM of ε-distinct input vectors xi from ZN
tr .

(b) Determine the range of widths selecting σmin and σmax by the corresponding

estimates, e.g., σmin = mini̸=j ∥xi − xj∥ and σmax = maxi̸=j ∥xi − xj∥.

(c) Calculate the mean µ(Y ) and centered target vector Y = Y − µ(Y ).

2. For j = 0 . . . Rσ, calculate the corresponding elements of the grid σj (e.g.,

using (4.25)), and find the elements of the Pareto set P(Fσj ,CM
) of the j-th

subproblem:

(a) Calculate the (N ×M) design matrix H for N input patterns from ZN
tr ,

the centroid matrix CM and width parameter σj of the Gaussian RBF

functions kσ.

(b) Calculate the mean row vector µ(H) and the centered design matrix H.

(c) Find the sequence (pl)l = LARS(H, Y ) of the piecewise-linear LASSO

regularization path, until the element ∥pk∥1 > σ2
jQmax is reached.

(d) Compute the curve parameters (4.19), (4.20), and (4.21) of quadratic seg-

ments of the piecewise-quadratic Pareto front (4.22).

3. Combine solutions of the convex subproblems. For i = 1 . . . RQ and the corre-

sponding complexity magnitudes on the grid, e.g., qi =
Qmax

RQ
i do:

(a) Find the weights of the element fij ∈ P(Fσj ,CM
) from (4.18), such that

Qrbf[fij] = qi and its corresponding mean squared error rij = Remp[fij]

by means of quadratic interpolation within the corresponding segment

of (4.22).

(b) Find i-th globally-nondominated element fi = argminj=0...Rσ qi.
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The set of nondominated elements fi, i = 0 . . . RQ is the sought approximation

of the Pareto-set of the whole problem.

4. Restore the bias parameter using (4.23) for the resulted hypotheses fi and apply

the model selection criterion ζ to determine the final solution

fmobj = arg min
i=0...RQ

ζ(fi).

4.4 Model selection criteria

The proposed MOBJ algorithm approximates the Pareto set containing a wide spec-

trum of RBF networks: from zero up to M basis functions; from sharp (σmin) to

smooth (σmax) Gaussian functions. Hence, generalization properties of the final solu-

tion substantially depend on model selection criterion, that plays the role of decisor.

The model selection criteria such as the MVE (2.47) can be applied directly

(see 2.5.3). More reliable but computationally hard T -fold CV procedure (2.48) can

be also adopted in the form

f cv
mobj = arg min

i=0...RQ

T∑
l=1

ζvalZl

[
LASSO(Hil, Y, σ

2
iQrbf[fi])

]
, (4.26)

where Zl is l−th non-overlapping subset of the training set ZN
tr . Here in (4.26), Hil

corresponds to the design matrix of the hidden layer of i-th Pareto-optimal hypothesis

fi, calculated for input vectors of the training set ZN
tr \Zl, σi is the width of the Gaus-

sian basis functions associated with fi. The results of the procedure LASSO(H, Y, ϵ)

in (4.26) correspond to the hypotheses with the same basis functions as fi, but an-

other weights α and bias b, minimizing ∥Y −Hα−b∥2 subject to the Lasso constraint

∥α∥1 ≤ ϵ. In fact, such adaptation of the CV is built on the assumption that the

widths of basis functions of nondominated solutions may not change drastically after

an exclusion of any of T subsets Zl from the training set. Otherwise, it would require

T runs of the entire MOBJ algorithm for the direct computation of CV.

Unfortunately, the application of approximation of the leave-one-out error pro-

posed in [Bousquet and Elisseeff, 2002] is not adequate in the current context, since

the LASSO regression, being sparse, is not uniformly-stable [Xu, Caramanis, and
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Mannor, 2008]. However, the application of the almost computationally-free informa-

tion criterion such as AIC [Akaike, 1974] or BIC [Schwarz, 1978] is possible, since both

rely on the balance of degrees of freedom and the likelihood of estimates, indepen-

dently on the ordering or structure of the candidate models [Burnham and Anderson,

1998].

In a general form of AIC and BIC, one seeks the minimizers of

AIC[f ] := 2df[f ]− 2 lnL[f ]

and

BIC[f ] := ln(N)df[f ]− 2 lnL[f ],

respectively, within the set of competitive solutions. Here df[f ] is the effective number

of degrees of freedom and L[f ] is the maximized likelihood function for the given model

f . As suggested in [Burnham and Anderson, 1998], the second-order correction

AICc[f ] = AIC[f ] +
2df[f ](df[f ] + 1)

N − df[f ]− 1
(4.27)

is necessary for preventing the AIC from overfitting on short data-sets (e.g., when
N

df[f ]
< 40).

In the ridge regression, the unbiased estimate of df[f ] corresponds to the trace

of the inverse of covariance matrix of regressors. In the case of LASSO regression,

the unbiased estimate d̂f[f ] = mr for df[f ] has been proved in [Zou, Hastie, and

Tibshirani, 2007], where mr is the number of non-zero weights. Since the spectrum

of Pareto-optimal RBF networks may contain large models such that N
df[f ]

≃ 1, the

corrected AICc (4.27) should be always used.

In our setting, the generalized form

ζ(f, τ) = τmr − 2 lnL[f ], (4.28)

of the information criterion can be introduced, and the AIC and BIC model selection

criteria are denoted hereafter as

ζAIC[f ] = ζ

(
f,

2N

N −mr − 1

)
(4.29)
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and

ζBIC[f ] = ζ (f, ln(N)) , (4.30)

respectively.

In (4.28), the likelihood L[f ] depends on a particular settings of the learning

problem and, thus, should be treated separately for regression and classification cases.

4.4.1 Regression

In regression tasks, the additive noise model

yi = f ◦(xi) + ei, i = 1, . . . , N, (4.31)

is commonly considered, where f◦(xi) is an unknown true hypothesis (regression

function) and yi is the output observation from the training data-set, corresponding

to xi. Here, the random noise components ei ∼ (0, σ2
ns) are assumed to be independent

and normally distributed with the variance σ2
ns.

As known, the maximized log-likelihood functional

lnL[f ] = −1

2
N ln(2πσ2

ns)−
1

2σ2
ns

N∑
i=1

e2i (4.32)

corresponds to the minimum of the sum of squared errors
∑N

i=1 e
2
i (SSE), ei = yi − f(xi),

associated with the given candidate hypothesis f . The combination of (4.32) with (4.28)

yields the criterion

ζreg(f, τ) = τmr +N ln(2πσ2
ns) +

1

σ2
ns

N∑
i=1

e2i ,

or

ζreg(f, τ) = τσ2
nsmr +Remp[f ],

after multiplication by σ2
ns and omitting the constant terms.

The noise variance σ2
ns is usually unknown, however, its unbiased estimate

σ̂2
ns =

1

N − df[f ]

N∑
i=1

e2i =
Remp[f ]

N −mr



4 Multi-objective algorithm for RBF networks 71

can be used. Then, the information criterion based on the variance estimate σ̂2
ns is

ζ ′reg(f, τ) =

(
τmr

N −mr

+ 1

)
Remp[f ]. (4.33)

4.4.2 Classification

Consider the binary classification task with the labels {−1,+1}. In this case, the

true hypothesis f ◦(xi) and its observed output response yi are binary. The as-

sumption of the additive noise ei = yi − f◦(xi) distributed among possible states

{−2, 0, 2} contradicts its independence, leading to the distribution of yi among the

values {−3,−1, 0, 1,+3}. Consequently, the assumption (4.31) is not valid for the

case of classification, i.e., the noise is not additive in this case.

On the other hand, the likelihood function of the classification error can be ex-

plicitly written as

L[f ] = ηEc[f ](1− η)N−Ec[f ],

where η is the probability of incorrectly labeled (misclassified) observation and Ec[f ]

is the apparent number of misclassifications produced by the candidate hypothesis f .

Substitution of the likelihood function into (4.28) yields the criterion

ζcls(f, τ) = τmr − 2Ec[f ] ln(η)− 2(N − Ec[f ]) ln(1− η).

Similarly to the regression case, one passes from the unknown probability η to its

unbiased estimate η̂ = Ec[f ]
N−mr

, which, after a simplification and removing a constant

term, yields the practical criterion

ζ ′cls(f, τ) = τmr + 2Ec[f ] ln

(
N −mr

Ec[f ]
− 1

)
. (4.34)

4.5 Experiments

This section provides the experimental study of the proposed MOBJ-RBF algorithm

and its properties. In the first part, the MOBJ algorithm is tested on synthetic data-

sets, whose distributions are known. The last part demonstrates the results of the

MOBJ algorithm for several real-world data benchmarks compared to the results of

several existing learning algorithms.
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4.5.1 Twin spiral

The “twin spiral” is the classical two-dimensional problem for learning machines [Lang

and Witbrock, 1988]. In the original setting (experiment 1), the data-set consists of

194 training patterns lying on two non-intersecting spirals (97 points each), repre-

senting a problem of high nonlinear separability of patterns. Since the problem is

two-dimensional, the generalization properties of obtained solutions can be evaluated

from the visual analysis of the shape of separation surfaces.

The training set is sparse and almost all patterns are needed for the correct re-

construction of the spiral with radial-basis functions. Hence, in order to verify the

ability of the MOBJ algorithm to generalize the data with sparse models, other test

(experiment 2) is performed on the larger data-set of 582 samples, in which the origi-

nal training set is replicated three times with addition of a small amount of Gaussian

noise.

In both experiments the same settings of the MOBJ algorithm were used: the

range parameters σmin = 0.2, σmax = 2, and Qmax = 1000 and the resolutions Rσ =

100 and RQ = 500. Five nondominated elements were evaluated for comparison: the

overfitting and underfitting solutions with complexities Qrbf[f ] ≈ 1000 and Qrbf[f ] ≈
100, respectively; the minima of the AIC (4.29), BIC (4.29) and 10-fold CV (4.26).

The Pareto fronts and selected solutions are shown in Fig. 4.2 and Fig. 4.3 for

the original (experiment 1) and redundant (experiment 2) training sets, along with

the corresponding separation surfaces. The distributions of the magnitudes of model

selection criteria along the Pareto sets obtained in experiments 1 and 2 are plotted

in Fig. 4.4.

In Table 4.1, numerical results for both the experiments are shown. Here the

column mr corresponds to the numbers of basis functions with non-zero weights, i.e.,

the apparent sizes of obtained RBF networks; Qrbf, σ, and ∥w∥1 are the values of

complexity measure, widths of the basis functions and sizes of the weight vectors of

corresponding solutions. The last column represents the root mean squared errors

(RMSE) on the corresponding training sets.

As seen from results for both the experiments the AIC and BIC solutions are

identical and demonstrate good generalization. On the other hand, the 10-fold CV

fails in the experiment 1, whereas in the experiment 2 the results are close to AIC
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Figure 4.2: Twin spiral experiment 1: 194 samples.

Table 4.1: Twin-spiral benchmark results

Experiment Solution Properties RMSE
mr Qrbf σ ∥w∥1

1 Overfitting 183 997.04 0.50 244.71 0.0005
AIC, BIC 153 413.09 0.67 185.61 0.0335
10-fold CV 14 0.09 2.00 0.37 0.9967
Underfitting 145 101.18 0.67 45.46 0.7064

2 Overfitting 261 996.60 0.51 256.25 0.4201
AIC, BIC 165 473.58 0.63 185.08 0.4917
10-fold CV 176 508.46 0.61 189.68 0.4828
Underfitting 101 100.29 0.70 49.46 0.7774
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Figure 4.3: Twin spiral experiment 2: 582 samples with noise.
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Figure 4.4: Distribution of the values of model selection criteria along the Pareto sets
in experiments 1 (left) and 2 (right).
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and BIC. Moreover, the quantitative results indicate that the properties of solutions

(number of basis functions, their width, and complexity) found by AIC and BIC

remain similar in both experiments. This fact demonstrates that the MOBJ algorithm

detects that the data of the both experiments are i.i.d. from the same distribution,

provided by similar models independently to the training set.

The underfitting solutions are seen to provide false generalizations in both cases,

whereas the overfitting effects are weak. This behavior is specific for this particular

problem, since good solutions are expected to be complex (i.e., include most part of

the training set). The hypotheses suffering from stronger overfitting exist, but they

are not revealed in the results of the MOBJ algorithm since being dominated.

4.5.2 Noised sinc regression

Another experiment with synthetical data is aimed to demonstrate of the influence of

length and level of noise disturbance on the generalization capabilities of the MOBJ

algorithm, endowed with various model selection criteria.

In the experiment, the training and validation sets are non-overlapping and have

equal numbers of samples, generated from the equation

yi =
sin(πxi)

πxi
+ ei (4.35)

for the range x ∈ (0, 4π], where ei ∼ (0, σ2
ns) is the normally distributed random

noise.

For each combination of three data-set sizes N ∈ {50, 100, 200} and three noise

variances σns ∈ {0.1, 0.2, 0.4}, the 3 × 3 × 100 training and validation sets were

generated: each of 100 realizations of Gaussian noise was used to produce 9 pairs of

non-overlapping training and validation sets for all combinations of three sizes and

three variances. The generated data were split in such a manner that the training

and validation sets, corresponding to the same noise realizations, were nested: the

training set of the length N is the concatenation of the training and validation sets of

the lengthsN/2. Such a nested partitioning were made with the purpose of the further

comparison of validation and information criteria in conditions of equal amount of

information supplied to a learning algorithm.
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The 1000 test samples of (4.35) without noise were used for estimation of the true

(test) regression error of obtained solutions. For comparative reasons, the regular-

ized orthogonal forward selection (ROFS) [Orr, 1999] algorithm for RBF networks

was used. Although ROFS is based on single-objective approach, it acts similar to

the MOBJ algorithm: the weights and centers of the basis functions are determined

by the forward selection, width of Gaussian radial basis functions and regulariza-

tion strength are determined by the grid search, in accordance with a certain model

selection criterion.

In the MOBJ algorithm, the settings Rσ = 100, RQ = 1000 and Qmax = 150 were

used in all tests. The range parameters also remain fixed with the values σmin = 0.05

and σmax = 6 for all tests. In order to maintain equivalence of the hypothesis spaces of

MOBJ and ROFS, the same sequence of widths, calculated from (4.25), was supplied

to both the algorithms.

In experiment, the MOBJ algorithm was endowed with the AIC, BIC, and MVE

model selection criteria and compared to the ROFS with the BIC and generalized

cross-validation (GCV). The validation sets were used only with the MVE criterion

(MOBJ-MVE), whereas only the information available from the training sets were

used for obtaining the rest of the solutions (MOBJ-AIC, MOBJ-BIC, ROFS-BIC,

and ROFS-GCV).

In Table 4.2, the test errors and its dispersions averaged over 100 noise realizations,

are listed for all combinations of data-set sizes and noise variances (best values are

bold). The fragments of Pareto fronts and final solutions associated with a single noise

realization are demonstrated on Fig. 4.5 for all combinations of experiment settings.

The synthetically generated validation sets can be considered representative, since

they are i.i.d. from the same distributions as the training sets and have equal lengths.

This explains why the MOBJ-MVE solutions are ranked first, whereas the MOBJ-AIC

and MOBJ-BIC share the second place. However, since the data-sets were nested, one

can compare the results of MOBJ-AIC and MOBJ-BIC with those of MOBJ-MVE

under the conditions of equal amount of information passed to the learning algorithm.

In this case, for example, one should compare the results of the MOBJ-MVE from

the first column (N = 50) with those of MOBJ-AIC and MOBJ-BIC from the second

column (N = 100). Such a comparison is made under assumption of equivalent
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Table 4.2: Results for the sinc regression benchmark: test NRMSE×102 (mean) and
its standard deviation (std.)

σns Method N = 50 N = 100 N = 200
mean std. mean std. mean std.

0.1 MOBJ-AIC 2.76 0.723 1.84 0.544 1.29 0.386

MOBJ-BIC 2.72 0.684 1.86 0.524 1.32 0.38

MOBJ-MVE 2.51 0.624 1.78 0.545 1.2 0.301

ROFS-GCV 8.97 4.03 5.97 2.4 3.87 1.39

ROFS-BIC 9.79 4.48 4.46 3 1.41 0.41

0.2 MOBJ-AIC 4.25 1.23 2.81 0.786 1.97 0.572

MOBJ-BIC 4.09 1.15 2.77 0.782 1.98 0.516

MOBJ-MVE 3.89 1.04 2.64 0.758 1.8 0.443

ROFS-GCV 11.6 2.93 9.1 1.67 6.75 1.17

ROFS-BIC 11.5 3.23 6.66 3.22 2.51 0.902

0.4 MOBJ-AIC 5.49 1.76 3.54 1.06 2.53 0.759

MOBJ-BIC 5.4 1.8 3.53 1.16 2.44 0.565

MOBJ-MVE 5.11 1.61 3.51 1.05 2.28 0.619

ROFS-GCV 12.3 2.42 10.5 1.64 8.54 0.887

ROFS-BIC 12.2 2.84 8.66 3.03 3.95 1.69

amount of information available from 100 samples supplied for MOBJ-AIC, MOBJ-

BIC, and MOBJ-MVE, however the latter learning machine uses only one half (50

samples) for training and another half for validation. Surprisingly, the performance

comparison of MOBJ-MVE with MOBJ-AIC and MOBJ-BIC on double sample (the

values from the next column in Table 4.2) demonstrates a strong advantage of the

information criteria. Consequently, the experiment shows that using all the available

data for training and model selection with an information criterion is often more

reliable than a consumption of a part of the training data for validation.

The results in Fig. 4.5 also demonstrate a trend of the Pareto fronts to become

irregular with the growth in uncertainty level: the Pareto fronts are mostly non-

convex below the main diagonal of Fig. 4.5 (small N or large σns) and convex above

(large N or small σns).

4.5.3 Wisconsin breast cancer

Another well-known benchmark contains real data obtained from microscopic exam-

ination of clinical patients. The Wisconsin breast cancer data-set [Asuncion and



4 Multi-objective algorithm for RBF networks 78

σns = 0.1, N = 50 σns = 0.1, N = 100 σns = 0.1, N = 200

0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

N ⋅ R
emp

Q
rb

f

 

 
MOBJ−AIC
MOBJ−BIC
MOBJ−MVE
ROLS−GCV
ROLS−BIC

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

N ⋅ R
emp

Q
rb

f

 

 
MOBJ−AIC
MOBJ−BIC
MOBJ−MVE
ROLS−GCV
ROLS−BIC

2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N ⋅ R
emp

Q
rb

f

 

 
MOBJ−AIC
MOBJ−BIC
MOBJ−MVE
ROLS−GCV
ROLS−BIC

σns = 0.2, N = 50 σns = 0.2, N = 100 σns = 0.2, N = 200

2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

N ⋅ R
emp

Q
rb

f

 

 
MOBJ−AIC
MOBJ−BIC
MOBJ−MVE
ROLS−GCV
ROLS−BIC

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

1

2

3

4

5

6

7

8

9

N ⋅ R
emp

Q
rb

f

 

 
MOBJ−AIC
MOBJ−BIC
MOBJ−MVE
ROLS−GCV
ROLS−BIC

6.4 6.6 6.8 7 7.2 7.4

0.5

1

1.5

2

2.5

3

3.5

N ⋅ R
emp

Q
rb

f

 

 
MOBJ−AIC
MOBJ−BIC
MOBJ−MVE
ROLS−GCV
ROLS−BIC

σns = 0.4, N = 50 σns = 0.4, N = 100 σns = 0.4, N = 200

7.5 8 8.5 9 9.5 10 10.5 11

0

1

2

3

4

5

N ⋅ R
emp

Q
rb

f

 

 
MOBJ−AIC
MOBJ−BIC
MOBJ−MVE
ROLS−GCV
ROLS−BIC

11 12 13 14 15 16 17 18
0

1

2

3

4

5

6

7

8

9

N ⋅ R
emp

Q
rb

f

 

 
MOBJ−AIC
MOBJ−BIC
MOBJ−MVE
ROLS−GCV
ROLS−BIC

26 28 30 32 34 36 38
0

0.5

1

1.5

2

2.5

3

3.5

4

N ⋅ R
emp

Q
rb

f

 

 
MOBJ−AIC
MOBJ−BIC
MOBJ−MVE
ROLS−GCV
ROLS−BIC

Figure 4.5: The fragments of Pareto fronts from the sinc experiment, corresponding
to a particular noise realization.

Newman, 2007] contains 699 patterns describing the benign and malignant (cancer)

tissue classes, via 9 real-valued attributes. In order to maintain the comparability

and reproductivity of the results, the data-set partitions from the Proben1 benchmark

set [Prechelt, 1994] were used, where 350 samples are selected for training, 175 for

validation, and 174 for test.

For all partitions the parameters of the MOBJ algorithm Qmax = 100, Rσ = 50,

and RQ = 250 were used. The ranges of widths were independently calculated for
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each partition according to the relations σmin = 1
3
d5 and σmax = 3d95, where dp is the

p−th percentile of the distance distribution of input patterns in the corresponding

training set.

The classification results were obtained for each one of three different data parti-

tions: cancer1, cancer2, and cancer3. Correspondingly, 251, 247, and 239 distinct

prototypes were found from the training sets. The MOBJ algorithm was tested

with the AIC, BIC, MVE, and 10-fold CV model selection criteria were taken in

the same manner as in previous experiments. In addition, the results are compared

with the standard C-SVC algorithm with of the Gaussian kernel implemented in

LIBSVM [Chang and Lin, 2001], whose hyperparameters were estimated with the

common grid search and 10-fold CV technique. The widths of Gaussian kernel were

selected from the same grid (4.25), used in the MOBJ algorithm. Hence, the hypothe-

sis spaces of both the learning machines are equivalent. The regularization parameter

C of the SVM was selected from the exponentially spaced grid in range C ∈ [2−8, 212]

with the resolution of 50 steps.

The results for all three partitions are shown in Table 4.3, where the classifi-

cation accuracy on the corresponding test sets is demonstrated with the numbers

of false-positive (Fp) and false-negative (Fn) classifications, along with total correct

classification rates. The description of the columns applies from Table 4.1 of the

previous experiment, while the values of mr associated with the SVM correspond to

the numbers of the obtained support vectors. The fragments of Pareto fronts and the

obtained solutions are shown in Fig. 4.6 for all data partitions.

As seen from the results, MOBJ solutions are almost as accurate as the solutions

found by the standard SVM technique. In fact, the performances of the MOBJ-CV

solutions are superior, while the SVM-CV solutions were obtained by the exhaustive

search with the same model selection criterion in the same hypothesis space. This

fact experimentally supports the claim given in section 2.6 about the redundancy of

the exhaustive model selection, from the SRM point of view.

The precision of model selection with the information criteria AIC and BIC is

seen to be slightly lower than the that of CV, however the resulting models found

with AIC and BIC are surprisingly small (only 1 to 5 basis functions), in contrast to

the significantly larger models, when compared to the other methods.
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Table 4.3: Wisconsin breast cancer benchmark results

Part. Method Properties Accuracy
mr Qrbf σ ∥α∥1 Fp Fn Total (%)

cancer1 MOBJ-AIC,BIC 2 0.93 5.94 32.7 4 0 97.7
MOBJ-MVE 45 80.3 0.56 24.8 3 0 98.3
MOBJ-CV 7 4.32 0.91 3.58 3 0 98.3
SVM-CV 93 9.17 1.35 16.76 4 0 97.7

cancer2 MOBJ-AIC 5 1.16 5.70 37.8 1 5 96.6
MOBJ-BIC 1 0.81 5.70 26.3 4 5 94.8
MOBJ-MVE 16 8.37 0.81 5.43 3 4 96.0
MOBJ-CV 9 4.65 0.89 3.67 3 4 96.0
SVM-CV 69 77.1 0.60 27.8 2 5 96.0

cancer3 MOBJ-AIC 5 3.18 1.01 3.26 6 2 95.4
MOBJ-BIC 2 0.89 6 2.24 8 2 94.25
MOBJ-MVE 10 3.97 0.92 3.34 5 2 96.0
MOBJ-CV 26 29.9 0.68 13.9 4 2 96.6
SVM-CV 92 11.3 0.92 9.50 5 2 96.0

4.5.4 Abalone data-set

The abalone data-set represents the benchmark problem of mid-to-large scale (4177

samples) available from the UCI [Asuncion and Newman, 2007] repository. The prob-

lem consists of prediction of the ages of abalones by 8 physical measurements (7 scalar

and 1 categorial). In the data-set, the ages are represented with integers from 1 to

29 years. Therefore, the problem can be viewed as a regression task.

For the comparability of results, the settings of the benchmark were reproduced

exactly from [Meyer, Leisch, and Hornik, 2003], by using the same 100 data-set par-

titions of the Abalone data-set5. Each partition consists of 90% of non-overlapping

samples for training and 10% for test generated with 10-fold CV from 10 random

permutations of the data. The settings of the MOBJ algorithm were Qmax = 6000,

RQ = 250, and Rσ = 50, whereas the parameters σmin and σmax were automatically

determined from the percentile distribution of distances, same way as described in the

experiment 4.5.3. Each data partition contained approximately M ≈ 2900 distinct

patterns, whose percentile distribution of distances resulted in the following values

of the range parameters: σmin ≈ 0.07 and σmax ≈ 5. The AIC, BIC, and 3-fold CV

5The data-set partitions available at http://www.ci.tuwien.ac.at/∼meyer/benchdata
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Figure 4.6: Experiment results for the Wisconsin breast cancer data-set.

model selection criteria were used with the MOBJ algorithm, in comparison with the

results of the SVM with 3-fold CV, published in [Meyer, Leisch, and Hornik, 2003].

The median average values of solution properties, training, and test errors ob-

tained with the MOBJ algorithm are given in Table 4.4 in comparison with the

corresponding test error measurements of the SVM from [Meyer, Leisch, and Hornik,

2003]. As the measure of stability, the standard deviations of the test error over 100

cases are included.

Table 4.4: Abalone data-set results: median values of solution parameters and test
RMSE

Method Average properties Train RMSE Test RMSE
mr Qrbf σ ∥α∥1 median (mean) std.

MOBJ-AIC 67 5811 0.33 641.71 4.22 4.45 (4.46) 0.55
MOBJ-BIC 26 1433 1.16 1665.79 4.43 4.56 (4.58) 0.53
MOBJ-CV 63 5294 0.37 698.80 4.24 4.47 (4.48) 0.55
SVM-CV − − − − − 4.48 (4.51) −

The results in Table 4.4 show that MOBJ-AIC achieves better generalization per-

formance. However, a high dispersion prevents the drawing of conclusions about

significance levels. Hence, the performance of all presented methods can be treated

as equivalent.
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4.5.5 Discussion

The benchmark results of the developed MOBJ algorithm have confirmed in prac-

tice its theoretically expected properties such as good generalization properties of

the Pareto-optimal hypotheses, existence of the non-convex Pareto fronts, and the

sparsity of solutions.

The analysis of the randomized experiments (see Tables 4.2 and 4.4) as well as the

non-randomized (Table 4.3) demonstrate different properties of the model selection

criteria. The performance of validation criteria (MVE or CV) remains stable in most

conditions, however the resulting solutions are usually complex (with respect to the

complexity measure) and contain large number of basis functions. The information

criteria AIC and BIC seen more conservative, their indicated solutions usually tend to

have low complexity and small number of basis functions. The AIC and BIC solutions

are often close to each other and sometimes coincide, especially on short data-sets.

On a larger data-sets the BIC becomes more conservative and sometimes leads to

underfitting, whereas the AIC demonstrates the increasing accuracy and competes

with the validation techniques.

The ROFS algorithm in most cases has demonstrated significantly inferior perfor-

mance and usually overfitting solutions. The SVM combined with CV shows a good

and stable generalization performance. However, despite of the known sparsity of the

large-margin classifiers, the SVM solutions required significantly larger numbers of

the support vectors than the corresponding MOBJ solutions showing equivalent gen-

eralization performance. Consequently, the MOBJ-CV solutions are much sparser,

even relying on the same model selection criterion as used with the SVM.

Even though MOBJ-CV, generally, requires less retrainings than SVM-CV (since

the former performs CV only for nondominated subset of solutions), the application

of CV remains computationally expensive with the MOBJ algorithm, especially on

large data-sets. In contrast, the accuracy of the AIC increases with the length of the

data-set whereas its application remains almost free of computational costs. Hence,

the most critical part of the MOBJ algorithm (from the point of view of computational

performance) is the procedure for calculation of regularization path of the LASSO

regression.
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As known, the LARS algorithm requires O(N3) [Zou, Hastie, and Tibshirani,

2007] operations for obtaining of the complete regularization path, which is too high

for applications to the large-scale problems, say, N > 5000. Noteworthy, the same

complexity order is required for the single fit by least-squares or solution of the margin-

maximization problem in the classical SVM algorithm, since both are the particular

forms of the so-called Gaussian process. Unfortunately, the problem cannot be exactly

solved in a time shorter than O(N3). Thus, switching to approximate but faster

solutions of the sparse Gaussian process, e.g., [Snelson and Ghahramani, 2007] might

be an efficient adaptation of the MOBJ algorithm to the large-scale problems.

Indeed, in the context of the MOBJ algorithm, its computational complexity can

also be controlled by discarding the unnecessary parts of regularization paths by

choosing the proper value of the complexity limit Qmax. Since Qrbf is closely related

to the number of non-zero coefficients, the value of Qmax also limits the maximum

number of the basis functions (say, mmax
r ). In this case, if the LARS procedure

stops after reaching maximum complexity, it takes O(mmax
r N2) to find the necessary

part of the regularization path. Consequently, by the appropriate choice of Qmax the

computational complexity the MOBJ algorithm reduces to O(N2).

While the parameter Rσ directly determines how many regularization pathes will

be calculated, the complexity resolution RQ affects mainly the number of evaluations

of the model selection criterion. In the case when AIC or BIC are employed, the

choice of RQ has almost no influence on the overall time of execution. For instance,

computation of the solution with MOBJ-AIC algorithm took less than one minute

for the cancer1 data-set (N = 350) and about 15 minutes for the abalone data-set

(N = 3759) 6.

In contrast with the reported in [Jin, Okabe, and Sendhoff, 2004; Gonzalez, Ro-

jas, Ortega, H., Fernandez, and Diaz, 2003; Jin and Sendhoff, 2008] results of the

evolutionary MOML algorithms, the Pareto front approximations of the MOBJ al-

gorithm consist of smooth curves instead of populations of scattered points. Such

an approach to the multi-objective problem overcomes the difficulties of the uniform

distribution of solutions along the Pareto front, usually occurring in population-based

6The execution times corresponds to the pure-MATLAB single-threaded implementation of the
MOBJ algorithm on a convectional desktop PC.
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evolutionary algorithms. Also, it is possible to control the approximation quality di-

rectly by increasing the resolution Rσ. Moreover, with slight modifications of the

proposed algorithm one can increase the approximation quality progressively in the

neighborhood of the region of interest, or for the entire Pareto front.

4.6 Summary

The developed MOBJ algorithm performs a broad search within the hypothesis space

of RBF networks and efficiently renders a wide spectrum of Pareto-optimal solutions.

The MOBJ algorithm implements the idea of decomposition of a generally non-convex

multi-objective problem into its convex parts, such that globally nondominated so-

lutions can be found in a deterministic way, employing one of the computationally-

efficient convex optimization procedures. In contrast to the common nondeterministic

evolutionary MOML algorithms, the proposed MOBJ algorithm is capable of finding

exact solutions of the multi-criteria problem within a guaranteed time.

The MOBJ algorithm, endowed with the information model selection criteria

demonstrated the possibility of reaching a high generalization performance without

necessity of the time- and data-consuming validation steps.

The parameters of the algorithm only determine the resolution and range of the

search, not affecting the generalization properties of final solutions, if both are suf-

ficiently large. In particular, overestimation of ranges or resolutions leads only to

the computational overhead, which can be reduced using certain heuristic strategies.

Also, with a certain form of implementation of the algorithm, the range and res-

olution may be progressively increased during the execution time, until reaching a

desired precision of the Pareto set approximation.

A high stability and generalization performance has been demonstrated on the

synthetic and real-world benchmarks. In comparison with other methods, such as the

ROFS and SVM, the MOBJ algorithm has shown to be an efficient and competitive

multi-objective tool for supervised learning.



Chapter 5

Multi-objective extension of

margin maximization

In contrast to the smoothness, having a variety of formulations for arbitrary classes of

functions, the concept of margin maximization belongs to the paradigm of separation

of observations with a hyperplane. This in turn means a nonbreakable connection of

the measure of margin with a particular feature space. Aiming for extension of the

principle of margin maximization to learning machines with multiple feature spaces,

this chapter addresses the problem of finding the corresponding complexity measure

for the MOBJ algorithm. Starting with the argument that a direct extension of the

measure of margin is not valid from the SRM point of view, the ideas of matching

of feature spaces and extension of the measure of margin are developed. As the

result, different complexity measures are proposed and their theoretical properties

are extensively tested.

5.1 Introduction

As discussed earlier in Chapter 3, the MOBJ algorithm must be endowed with the

complexity measure, such that nested hypothesis subsets are ordered by their learning

capacity. Otherwise, as follows from the SRM, the generalization performance of a

learning machine may be poor.
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When the hypothesis space of a learning machine is the single RKHSHk associated

with a particular kernel k, the choice of the complexity measure on Hk as its squared

norm Q[f ] = ∥f∥2k simultaneously satisfies several principles of learning (see 3.2.1

for details). Namely, the known geometrical margin interpretation of ∥f∥k shows

the equivalence of the margin maximization principle to regularization and SRM

(see 2.5.1).

Dealing with the extended hypothesis space HK , induced by a family K of mul-

tiple kernels, the conventional kernel selection techniques lead to hyperparameter

estimation procedures, discussed in 2.5.4. As claimed in 2.6, such procedures do not

implement the principle of SRM on the complete hypothesis space HK , but only on

its single-kernel subsets Hk, k ∈ K. From the SRM point of view, such a solution

scheme is redundant. Hence, its implementation at the level of complete hypothesis

space corresponds to a smaller region of efficient decisions, which implies a reduction

of uncertainty.

The possibility of such uncertainty reduction and simultaneous implementation

of both the SRM and margin maximization principles at the level of the complete

multi-kernel hypothesis space HK has been demonstrated by the suggested MOBJ

procedure (3.7). In order to put this learning machine into practice, one has to specify

a valid complexity measure on HK , which matches the idea of margin maximization.

However, as claimed in 3.2.2, the validity of the traditional margin inverse (or prior)

Q[f ] = ∥f∥2k in place of the complexity measure on HK is questionable.

5.1.1 Why ∥f∥2k is not a valid complexity measure on arbi-

trary hypothesis space?

It was shown in 3.2.2 that there exist infinitely many equivalent hypotheses of different

RKHS norms, namely, for any hypothesis f ∈ Hk there exists such hypothesis f ′ ∈
Hk′ , that f

′(x) = f(x), for all x ∈ X and

∥f ′∥2k′ = c∥f∥2k, (5.1)

where the kernels k′ and k satisfy c · k′(x, x′) = k(x, x′), c > 0. Nevertheless, the

learning capacities of f and f ′ are equal, since they equivalently represent the same
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function. Thus, a valid complexity measure Q must satisfy Q[f ′] = Q[f ]. Obviously,

such the identity does not hold with Q[f ] = ∥f∥2k due to (5.1). Moreover, if the class

of kernels K contains all possible scalings of a particular kernel k, the capacity of any

nested hypothesis subset Ωi :=
{
f ∈ HK : ∥f∥2k < ϵi

}
is broadly unlimited, since any

function in HK can be represented with arbitrary small ∥f∥2k. One can see that the

principle of SRM is violated.

Now, assume that K does not include scaled kernels, i.e., its elements are linearly

independent. This can be seen as the result of a certain normalization of K. For

example, the family of Gaussian kernels

k(x, x′) = (
√
2πσ)−n exp

(
−∥x− x′∥2

σ2

)
is normalized in L1, i.e., ∥k(x, ·)∥1 = 1. In this case, the hypothesis spaceHK does not

contain equivalent functions produced by different scalings of the same kernel (except

null). Hence, the capacity of the subset Ωi now can be considered as limited with

∥f∥2k < ϵi. Therefore, the results of margin maximization (i.e., minimization of ∥ · ∥2k)
on HK depend on the normalization of K. Moreover, it can be shown that a certain

normalization of K may a priori predetermine the subset of dominated hypotheses

HK , regardless of the training set. In order to show this, let us consider the subset

of hypotheses

SŶ :=
{
f ∈ HK | (f(x1), f(x2), . . . , f(xN))T = Ŷ

}
,

whose elements produce the same response vector Ŷ for the given training set1 Ztr.

Obviously, all elements of SŶ are also associated with the same value of empirical

risk Remp, since the latter is a function of Ztr and Ŷ . Hence, if the vector Ŷ is such

that SŶ contains the minimizer f of Remp within the subset Ωi, then f belongs to the

set P(HK , (Remp, ∥ · ∥2k)) of Pareto-optimal hypotheses of the corresponding MOBJ

problem and is a candidate solution to the learning problem. Consequently, f is also

the minimizer of ∥ · ∥2k on SŶ (otherwise, f is dominated).

Since all kernels in K are linearly independent, the vector α = (α1, α2, . . . , αN)
T of

expansion coefficients of any element of SŶ is uniquely determined by the associated

1Without loss of generality, it is assumed hereafter that all N input observations in Ztr are
distinct
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kernel from the equation

Gkα = Ŷ, (5.2)

where Gk is the Gram matrix associated with k on the training set Ztr. Solving

equation (5.2) one can show that

∥f∥2k = Ŷ TG−1
k Ŷ

for all f ∈ SŶ , from where it follows that ∥f∥2k/∥Ŷ ∥2 is bounded with the eigenvalues

of the inverse of Gram matrix G−1
k . Consequently, the following bounds

1

λmax
k

∥Ŷ ∥2 ≤ ∥f∥2k ≤
1

λmin
k

∥Ŷ ∥2 (5.3)

are tight, holding for all f ∈ SŶ , where λ
max
k and λmin

k are the largest and smallest

eigenvalues of Gk, respectively.

The analysis of the bounds (5.3) leads to a conclusion that the hypothesis f ′ ∈ SŶ ,

associated with the eigenvalue λmax
k′ , is dominated if there exists another hypothesis

f ∈ SŶ , whose associated eigenvalues λmin
k are larger than λmax

k′ . In other words, there

is a subset of kernels whose associated hypotheses are always dominated, indepen-

dently to their generalization properties. Such kind of “masking” of the hypothesis

space depends on normalization of K, allowing one to scale the kernel (along with

the eigenvalues of Gram matrix) in arbitrary manner. While the set of functions

represented by HK remains to be invariant to normalization, their generalization

properties remain constant as well. That means, again, that Q[f ] = ∥f∥2k is not a

valid complexity measure on HK .

For example, if the family of Gaussian kernels is normalized in L1, it can be

shown that the hypothesis associated with the kernel of infinitely small width σ (that

is Dirac’s delta function) will dominate over all other hypotheses since all eigenvalues

of its Gram matrix are infinitely large with σ → 0. In practice, it will result in the

almost diagonal Gram matrix and the corresponding solution will be characterized

by strong overfitting and no generalization.

Consequently, the complexity measure based on the RKHS norm ∥ · ∥k may lead

to the degeneracy of Pareto set and poor generalization, when applied to the learning

problems on the space of hypothesesHK induced with arbitraryK. Therefore, aiming
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to derive the margin-based complexity measure one has to consider a special treatment

of the idea of margin maximization, needing to be extended on the hypothesis space

of multiple RKHSs.

5.2 Feature normalization

The drawback of using the RKHS norm in the complexity measure on arbitrary HK

can be viewed as the consequence of different topologies of feature spaces, associated

with the elements of K. Since RKHSs are different, their norms are incompatible.

Consequently, it is naturally to consider a certain technique for their matching, for

instance, by developing a scale-invariant metric.

Let us assume that feature spaces match if the lengths of feature vectors cor-

responding to the same observations are equal. Such an assumption directly leads

to the metric, invariant to scaling due to normalization of features. In particular,

given the hypothesis f(x) =
∑

i αik(x, xi), f ̸= 0, let us denote its complexity via

the squared RKHS norm of another equivalent hypothesis f ′(x) =
∑N

i=1 α
′
ik

′(x, xi),

associated with the scaled kernel k′(x, x′) = c−1k(x, x′) and coefficients α′
i = cαi, such

that the feature vectors associated with k′ are unit. Assuming that all feature vectors

induced with k have equal lengths (e.g., k is Gaussian), the scaling constant

c = ∥x̃∥ · ∥x̃′∥ =
√
k(x, x)k(x′, x′) = k(x, x)

(recall the shorthand notation of Φ(x)k is x̃) satisfies the above conditions and in

combination with (5.1) leads to the sought complexity measure

Q[f ] = ∥f ′∥2k′ = k(x, x)∥f∥2k. (5.4)

The extension of (5.4) to the general case of kernels, whose feature lengths are

not equal (e.g., polynomial kernels), requires finding the equivalent hypothesis f ′ with

such α′ and k′, that √
k′(x, x) = ∥Φk′(x)∥ = 1

and

f ′(x) = f(x), for all x ∈ X . (5.5)
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Since the set of functions, spanned with Hk, is unique to a given kernel, the spans of

Hk and H′
k must coincide in order to satisfy (5.5). Hence, there must exist a linear

operator D : Hk → Hk′ satisfying

∥DΦk(x)∥ = 1

for all x ∈ X . Obviously, such a linear operator D may not exist for arbitrary

non-linear feature map Φk(x). Consequently, the disagreement with the equivalence

condition (5.5) must be allowed in the general case, but certain properties of f must

be preserved in f ′.

5.2.1 Effective support vectors

Let the hypothesis f ′ be given as the sum

f̃ ′ =
∑
i

νi (5.6)

of vectors νi, referred to as effective support vectors. Similarly, denote µi to be effective

feature vector, associated with i-th observation. Next, associate f ′ to f by assuming

that both νi and µi are collinear to x̃i and, thus, f
′ ∈ Hk.

Instead of the equivalence condition (5.5), impose the restriction on the effective

vectors such that

⟨νi, µi⟩ = αi ⟨x̃i, x̃i⟩ (5.7)

holds for all i = 1, . . . , N and denote

Q[f ] = ∥f̃ ′∥2 =
∑
i

∑
j

⟨νi, νj⟩ (5.8)

to be the complexity measure.

Such definition of f ′ does not uniquely determine Q[f ] in terms of f , but allows

a certain freedom in the choice of the lengths of νi and µi. For instance, the choice

µi = x̃i in (5.7) (effective feature vectors equal to real feature vectors) yields νi = αix̃i.

In this case, the original hypothesis f is recovered from (5.6), while (5.8) corresponds

to its squared RKHS norm, i.e., f̃ = f̃ ′ and Q[f ] = ∥f∥2k. However, different choices
of µi will result in other definitions of the complexity measure.
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5.2.2 Normalized complexity measure

Aiming to normalize feature spaces, consider the effective feature vectors

µi =
x̃i
∥x̃i∥

,

of unit lengths. Accordingly, the expression

νi = αi∥x̃i∥ · x̃i

directly follows from the condition (5.7) and in combination with the definition (5.8)

yields the normalized complexity measure

Qnorm[f ] :=
∑
i

∑
j

αiαj∥x̃i∥ · ∥x̃j∥ ⟨x̃i, x̃j⟩

=
∑
i

∑
j

αiαj

√
k(xi, xi)k(xj, xj)k(xi, xj).

(5.9)

Introducing the kernel

kν(xi, xj) =
√
k(xi, xi)k(xj, xj)k(xi, xj),

the complexity measure (5.9) can be rewritten in the compact form

Qnorm[f ] = αTGkνα, (5.10)

similar to ∥f∥2k, where Gkν is the Gram matrix associated with kν , calculated for the

training input observations.

It is easy to see that the complexity measure (5.4) is a particular case of Qnorm,

when all features associated with k have equal lengths. As before, the equivalence

condition (5.5) holds in this case. In case of arbitrary kernel k, the equivalence

condition (5.5) may not hold, however it is straightforward to show that Qnorm, as

well as its particular case (5.4), remains invariant to equivalent hypotheses produced

by scaling a kernel.

Note that the usage of Qnorm in practice does not necessary involve additional

calculations. For instance, if the hypothesis set HK is induced with the family of
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Gaussian kernels k(x, x′) = exp(−γ∥x − x′∥2), whose associated feature vectors are

already unit for any choice of γ > 0, the normalized complexity measure reduces

to the squared RKHS norm Qnorm[f ] = ∥f∥2k. This is the particular case of the

hypothesis space HK , when the RKHS norm is, in fact, a valid complexity measure,

from the point of view of feature normalization.

5.2.3 Radius/margin interpretation

The classical definition of the geometrical margin of a hypothesis f associated with

k is

ϱ[f ] =
2

∥f∥k
,

which is the distance between the hyperplanes f(x) = −1 and f(x) = 1 in the RKHS

of k. Again, assume the particular case of k, whose associated feature vectors lie on

a sphere of radius R = ∥x̃∥ =
√
k(x, x). Aiming at the scale-invariant measure of

margin, one can consider the relation of the margin to the radius of the sphere via

the expression
ϱ[f ]

R
=

2√
k(x, x)∥f∥k

= 2Qnorm[f ]
1
2 . (5.11)

On the one hand, the squared inverse of the relation (5.11) is the particular case

of normalized complexity measure (5.9). On the other hand, the relation (5.11)

resembles the well-known radius/margin generalization bound, proposed in [Vapnik

and Chapelle, 2000] for hard-margin SVM, where R must be the radius of the smallest

sphere, enclosing the feature vectors associated with the training obvervations.

5.3 Feature equalization

The approach of feature normalization implemented in Qnorm (5.9) matches different

feature spaces regardless of distributions of the feature vectors. The same is known

as the drawback of the radius/margin bound. In fact, generalization properties of

hypotheses depend on the orientation of feature vectors, as well as on their lengths.

For example, a class of functions spanned in the RKHS, whose feature vectors uni-

formly fill the sphere of radius R, represent higher learning capacity than a class of
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functions associated with RKHS, where feature vectors are concentrated only in a

small region of the same sphere. Such a conclusion becomes obvious after observing

that the latter feature space is associated with smoother kernel due to smaller angles

between feature vectors.

Therefore, in order to include the information of the angular topology of a feature

space into the complexity measure, the following matching technique is proposed: map

all hypotheses from HK into a certain reference space of features, maintaining the

equivalence between hypotheses by their dot product representation. The equivalence

of the mapped hypotheses to their originals is treated in terms of (5.5). Since the

reference space remains common for all elements of HK , their feature spaces already

match within its context.

Following this idea, a learning machine with multiple feature spaces associated

with K can be equivalently represented in the context of a single feature space. For

the obvious reasons, such a matching approach can be called as feature equalization.

5.3.1 Reference and auxiliary maps

Consider the feature map Φk associated with the kernel k ∈ K and the fixed reference

map Φ◦ : X → H◦, which is common for all kernels in the context of learning problem.

Let there exist an auxiliary map Φ∗
k : X → H◦ associated with a particular k ∈ K,

such that the identity

k(x, x′) = ⟨Φk(x),Φk(x
′)⟩ = ⟨Φ◦(x),Φ∗

k(x
′)⟩H◦ (5.12)

holds for all (x, x′) ∈ X 2. Introducing the shorthand images
◦
x and

∗
x of the observation

x under the reference Φ◦ and auxiliary Φ∗
k maps, respectively, the identity (5.12) can

be rewritten in a compact form

k(x, x′) = ⟨x̃, x̃′⟩ = ⟨ ◦
x,

∗
x′⟩H◦ . (5.13)

Assuming the existence of Φ∗
k satisfying (5.12) for all k ∈ K, all hypotheses f ∈ HK

can be rewritten in terms of the dot product in the reference space H◦. In particular,
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one can rewrite the traditional dot product form of the hypothesis function

f(x) =
⟨
x̃, f̃

⟩
(5.14)

in terms of the dot product in H◦ as follows:

f(x) =

⟨
x̃,
∑
i

αix̃i

⟩
=

=

⟨
◦
x,
∑
i

αi
∗
xi

⟩
H◦

,

or

f(x) =
⟨

◦
x,

∗
f
⟩
H◦
, (5.15)

after introducing the auxiliary image

∗
f =

∑
i

αi
∗
xi (5.16)

of the hypothesis f in H◦.

Since both the Φ◦ and Φ∗
k are maps into a dot product space, there exist reference

and auxiliary kernels

k◦(x, x′) = ⟨Φ◦(x),Φ◦(x′)⟩

and

k∗k(x, x
′) = ⟨Φ∗

k(x),Φ
∗
k(x

′)⟩

associated with them, respectively. Hereafter, the explicit specifications of the dot

product domain H◦ is omitted for the sake of shortness.

Therefore,
∗
f is the equivalent representation of f in the reference space H◦. Note,

that the form (5.15) is similar to (5.14) and the image
∗
f is the expansion of the

auxiliary vectors with the same coefficients αi as the original hypothesis f̃ . However,

the evaluation of f(x) in H◦ is achieved with the dot product of the images
◦
x and

∗
f ,

associated with different feature maps.

As an independent branch of the current research, theoretical framework for the

derivation of auxiliary maps and their associated kernels is developed in Appendix A.

In particular, the existence of auxiliary maps and compact forms of their associated
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kernels is demonstrated in practice for the classes of Gaussian RBF and polynomial

kernels.

5.3.2 A closer look at the reference space

Unlike the regular feature map of the kernel k, the reference map Φ◦ is fixed and

responsible only for mapping input observations. Hence, the properties of the hy-

pothesis f and its associated feature space are represented with
∗
f . For instance,

one can already show that ∥
∗
f∥2 (the squared length of auxiliary image of f) is in-

variant to the scaling of k. For instance, consider again the case of two equivalent

hypotheses produced by scaling: f̃ =
∑

i αiΦk(xi) and f̃ ′ =
∑

i α
′
iΦ

′
k(xi), such that

k′(x, x′) = c−1k(x, x′) and α′
i = c · αi, c > 0. Then, the identity

k′(x, x′) = ⟨Φ◦(x),Φ∗
k′(x)⟩ = c−1k(x, x′)

yields Φ∗
k′(x) = c−1Φ∗

k(x) and, thus, the identity

∥
∗

f ′∥2 =
∑
i

∑
j

c2αiαj

⟨
c−1Φ∗

k(xi), c
−1Φ∗

k(xj)
⟩

= ∥
∗
f∥2

holds. Therefore, the auxiliary images of equivalent hypotheses coincide in the refer-

ence space.

In the conventional feature space representation of the hypothesis f , the support

vectors 2 and the feature vectors of training observations are the images under the

same feature map Φk(x). Thus, the support vectors and, consequently, their linear

expansion f̃ belong to the span S := span{x̃i}Ni=1 of N images of distinct input

observations xi, i = 1, . . . , N from the training set. In contrast, within the reference

space representation of f , the images
∗
xi of the corresponding input observations under

the axillary map play the role of support vectors, which do not belong to the reference

span S◦ := span{ ◦
xi}Ni=1. This conclusion can be seen as an extension of the previous

analysis in section 5.2 implying that there is no linear isomorphism between Φk(x)

2In literature on SVM, support vectors are commonly defined as the subset of feature vectors
laying on the margin and determining the optimal margin hyperplane of the SVM. In context of the
current work, the term of support vectors means arbitrary feature vectors, corresponding to nonzero
expansion coefficients of a hypothesis.
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S S◦

S∗

∗
f

◦
g

f̃x̃i

◦
xi

∗
xi

b)a)

f(x) = 0

Figure 5.1: Schematic representation of the hypothesis f in the conventional (a) and
reference (b) feature spaces.

and Φ∗
k(x). Otherwise, the spans of the corresponding RKHSs of k◦, k and k∗ must

coincide simultaneously for all k ∈ K, which is generally not true.

The representation of the hypothesis f in the conventional and reference spaces is

demonstrated schematically in Fig. 5.1. The auxiliary image
∗
f is the normal vector

of the decision hyperplane
⟨

◦
x,

∗
f
⟩

= 0 in the reference space, similarly to f in the

RKHS. Hence, the hyperplanes 
⟨

◦
x,

∗
f
⟩
= 1⟨

◦
x,

∗
f
⟩
= −1

(5.17)

also determine the margin associated with
∗
f . However,

∗
f does not lie in the span S◦

of the training data, and the geometrical margin of its separation with
∗
f (denoted as

the reference margin in Fig. 5.1) differs from 2/∥
∗
f∥.

Taking a closer look at the layout of vectors in the reference space, one can con-

clude that the reference margin (the geometrical margin, with which the training set

is separated in the span of itself) is the distance between the intersections of the mar-

gin hyperplanes (5.17) with the span S◦. Since the margin hyperplanes are parallel to

the decision hyperplane with the normal vector
∗
f , it is straightforward to show that

the distance between the intersections of (5.17) with S◦ is related to the orthogonal
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projection
◦
g of

∗
f into S◦. We shall refer

◦
g as the reference image of f , which separates

the training set with the reference margin 2/∥ ◦
g∥.

Since
◦
g ∈ S◦,

◦
g admits the expansion

◦
g =

∑
i

βi
◦
xi. (5.18)

Consequently, there exists a function g in the RKHS Hk◦ of the reference kernel k◦,

such that

g(x) = ⟨ ◦
x,

◦
g⟩ =

∑
i

βik
◦(x, xi).

In other words, the projection of
∗
f into the reference span S◦ is the hypothesis

associated with kernel k◦ and vector β = (β1, β2, . . . , βN)
T of expansion coefficients.

In view of properties of the orthogonal projection, the following identity holds:⟨
u,

∗
f
⟩
= ⟨u, ◦

g⟩ , for allu ∈ span{ ◦
xi},

from where it immediately follows that

g(xi) = f(xi), i = 1, . . . , N. (5.19)

The vector of expansion coefficients β can be found directly by solving system of

linear equations (5.19) with respect to βi, i = 1, . . . , N . However, let us also show

that
◦
g, being the projection of

∗
f , does not depend on the auxiliary map.

By definition of the orthogonal projection,
◦
g is the minimizer of

∥
∗
f − ◦

g∥2 = ∥
∗
f∥2 − 2

⟨ ∗
f,

◦
g
⟩
+ ∥ ◦

g∥2

= ∥
∗
f∥2 − 2

N∑
i=1

N∑
j=1

αiβj ⟨
∗
xi,

◦
xj⟩+

N∑
i=1

N∑
j=1

βiβj ⟨
◦
xi,

◦
xj⟩ ,

(5.20)

or

∥
∗
f − ◦

g∥2 = ∥
∗
f∥2 − 2

N∑
i=1

N∑
j=1

αiβjk(xi, xj) +
N∑
i=1

N∑
j=1

βiβjk
◦(xi, xj)

= ∥
∗
f∥2 − 2αTGkβ + βTGk◦β,
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after substitutions ⟨ ∗
xi,

◦
xj⟩ = k(xi, xj) and ⟨ ◦

xi,
◦
xj⟩ = k◦(xi, xj), where Gk and Gk◦

are the Gram matrices associated with kernels k and k◦, respectively. Therefore, the

solution of
∂∥

∗
f − ◦

g∥2

∂β
= 0,

results in the vector

β = (Gk◦)
−1Gkα (5.21)

of expansion coefficients minimizing (5.20). As seen from (5.21), β and consequently

g are independent on k∗ and its associated auxiliary map Φ∗
k.

5.3.3 The concept of margin in a reference space: an exten-

sion is needed

The identity (5.19) means that the hypothesis g provides the same response to the

training set as f , thus Remp[g] = Remp[f ]. This in turn leads to the important conclu-

sion that all hypotheses, whose auxiliary images are projected into the same reference

image
◦
g, are equivalent with respect to the empirical risk. Therefore, specification of

the complexity measure on the basis of the reference margin (that is Q[f ] = ∥g∥2k◦)
leads to a degeneracy of the hypothesis space HK , since all hypotheses represented

by a certain g become indistinguishable with respect to both objective functions,

the empirical risk and complexity, simultaneously. Again, such a learning machine

becomes inconsistent from the SRM point view.

It now can be shown that the above declined choice of the complexity measure

Q[f ] = ∥
∗
f∥2 based on the auxiliary image of f also causes a degeneracy of HK : the

minimizer of Q[f ] = ∥
∗
f∥2 within the subset of hypotheses, corresponding to a certain

level of empirical risk (with a certain projection g̃) is g̃, since the latter is the smallest

orthogonal projection into itself.

Finally, one may conclude that both margin-based approaches to the complexity

measure (Q[f ] = ∥
∗
f∥2 and Q[f ] = ∥g∥2k◦) in the reference space reduce representabil-

ity of the hypothesis space HK provoking degeneracies and, therefore, are unaccept-

able. Consequently, the concept of geometrical margin must be certainly extended

with another more general property of a separation hyperplane.
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5.4 Stability of separation hyperplanes

The idea of margin maximization is closely related to other concepts. For instance,

the large margin classification is known to be robust to the observation noise and per-

turbation of hypothesis parameters (see e.g., [Scholkopf and Smola, 2001], ch. 7.2).

Indeed, when the training set is correctly classified and separated at margin ϱ, all

unseen patterns distributed within the ϱ/2-cover of the training set will be classified

correctly as well. It means that the larger width of margin ϱ guarantees a certain

classification accuracy at higher noise levels. Another robustness interpretation con-

cerns with the stability of classification results to small perturbations of expansion

coefficients. In this case, if the feature vectors are bounded in length and separated

with a larger width of margin, the classification results do not change with small an-

gular disturbances of the hyperplane’s normal. Informally, this interpretation is also

related to the principle of minimum description length (MDL) [Wallace and Boulton,

1968]: the larger the margin, the lower precision is needed to encode a separation

hyperplane without suffering the classification results.

Both the stability interpretations denote the margin as a distance between sep-

arable feature vectors3 to the separation hyperplane as a function of its orientation.

Within the framework of feature equalization, the separation hyperplane (and its

orientation) associated with the hypothesis f is denoted with the reference image
◦
g, as the projection of the auxiliary image

∗
f of f into the span S◦ of reference fea-

tures. As highlighted in the previous section 5.3.2, the hypotheses associated with

the same reference image are indistinguishable from the point of view of reference

margin. However, since the auxiliary images
∗
f consist of different auxiliary support

vectors, the same disturbance of their expansion parameters results in different distur-

bances of their projections into S◦. Therefore, according to the MDL interpretation,

the complexities of such hypotheses can be distinguished by amounts of information

needed to encode their expansion parameters, maintaining the same precision of the

separation hyperplanes in S◦.

Intuitively, one can conclude that hypotheses associated with smooth kernels (and

therefore weakly angled support vectors) require less information to be encoded with

3Similar conclusions apply to the soft-margin classification, where a certain number of misclassi-
fied training samples is allowed. For further details refer, e.g., [Cortes and Vapnik, 1995].
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a given precision, than hypotheses, whose associated support vectors are almost or-

thogonal. This conclusion becomes clear, after viewing a separation hyperplane in

the principal subspace of its associated support vectors: when support vectors are

weakly angled, less principal components are needed to describe the linear system

with a given precision.

5.4.1 Leave-one-out stability criterion

Let the separation hyperplane ⟨x, f⟩ = 0 be given by the expansion

f :=
N∑
j=1

αjxj (5.22)

of the N support vectors xj, j = 1, . . . , N . For simplicity of notation, it is assumed

that xj and f are already the vectors in some Hilbert space, whose specification is

irrelevant in current context.

Now, let us consider the disturbance of the hyperplane vector f approximated by

the linear combination of the reduced system of N − 1 support vectors, where the

i-th support vector is excluded. Let the vector

g(i) :=
N∑

j=1,j ̸=i

β
(i)
j xj

stand for the normal of disturbed hyperplane, minimizing the squared error

e2i = ∥f − g(i)∥2. (5.23)

Since an exclusion of the support vector means a certain information reduction, the

resulting approximation error ei reflects the consequent precision loss. Then, the sum

E(f) =
N∑
i=1

e2i (5.24)

can be a measure of information amount, needed for description of the hyperplane

with certain precision. As a matter of fact, E(f) can be interpreted as the leave-one-
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out stability of f with respect to its support vectors. Note the leave-one-out error

E(f) is related to the hyperplane and is irrelevant to the training error.

Obviously, g(i) is the orthogonal projection of f into the span of support vectors

without the i-th one. Introducing the reduced matrix

X(i) := (x1, . . . , xi−1, xi+1, . . . , xN)

of N − 1 support vectors and the (N − 1)× 1 vector

β(i) = (β1, . . . , βi−1, βi+1, . . . , βN)
T

of the corresponding expansion coefficients of the projection

g(i) = X(i)β(i),

one can show that the minimizer of the i-th squared distance

e2i = ∥f −X(i)β(i)∥2 = fTf − 2fTX(i)β(i) + β(i)TX(i)TX(i)β(i)

corresponds to the solution of
∂e2i
∂β(i)

= 0

with respect to β(i). Hence,

β(i) =
(
X(i)TX(i)

)−1

X(i)Tf

and

e2i = fTf − fTX(i)
(
X(i)TX(i)

)−1

X(i)Tf

= fTf − fTP (i)f,
(5.25)

where

P (i) := X(i)
(
X(i)TX(i)

)−1

X(i)T

is the orthogonal projector into the span of X(i).

At this point, one can demonstrate the relation of the stability measure to the
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geometrical margin by the combination of (5.24) with (5.25), that yields

E(f) = N∥f∥2 −
N∑
i=1

fTP (i)f. (5.26)

As seen, the criterion E(f) grows with the squared inverse ∥f∥2 of the geometrical

margin but decreases with the growing projection lengths fTP (i)f . In other words,

the more mutual information is contained in the system of support vectors, the more

stable becomes f .

Introducing the reduced (N − 1)× 1 vector

α(i) = (α1, . . . , αi−1, αi+1, . . . , αN)
T

of the expansion coefficients associated with f , one can rewrite (5.22) as the sum

f = X(i)α(i) + xiαi (5.27)

and show that

fTf = α(i)TX(i)TX(i)α(i) + 2αix
T
i X

(i)α(i) + α2
ix

T
i xi. (5.28)

Also, using the property P (i)X(i) = X(i) of the orthogonal projector, it can be shown

that

fTP (i)f = α(i)TX(i)TP (i)X(i)α(i) + 2αix
T
i P

(i)X(i)α(i) + α2
ixiP

(i)xi

= α(i)TX(i)TX(i)α(i) + 2αix
T
i X

(i)α(i) + α2
ixiP

(i)xi.
(5.29)

The combination of (5.28) and (5.29) with (5.25) yields

e2i = α2
i (x

T
i xi − xTi P

(i)xi). (5.30)

It is noteworthy that (5.30) splits into the product of two independent terms: α2
i and

xTi xi − xTi P
(i)xi, where the former represents the size of the expansion coefficients

responsible for the margin and the latter represents self-similarity of the support

vectors.

Next, consider the following lemma.
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Lemma 5.4.1 (Diagonal elements of the Gram matrix inverse): Let the matrix X =

(x1, . . . , xN) contain N column vectors and the matrix X(i) contain N − 1 column

vectors from X, except the i-th one. Then, if the matrix X(i)TX(i) is invertible, the

i-th diagonal element of the inverse of the Gram matrix G = XTX is

di = (xTi xi − xTi P
(i)xi)

−1,

where P (i) = X(i)
(
X(i)TX(i)

)−1

X(i)T . See Appendix B.2 for proof.

Finally, the lemma 5.4.1 gives rise to the compact and computationally-friendly form

E(f) =
N∑
i=1

α2
i

di
(5.31)

of the leave-one-out stability criterion (5.24), where (d1, d2, . . . , dN) = diag(G−1)

and G = XTX is the Gram matrix associated with the support vectors X =

(x1, x2, . . . , xN). Note that for better numerical stability it is convenient to calcu-

late the elements d−1
i directly from the singular value decomposition of X.

5.4.2 Stability-based reference complexity measure

Given the feature space image f̃ of the hypothesis f and its associated Gram matrix

Gk, one can express its complexity with the leave-one-out stability E(f̃) (5.31) of its

separation hyperplane. Such measure is closely related to the RKHS norm ∥f∥2k, as
seen from (5.26), and thus can be viewed as the extension of the traditional concept

of margin.

Likewise the norm ∥f∥2k, the magnitude of E(f̃) is related to the metric in partic-

ular feature space associated with f and, thus, feature spaces must be equalized to

ensure the comparability of criterion E over hypotheses from different RKHSs.

Recall the results of 5.3.2, where the separation hyperplane of the hypothesis f

was given in the reference feature space by the vector

◦
g =

∑
i

βi
◦
xi, (5.32)
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which is an orthogonal projection of the auxiliary image

∗
f =

∑
i

αi
∗
xi

into the reference span S◦ of training observations. Accordingly, stability of the

separation hyperplane associated with f can be expressed in a comparable manner

as E(
◦
g). However, in order to express stability of the original hypothesis f and

properties of its associated kernel k, the measure E(
◦
g) must be calculated for

◦
g in the

form different to (5.32). In particular, the coefficients αi and the auxiliary support

vectors
∗
xi, projected into S◦, should be considered as the elements of the expansion

◦
g, instead of the coefficients βi and vectors

◦
xi given by (5.32).

Let the hypothesis f given with N support vectors, whose corresponding reference

feature vectors are columns of the matrix X◦ = (
◦
x1,

◦
x2, . . . ,

◦
xN). Then, using the

result (5.21), the expansion (5.32) can be written in the matrix form

◦
g = X◦β = Uα,

where

U = X◦(Gk◦)
−1Gk.

It can be seen that columns of the matrix U are orthogonal projections of the vectors
∗
xi into S◦, same as the projection of their combination

∗
f is

◦
g. Also, recall that

Gk◦ = X◦TX◦. Hence, the Gram matrix associated with the columns of U is

UTU = Gk(Gk◦)
−1Gk.

Finally, using (5.31), the reference complexity measure can be denoted on the basis

of E(
◦
g) as

Qref[f ] :=
N∑
i=1

α2
i

di
, (5.33)

where

(d1, d2, . . . , dN) = diag
(
G−1

k Gk◦G
−1
k

)
.

Note that there are different ways of putting Qref into practice. The first one is to

consider N as a number of support vectors associated only with non-zero coefficients.
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The second way is to consider the complete Gram matrix associated with N (distinct)

training input observations. Since the Gram matrix remains fixed for all f ∈ Hk, the

complexity measure Qref is strictly convex on Hk and can be viewed as the coefficient-

based stabilizer

Qref[f ] = αTDα,

whereD is a diagonal matrix with the elements d−1
1 , d−1

2 , . . . , d−1
N on the main diagonal.

It can be shown that when the number of actual support vectors is close to that of

training observations, or when the feature vectors ofHk andHk◦ are uniformly spaced,

both the ways of calculation of Qref provide similar results. However, the second

approach seems preferable from practical considerations: it is enough to compute D,

once for each k ∈ K, while Qref is convex on Hk.

5.4.3 On a practical choice of the reference kernel

A choice of the reference kernel determines the reference map, and, consequently, in-

fluences to the ordering of the hypothesis space via the complexity measureQref (5.33).

Even though the complexity measure is computable for arbitrary choice of Gk◦

that, in fact, does not require the existence of
∗
f , the proper choice of the reference

kernel involves deeper analysis of the reference space paradigm proposed in 5.3.1.

The results in A.4 show that the choice of the Dirac delta function for the reference

kernel is universal for arbitrary family of kernels, since it ensures the existence of the

corresponding auxiliary map, though the reference feature vectors in this case are

infinitely large. Hence, the projection
◦
g of

∗
f into S◦ is infinitely small and, therefore,

the value Qref[f ] is meaningless. Nevertheless, the results of A.4 can be adopted to

the case of finite projection
∗
f into S◦. In particular, the choice of the reference kernel

to be Kronecker delta function

k◦(xi, xj) = δji =

{
1, i = j

0, otherwise

ensures the existence of
◦
g and also simplifies (5.33) with identity Gram matrix Gk◦ =

I. In this case, Mercer’s eigenvalues associated with k◦, are infinitely small causing

the eigenvalues of k∗ to be infinitely large. Hence, formally, the auxiliary kernel k∗
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and image
∗
f are infinite, however the projection of the latter into S◦ remains finite

providing existence for the complexity measure Qref.

5.5 Basic MOBJ implementation

Recall the general components of a MOBJ algorithm formulated in 3.3: the kernel

family K; the functionals of empirical risk Remp, complexity measure Q, and model

selection criterion ζ on HK ; and the procedure for finding Pareto-optimal elements

P(Hk, ϕ), ϕ[f ] = (Remp[f ], Q[f ]) on the RKHS of k. The latter performs convex

optimization (assuming that both Remp and Q are convex on Hk), whose results serve

for reconstruction of the Pareto set P(HK , ϕ) of the whole problem by means of

decomposition (3.10) (see 3.2.3 for details).

In particular, given the generic kernel algorithm

KM(Ztr, k, λ) = arg min
f∈Hk

Remp[f ] + λQ[f ], (5.34)

solving the corresponding regularization problem, one can find the elements of

P(Hk, ϕ) for all λ ≥ 0 and then reconstruct the complete Pareto set of the MOBJ

problem using the following relation

P(HK , ϕ) = P

(∪
k∈K

∪
λ∈R+

KM(Ztr, k, λ), ϕ

)
. (5.35)

In practice, one aims for computationally efficient approximation of (5.35) with a

finite set of solutions. This requires analysis of the particular multi-objective problem

and development of special steps, similar to those in Chapter 4. Nevertheless, the

reliability of the proposed multi-objective approach to margin maximization can be

confirmed with the basic implementation of the MOBJ algorithm given below.
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5.5.1 The MOBJ on a grid

In its basic form, the Pareto set (5.35) can be approximated with the set

P

 ∪
θ∈Θgrid

KM(Ztr, θ), ϕ

 (5.36)

of nondominated hypotheses, corresponding to the grid Θgrid of kernel and regulariza-

tion hyperparameters. Here, KM(Ztr, θ) is the alternative notation to (5.34), where

the kernel and regularization parameters are specified by the element θ of the grid

Θgrid.

Combination of (5.36) with a general MOBJ procedure (3.7) provides the basic

multi-objective grid search algorithm:

1. Given the training set Ztr and the set Θgrid of grid elements generate the set of

hypothesis

F :=
{
f = KM(Ztr, θ) | θ ∈ Θgrid

}
,

corresponding to the elements of the grid;

2. Determine the set Fnd := P(F, ϕ) of nondominated hypothesis with respect

to Remp and specified complexity measure Q, (e.g., by means of a pairwise

comparison of elements in F ).

3. Find the final solution

fmobj = arg min
f∈Fnd

ζ[f ]

with respect to the specified model selection criterion.

It is noteworthy that omitting the second step, the above algorithm reduces to the

conventional grid search procedure

fgrid = KM(Ztr, arg min
θ∈Θgrid

ζ[KM(Ztr, θ)]), (5.37)

where the model selection criterion is evaluated for all elements of Θgrid, instead of

their subset associated with only nondominated hypotheses.



5 Multi-objective extension of margin maximization 108

In order to complete the above implementation scheme, one has to specify the pro-

cedure KM(Ztr, θ) for solution of the regularization problem for the given training set

Ztr with respect to empirical risk Remp, complexity measure Q, and hyperparameters

θ.

The both complexity measuresQnorm andQref can be expressed in the form αTQkα,

where Qk is a square matrix. Hence, choosing the squared error loss function one can

build the procedure KM(Ztr, θ) on the basis of the solution

α = (HT
k Hk + λQk)

−1HT
k Y

of the modified generalized regularization network (GRN), where Hk is the design ma-

trix associated with k on the training set and Y is the training target vector (see 2.3.4

for details). However, this approach is not convenient due to the known drawbacks of

GRNs. Also, since Qnorm and Qref are not common regularizers, the solutions achieved

with the corresponding MOBJ algorithm will be difficult to compare with the existing

techniques due to differences between underlying learning machines. Therefore, it is

encouraging to adapt the proposed grid-based MOBJ scheme to a certain existing

kernel algorithm.

5.5.2 Adaptation to SVM classifier

Recall the setting of the C-SVC classifier, given in 2.5.1 by the hinge loss function

l(x, y, f(x)) = max(0, 1− y · f(x)). (5.38)

The traditional C-SVC algorithm maximizes the geometrical margin of the separation

hyperplane, minimizing the squared RKHS norm ∥f∥2k along with the penalty term

C ·Remp[f ], where C is the regularization hyperparameter and Remp[f ] is calculated

with respect to the loss function (5.38) for the training set Ztr.

As highlighted in 5.2.2, for the particular case of the Gaussian RBF kernel

k(x, x′) = exp(−γ∥x−x′∥2), the complexity measureQnorm corresponds to the squared

RKHS norm ∥f∥2k. In this case, the results of the C-SVC algorithm are elements of

the nondominated set P(Hk, ϕ), as supposedly made with KM(Ztr, θ). However, in a
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general case of kernel k, both the complexitiesQnorm[f ] ̸= ∥f∥2k andQref[f ] ̸= ∥f∥2k dif-
fer to ∥f∥2k minimized by the C-SVC. Hence, the results of the procedure KM(Ztr, θ)

based on the C-SVC are generally not Pareto-optimal.

However, the application of C-SVC in the MOBJ algorithm is possible under cer-

tain considerations. In particular, one can assume the hypothesis space of a learning

machine to be limited by the subset of HK corresponding to such hypotheses, whose

hyperplanes are optimal in SV sense. In other words such a hypothesis space consists

of all possible SVMs on a given kernel family K. Then, the nondominated set of

C-SVC solutions can be considered Pareto-optimal.

Alternatively, viewing Qnorm and Qref as certain metrics on Hk, one can consider

them to be equivalent4 to ∥ · ∥2k. Consequently, the nondominated set

P

(∪
k∈K

P
(
Hk, (Remp, ∥ · ∥2k)

)
, ϕ

)

can be viewed as an approximation to the sought P(HK , ϕ).

Finally, both assumptions allow the standard implementation of C-SVC to be

employed directly in place of KM(Ztr, θ) of the grid-based MOBJ algorithm described

in 5.5.1. Note that a similar approach provides adaptations to other kernel algorithms

(e.g., ε-SVR for regression).

5.6 Experiment

The goal of current experimental study is to verify the reliability of supervised learning

with the MOBJ algorithms, endowed with the proposed complexity measures Qnorm

and Qref. In particular, the experiment is designed to confirm the central claim of

current research, formulated in 2.6, that the exhaustive search within the space of

hyperparameters is redundant and unnecessary, in contrast to the MOBJ algorithm,

implementing the SRM principle.

The experiment plain consists of several classification benchmarks of the grid-

based MOBJ algorithm 5.5, powered by the SVM classifier and endowed with the

4The term is used in the sense of equivalent norms, i.e. the norm ∥ · ∥a is equivalent to ∥ · ∥b on
X if there exist positive constants c and d, such that c∥x∥b ≤ ∥x∥a ≤ d∥x∥b for all x ∈ X.



5 Multi-objective extension of margin maximization 110

complexity measures Qnorm and Qref, according to 5.5.2. The conclusions are expected

to be drawn from the comparison between the results the MOBJ algorithm and the

conventional grid search procedure (5.37) treated under exactly the same conditions.

5.6.1 Benchmark setup

Several classification benchmarks were selected for the tests. The data-sets, listed in

Table 5.1 along with their short descriptions, are based on real-world data of diverse

nature. Most of the data-sets are available from the UCI repository [Asuncion and

Newman, 2007]. All data-sets have passed through the unified preprocessing steps:

missing values were removed, binary or metric attributes (including the target) were

normalized to the interval [−1, 1], and categorical attributes were previously expanded

onto corresponding binary vectors. The total number of samples (length) and the

number of attributes after the preprocessing are shown in the corresponding columns

of Table 5.1.

Table 5.1: List of the benchmark data-sets

Name Alias Length Attributes
Iris (cl. 3 vs. 1&2) iris3 150 4
Wine (cl. 2 vs. 1&3) wine2 178 13
Sonar sonar 208 60
Heart disease1 heart 270 13
Liver disorders (BUPA) liver 345 6
Ionosphere ionosphere 351 34
Vehicle silhouettes (cl. 1 vs. 2) vehicle12 417 18
Vehicle silhouettes (cl. 3 vs. 4) vehicle34 429 18
Credit approval credit 653 43
Wisconsin breast cancer cancer 699 9
Inidian diabetes pima 768 8

The multi-class data-sets were reduced to binary classification by a combination

of several classes together (the data-sets iris3 and wine2 ), or by separation of the

observations (the data-sets vehicle12 and vehicle34 ). In particular, in iris3 and

wine2 the most overlapping classes were selected to be classified against the others.

1The heart data-set were taken from the StatLog Project folder at UCI.
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The vehicle silhouette data-set was split in two independent classification problems:

vehicle12 (Opel vs. Saab cars) and vehicle34 (vans vs. buses).

Aiming for representability of scores, the benchmark technique of randomized

cross-validation sampling was used from [Meyer, Leisch, and Hornik, 2003]. Similarly

to the benchmark described in section 4.5.4, 10 random permutations were generated

from each data-set. Then, each permutation was split into 10 non-overlapping train-

ing/test pairs (9/10 for training and 1/10 for test) and 100 different training/test

cases were generated from each data-set. Accordingly, the scores of the particular

algorithm for a given data-set were calculated on the basis of the test classification

error rates, after training 100 times on different training sets.

Likewise [Meyer, Leisch, and Hornik, 2003], four types of scores were consid-

ered in the experiment for evaluation of the performance and stability of algorithms

using two kinds of average/dispersion measures: mean/standard deviation (std.), me-

dian/interquartile range (iqr.). The classification error rates (%), averaged over 100

test cases, stand for performance score. The dispersion of mean classification error

on each data-set permutation (cross-validation error) stands for the score of stability.

Hence, the lower values of both scores indicate better results.

5.6.2 Configurations of the algorithms

The standard implementation of C-SVC was used from the LIBSVM [Chang and Lin,

2001] with two kernel classes: the Gaussian RBF

k(x, x′) = exp(−γ∥x− x′∥2)

of variable bandwidth γ and the polynomial

k(x, x′) = (⟨x, x⟩+ 1)p

of integer5 order p.

5The integer polynomial orders were used not to deal with complex-valued kernels, though, an
extension of the proposed measures to this case is straightforward.
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The two-dimensional rectangular grids were used to control the hyperparameters

(C, γ) and (C ′, p) in configurations with Gaussian and polynomial kernels, respec-

tively. The hyperparameter C = C ′ · 2−2p, inversely controlling the strength of regu-

larization in the standard implementation of C-SVC, was substituted by C ′ for better

fitting of the region of interest6 into a rectangular grid in case of the polynomial kernel.

The values p ∈ {1, 2, . . . , 10} of the polynomial degree were used for all data-sets,

whereas the values of the hyperparameters C, C ′, and γ were aligned on the expo-

nential grids of the base 2 and multiplier step 2
1
2 . Due to the diverse nature and

dimensions of the data-sets, the ranges of hyperparameters C, C ′, and γ were distin-

guished into several groups, as shown in Table 5.2. Such kind of division in groups

were necessary to avoid computational burden and undesirable numerical issues of

the SVM algorithm, which usually occur with the choices of hyperparameters outside

a certain range.

Table 5.2: Selected ranges of hyperparameters

Parameter Range (log2) Data-sets
C ′ [−6, 14] iris3, wine2, liver

[−10, 10] heart, iono, vehicle12, vehicle34, pima
[−12, 10] sonar, credit, cancer

C [−5, 25] iris3, wine2, sonar, heart, iono
[−8, 16] liver, vehicle12, vehicle34, credit, cancer, pima

γ [−28, 2] wine2, sonar, heart, iono
[−20, 5] iris, vehicle12, vehicle34, credit, cancer, pima
[−12, 8] liver

The corresponding MOBJ algorithm was implemented in accordance with 5.5 for

its two configurations: MOBJ-Qnorm and MOBJ-Qref, corresponding to the proposed

complexity measures (5.9) and (5.33), respectively. In the experiment, the results

of MOBJ-Qnorm and MOBJ-Qref are compared with the conventional grid search pro-

cedure (5.37) (GS) under exactly the same settings. The 5-fold CV model selection

criterion was used in all configurations of the MOBJ algorithm, including the grid

search GS.

6The region of hyperparameter space, corresponding to representative models generated with
C-SVC. The hypotheses are mostly degenerated or strongly overfitted outside this region.
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5.6.3 Benchmark results

Tables 5.3-5.4 show performance and stability scores achieved by MOBJ-Qnorm, MOBJ-

Qref, and GS. The best scores are marked bold. The intensity plots of the magnitudes

of complexity (Qnorm and Qref), training error (Remp), and 5-fold CV criterion are

available in Appendix C for one particular training case of each data-set, including

the marked Pareto-optimal elements and final solutions.

As numerical results show, most differences between the scores are small. Thus,

further statistical tests are necessary for making conclusions about the properties of

the benchmarked algorithms.

5.6.4 Significance tests

Recent results on the methods of comparison of multiple algorithms on multiple data-

sets are discussed in [Demšar, 2006]. In [Demšar, 2006], the correctness of application

of the traditional variance-based statistical tests, such as Student’s t-test, is argued for

comparison of the classifiers’ performances expressed by the cross-validation scores.

Since in these sampling schemes the training/test cases are mutually dependent, the

calculation of the correct number of degrees of freedom becomes the major issue.

Moreover, there are no corresponding statistics to compare several classifiers on mul-

tiple data-sets. On the other hand, the results obtained from multiple data-sets are

naturally independent. Hence, non-parametric rank tests can be applied to com-

pare two or more algorithms. Such techniques, as demonstrated in [Demšar, 2006]

for comparison of classifiers, turned to be state-of-the-art tools in machine learning

community.

In particular, the well-known Friedman rank test [Friedman, 1937, 1940] can be

applied to verify the significance of ranking of multiple algorithms. Given l algorithms,

ranked on T data-sets with their average ranks Rj, j = 1, . . . , l, one assumes the null-

hypothesis, stating that all algorithms should be ranked equal. In this case, the

statistic

FF =
(T − 1)χ2

F

T (l − 1)− χ2
F
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Table 5.3: Scores of GS, MOBJ-Qnorm and MOBJ-Qref with the Gaussian RBF kernel
on benchmark data-sets.

Data-set Method Performance Stability
mean median std. iqr.

iris3 GS 4.67 6.67 0.70 0.00
MOBJ-Qnorm 4.73 6.67 0.38 0.00
MOBJ-Qref 4.00 6.67 0.44 0.00

wine2 GS 2.52 0.00 0.76 0.56
MOBJ-Qnorm 3.19 2.78 0.80 0.59
MOBJ-Qref 2.96 0.00 0.60 0.03

sonar GS 23.42 23.81 2.17 3.36
MOBJ-Qnorm 14.60 14.29 0.97 1.93
MOBJ-Qref 21.84 19.05 2.76 4.71

heart GS 17.07 14.82 0.64 1.11
MOBJ-Qnorm 18.41 18.52 0.87 1.11
MOBJ-Qref 17.04 14.82 0.60 0.74

liver GS 28.99 28.57 0.72 0.62
MOBJ-Qnorm 35.48 35.29 1.52 2.34
MOBJ-Qref 28.90 28.57 0.76 1.34

iono GS 5.25 5.71 0.57 0.87
MOBJ-Qnorm 5.25 5.71 0.31 0.31
MOBJ-Qref 6.38 5.71 0.85 1.40

vehicle12 GS 25.10 25.58 1.25 2.08
MOBJ-Qnorm 39.35 39.53 3.17 6.00
MOBJ-Qref 24.92 25.58 1.35 1.15

vehicle34 GS 1.53 0.00 0.20 0.24
MOBJ-Qnorm 1.63 2.38 0.25 0.47
MOBJ-Qref 1.49 0.00 0.37 0.48

credit GS 13.63 13.85 0.01 0.01
MOBJ-Qnorm 13.95 14.50 0.34 0.32
MOBJ-Qref 13.63 13.85 0.01 0.01

cancer GS 3.62 3.59 0.31 0.57
MOBJ-Qnorm 3.75 4.29 0.26 0.28
MOBJ-Qref 3.58 2.88 0.32 0.43

pima GS 23.40 23.38 0.71 0.78
MOBJ-Qnorm 23.59 23.38 0.35 0.41
MOBJ-Qref 23.35 23.38 0.69 0.78
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Table 5.4: Scores of GS, MOBJ-Qnorm and MOBJ-Qref with the polynomial kernel on
benchmark data-sets.

Data-set Method Performance Stability
mean median std. iqr.

iris3 GS 4.67 6.67 0.77 1.33
MOBJ-Qnorm 4.40 6.67 0.84 0.67
MOBJ-Qref 3.80 0.00 0.45 0.67

wine2 GS 2.52 0.00 0.84 1.08
MOBJ-Qnorm 3.93 2.78 1.36 1.70
MOBJ-Qref 2.52 0.00 0.84 1.08

sonar GS 20.97 20.00 2.21 4.26
MOBJ-Qnorm 21.09 20.00 1.50 2.40
MOBJ-Qref 18.35 19.05 1.37 2.00

heart GS 17.04 14.82 0.86 0.74
MOBJ-Qnorm 23.89 22.22 1.90 2.59
MOBJ-Qref 16.56 14.82 0.55 0.74

liver GS 30.61 31.43 1.11 0.92
MOBJ-Qnorm 31.86 31.89 1.77 2.67
MOBJ-Qref 29.92 29.41 1.15 2.08

iono GS 8.29 8.57 0.75 0.89
MOBJ-Qnorm 12.79 11.43 0.81 1.17
MOBJ-Qref 7.84 7.02 0.43 0.83

vehicle12 GS 27.14 27.91 1.10 1.43
MOBJ-Qnorm 33.08 32.56 1.00 1.64
MOBJ-Qref 26.88 26.74 1.24 0.94

vehicle34 GS 1.61 0.00 0.37 0.47
MOBJ-Qnorm 3.26 2.44 0.81 1.20
MOBJ-Qref 1.39 0.00 0.29 0.48

credit GS 13.66 13.85 0.10 0.01
MOBJ-Qnorm 26.68 26.15 1.46 1.97
MOBJ-Qref 13.66 13.85 0.10 0.01

cancer GS 3.11 2.86 0.12 0.14
MOBJ-Qnorm 3.39 2.86 0.21 0.29
MOBJ-Qref 3.36 2.86 0.12 0.15

pima GS 23.05 23.38 0.55 0.62
MOBJ-Qnorm 25.62 25.97 1.24 0.39
MOBJ-Qref 23.02 22.08 0.64 0.67
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is distributed according to the F-distribution with l− 1 and (l− 1)(T − 1) degrees of

freedom, where

χ2
F =

12T

l(l + 1)

(∑
j

R2
j −

l(l + 1)2

4

)
.

In the current experiment T = 11 and l = 3, hence 2 and 20 are, respectively, the

nominator and denominator degrees of freedom. According to the table of critical

FF distribution, the null-hypothesis is rejected at 95% confidence level (i.e., rank

differences are significant) when FF > 3.493.

The average ranks and their corresponding statistics χ2
F and FF are shown in

Tables 5.5 and 5.6 for all types of scores. The best average ranks are marked bold

and the significant cases of FF > 3.493 are underlined.

Table 5.5: Friedman test of the algorithms with the RBF kernel

Algorithm Performance ranks Stability ranks
mean median std. iqr.

GS 1.909 1.818 1.864 2.045
MOBJ-Qnorm 2.682 2.545 2.000 2.000
MOBJ-Qref 1.409 1.636 2.136 1.955
χ2
F 9.045 5.091 0.409 5.091
FF 6.982 3.011 0.189 0.021

Table 5.6: Friedman test of the algorithms with the polynomial kernel

Algorithm Performance ranks Stability ranks
mean median std. iqr.

GS 1.909 1.909 1.773 1.727
MOBJ-Qnorm 2.909 2.818 2.727 2.545
MOBJ-Qref 1.182 1.273 1.500 1.727
χ2 16.545 13.273 9.136 13.273
FF 30.333 15.208 7.102 2.872

As seen, the average ranks corresponding to the mean performance score are

detected significantly different for both the kernel cases. Also, the ranks associated

with median performance and std. stability scores are significantly different in the

experiments with the polynomial kernel.

Next, as suggested in [Demšar, 2006], the one-against-one comparison of particular

algorithms can be done by means of the post-hoc Nemenyi test, namely, if the average
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ranks of two classifiers differ by at least the critical value

CT = q

√
l(l + 1)

6T
≈ 0.99991,

the difference is significant with 95% confidence, where the constant 7 q = 2.343

corresponds to l = 3. Consequently, the differences of the average ranks in Ta-

bles 5.5and 5.6, combined together, lead to the following of conclusions:

• The performance of the MOBJ-Qref is significantly higher than MOBJ-Qnorm,

but not significantly higher than that of GS;

• With the Gaussian RBF kernel, both the MOBJ-Qref and MOBJ-Qnorm are

equivalently stable;

• With the polynomial kernel, MOBJ-Qref is more stable than MOBJ-Qnorm and

the performance of MOBJ-Qnorm is significantly lower than that of GS;

5.6.5 Discussion

The statistical tests of the experiment results have confirmed theoretical expecta-

tions about the capabilities of the benchmarked MOBJ algorithms endowed with the

proposed complexity measures. In particular, there were no significant differences

in classification accuracy and stability between the MOBJ algorithm endowed with

Qref and the conventional grid search, whereas the search area of the former (only

nondominated elements of the grid) is significantly smaller than the complete grid.

This in turn confirms a redundancy of the traditional grid search procedures.

As shown by the visualizations in Appendinx C, the Pareto-optimal pathes of

the MOBJ-Qref algorithm tend to cross the regions of small CV error, passing close

to the grid search solution. As the consequence, the MOBJ-Qref solutions likely

coincide with the GS solutions, especially when the CV error surface is regular in the

neighborhood of its minima (see e.g., the bottom-right plots in Figures C.4,C.8,C.13,

7The table of constants for calculation of critical values of Nemenyi test is available in [Demšar,
2006].
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and C.14). However, when CV surfaces are irregular (e.g., Figures C.21,C.9) or their

minima are weak (e.g., Figures C.17, and C.15), the GS solutions become sensitive

to permutations of the data-sets and may be biased. In contrast, the Pareto-optimal

pathes are irrelevant to the values model selection criterion, suffering less from its

biasedness due to a smaller area of search, limited only to nondominated hypotheses.

This explains a slightly better performance of MOBJ-Qref in comparison to GS, which

significance, unfortunately, could not be detected from the available amount of data-

sets.

Recall that the complexity measure Qnorm[f ] is a squared RKHS norm ∥f∥2k in

case of the Gaussian RBF kernel. Since ∥f∥2k is minimized by the SVM algorithm,

its solutions are Pareto-optimal with respect to the empirical risk and complexity

measureQnorm onHk. In contrast, the Pareto-optimality of SVM solutions onHk does

not hold for the complexity measure Qref, as discussed above in section 5.5.2. Despite

of that, the results of MOBJ-Qnorm demonstrated lower efficiency than MOBJ-Qref,

in most cases. Moreover, with the polynomial kernel, whose feature space topology

significantly changes with p, MOBJ-Qnorm demonstrated even worse performance and

lower stability in comparison to MOBJ-Qref. This fact whiteness the drawbacks of

the feature normalization approach, as predicted in 5.3.

The basic MOBJ algorithm proposed in 5.5.1 was sufficient to demonstrate the re-

liability of the developed multi-objective approach. However, such kind of grid-based

scheme is computationally inefficient for most practical applications, especially when

dimensionalities of grids (number of hyperparameters) are large. In spite of that, the

multi-objective grid search implemented by MOBJ-Qref and MOBJ-Qnorm requires

less computational time by approximately the factor of T , in comparison to the tra-

ditional grid search with the T -fold CV, since the number of nondominated elements

is small. In particular, the experiments show that the number of nondominated grid

elements is O(a), while the number of grid elements is O(ah), where h is the number

of hyperparameters. Hence, the traditional grid search with the T -fold CV requires

O(T · ah) runs of the kernel algorithm, whereas the MOBJ algorithm is expected to

spend only O(ah) +O(T · a) = O(ah), which is T times faster than O(T · ah).
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5.7 Summary

Both the feature normalization and feature equalization techniques are aimed to

match different feature spaces. Whereas the former lies in a correction feature vectors’

lengths by scaling with a certain metric, the latter is related to the underlying con-

cept of reference spaces. In general, the application of feature equalization requires

derivation of auxiliary kernels, whose closed forms may not exist for arbitrary settings.

However, a special study in Appendix A provides several examples of derivation and

demonstrates the existence of auxiliary maps and kernels.

The analysis of the reference space paradigm (see 5.3.2) revealed that the com-

plexity measure of hypotheses in the reference space can not be expressed within

the traditional concept of geometrical margin and, thus, its further extension has

been required. The extension was therefore proposed on the basis of formalization

of the widely-known robustness interpretation of the margin maximization principle.

Specifically, the introduction of the leave-one-out stability criterion of separation hy-

perplanes, in combination with the developed feature equalization technique, led to

a development of the so-called reference complexity measure.

The application of the proposed reference complexity measure in comparison with

the normalized complexity measure involves significantly more efforts at both the com-

putation (requires computation of the diagonal elements of the Gram matrix inverse)

and optimization (minimization the regularization functional with the non-standard

stabilizing term) sides. Nevertheless, its theoretical advantages were experimentally

confirmed by the superior generalization performance and stability of the correspond-

ing MOBJ algorithm. Also, the MOBJ algorithm employing, the reference complexity

measure confirmed the redundancy of the exhaustive grid search under the same con-

ditions, theoretically predicted from the SRM point view. This in turn demonstrates

the reliability of the proposed multi-objective extension of the concept of margin

maximization.



Chapter 6

Conclusions

Current research contributes to MOML with a novel multi-objective approach to su-

pervised learning, incorporating advantages of the traditional (single-objective) learn-

ing concepts and multi-objective optimization. The proposed framework is built on

the SRM principle, viewed as a generally non-convex bi-objective problem and ad-

dressed by decomposition into its convex elements in a certain deterministic algorithm.

In contrast to evolutionary algorithms, commonly employed in MOML, the proposed

algorithm efficiently approximates the Pareto set providing arbitrary precision within

a guaranteed time, taking full advantage of convex programming. Also, unlike the

common hyperparameter selection procedures, the proposed solution scheme extends

the known learning machines to larger hypothesis spaces (e.g., associated with multi-

ple kernels) in the SRM-consistent manner, reduces uncertainty and thereby improves

generalization performance. The complexity measure, as a key element of the study,

is treated from several perspectives, each one of which led to an independent branch

of results.

The concept of smoothness applied to the hypothesis space of Gaussian RBF net-

works led to a development of the efficient multi-objective learning algorithm for ren-

dering a wide spectrum of Pareto-optimal hypothesis of diverse structures. Moreover,

the information criteria adopted for selection of Pareto-optimal models in combination

with the proposed algorithm show high generalization performance. Although the se-

ries of experiments have already demonstrated the algorithm as a self-contained and

ready-to-use tool, its further extensions and improvements are still possible. Among
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them is the adaptation of the proposed complexity measure to other classes of radial-

basis functions, inducing new modifications of the proposed algorithm. Also, sig-

nificant improvements of the computational performance on long data-sets may be

achieved with the adaptation of the algorithm to approximate large-scale LASSO

procedures.

The indirect extension of the concept of margin maximization to the multi-kernel

context required development of a number of additional elements. Among them are

the so-called matching techniques of feature space normalization and equalization and

the leave-one-out stability criterion of separation hyperplanes, playing a role of the

extended measure of geometrical margin. Being combined together, the technique

of equalization and stability criterion result in a new complexity measure, which ex-

tensive experimental analysis has confirmed its reliability as well as the theoretical

advantages of the proposed multi-objective framework in whole. The proposed com-

plexity measure is ready to be applied for arbitrary hypothesis spaces induced with

positive definite kernels and, within the scope of developed framework, opens new

perspectives for the construction of multi-objective kernel machines. Specifically, in

a similar scheme of the above multi-objective algorithm for RBF networks, a new

efficient multi-objective algorithm for SV machines may be elaborated by means of

construction of regularization pathes (e.g., using the recent finding [Ong, Shao, and

Yang, 2010]), in a similar manner to that of the MOBJ algorithm for RBF networks.

A special attention deserves the theoretical concept underlying the technique of

feature equalization. The provided study demonstrates the existence and possibility

of construction of a single Hilbert space, isomorphic to the union of arbitrary RKHSs,

while maintaining the ability of functions to be evaluated via the dot product. This

finding allows one to view a wider class of nonlinear functions from the new perspective

of linear spaces, making a firm basis for the analysis of multi-kernel models and

algorithms in a generalized context.

The provided study offers new insights in the MOML field by advanced concepts,

methods, and algorithms ready for practical applications and theoretical evolution

towards more sophisticated learning machines.



Appendix A

Auxiliary kernels

Although reference complexity measure developed in (5.33) was shown to be irrelevant

to the auxiliary map, the idea of equivalent representation of hypotheses in a common

feature space itself is fruitful from the theocratical point of view and may find its

further applications. Aiming to demonstrate the existence of such representation, a

framework for derivation of auxiliary maps and their associated kernels is provided

in this chapter, along with several examples of derivation.

A.1 Basic considerations

Recall the abstract definitions of the reference Φ◦ and auxiliary Φ∗
k maps given

in 5.3.1. In order to show their existence and find their associated kernels in

computation-friendly closed forms, one first has to specify a particular reference space

H◦.

Obviously, H◦ must embed the RKHS Hk◦ of k
◦. However, H◦ can not be equal to

Hk◦ . Otherwise, only the trivial case of k∗ = k◦ = k would be supported with such a

choice due to the known uniqueness of RKHSs. In fact, the isomorphic representations

of feature spaces induced by k∗ and k◦ are simultaneously possible in ℓ2 via Mercer’s

theorem.

Recall the definition (2.33) of the Mercer’s feature map

Φ(x) :=
(√

λjψj(x)
)
j
,
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associated with the kernel k, where (ψj)j is the orthonormal eigenbasis of the integral

operator (2.32) and (λj) ∈ ℓ1 is the non-negative sequence of the corresponding

eigenvalues (see 2.4.2 for details).

Let Φ : X → ℓ2 and Φ◦ : X → ℓ2 be the Mercer’s maps associated with k and

k◦, respectively. Assuming an existence of the common eigenbasis (ψj)j for both the

kernels, the identity (5.12) can be rewritten as

k(x, x′) =

⟨(√
λjψj(x)

)
j
,
(√

λjψj(x
′)
)
j

⟩
=

⟨(√
λ◦jψj(x)

)
j
,
(√

λ∗jψj(x
′)
)
j

⟩
,

(A.1)

where (λj)j,
(
λ◦j
)
j
, and

(
λ∗j
)
j
are the eigenvalue sequences of the kernels k, k◦, and

k∗, respectively. Then, it is straightforward to show that the auxiliary map

Φ∗
k(x) =

(√
λ∗jψj(x)

)
j
,

satisfying (5.12) is given by the eigenvalue sequence

(
λ∗j
)
j
=

(
λ2j
λ◦j

)
j

∈ ℓ1. (A.2)

Note that eigenvalue sequences are non-negative. Thus, assuming their decreasing

order, one can immediately conclude that
(
λ◦j
)
j
must decay slower than

(
λ2j
)
j
to

ensure the existence of (A.2) in ℓ1. In other words, the feature space induced by k◦

must be sufficiently “rich” to handle the feature space induced by k.

The equation (A.2) establishes the relation between k and its associated auxiliary

kernel k∗ for the particular reference kernel k◦ in terms of their eigenvalues. Hence,

one is already able to calculate the auxiliary feature map Φ∗
k(x) directly from (A.2),

though its evaluation is useless, until a closed form of the auxiliary kernel

k∗(x, x′) = ⟨Φ∗
k(x),Φ

∗
k(x

′)⟩

exists and found. Aiming to derive the closed form of k∗, it is proposed to seek for

k∗ within the particular family of kernels K by assuming that:
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• K is homogenous, i.e., all elements of K can be viewed within the same eigen-

basis;

• k◦ ∈ K and k ∈ K;

• all eigenvalues of any element of K can be analytically drawn.

A.2 Convolution kernels

Consider a positive definite kernel k(x, x′) = κ(x − x′) such that κ : L2(Rn → R).
Such a translationally invariant kernel is also known as a convolution kernel, since

the integral operator (2.32) associated with k is the convolution operator

(Tkf)(·) = (κ ∗ f)(·). (A.3)

Following the idea of derivation of the closed form of auxiliary kernel, one has to find

the eigenspectrum of (A.3) first.

As known, the operator Tk must be compact in order to have a countable set

of eigenvalues (discrete spectrum). However, many commonly-used convolution ker-

nels have unbounded support, resulting in non-compact Tk (e.g., Gaussian RBF) and

therefore its continuous spectrum. Even though it has been recently shown [Sun,

2005] that, under certain assumptions, Mercer’s theorem holds on non-compact do-

mains, one is interested in discrete eigenspectrum of (A.3) for making use of (A.2).

Fortunately, the technique of kernel approximation on a periodic domain developed

in [Williamson, Smola, and Scholkopf, 2001] can be used for finding a discrete eigen-

spectrum of kernels with an unbounded support. In particular, the technique relies

on the τ−periodic extension

kτ (x, x
′) := κτ (x− x′) =

∑
z∈Z

κ(x− x′ + τz) (A.4)

of the convolution kernel k. Assuming the existence of kτ for a given k, it can be

shown that kτ approximates k arbitrary well on the hyperbox Xτ = [− τ
2
, τ
2
]n. In other
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words, for any ϵ > 0 there exist such sufficiently large τ , that

sup
(x,x′)∈X 2

τ

|k(x, x′)− kτ (x, x
′)| ≤ ϵ

holds.

According to [Williamson, Smola, and Scholkopf, 2001], the integral operator Tkτ

is compact on Xτ . Hence, its eigenspectrum is discrete and can be immediately found

from the Fourier series expansion of the eigenvalue equation

(kτ ∗ ψj)(x) = λjψj(x)

, namely, introducing the Fourier transform of κ on Rn as

F [κ](ω) := (2π)−
n
2

∫
Rn

e−i·⟨ω,x⟩κ(x)∂x,

one can show that the j-th eigenvalue

λj = (2π)
n
2F [κ]

(
2π

τ
j

)
, j ∈ Zn (A.5)

corresponds to both the eigenfunctions

ψ+
j (x) = τ−n cos

(
2π

τ
⟨j, x⟩

)
and

ψ−
j (x) = τ−n sin

(
2π

τ
⟨j, x⟩

)
,

whose L2 norms are unit on Xτ . However, since the common eigenbasis is assumed

for all kernels, the eigenfunctions themselves are irrelevant.

Now, is all ready for derivation of the auxiliary kernel. Consider the family of

convolution kernels

Kconv :=

{
kβ,σ

∣∣∣kβ,σ(x, x′) = βκ

(
x− x′

σ

)
, β, σ ∈ R+

}
,
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induced by scalings of κ and its argument. Here, β determines a simple scaling factor

applied to a kernel, whereas σ determines a scaling of the input domain or, in other

words, is the width of a kernel.

Let kβ◦,σ◦ ∈ Kconv be the reference kernel, then the auxiliary kernel corresponding

to the arbitrary kernel kβ,σ ∈ Kconv is also expected in Kconv. In other words, there

must exist such kernel parameters β∗ > 0 and σ∗ > 0 that the eigenvalues associated

with the kernels k∗ = kβ∗,σ∗ , kβ,σ, and kβ◦,σ◦ satisfy (A.2).

Assuming an existence of the corresponding τ−periodic extensions (A.4) for all

kβ,σ ∈ K, it is possible to rewrite the eigenvalues (A.5) of elements of Kconv in terms

of the kernel parameters β and σ, and the Fourier transform F [κ] as

λj = (2π)
n
2 βσnF [κ]

(
2πσ

τ
j

)
, j ∈ Zn. (A.6)

Then, the combination of (A.6) with the eigenvalue equation (A.2) leads to the func-

tional equation with respect to F [κ]:

β∗σ∗nF [κ](σ∗ω) =
β2σ2nF 2[κ](σω)

β◦σ◦nF [κ](σ◦ω)
. (A.7)

Note that (A.7) is independent on τ , hence the equation (A.7) applies directly for the

elements of K as τ → ∞1.

Therefore, the auxiliary kernel k∗ exists in K and can be found, if the Fourier

transform of κ is a root of (A.7) with the parameters β∗ and σ∗. Fortunately, one can

immediately show that the exponential functions are roots of (A.7). For instance, let

κ(x) = exp

(
−1

2
∥x∥2

)
then Kconv be a family of conventional Gaussian RBF kernels. Combination of the

Fourier transform

F [κ](ω) = exp

(
−1

2
∥ω∥2

)
1Also, it is possible to show that the same equation (A.7) could be found without τ -periodic

approximation, if the continuous form of Mercer’s theorem existed.
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with (A.7) yields the solution

β∗ =
β2

β◦

(
σ2

σ◦
√
2σ2 − σ◦

)n

and

σ∗ =
√

2σ2 − σ◦2.

As seen the auxiliary kernel exists when σ > σ◦

2
in case of the Gaussian RBF kernels.

This fact is also supported by the intuitive conclusion that a “capacity” of the ref-

erence feature space associated with a sharp kernel (large bandwidth or small σ◦) is

sufficient to handle smoother kernels (narrow bandwidth or large σ).

Assume that β = 1 and consider a special case of the reference kernel with in-

finitesimal width σ◦ → 0 and β◦ =
(
σ◦
√
2π
)−n

. In this case, the reference kernel is a

Dirac delta function

k◦(x, x′) = δ(x− x′)

and the auxiliary kernel corresponding to the Gaussian kernel

k(x, x′) = exp

(
−
∥xi − x′j∥2

2σ2

)
is

k∗(x, x′) = (σ
√
π)n exp

(
−
∥xi − x′j∥2

4σ2

)
. (A.8)

Astonishingly, the reference feature vectors associated with the such k◦ are orthogonal

and lie along the axis in ℓ2. Also, the kernel k◦ is absolutely sharp, representing the

“richest” feature space in which the learning capacity of any hypothesis is infinitely

large.

A.3 Polynomial kernels

The above technique directly involves Mercer’s theorem for derivation of feature maps,

however this is not a unique way of representation kernel’s feature map by series (see

e.g., [Minh, Niyogi, and Yao, 2006]). For example, feature maps associated with the

polynomial kernels (which are not only non-compact, but are also unbounded) are
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convenient to be represented via the binomial expansion instead of derivation of the

associated eigenspectrum. Hence, the proposed approach of finding of auxiliary kernel

needs in a special adaptation to cover such a case.

Let us consider the family of generalized polynomial kernels

Kpoly :=

{
kλ : X 2 → R | kλ(x, x′) =

p∑
j=0

λj ⟨x, x′⟩j ,

}
, (A.9)

on X = Rn, where λ = (λj)
p
j=0 is the sequence non-negative coefficients, p ∈ N.

Indeed, the term ⟨x, x′⟩j is the polynomial kernel itself, whose features map consists

of all j-th order monomials (see e.g., [Hofmann, Schöolkopf, and Smola, 2008], ch.

2.2.4) . Moreover, it can be shown that

⟨x, x′⟩j = ⟨Pj(x), Pj(x
′)⟩

where

Pj(x) = (ψj,1(x), ψj,2(x), . . . , ψj,nj(x))T

is the nj × 1-vector of all j-th order products of components of x. Therefore, almost

any kλ ̸= 0 is a positive definite kernel whose feature map can be written as the finite

sequence

Φλ(x) =

((√
λjψj,i(x)

)nj

i=1

)p

j=0

. (A.10)

Unlike the general form (A.9), the closed form

kγ,c,p(x, x
′) = (γ ⟨x, x′⟩+ c)p (A.11)

of a polynomial kernel is common on practice, where γ > 0, c ≥ 0, and p ∈ N are the

kernel parameters. Using the binomial expansion, it can be shown that kγ,c,p ∈ Kpoly

is given by the coefficients

λj =

(
p

j

)
γjcp−j, j = 0 . . . p. (A.12)

Even though Φλ is not a Mercer’s map, the relation (A.2) still can be used with

a slight abuse of notation. Specifically, given the reference kernel kλ◦ ∈ K and the
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arbitrary kernel kλ ∈ K, elements of the coefficient sequence λ∗ corresponding to the

auxiliary kernel kλ∗ ∈ K can be calculated using the algebraical form of (A.2). It

is straightforward to show that the resulting sequence of coefficients λ∗ satisfies the

identity (A.1) (with the monomials ψj,i in place of eigenfunctions) and therefore Φλ∗

is the auxiliary map satisfying (5.12).

Hence, the combination of (A.12) with (A.2) yields the elements

λ∗j =

(
p
j

)2
γ2jc2p−2j

λ◦j

of the coefficient sequence of the auxiliary kernel kλ∗ corresponding to kγ,c,p with

respect to the reference kernel kλ◦ . Unfortunately, it is due to binomial coefficients

the auxiliary kernel kλ∗ does not admit the closed form (A.11), even when the reference

kλ◦ is also given by (A.11). However, since p is finite and usually small, it is enough

to assume the reference kernel kλ◦ with the sufficiently large (p◦ ≥ p) sequence of unit

coefficients
(
λ◦j
)p◦
j=0

= 1, giving rise to the computable form of auxiliary kernel:

kλ∗(x, x′) =

p∑
j=0

(
p

j

)2

γ2jc2(p−j) ⟨x, x′⟩j . (A.13)

Despite of the lack of elegance and requirement of numerical evaluations when

compared to (A.8), the auxiliary kernel (A.13) demonstrates the possibility of an

extension of the developed approach to different feature spaces expressed not via the

Mercer’s theorem.

A.4 Universal reference map

The idea of using a Dirac delta function as the choice of the reference kernel can be

extended to arbitrary classes of Mercer’s kernels. In particular, given the Mercer’s

feature map

Φ(x) :=
(√

λjψj(x)
)
j
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with an arbitrary orthonormal eigenbasis (ψj(x))j, it is straightforward to show that

a reference kernel associated with the sequence of unit eigenvalues is

k◦(x, x′) =
∑
j

ψj(x)ψj(x
′) = δ(x− x′) =

{
∞, x = x′

0, otherwise

Next, assuming that eigenvalues of the reference map are unit, the relation (A.2)

provides the auxiliary map

Φ∗
k(x) := (λjψj(x))j ,

whose associated kernel k∗ exists, iff the sequence
(
λ2j
)
j
of squared eigenvalues is

in ℓ1. Since (λj)j ∈ ℓ1 holds by definition, the series
∑

j λ
2
j converge and therefore(

λ2j
)
j
∈ ℓ1 holds as well.

Consequently, for an arbitrary Mercer’s kernel k there exist a corresponding auxil-

iary kernel k∗, associated with the reference space of a Dirac delta function. Therefore,

such a choice of reference space is universal.

A.5 Summary

The developed technique demonstrates an existence of auxiliary maps and possibility

of their analysis and application via the kernels in closed forms. Further development

of the approach may be evolve into new learning techniques for multiple kernels and

the construction of corresponding learning algorithms within the concept of reference

feature spaces.



Appendix B

Proofs of some lemmas

B.1 Matrix inversion lemma: particular case

Lemma B.1.1 Let symmetric (N ×N)-matrix X given with the block form

X =

[
A b

bT c

]
,

where A is the (N −1)× (N −1) invertible matrix, b is the (N −1)×1 column vector

and c is a scalar. Then the inverse X−1 exists and admits the form

X−1 =

[
A−1 + 1

r
A−1bbTA−1 −1

r
A−1b

−1
r
bTA−1 1

r

]
,

if the Schur complement r = c− bTA−1b of the block A is non-zero.

Proof Let us write the lower-diagonal-upper factorization of X

X =

[
A b

bT c

]
= LDU =

[
I 0

bTA−1 1

][
A 0

0 r

][
I A−1b

0 1

]
,
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from where the inverse of X can be found as

X−1 = U−1D−1L−1 =

[
I −A−1b

0 1

][
A−1 0

0 1
r

][
I 0

−bTA−1 1

]

=

[
A−1 + 1

r
A−1bbTA−1 −1

r
A−1b

−1
r
bTA−1 1

r

]
. �

B.2 Proof of lemma 5.4.1 (Diagonal elements of

the Gram matrix inverse)

Proof Assume that X is the n × N -matrix, where 1 ≤ n ≤ ∞ and introduce the

right-hand circular column shift operator

S :=

[
0 1

IN−1 0

]
,

where IN−1 is the (N − 1) × (N − 1) identity matrix. It is straightforward to show

SST = STS = I and thus S−1 = ST . One can verify, that the operator S shifts the

columns of the operand matrix to the left as follows:

XS = (x2, . . . , xN , x1).

Consequently, one can show that

XSi = (xi+1, . . . , xN , x1, x2, . . . , xi) (B.1)

where Si = S · · ·S is the i-times product and SN = S0 = I is the identity. Also, the

property (Si)−1 = SN−i is straightforward to confirm.

Since the squared length xTi P
(i)xi of the orthogonal projection of xi into the span

of the rest N − 1 is irrelevant to the column order of X(i), let us denote X(i) to be

the corresponding block of XSi. Then, one can rewrite (B.1) in the block form

XSi =
[
X(i) xi

]
. (B.2)
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Now, consider the shifted Gram matrix

G′ = (XSi)TXSi = SN−iXTXSi = SN−iGSi

and its inverse

(G′)−1 = ((XSi)TXSi)−1 = SN−i(XTX)−1Si = SN−iG−1Si.

One can see that G′ can be obtained by the circular diagonal shift of G (i.e., column-

wise and row-wise) and the same conclusion applies to their inverses. Hence, one can

show that

diag
(
(G′)−1

)
= diag

(
SN−iG−1Si

)
= diag

(
G−1

)
Si = (di+1, . . . , dN , d1, d2, . . . , di).

In other words, the i-th diagonal element di of G
−1 is the last diagonal element of

(G′)−1.

Next, using the particular case of the matrix inversion lemma B.1.1 one can show

that the last diagonal element of (G′)−1 is the inverse of the Schur complement

r = xTi xi − xTi X
(i)(X(i)TX(i))−1X(i)Txi = xTi xi − xTi P

(i)xi

of the the block form

G′ = ((XSi)TXSi) =

[
X(i)TX(i) X(i)Txi

xTi X
(i) xTi xi

]
.

Hence, di =
1
r
. �



Appendix C

Visualizations of the experiment

results from Chapter 5

In this appendix, the empirical risk, complexity measures, and model selection cri-

terion are visualized for a single benchmark case of each data-set of the experiment

described in section 5.6.

Each data-set is represented here by four intensity plots in Figures C.1–C.22,

displaying the values of complexity measures Qnorm (top-left) and Qref (top-right),

the values of the empirical risk Remp (bottom-left), and the values of the 5-fold CV

error (bottom-right) for the corresponding elements of hyperparameter grids. In ad-

dition, the grid elements corresponding to nondominated hypotheses generated by

MOBJ-Qnorm and MOBJ-Qref are marked by crosses (×) and dots (·), respectively.
The minima of the 5-fold CV model selection criterion within the nondominated sub-

sets of MOBJ-Qnorm and MOBJ-Qref (which are their corresponding final solutions)

are marked by squares (�) and circles (◦), while the global minima of the 5-fold

CV error (finale solutions of the GS) are marked by “diamonds” (♢). Thereby, the

Pareto-optimal pathes of MOBJ-Qnorm and MOBJ-Qref are visualized in spaces of

hyperparameters.

Note that the information from the model selection criterion (bottom-right plot)

remains “invisible” to MOBJ-Qnorm and MOBJ-Qref, until the corresponding non-

dominated sets are found. For a detailed description of the experiment settings and

analysis of the results, refer to section 5.6.
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Figure C.1: Visualizations of the experiment results from Chapter 5 for iris3 data-set
and the Gaussian RBF kernel.
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Figure C.2: Visualizations of the experiment results from Chapter 5 for iris3 data-set
and the polynomial kernel.
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Figure C.3: Visualizations of the experiment results from Chapter 5 for wine2 data-
set and the Gaussian RBF kernel.
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Figure C.4: Visualizations of the experiment results from Chapter 5 for wine2 data-
set and the polynomial kernel.
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Figure C.5: Visualizations of the experiment results from Chapter 5 for sonar data-set
and the Gaussian RBF kernel.
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Figure C.6: Visualizations of the experiment results from Chapter 5 for sonar data-set
and the polynomial kernel.
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Figure C.7: Visualizations of the experiment results from Chapter 5 for heart data-set
and the Gaussian RBF kernel.
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Figure C.8: Visualizations of the experiment results from Chapter 5 for heart data-set
and the polynomial kernel.
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Figure C.9: Visualizations of the experiment results from Chapter 5 for liver data-set
and the Gaussian RBF kernel.



C Visualizations of the experiment results from Chapter 5 144

log
2
 C’

p
log

2
 Q

norm

 

 

−5 0 5 10
0

2

4

6

8

10

−35

−30

−25

−20

−15

−10

−5

0

5

log
2
 C’

log
2
 Q

ref

 

 

−5 0 5 10
−35

−30

−25

−20

−15

−10

−5

0

log
2
 C’

p

R
emp

 (training error)

 

 

−5 0 5 10
0

2

4

6

8

10

20

30

40

50

60

70

80

log
2
 C’

5−fold CV error

 

 

−5 0 5 10
26

28

30

32

34

36

38

40

Figure C.10: Visualizations of the experiment results from Chapter 5 for liver data-set
and the polynomial kernel.
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Figure C.11: Visualizations of the experiment results from Chapter 5 for iono data-set
and the Gaussian RBF kernel.
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Figure C.12: Visualizations of the experiment results from Chapter 5 for iono data-set
and the polynomial kernel.
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Figure C.13: Visualizations of the experiment results from Chapter 5 for vehicle12
data-set and the Gaussian RBF kernel.
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Figure C.14: Visualizations of the experiment results from Chapter 5 for vehicle12
data-set and the polynomial kernel.
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Figure C.15: Visualizations of the experiment results from Chapter 5 for vehicle34
data-set and the Gaussian RBF kernel.



C Visualizations of the experiment results from Chapter 5 150

log
2
 C’

p
log

2
 Q

norm

 

 

−10 −5 0 5 10
0

2

4

6

8

10

−35

−30

−25

−20

−15

−10

−5

0

5

log
2
 C’

log
2
 Q

ref

 

 

−10 −5 0 5 10
−35

−30

−25

−20

−15

−10

−5

0

log
2
 C’

p

R
emp

 (training error)

 

 

−10 −5 0 5 10
0

2

4

6

8

10

10

20

30

40

50

60

70

80

90

log
2
 C’

5−fold CV error

 

 

−10 −5 0 5 10

10

20

30

40

50

60

70

80

Figure C.16: Visualizations of the experiment results from Chapter 5 for vehicle34
data-set and the polynomial kernel.
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Figure C.17: Visualizations of the experiment results from Chapter 5 for credit data-
set and the Gaussian RBF kernel.
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Figure C.18: Visualizations of the experiment results from Chapter 5 for credit data-
set and the polynomial kernel.
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Figure C.19: Visualizations of the experiment results from Chapter 5 for cancer data-
set and the Gaussian RBF kernel.
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Figure C.20: Visualizations of the experiment results from Chapter 5 for cancer data-
set and the polynomial kernel.
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Figure C.21: Visualizations of the experiment results from Chapter 5 for pima data-
set and the Gaussian RBF kernel.
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Figure C.22: Visualizations of the experiment results from Chapter 5 for pima data-
set and the polynomial kernel.
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V. Pareto. Manual d’économie politique (in French). F. Rouge, Lausanne, 1896.

J. Park and I. W. Sandberg. Universal approximation using radial-basis-function network. In Neural
Computation, volume 3, pages 246–257, 1991.



Bibliography 162

M. Y. Park and T. Hastie. L1-regularization path algorithm for generalized linear models. J. Royal
Statistical Society, 69(1):659–677, 2007.

E. Parzen. On the estimation of a probability density function and the mode. Annals of Mathematical
Statistics, (33):1065–1076, 1962.

K. Pearson. On lines and planes of closest fit to systems of points in space. Philosophical Magazine,
6(2):559–572, 1901.

T. Poggio and F. Girosi. Networks for approximation and learning. In Proc. of the IEEE, volume 78,
pages 1481–1497, 1990.

M. J. D. Powell. Radial basis functions for multivariable interpolation: A review. In IMA Conference
on Algorithms for the Approximation of Functions and Data, pages 143–167, 1985.

L. Prechelt. Proben1: A set of neural network benchmark problems and benchmarking rules. Tech-
nical Report 21/94, 1994.

J. R. Quinlan. Induction of decision trees. In Machine Learning, pages 81–106, 1986.

B. Scholkopf. Advances in Kernel Methods: Support Vector Learning. MIT Press, 1999.

B. Scholkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. MIT Press, Cambridge, MA, USA, 2001.

B. Schölkopf, A. J. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue
problem. Neural Computation, 10(5):1299–1319, 1998.

B. Scholkopf, R. Herbrich, A. J. Smola, and R. C. Williamson. A generalized representer theorem.
technical report 2000-81, neurocolt, 2000. published in proceedings colt’2001. Technical report,
2001.

G. Schwarz. Estimating the dimension of a model. Ann. Statistics, 6:461–464, 1978.

C. E. Shannon. Communication in the presence of noise. Proceedings of the IRE, 37(1):10–21, 1949.

A. J. Shepherd. Second-Order Methods for Neural Networks. Springer-Verlag, London, 1997.

E. Snelson and Z. Ghahramani. Local and global sparse gaussian process approximations. Journal
of Machine Learning Research, (2):524–531, 2007.

H. Sun. Mercer theorem for rkhs on noncompact sets. J. Complex., 21(3):337–349, 2005. ISSN
0885-064X. doi: http://dx.doi.org/10.1016/j.jco.2004.09.002.

K. Tan, T. Lee, and E. Khor. Evolutionary algorithms for multi-objective optimization: Performance
assessments and comparisons. Artificial Intelligence Review, 17(4):253–290, 2002.

R. A. Teixeira, A. P. Braga, R. H. C. Takahashi, and R. R. Saldanha. Improving generalization of
MLPs with multi-objetive optimization. Neurocomputing, 35:189–194, 2000.

R. Tibshirani. Regression shrinkage and selection via the lasso. J. Royal Statistical Society, 58(1):
267–288, 1996.

A. N. Tikhonov. On the stability of inverse problems. Dokl. Akad. Nauk SSSR, 39(5):195–198, 1943.



Bibliography 163

A. N. Tikhonov. Solution of incorrectly formulated problems and the regularization method. Soviet.
Math. Dokl., 4:1035–1038, 1963.

V. Vapnik and O. Chapelle. Bounds on error expectation for support vector machines. Neural
Comput., 12(9):2013–2036, 2000. ISSN 0899-7667.

V. Vapnik and A. Y. Chervonenkis. The necessary and sufficient conditions for the consistency of
the method of empirical risk minimization (in russian). Yearbook of the Academy of Sciences of
the USSR on Recognition, Classification and Forecasting, (2):217–249, 1989.

V. N. Vapnik. Estimation of Dependencies Based on Empirical Data. Springer-Verlag, Berlin, 1982.

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, New York, 1995.

V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies of event
to their probabilities. Soviet. Math. Dokl., 9, 1968.

C. S. Wallace and D. M. Boulton. An information measure for classification. Computer Jrnl, 2(11):
185–194, 1968.

L. X. Wang. Fuzzy systems are universal approximators. In Proc. 1-st IEEE Conf. on Fuzzy Systems,
pages 1163–1169, San Diego, 1992.

B. Widrow and S. D. Stearns. Adaptive Signal Processing. Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1985.

R. Williamson, A. Smola, and B. Scholkopf. Generalization performance of regularization networks
and support vector machines via entropy numbers of compact operators. Information Theory,
IEEE Transactions on, 47(6):2516–2532, Sep 2001. ISSN 0018-9448. doi: 10.1109/18.945262.

H. Xu, C. Caramanis, and S. Mannor. Sparse algorithms are not stable: A no-free-lunch theorem. In
Forty-Sixth Annual Allerton Conference on Communication, Control, and Computing (Allerton),
pages 1299–1303, 2008.

L. Xu, A. Krzyzak, and A. Yuille. On radial basis function nets and kernel regression: Statistical
consistency, convergence rates, and receptive field size. Neural Networks, 7(4):609 – 628, 1994.
ISSN 0893-6080.

R. Yager and D. Filev. Generation of fuzzy rules by mountain clustering. Journal of Intelligent &
Fuzzy Systems, 2(3):209 – 219, 1994.

G. G. Yen. Multi-objective evolutionary algorithm for radial basis function neural network design.
In Y. Jin, editor, Multi-Objective Machine Learning, volume 16 of Studies in Computational
Intelligence, pages 221–239. Springer, 2006.

H. Zou, T. Hastie, and R. Tibshirani. On the “degrees of freedom” of the lasso. Ann. of Statistics,
35(5):2173–2192, 2007.


	Resumo estendido
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations and symbols
	Introduction
	Motivation and goals
	Thesis outline

	Theoretical background
	Introducton
	Elements of statistical learning theory
	Problem setting
	Regression as density estimation
	Empirical risk minimization
	Bounds on uniform convergence
	Structural risk minimization

	Radial-basis function networks
	Architecture
	Connection with kernel regression
	Regularization networks
	Generalized regularization networks
	Overview of learning strategies

	Kernel machines
	Kernel trick
	Feature maps
	Regularization in RKHS

	A big picture
	Unified learning framework
	Hyperparameters and model selection
	Validation techniques
	Overview of kernel selection techniques

	Discussion and further motivation

	Multi-objective learning
	Introduction
	Principle of Pareto-optimality
	Basic scalarization techniques
	Overview of approximate methods

	MOBJ: bicriteria supervised learning
	Generalized learning concept
	Complexity measure and priors
	Method of convex decomposition

	Summary

	Multi-objective algorithm for RBF networks
	Smoothness-based complexity measure
	Sobolev spaces and smoothness
	Bounds on smoothness
	Second order curvature of Gaussian RBF

	Pareto set of RBF networks
	Problem setting
	Refinement of the hypothesis space

	Learning algorithm
	Convex subproblem
	Regularization path of the LASSO
	Treating the bias parameter
	MOBJ-RBF algorithm

	Model selection criteria
	Regression
	Classification

	Experiments
	Twin spiral
	Noised sinc regression
	Wisconsin breast cancer
	Abalone data-set
	Discussion

	Summary

	Multi-objective extension of margin maximization
	Introduction
	Why ||f||2 is not a valid complexity measure on arbitrary hypothesis space?

	Feature normalization
	Effective support vectors
	Normalized complexity measure
	Radius/margin interpretation

	Feature equalization
	Reference and auxiliary maps
	A closer look at the reference space
	The concept of margin in a reference space: an extension is needed

	Stability of separation hyperplanes
	Leave-one-out stability criterion
	Stability-based reference complexity measure
	On a practical choice of the reference kernel

	Basic MOBJ implementation
	The MOBJ on a grid
	Adaptation to SVM classifier

	Experiment
	Benchmark setup
	Configurations of the algorithms
	Benchmark results
	Significance tests
	Discussion

	Summary

	Conclusions
	Auxiliary kernels
	Basic considerations
	Convolution kernels
	Polynomial kernels
	Universal reference map
	Summary

	Proofs of some lemmas
	Matrix inversion lemma: particular case
	Proof of lemma 5.4.1 (Diagonal elements of the Gram matrix inverse)

	Visualizations of the experiment results from Chapter 5 
	Bibliography

