DISSERTACAO DE MESTRADO N° 34§

ESTRATEGIAS PARA COMBINACAO DE TECNICAS
DE BOOSTING E SUPPORT VECTOR MACHINES

Thiago Turchetti Maia
DATA DA DEFESA 13.03.2003

Estratégias para Combinacdo de Boosting
e Support Vector Machines

Thiago Turchetti Maia

Dissertacio apresentada ao Programa de Pés-Graduagéo em Engenharia Elétrica da
Universidade Federal de Minas Gerais, como requisito parcial para a obtengéo do

grau de Mestre em Engenharia Elétrica

Universidade Federal de Minas Gerais
Fevereiro 2003
(© Thiago Turchetti Maia, 2003

CESTRATEGIAS PARA COMBINACAO DE
THECNICAS DE BOOSTING E SUPPORT VECTOR
MACHINES"

THIAGO TURCHETTI MAIA

Dissertacio de Mestrado submetida a banca examinadora designada pelo
Colegiado do Programa de P6s—Graduacdo em Engenharia Elétrica da
Universidade Federal de Minas Gerais, como parte dos requisitos necessarios a

obtencdo do grau de Mestre em Engenharia Elétrica.

Aprovada em 13 de mar¢o de 2003.

Por: /

Antonio de Pddua Braga ~ Ph.D.
Prof. DELT/EEUFMG — orientador
André C. P. L. F. Carvalho — Dr.
Prof. ICMC/USP — co-orientador

Carmen Déa Moraes Pataro — Dra.
Profa. DELT/EEUFMG

Eduardo Mézoni Andrade Marcal Mendes - Dr.
Prof. DEE/EEUFMG

Q_\ C::"I:.__ }W'\.V‘;,‘_
) Steli Mingoti — Dra.
Profa. Depto. Estatistica/ICEx/UFMG

Conteudo

Conteido

Lista de Tabelas

Lista de Figuras

1

4

Introducao

1.1 O Problema de Aprendizado Computacional
1.2 Objetivos e Motivaggo e e e e e e e e e e e e
1.3 Contribuigdes Deste Trabathoo
1.4 Organizacdo da Disserta¢do e e

Boosting

Support Vector Machines
3.1 Formulagfo da SVM Utilizada e e
3.2 Sequential Minimal Optimization

Algoritmos Hibridos para Combinagéo de Boosting e SVMs

4.1 Integracdo Simples (SMO-B,) oo v o
4.2 Selegdo de Subconjuntos Modificada (SMO-Bg)
4.3 Eliminacio da Primeira Heuristica de Selecdo (SMO-B.)
4.4 FEliminacdo da Segunda Heuristica de Selegdo (SMO-Bg)

Experimentos e Resultados

5.1 Descricoes de BasesdeDados C e

5.2 Andlises Preliminares L.
5.2.1 Discriminante Linear S
5.2.2 AjustedeParAmetroso

5.3 Resultados Experimentais C e

ii

ii

iv

O U1 L) el

10
10
12

17
17
18
19
20

5.3.1 ResultadosparaSMO-B, 31

5.3.2 Resultados para SMO-Bg 34

5.3.3 ResultadosparaSMO-B. 35

5.3.4 Resultados para SMO-Bs e e e e e e s . 37

5.4 SumariodeResultados oo 39

6 Conclusido 42
Bibliografia 44

iii

5.1

5.2

5.3

5.4

5.5

5.6

5.7
5.8

Lista de Tabelas

Resultados médios para uma rede Perceptron com um tinico neurdnio
apds 10 rodadas de experimentos com conjuntos distintos de treina-

mentoevalidacio. Lo e 28
Resultados médios para o SMO padrio apds 10 rodadas de experi-
mentos com conjuntos distntos de treinamento e validagdo. 29

Média de resultados e melhor resultado para o algoritmo hibrido
SMO-B,, apds 10 rodadas de experimentos com conjuntos distintos
de treinamento e validago.0 oo 32
Média de resultados e melhor resultado para o algoritmo hibrido
SMO-By apds 10 rodadas de experimentos com conjuntos distintos
de treinamento e validagdo. oL oo . 34
Média de resultados e melhor resultado para o algorztmo hibrido
SMO-B., apds 10 rodadas de experimentos com conjuntos distintos
de treinamento e validagdo. o 36
Média de resuitados e melhor resultade para o aigontmo hi"nrldo
SMO-B; apés 10 rodadas de experimentos com conjuntos distintos
de rreinamento e validacdo. o000 ... 38
Sumdrio de resultados de acurdcia para aigox;tmos hibridos. 40
Sumadrio de resultados de tempo de execugio para algoritmos hibridos. 41

iv

2.1

3.1
3.2

4.1
4.2
4.3
4.4

Lista de Figuras

Pseudo-cédigo de uma versio generalizada do AdaBoost. 8
Desenho esquematico do funcionamento do algoritmo SMO. 12
pseudo-cédigo do algoritmo Sequential Minimal Optimization (SMO). 13

Desenho esquemadtico do algoritmo hibrido SMO-B,. 21
Desenho esquemdtico do algoritmo hibrido SMO-Bs. 22
Desenho esquematico do algoritmo hibrido SMO-B-. 23
Desenho esquemadtico do algoritmo hibrido SMO-Bs. 24

Capitulo 1

Introducao

1.1 O Problema de Aprendizado Computacional

O problema de ensinar uma mdaquina como adquirir nove conhecimento tem sido
explorado desde a introdugdo do computador moderno. O primeiro modelo de
neurdnio artificial foi criado por McCulloch e Pitts em 1943 [MP43], em seu tra-
balho cldssico que descreve o que deveria ser a unidade bésica de uma rede de
neurbnios artificiais inspirada no cérebro humano. O foco desse trabalho foi muito
mais sobre a capacidade computacional do modelo proposto, do que em métodos
pragmaticos para aquisi¢do de conhecimento. Mais tarde em 1949, o aprendizado
destas redes foi explorado por Hebb [Heb49], que propds um modelo de ajuste
de pesos nas entradas de cada neurdnio. Este modelo se baseou na teoria de que
neurdnios biolégicos aprendem baseados no reforgo de suas ligagdes sindpticas para
outros neurdnios excitados. Widrow e Hoff [WH60] refinaram ainda mais as idéias
de Hebb em 1960, incorporando o método do gradiente descendente para minimi-
zar o erro de saida de cada neurdnio. A primeira tentativa de abordar o problema de
reconhecimento de padrdes a partir de redes de neurdnios foi feita por Rosenblatt
em 1958 [Ros581, onde ele introduziu o modelo Perceptron. O Perceptron € uma
simples rede capaz de resolver problemas de classificacdo linearmente separaveis
no qual o espaco de safda ¢ dividido em regides complementares que correspondem
a categorias,

Apesar desta abordagem conexionista ter recebido grande atengdo devido
ao trabalho de Rosenblatt, a comunidade de aprendizado de maquina fol quase
completamente desencorajada por Minsky e Papert em 1969 [MP69] a continuar
seu desenvolvimento. Minsky e Papert argumentaram que a limitagdo de néo ser
capaz de resolver problemas ndo-linearmente separdveis era muito grave para ser
ignorada, além de apontarem outros problemas como o crescimento explosivo do

consumo de recursos no tempo e espaco, além da falta de uma regra de aprendi-
zado para redes multi-camadas. Salvo raras excegoes, a década de 1970 foi marcada
pela falta de interesse da comunidade na drea. Apenas ap6s o trabalho de Hopfi-
eld em 1982 [Hop82] e o desenvolvimento do algoritmo backpropagation em 1986
[RHW86] que redes de neurdnios artificiais ! novamente ganharam interesse geral.
Hopfield explorou as relagdes entre redes associativas recorrentes e modelos fisicos,
o que iniciou uma série de outros trabalhos que utilizaram teorias da Fisica para
descrever o comportamento de maquinas de aprendizado [Hop82]. Finalmente,
muita atengdo foi dada ao trabalho de Rumelhart et al, [RHWB86], que criaram um
algoritmo, o backpropagation, para treinar redes com multiplas camadas baseado
no ajuste de pesos de cada camada de acordo com a retro-propagagao de erros de
saida.

Esse ressurgimento da escola conexionista na década de 1980 foi seguido
por uma nova onda de pesquisas no inicio da década de 1990 que exploraram no-
vas teorias e algoritmos focados nfo sé na construgéo e treinamento de maquinas
de aprendizado poderosas, mas também na reorganizagdo do ambiente ao seu redor
visando o aumento de seu desempenho 2. Vapnik [Vap95] se refere a este perfodo
como o retorno as origens da teoria de aprendizado estatistico. Trabalhos pioneiros
como os de Munro [Mun92], Schapire [Sch92], Drucker et al. [DSS93], e Cachin
[Cac94] serviram de base para outros como Breiman [Bre94], que introduziram o
conceito de Bagging para o treinamento e combinagio de miiltiplas cdpias de um al-
goritmo de aprendizado, e finalmente Freund e Schapire, que em seguida introduzi-
ram a famosa familia de algoritmos AdaBoost. O termo Boosting foi apresentado por
Schapire em 1990 {Sch901, no trabalhio que mostrou pela primeira vez que qualquer
algoritmo de tempo polinomial que gera hipdteses cujos erros séo arbitrariamente
melhores que uma hipdtese aleatéria pode ser transformado em um algoritmo de
tempo polinomial com erro arbitrariamente pequenao.

Em paralelo com o desenvolvimento de modelos de aprendizado e metodo-
logias para a melhoria do desempenho de algoritmos ja existentes, este retorno as
origens também motivou a criagdo de diversas novas maquinas de aprendizado. En-
tre elas, destacam-se as de Vapnik e colaboradores que ficaram sendo conhecidas
como Support Vector Machines (SVMs), ou maquinas de vetores de suporte. Ba-
seados em outros trabalhos de Vapnik e Chervonenkis de 1965 [VC71], nos quais

1Redes de neurdnios artificiais so geralmente chamadas pela comunidade de aprendi-
zado de maquina brasileira de redes neurais artificiais, ou ainda redes neuronais artificiats.

2Note que o termo desempenho ¢ usado por todo o texto sem especificacdo de desempe-
nho no tempo ou no espago. Quando utilizado assim de forma tdo genérica, o texto refere-se
ao desempenho global composto da combinago de diversas medidas de desempenho passi-
veis de serem aplicadas a maquinas ou algoritmos de aprendizado.

métodos de hiperplanos de separagdo étimos foram desenvolvidos, Vapnik et al. cri-
aram a idéia de maquina de vetores de suporte em 1992 [Vap95]. Desde entdo,
o crescente interesse da comunidade de aprendizado de méquina motivou o de-
senvolvimento de diversos algoritmos de treinamento especializados na resolugio
dos problemas de otimizagdo com restrigbes convexos e guadraticos sobre os quais
SVMs sdo formuladas. Novas téenicas, como chunking e decornposition, inspiraram
o trabalho de John Platt [Pla98a, Pla98bl, cujo algoritmo Sequential Minimal Op-
tirnization (SMO), permitiu com que o uso de SVMs fosse popularizado devido a
sua simplicidade de implementagio e sua drdstica redugdo no consumo de recursos
computacionais em comparagio & outros algoritmos.

1.2 Objetivos e Motivacdo

Dos diversos tipos de problema resolvidos por diferentes algoritmos de aprendizado,
neste trabalho foram abordados problemas de classificafio bindria. Dois motivos
justificam tal escolha. Primeiro, problemas de classificagdo bindria sdo um dos mais
fundamentais do aprendizado de maquina, onde casos mais sofisticados muitas ve-
zes sdo resolvidos a partir de extensdes deste caso mais simples. Muitos modelos e
algoritmos, originalmente desenvolvidos para lidar com problemas de classificagéo
bindria, foram adaptados para estender sua aplicabilidade para problemas de classi-
ficacdo multi-classe (n-arios), classificacio mulg-rétulo, e até mesmo problemas de
regressio. Além disso, problemas de classificaggo bindria sdo o habitat natural dos
dois modelos de aprendizado combinados neste trabalho, Boosting e SVMs, apesar
de também haver diversas extensbes j4 propostas para ambos. Portanto, a utiliza-
¢fio das versdes originais e mais fundamentais destes dois modelos foi proposta para
validar a idéia de utilizd-los juntos em maquinas hibridas de aprendizado.

£ formalizada agora a defini¢io de problema de classificacdo bindria, as-
sumido ao longo de todo o texto. Considere um problema de classificacdo com
um dominio de entrada n-dimensional e um dominio de saida bindrio, ambos con-
tendo [instdncias tal que existe um conjunto de dados (z1,%),-. ., {xy,yr), onde
cada padrio «; pertence ao dominio X = IR", cada rdtulo y; pertence ao domi-
nio Y = {~1,+1} e cada padrdo z; ¢ classificado pelo rétulo y; correspondente.
Neste trabalho foram selecionadas 22 bases de dados com as quais os quatro al-
goritmos hibridos propostos mais adiante, além da versdo original do SMO como
referéncia, foram testados. Dos 22 bancos de dados selecionados, 8 correspondem a
problemas reais de biologia, 2 a problemas reais de bioinformatica e gendmica, um
a um problema real de fisica, 9 foram sinteticamente gerados a partir de entradas
bi-dimensionais e 2 foram sinteticamente gerados com entradas de 20 dimensdes.

Uma descricio detalhada destas bases de dados e seus problemas correspondentes
¢ dada no Capitulo 5.

Das diversas abordagens de aprendizado de mdquina que poderiam ser uti-
lizadas para problemas de classificagio bindria, certamente hd um maior interesse
naquelas que produzem modelos mais precisos com 0 menor tempo de execucdo
possivel. Um dos mais interessantes algoritmos de aprendizado desenvolvidos re-
centemente é o SMO, proposto por John Platt [Pla98a]. Além de basear-se no
grande poder de expressio conferido por SVMs, Platt conseguiu aproveitar-se de
diversas propriedades do problema convexo e quadratico de otimizagéo com restri-
¢Oes responsével por seu treinamento e criou um algoritmo eficiente que geralmente
¢ mais rapido e mais preciso que muitos outros algoritmos de aprendizado.

Seria muita inocéncia tentar propor um algoritmo que é geralmente mais pre-
ciso e mais rapido que o SMO. Mesmo assim, da mesma forma que Platt aproveitou-
se das propriedades especificas do problema de otimizagdo de SVMs, sua abordagem
pode ser estendendida para criar novos algoricmos que explorem propriedades es-
pecificas de problemas de aprendizado, ocasionalmente apresentando um desempe-
nho melhor que o SMO em termos de precisdo e tempo de execugio. Para alcangar
tal objetivo, o SMO foi utilizado como base dos algoritmos hibridos e combinado a
um algoritmo de Boosting, de forma que o forte fundamentalismo tedrico de Boos-
ting pudesse melhorar seu desempenho.

De acordo com Freund [Fre95], um algoritmo de Boosting é um algoritmo de
aprendizado que utiliza um segundo algoritmo de aprendizado como subrotina. A
partir da repetida execugdo de um dado algoritmo de aprendizado fraco sobre uma
distribuicfio de dados de treinamento, algoritmos de Boosting geram uma hipotese
forte que é composta pela combinagéo de todas as hipéteses fracas geradas através
de votos ponderados. Os primeiros algoritmos de Boosting foram originalmente
apresentados por Schapire [Sch90] e Freund [Fre95]. Mais recentemente, Freund e
Schapire introduziram AdaBoost, uma familia de algoritmos de Boosting genéricos
que resolveram muitas das dificuldades praticas de algoritmos antecessores [F595,
FS96a].

Portanto, o objetivo mais importante deste trabalho € a criagdo de uma nova
classe de algoritmos que se baseiam nos pontos mais fortes dos modelos aprendi-
zado por traz de Boosting e SVMs, aproveitando-se de propriedades especificas de
problemas de aprendizado para superar o eficiente algoritmo SMO proposto por
Platt.

1.3 Contribui¢des Deste Trabalho

Neste trabalho técnicas de Boosting e SVMs foram combinadas para criar novos al-
goritmos hibridos de aprendizado que consistentemente apresentam melhor desem-
penho que algoritmos tradicionais baseados em SVMs, como SMO, em problemas de
classificacfio bindria, tanto em termos de tempo quanto em termos de acurdcia. Ape-
sar de SVMs serem construidas para criarem hiperplanos de separagdo 6timos em
tarefas de classificacio binéria, fol mostrado que diversos fatores como polarizacao
de dados, funcdes de kernel mal-escolhidas, e pardmetros de regularizagio e kernel
desajustados, sio capazes de degradar o desempenho de algoritmos tradicionais de
SVMs, que portanto pode ser melhorado através de algoritmos de Boosting. Foram
combinados dois dos mais conhecidos algoritmos de Boosting e de treinamento de
SVMs, o AdaBoost.M1 de Freund e Schapire [FS$95] e o Sequential Minimal Optimi-
zation (SMO) de Platt {Pla98al. Sua interacio foi abordada em diferentes niveis,
desde o uso de SVMs como algoritmos de aprendizado caixa-preta, até a combinacio
e eliminacio de heuristicas particulares do SMO e de mecanismos de selegéo proba-
bilistica do AdaBoost. M1, portanto propondo quatro novos algoritmos hibridos com
diferentes graus de acoplamento.

A mais importante contribuigfio deste trabalho € provar ser vidvel a integra-
cio de SVMs com Boosting para a criagdo de algoritmos mais eficientes que outros
algoritmos de aprendizado poderosos como SMO, tanto em termos de tempo de
execucdo quanto em termos de acurdcia. A literatura de Boosting adverte que algo-
rittnos de classificacio muito complexos, quando usados como algoritmos gerados
de hip6teses fracas, ndo sdo capazes de produzir boas hipdteses fortes através de um
algoritmo de Boosting. Uma vez que SVMs sdo das mdquinas de aprendizado mais
sofisticadas ja propostas, contradizer o fato de que estejam sujeitas & esta restricao
de desempenho é de grande importincia para desenvolvimentos futuros de maqui-
nas de aprendizado, ainda mais avangadas, a partir da incorporagéo de Boosting e
principios de vetores de suporte.

Finalmente, além de dar os primeiros passos em direcdo a algoritmos hibri-
dos mais eficientes, outra importante contribuicdo deste trabalho € a construgéo de
novos algoritmos que j4 apresentam desempenho melhor que o SMO em determi-
nados problemas de classificagio. Enquanto sdo discutidos resultados e conclusoes
deste trabalho, sdo ressaltadas diversas propriedades comuns a todos os conjuntos
de dados com os quais os algoritmos propostos tiveram melhor desempenho. Além
disso, um dos maiores problemas de SVMs é o ajuste de pardmetros ce regularizagdo
e do kernel durante a fase de treinamento. Apesar da simplicidade dos procedimen-
tos de ajuste utilizados, os bons patamares de desempenho obtidos fazem com que
seja possivel que esta abordagem hibrida possa compensar por pequenos desajustes

nos parametros da SVM e de seu kernel.

1.4 Organizacio da Dissertacéo

Esta dissertacdo estd organizada da seguinte forma. No Capitulo 2 sdo apresenta-
dos alguns conceitos de Boosting, assim como a familia de algoritmos AdaBoost, de
Freund e Schapire [FS95, Sch02], mais especificamente seu membro para classifica-
cio bindria, AdaBcost. M1. No Capitulo 3 sfo apresentados conceitos e proposicoes
de mdquinas de vetores de suporte, onde atengdo especial ¢ dada ao algoritmo Se-
quential Minimal Optimization (SMO) desenvolvido por John Platt [Pla98a].

A partir dos conceitos introduzidos nos Capitulos 2 e 3, o Capitulo 4 propde
a criaciio de algoritmos hibridos que combinam SVMs e técnicas de Boosting na
criacdo de méquinas de aprendizado mais eficientes. O Capitulo 5 descreve e discute
todos os experimentos executados e os resultados obtidos. Finalmente, o Capitulo 6
apresenta as conclusdes alcangadas a partir deste trabatho.

Capitulo 2

Boosting

Este capitulo descreve a versdo genérica do AdaBoost.M1, o algoritmo de Boosting
escolhido para ser acoplado a SVMs neste trabatho. O AdaBoost.M1 foi o primeiro
membro da familia AdaBoost, introduzida por Freund e Schapire em 1995 [F595].
Desde entdo, diversas extensdes e modificacdes desta versdo original do AdaBoost
tem sido propostas por seus proprios criadores, por exemplo em [F596a, FS96b,
FS97, FS99, Sch99] e mais recentemente em [Sch02].

O pseudo-cédigo para uma versdo generalizada do AdaBoost, como primeiro
apresentada por Schapire e Singer [$S99] e mais tarde por Schapire [Sch02], é
apresentada na Figura 2.1. O algoritmo recebe como entrada um conjunto de treina-
mento (21,41) ... » (%Tm,Ym) com m elementos, onde z; € X ey; € ¥V = {-1,+1}.
A distribuicdo Dy é inicializada com uma distribui¢do uniforme, onde Dy (i) = 1/m.
Em cada uma das ¢t = 1, ..., T etapas, AdaBoost executa um algoritmo de aprendi-
zado para construir uma hipdtese fraca h, baseada no status atual da distribui¢do
D,. O objetivo deste algoritmo ¢ minimizar seu préprio erro de treinamento ¢;. Uma
vez que h, foi construlda e avaliada, AdaBoost escolhe um parimetio a; € IR para
medir a relevancia de cada hipétese h,.

Para uma versdo de classificacdio bindria como AdaBoost.M1, ¢, é calculado
da seguinte forma:

Ep == P'F‘i,_D:ih; ($1) }—1‘ yl] (2.1)

Também assumindo o caso de dominio de saida bindrio tal que by € {—1,+1},
o peso associado a cada hipétese €:

(xt:%in(lmet) (2.2)

€t

De acordo com os valores de «; no final de cada rodada, D, é atualizada
e normalizada com o objetivo de focar a atengio do algoritmo nos exemplos mais

7

Dado: (z1,¥1) ..+ (Tm ¥m), onde z; € X, s € ¥ = {~1,+1}
Inicialize: Dy (i) = 1/m
Parat=1,...,T:

e Utilize o gerador de hipdteses fracas a partir da distribuicdo D;.

e Armazene a hipdtese fraca by : X — R,

e Bscolha: oy ¢ IR

e Atualize:

Dy (i) = Dy (1) e;‘wthcw
t

onde Z, é um fator de normalizaciio (escolhido de tal forma que Dy,
seja uma distribuicdo).
Compute a hipétese forte:

T
H (z) = sign (Z arghy (1))
=31

Figura 2.1: Pseudo-cédigo de uma versdo generalizada do AdaBoost.

dificeis de serem classificados. Apés a T-ésima rodada, a hipétese forte é computada
através de um voto ponderado onde o peso de cada hipétese fraca h, é dado por .

De um ponto de vista pragmdtico, AdaBoost tem diversas vantagens como
algoritmo de Boosting. Ele é relativamente rapido, simples e de ficil codificacéo.
Além disso, ndo possui nenhum pardmetro a ser ajustado a ndo ser o ndmero de
hipdteses a ser gerado, T

Capitulo 3

Support Vector Machines

3.1 Formulacio da SVM Utilizada

Dentre as muitas formulagdes possiveis de maquinas de vetores de suporte, neste
trabalho foi escolhida uma mdquina que utiliza o principio de funcdes de kernel para
induzir o aprendizado em espagos de Hilbert, como descrito por Cristianini e Shawe-
Taylor [CSTO0] e Haykin [Hay94]. Considere o seguinte problema de otimizagéo
para a formulagio desta SVM, onde ¢ mostrado o caso onde a flexibilizagiio da
margem ¢ dada pela norma-1 do vetor de pesos:

minimizeg ,5 {w - w) —E—CZiml &,
sujeito a yi((w- o) +b) =21 —-E,i=1, .1 (3.1)
‘Eizoﬁi: 1,)l

onde w é o vetor de pesos, z é o vetor de entrada, C € o pardmetro de regularizagdo
entre o erro de treinamento e a margem, e £ € o vetor responsavel pela flexibilizagdo
do hiperplano de separacéo.

O Lagrangiano para o problema de otimizac#o descrito na Equagdo (3.1) é:

l { {

LP (W,b,ﬁ,a,r) = é(w . ’lﬂ) + ngl - Zai[yi ((’UJ : fBi) + b) -1 “*“‘Ez} - z riéi:
- i=1 ful ==
(3.2)

10

onde a; > 0 er; > 0. SAo entdo calculadas as derivadas parciais para Lp:

!
OLp (w, b€, ce,7)
- = w- Z yiaiz; = 0, (3.3)
BLP (w,b,ﬁ,a,’r) M —
5 = C—aj—r =0, (3.4)

t
oL b
p(w, ,g,aar) — Zyiai porerd 0

Ob

(3.5)
i=]

Ao substituir estas relacdes na forma primal, a seguinte forma dual do pro-
blema é obtida:

I
i=1

!
1 ‘
Lp{w, b€, a7} = E a3 E : yiyjoe (@ - ;). (3.6)
J

As condicdes de complementaridade de Karush-Kuhn-Tucker para o problema
sfo portanto:

oulys (fw @) +0) =14+ &) =0. i=1,. 1,
.fi(&i—C}uO, 121’ ,l‘ {3»7)
A proposicio 1 a seguir formaliza todo o problema.

Proposition 1. Considere a classificagdo de um exemplo de treinamento:

S = ((mk:yl))-~->(ml~y[)):

através do espago implicitamente induzido pelo kernel K (x,z), e suponha que os pa-
rdmetros o' resolvem o seguinte problema de otimizagdo quadrdtica:

.. i +{ -
maximize Lp{a)=3 .., o — '}_SZAJ‘:}. viyjoaey K (@i, 25)
sujeito a Z.ﬁ»:l yic; = 0,

C>ai20i=1,.. L

Considere f (x) = Yoo, i K (z;, @) + V', onde b’ € escolhido tal que yif (x;) =
1 para qualquer i com C > o} > 0. Esta regra de decisdo, dada por sign(f (z)),
¢ equivalente ao hiperplano no espago induzido implicitamente definido pelo kernel
K (x, z) que é resolvido pelo problema de otimizagdo (3.1), onde as varidveis de folga
(&) séio definidas relativas @ margem geométrica:

(Z iy e o K (. }) L

je{sv}

11

First Heuristic

x1

!

i Second Heuristic

Figura 3.1: Desenho esquematico do funcionamento do algoritmo SMO.

3.2 Sequential Minimal Optimization

Nesta secdo é descrito um dos algoritmos chave deste trabalho, o chamado Sequen-
tial Minimal Optimization {SMO), desenvolvido por John Platt [Pla98a, Pla98hb].
Platt estendeu as idéias de Osuna et al. [OFG97] sobre decomposicio de problemas
de otimizacgdo quadratica (QP) em uma série de problemas menores com objetivo
de diminuir a quantidade de recursos necessaria pelo algoritmo. Platt levou o con-
ceito ao extremo, onde o problema QP original é quebrado em problemas menores
com apenas dois multiplicadores de Lagrange, que € o nimero minimo necessdrio
para que os subproblemas possam respeitar as condi¢des de complementaridade de
KKT. Uma das grandes vantagens do SMO ¢é que a resolucgo de seus subproblemas,
ao contrdrio dos diversos métodos numéricos para resolucdo de problemas de oti-
mizacio, é feita analiticamente, garantindo desempenho em termos de tempo de

12

execucdo e evitando o actimulo de erros numeéricos.

O corpo do algoritmo SMO pode ser divido em trés partes distintas: o mé-
todo para resolucio analitica dos pequenos problemas de otimizagio com dois mul-
tiplicadores de Lagrange, as heuristicas de selegio de quais dois multiplicadores
de Lagrange serdo escolhidos para serem otimizados a cada iteragdo e um método
para calcular o valor de polarizagfio (threshold) da SVM. Apesar dos detalhes dos
métodos de resolugdio analitica de problemas QP e valores de polarizagéo estarem
além do escopo deste texto, a seguir sio descritas as duas heuristicas de selecéo dois
multiplicadores de Lagrange, a1 e o, mais relevantes neste trabalho:

Primeira heuristica de selecdo A primeira heuristica de sele¢fio compde o lago
mais externio do algoritme SMO, que percorre todos os pontos a procura da-
queles que violam as condigdes de KKT. Quando encontrados, estes pontos sao
selecionados para otimizagio e passados a segunda heuristica de selecdo.

Segunda heurfstica de sele¢fio A segunda heuristica de selegdo leva em conside-
racdo a escolha feita para primeira e procura encontrar seu par, outro mul-
tiplicador de Lagrange, que proporcionard a maior contribuigéio do passo de
otimizacio em diregdo & solucdo final. Para tal, esta heuristica aproveita o
cache de erros armazenado pelo algoritmo para avaliar qual escolha de multi-
plicadores de Lagrange produz a maior diferenga entre os erros associados aos
dois pontos em questfio. Se esta selecdo inicial falhar em produzir uma dife-
renca significativa entre os erros dos pontos, por exemplo quando néo ha mais
pontos que violam as condigbes de KKT, o algoritmo abandona esta premissa
e passa a vasculhar cada um dos multiplicadores individualmente.

Note que todos as verificacbes das condigfes de KKT séo feitas dentro de uma
determinada margem de tolerfncia. De acordo com Platt [Pla98a], esta margem de
tolerdncia inibe a incidéncia de erros numéricos, o que empiricamente favorece a
convergéncia do algoritmo.

A Figura 3.2 traz o pseudo-cédigo para o algoritmo SMO, como proposto oti-
ginalmente por Platt [Pla98a), enquanto a Figura 3.1 traz seu desenho esquemdtico.

Figura 3.2: Pseudo-cédigo do algoritmo Sequential Minimal Optimization (SMO).

target = desired output vector
point == training point maerix

13

procedure takeStep(il,i2)
if (il == i2} return 0
alphl = Lagrange multiplier for il
y1 = target[il]
E1l = SVM output on point[il] — y1 (check in error cache)
s = yl¥y2
Compute L, H 10
if (L == H}
return ¢
k11 = kernel(point[il],point[il})
k12 = kernel(point[il],point[i2])
k22 = kernel{point[i2],point(i2]}
eta = 2%k12--k11-k22

if (eta < 0)

{
a2 = alph2 ~ y2*{(E1-E2)/eta
if (a2 < L}a2 =1L 20
else if (a2 > H) a2 = H

}

else

{

Lobj = objective function at a2=L
Hobj = objective function at a2=H
if (Lobj > Hobj+eps)

a2 =L
else if {Lobj < Hobj—eps)
a2 = H 30
else
a2 = alph2
}
if (Ja2—alph2| < eps*(a2+-alph2-+eps)}
return 0

al = alphl+s*(alph2—-a2)
Update threshold to reflect change in Lagrange multipliers
Update weight vector to reflect change in al & a2, if linear SVM
Update error cache using new Lagrange muitipliers
Store al in the alpha array 40
Store a2 in the alpha array
return 1
endprocedure

procedure examineExample{i2)
y2 = target[i2]

14

alph2 = Lagrange multiplier for i2
E2 = SVM output on poingfi2] ~ v2 (check in error cache}

12 = E2¥y2
if ((r2 < —tol && alph2 < C) || (r2 > tol && aiph2 > 0)) 50
{

if (number of non-zero & non~C alpha > 1}

{

i1l = result of second choice heuristic
if takeStep(il,i2)
return 1

¥

loop over all non—zero and non—C alpha, starting at random point

{

il = identity of current alpha 60
if takeStep(il i2)
return 1
¥
loop over all possible i1, starting at a random point
{

i1 = loop variable
if takeStep(il,i2)
return 1
}

1 70
return 0

endprocedure

main routine:
initialize alpha array to all zero
inidalize threshold to zero
numChanged = 0;
examineAll = 1;
while (numChanged > 0 | examineAll}
{ 80
numChanged = 0;
if {examineAll)
loop 1 over all training examples
numChanged += examineExample(I)
else
loop I over examples where alpha is not 0 & not C
numChanged += examineExample(1}
if (examineAl] === 1)
examineAll = 0

15

else if (numChanged == 0)
examineAll = 1

16

90

Capitulo 4

Algoritmos Hibridos para
Combinacao de Boosting e SVMs

Este capitulo descreve os quatro algoritmos hibridos propostos para combinar Boos-
ting e SVMs com diferentes niveis de acoplamento.

4.1 Integracdo Simples (SMO-B,)

A forma mais simples e direta de integrar os algoritmos AdaBoost e SMO ¢€ utili-
zar suas proposices originais, onde o AdaBoost utiliza 0 SMO como seu gerador
de hipdteses fracas. O diagrama esquemdtico para esta abordagem ¢€ mostrado na
Figura 4.1. Mesmo gue nenhuma modificagio tenha sido introduzida ao AdaBoost
ou SMO nesta versio, algumas observacdes sdo pertinentes. Primeiro, 0s dados do
subconjunto de treinamento do SMO sfo selecionados através de um mecanismo
de selecio com substituicio, que pode inclusive duplicar instincias do conjunto de
treinamento. Segundo, cada hipdtese fraca gerada pelo SMO deve ser armazenada
pelo AdaBoost para ser mais tarde recriada na computagdo da hipdtese forte. Para
tal, foram armazenados, para cada SVM correspondente as hipdteses fracas, o vetor
de multiplicadores de Lagrange «, o termo de polariza¢fio b e 0 mapeamento entre
cada exemplo fornecido ao SMO e sua tupla original no conjunto de treinamento
do AdaBoost. Note que nio foi preciso armazenar quais vetores sdo considerados
vetores de suporte em cada hipétese, uma vez que suas instancias estdo automati-
camente associadas a multiplicadores de Lagrange com valores diferentes de zero.
O comportamento deste algoritmo hibrido é governado por dois pardmetros
de regularizacio. O primeiro, k, determina o tamanho do subconjunto de dados de
treinamento que é sorteado pelo mecanismo de sorteio probabilistico do AdaBoost
para ser apresentado ao SMO. Este parimetro p foi implementado como uma fragéo

17

da cardinalidade do conjunto original de treinamento. O segundo, T, é o namero
de hipéteses fracas que devem ser geradas e depois combinadas pelo AdaBoost em
uma hipdtese forte.

4.2 Selecdo de Subconjuntos Modificada (SMO-Bj)

A primeira modificacio proposta ao algoritmo SMO-B,,, descrito na segéo 4.1, con-
siste em uma alteraciio no mecanismo de selecfo probabilistica que nfo permita a
selecdio de duplicatas. Este mecanismo ¢é referido como selegéo sem repetigéo, onde
o conceito de subconjunto matemadtico é reforgado tal que (X', Y') C (X,Y). Na
literatura, este algoritmo é conhecido como selegdo através de uma roleta proba-
bilistica [BLCO0], que neste caso faz sorteios baseados em uma distribuicgo D. O
desenho esquemadtico para esta versdo modificada de algoritmo hibrido € apresen-
tado na Figura 4.2.

Existem duas motivacdes para a modificacdo do seletor probabilistico origi-
nal, Primeiramente, foi observado empiricamente que o mecanismo de atualizagio
da distribuicio de probabilidades do AdaBoost coloca uma grande énfase em outli-
ers. O efeito colateral indesejavel da selecdo com substituicio para esta propriedade
faz com que o conjunto de treinamento apresentado ao SMO tenda a conter repe-
tidas duplicadas destes outliers, portanto polarizando excessivamente a geragdo de
hipéteses fracas. Além disso, o SMO trata como excegéo o caso onde dois multiplica-
dores de Lagrange correspondentes a vetores iguais sdo escolhidos para otimizagéo,
onde, de acordo com a formulagio do método de resolucio analitica do problema
QP uma divisdo por zero é encontrada.

De acordo com a formulaciic de Boosting para problemas de classificagao
bindria dada no Capitulo 2, AdaBoost requer um gerador de hipdteses fracas cujo
erro médio de validaciio seja, no minimo, melhor que uma hipdtese aleatdria, isto
¢, ¢ < 1/2. Apesar de haver argumentos suficientes para modificar o mecanismo
original de selegdo probabilistica do AdaBoost, mais um efeito colateral indesejado
¢ encontrado quando uma das propriedades de convergéncia da fungéo recursiva
de atualizacdo da distribuicdio de probabilidades é violada. O resultado da quebra
desta propriedade é que, para casos de subconjuntos de dados degenerados, a res-
tricio que demanda e < 1/2 também é quebrada. Note que se fosse permitida uma
hipétese fraca com e < 1/2, seu peso correspondente w atribuido pelo AdaBoost
seria negativo, o que violaria o principio de voto ponderado. A maioria das im-
plementacdes de algoritmos de Boosting aborta sua execugéo quando uma hipétese
como esta é encontrada, Para contornar o problema, entretanto, foi introduzido um
teste de consisténcia para hipéteses fracas apds serem geradas pelo SMO, antes de

18

serem consideradas pelo AdaBoost. Caso uma hipdtese fraca seja gerada tal que
e < 1/2, esta hipétese é descartada e o algoritmo procede para uma nova iteragéo
através de um novo sorteio de um diferente subconjunto de treinamento. Note que,
uma vez que um nimero arbitrédrio de hipdteses pode ser ignorado pelo algoritmo,
ap6s T iteracdes haverd T” hipdteses fracas vélidas para computar a hipotese forte,
onde TV < T,

4.3 FEliminacio da Primeira Heuristica de Selecdo (SMO-
B.)

Apés serem introduzidas as duas estratégias de integragéo mais simples utilizadas
no SMO-B,, e SMO-Bg, agora sdo introduzidas estratégias mais avangadas que néo
s6 propde modificacbes unilaterais no AdaBoost ou SMO, mas também a combinago
e eliminacdo de alguns de seus componentes. Os componentes de ambos algoritmos
que compartilham alguma funcionalidade em comum sdo o mecanismo de selegdo
probabilistica do AdaBoost, ja considerando a modificagdo de sele¢fio sem repeticéo
introduzida em SMO-Bg e as heuristicas de sele¢do de multiplicadores de Lagrange
do SMO. Em uma primeira tentativa, o mecanismo de sele¢fo probabilistica de um
subconjunto de treinamento do AdaBoost e a primeira heurfstica de selegdo do SMO
foram eliminados. A cada iteragdo, o mesmo principio de sorteio probabilistico
foi utilizado para sortear a primeira instdncia do problema QP a ser otimizado.
Esta instAncia, assim como na versdo original que utilizada a primeira heuristica de
selecdo, ¢ alimentada a segunda heuristica de selecio que desta vez examina todo o
conjunto de treinamento, e ndo mais somente o subconjunto pré-selecionado, para
escother a segunda instncia que maximiza a contribuigéo do passo de otimizagao
dado em cada iteragdo do SMO.

Note que agora foi confiado ao mecanismo de atualizaciio da distribuigdo D
do AdaBoost ndo s6 a geracdo de subconjuntos de treinamento para construir boas
hipéteses fracas, mas também a escolha do primeiro ponto do problema QP de dois
multiplicadores de Lagrange a ser analiticamente resolvido. O principio por traz
da primeira heuristica do SMO, que é responsdvel por garantir a convergéncia do
algoritmo através da selecfio de pontos que violem as condiges de KKT, € portanto
substituido pela premissa de que pontos que violem as condicdes KKT serdo pro-
babilisticamente selecionados de acordo com seu erro de treinamento ao longo das
épocas de Boosting e da atualizagdo da disaibuicdo D. Assim como no SMO-Bg,
o mesmo mecanismo de eliminacfo de hipdteses fracas invélidas é necessdrio para
evitar casos onde w < 0. O desenho esquemdtico para o algoritmo com esta fusio
entre componentes do AdaBoost e SMO € apresentado na Figura 4.3.

19

4.4 FEliminacio da Segunda Heuristica de Sele¢do (SMO-
B;)

A abordagem utilizada no SMO-B,, é agora estendida para ambas heuristicas de
selecio do SMO. As duas heuristicas sdo, portanto, substituidas por uma verséo
modificada de um mecanismo de selecdo probabilistica, onde as duas instdncias
correspondentes aos dois muitiplicadores de Lagrange do problema QP a ser resol-
vido analiticamente sio selecionados do conjunto original de treinamento de acordo
com a distribuicdo D. O desenho esquemdtico para este algoritmo ¢ apresentado na
Figura 4.4.

Para 0 SMO-B;, ainda mais que no SMO-B,, ¢ confiada ao algoritmo de
Boosting a selecéo de pontos que violem as condigbes de KKT e consequentemente
facam com que o SMO convirja. Esta selecfio corresponde a selegio probabilistica
de dois pontos do conjunto de treinamento, onde é esperado que os valores de
probabilidade associados a cada ponto implicitamente enfatizem as instincias mais
dificeis de serem aprendidas, o que por sua vez correspondem, intuitivamente, aos
pontos que mais violam as condi¢es de KKT. Mais uma vez, assim como em SMO-
By e SMO-B,, o mesmo mecanismo de eliminagfio de hipéteses fracas invalidas é
necessdrio para evitar casos onde w < 0.

20

prmmmmmerer——

Second Heuristic

x2

*

Optimization Step

) Weak i:earneri SMO

Probabilistic 0 Hypothesis
Selector Evaluator
¥y 2 J
XY o X,Y/ / Hix)o |
Y ¥
H(x)
First Heuristic

Figura 4.1: Desenho esquemético do algoritmo hibrido SMO-B,.

21

First Heuristic

g

Second Heuristic

x2

¥

Modified -
e s Hypothesis
Probabilistic D Evaluator
Selector
F W)
LA 4 ¥
X'\Y'e XY Error (), |
Check
A
Abort
- ¥y Y
H (x)

Optimization Step

Weak Learner; SMO

22

Figura 4.2: Desenho esquemdtico do algoritmo hibrido SMO-Bg.

Single-instance D Hypothesis
Probabilistic Selector Evaluator
ki
Error H(x)a
Check
A
Abort
Yy ... v
Xt B A
H{x)

x1

Second Heuristic

Optimization Step

Modified Weak Learner

Figura 4.3: Desenho esquemdtico do algoritmo hibrido SMO-B,,.

23

Hypothesis

Single-Instance D Evaluat
valuator

Probabilistic Selector

Optimization Step

Modified Weak Learner

Figura 4.4: Desenho esquemadtico do algoritmo hibrido SMO-Bs.
24

Capitulo 5

Experimentos e Resultados

Este capitulo descreve a metodologia de todos os experimentos executados neste
trabalho, bem como seus resultados e andlises.

5.1 Descricoes de Bases de Dados

Esta secdo traz uma breve descri¢do das bases de dados utilizadas nos experimentos
executados. Foram selecionados 22 diferentes bases de dados de fontes distintas,
cada uma com suas caracteristicas diferentes. Todos os conjuntos de dados tém
safda bindria em {—1,+1} e vetores de entrada em [—oo, 400, portanto satisfa-
zendo os requisitos necessdrios para serem utilizados em experimentos de classifi-
cacao bindria.

Pode-se classificar estas 22 bases de dados em quatro grupos de acordo com
a origem de seus problemas:

Biologia Foram selecionados 8 bases de dados de problemas de biologia, muitos
deles problemas de diagnéstico de doengas. Destas 8 bases de dados, 2 delas
foram disponibilizadas por seus autores com conjuntos distintos de treina-
mento e teste, que SA0 muito tteis para que sejam comparadas as capacida-
des de generalizacio de diferentes algoritmos. Muitas destas bases de dados
sdo cldssicas disponiveis no UCI Repository of Machine Learning Databases
[BM981, tendo sido utilizadas em diversos trabalhos da literatura. Outras sfo
frutos de trabalhos recentes que combinam avancos da biologia molecular com
modernas técnicas de reconhecimento de padres.

Gendmica H4 2 bases de dados correspondentes a problemas de bioinformatica.
Um deles é baseado no diagnéstico de tecidos cancerosos a partir de amostras
analisadas com microarrays, e outro consiste na determinacdo de sequéncias

25

promotoras de genes. A primeira base foi obtida de um estudo recente de
classificaco multi-classe de tipos de tecido a partir de SVMs, e a segunda fol
obtida do UCI Repository of Machine Learning Databases [BM98].

Fisica Foi selecionada uma tnica base de dados correspondente a um problema
que descreve um experimento com ondas de radar, também obtido do UCI
Repository of Machine Learning Databases [BM98].

Sintéticos Bi-dimensionais Foram geradas 9 bases de dados sintéticas com entra-
das bi-dimensionais. Estas bases foram geradas a partir de oés funcoes, cada
uma parametrizada de 3 formas distintas correspondentes a diferentes graus
de sobreposicéo entre classes.

Sintéticos Multi-dimensionais Foram, por fim, geradas 2 bases de dados sintéticas
com entradas de 20 dimensdes. Estas bases foram originalmente criadas por
Lec Breiman em um estudo sobre polarizacio e varidncia de algoritmos de
aprendizado [Bre96].

Com excecdo das duas bases de dados com conjuntos de treinamento e va-
lidacio disponibilizados separadamente, nenhuma das outras bases de dados pos-
suiam tal distin¢do. Todos os experimentos com estas bases de dados foram executa-
dos a partir de conjuntos de reinamento e validagfo sorteados para cada repetigéo.

A tendéncia a favor da selecio de bases de dados para problemas de bi-
ologia e bioinformatica foi intencional e é justificivel. Estes problemas frequen-
temente apresentam desafios interessantes 4 maquinas de aprendizado, uma vez
que geralmente contém grandes massas de dados organizadas em vetores com alta
dimensionalidade. Portanto, o uso de maquinas avancadas, como SVMs, na sua
resoluciio motivam o desenvolvimento de novas abordagens que possam ser ainda
mais eficientes. Por exemplo, a habilidade de SVMs lidarem com grandes bases
de dados fez com que fossem utilizadas em diversos problemas relacionados a da-
dos de microarray e expressio de genes, como a classificacdo de genes de acordo
com sua funcdo [BGL*99, KKO1] e a classificacdo de tipos de tecidos cancerosos
[CDH*00, RTRT01].

5.2 Analises Preliminares

Antes de serem realizados experimentos usando algoritmos hibridos que combinam
SVMs com Boosting, foram conduzidas andlises preliminares sobre cada base de
dados utilizando outras mdquinas de aprendizado conhecidas. A primeira andlise

26

realizada procurou determinar a separabilidade linear das bases dados, onde foram
utilizadas simples mdquinas lineares.

Em uma segunda andlise, foi utlizada a versdo tradicional do SMO para
ajustar os parimetros de regularizagio das SVMs bem como os pardmetros de seus
kernels. O objetivo desta andlise foi determinar valores para C, o pardmetro que
regula o compromisso entre erro de treinamento e a margem, bem como 0s paré-
metros do kernel RBF utilizado. Uma vez ajustados para cada base de dados neste
passo de andlise preliminar, estes parimetros foram mantidos fixos para todos os
experimentos subsequentes.

Note que para todos os resultados apresentados e discutidos nesta secao,
foram transcritos em detalhe apenas os resultados uma das bases de dados, bew
(Wisconsin Breast Cancer), devido a limitagdes com relagdo ao tamanho do texto.

5.2.1 Discriminante Linear

A primeira analise a qual todas as bases de dados selecionadas foram submetidas
procurou verificar sua propriedade de separabilidade linear. Esta anélise consistiu
em tentar resolver cada problema de classificacdo com uma rede Perceptron com
urn tunico neurdnio [Ros58].

De acordo com a teoria por trds do neurbnio de McCulloch e Pitts [MP43],
um dnico neurbnio é capaz de corretamente classificar apenas problemas linear-
mente separdveis [Hay94, BLC0O]. Uma vez que sua saida depende somente do
produto escalar do vetor de pesos e do vetor de entrada, que pode ou ndo exce-
der um valor de polarizagdo, esta médquina linear falha em descrever o que Duda,
Hart e Stork chamaram de o mais simples problema no linear de todos, que € o re-
sultado de uma fungdo booleana bi-dimensional XOR. Este foi um dos argumentos
que Minsky e Papert [MP69] usaram para delinear as deficiéncias do Perceptron em
1969.

Cada base de dados foi repetidamente analisada com a rede Perceptron por
10 vezes, cada vez com diferentes selecdes de conjuntos de treinamento e validagdo
correspondendo sempre a 70% e 30% do conjunto total de dados, respectivamente.
O nodo Perceptron utilizado tinha um coeficiente de aprendizado n == 0.01, um erro
de tolerancia tol = 0.1 e um nimero méaximo de épocas de treinamento epochaz =
104000.

A Tabela 5.1 traz resultados do experimento para a base bew. S&o mostra-
dos a precisio do modelo (acuracia), o erro quadratico médio {MSE), o niimero
de iteracBes gastos no treinamento, o tempo de treinamento e, para cada uma des-
tas medidas, os histogramas correspondentes &s 10 repeticdes do experimento com
diferentes conjuntos de treinamento e validagio.

27

Tabela 5.1: Resultados médios para uma rede Perceptron com um dnico neurénio
ap6s 10 rodadas de experimentos com conjuntos distintos de treinamento e valida-
cdo.

Base Acuricia MSE IteracBes Tempo de execucgio
i ' . N im'_"_ﬁ i
. - |
;' i | ! ’ ;
e o B e M EEE T | -
bew 96.24% + 1.81% 0.0376 £ 0.0181 100000+ 0 4.185+0.03s

5.2.2 Ajuste de Parametros

O objetivo desta andlise foi determinar o conjunto de pardmetros particulares das
SVMs utilizadas que foram fixados nos experimentos com algoritmos hibridos. Estes
parametros foram C, que regula o compromisso entre erro de treinamento e mar-
gem da SVM, e os dois pardmetros do kernel RBF utilizado, pyigme2 € ps. A fungdo de
base radial utilizada como kernel em todos os experimentos como pode ser definida
COMO exp (—ﬂ%f;—“:), onde s é o parAmetro de escala linear e o € o pardmetro de
varifincia. H4 dois importantes objetivos para realizar tal andlise:

Ajuste de parametros. Os melhores conjuntos de pardmetros encontrados nesta
andlise para cada uma das 22 bases de dados foram mantidos fixos nos expe-
rimentos com algoritmos hibridos para consisténcia de resultados.

Referéncia de desempenho. A medida que os resultados de algoritmos hibridos
sdo descritos, é interessante compard-los a versdo padrdo do SMO proposta
por Platt [Pla98a]. Os parmetros C, p,2 e p, foram, portanto, preservados
entre as execugdes com SMO e os quatro algoritmos hibridos, evitando com-
paracdes de desempenho contaminadas por diferentes pardmetros da SVM.

A Tabela 5.2 traz os resultados para este experimento realizado sobre a base
de dados bew (Wisconsin Breast Cancer). S&o mostrados graficos tri-dimensionais
da taxa de classificaciio correta (acurdcia), erro quadratico médio, taxa de vetores
de suporte, norma dos hiperplanos de separagdo, nimero de iterages e tempo de
execucdo. Cada grandeza é apresentada nos eixos z de cada gréfico, onde os eixos
z e y correspondem a variagbes de p,2 e p,. Por fim, para cada uma destas seis
medidas, trés graficos independentes sdo mostrados para diferentes valores de C.

Além destes gréficos, a Tabela 5.2 traz também os dados e os histogramas
particulares da configuracio que resultou no melhor desempenho do algoritmo apds

28

as 10 rodadas de experimentos. Os dois critérios utilizados para ordenar e selecionar
os melhores pardmetros foram:

e Melhor acurécia;
e Menor tempo de execugdo.

Em casos de empate ap6s a aplicagio destes dois critérios, os conjuntos fina-
listas foram escolhidos aleatoriamente.

Tabela 5.2: Resultados médios para 0 SMO padréo apds 10 rodadas de experimentos
com conjuntos distintos de treinamento e validacéo.

bew (graficos da média de resultados para for p,2 % p)

C=10"% Cc=10° ¢ =10° C=10"% C=10° C=10°

Iteragoes Tempo de execucdo (s)

29

Tabela 5.2: (continuado)

bew (histograma de experimentos com melhor desempenho)

| | - §
E i \
g""“k”' JJ_“&J
Vet de Suporte (%): 9.06% -
Acurécia (%): 96.10% + 0.97% etores de Suporte (%): 9.06% =
1.43%
] | N
! b .
L.I.IL*.! : B .
Norma: 6075.9512 £ 584.4494 MSE: 0.0390 & 0.0097
T B
i . .
=) N
IteracBes: 531 + 209 ”gedirgp;) de execugdo (s): 546 s =

5.3 Resultados Experimentais

Cada um destes experimentos foi executado com diferentes configuracdes de para-
metros que procuraram induzir diferentes padrdes de comportamento nos algorit-
mos hibridos. Assim como na Secfio 5.2, nestes experimentos foram observados 0s
resultados dos algoritmos baseados na variagao de dois pardmetros:

o T, o nimero de hipéteses fracas que o algoritmo de Boosting deve construir
para depois combinar em uma hipétese forte através de votos ponderados,
escolhido do conjunto {1, 100, 1800};

e p, a fracéio da cardinalidade do conjunto de treinamento que determina a car-
dinalidade do subconjunto de treinamento selecionado através da distribuicéo
de probabilidades mantida pelo algoritmo de Boosting, escolhida do conjunto
{0.1,0.4,0.7,1.0}.

Todas as 12 possiveis combinagbes destes dois conjuntos de pardmetros fo-
ram testadas sobre as 22 bases de dados com cada um dos quatro algoritmos hibri-
dos. Na maioria dos casos, os experimentos foram repetidos 10 vezes para evitar
anomalias estatisticas. Em poucos casos, devido a limitacOes de recursos computa-
cionais, alguns experimentos foram executados menos de 10 vezes.

30

5.3.1 Resultados para SMO-B,,

O primeiro algoritmo hibrido proposto, SMO-B,, € a forma mais direta e inocente
de integrar Boosting e SVMs. Os resultados de sua execugdo para a base bew estdo
transcritos na Tabela 5.3. Esta tabela apresenta inicialmente os resultados médios
para as hipdteses finais computadas pelo algoritmo de Boosting. Além da descri-
cdo textual dos resultados, que mostra médias e desvios padréio correspondentes,
graficos tri-dimensionais sdo utilizados para descrever cada uma das medidas de
desempenho de acordo com a variagfo dos dois pardmetros, T e p, nos eixos r e y
respectivamente, onde T' é mostrado em escala logaritmica.

Além disso, a Tabela 5.3 traz resultados médios para as hipdteses fracas cri-
adas pelo algoritmo de Boosting. Como nos resultados das hipoteses fortes, estes
resultados também s3o apresentados no formato de graficos tri-dimensionais. Fi-
nalmente, a melhor configuragiio de parfmetros é destacada na Tabela 5.3, onde os
trés critérios utilizados para se determinar a melhor configuragéo séo:

o Melhor acurdcia;
e Menor tempo de execucéo;
e Maior ntimero de hipoteses fracas vélidas.

Em casos de empate apds a aplicacfio destes trés critérios, os conjuntos fina-
listas foram escolhidos aleatoriamente. Por fim, a Tabela 5.3 traz também os histo-
gramas de dispersdo para a execugdo desta melhor configuracéio de pardmetros do
algoritmo.

31

Tabela 5.3: Média de resultados e melhor resultado para o algoritmo hibride SMO-
B, apés 10 rodadas de experimentos com conjuntos distintos de treinamento e va-

lidacdo.

bew (média de resultados para hipdteses fortes)

T p
1000 0.4
1 04

Acuracia {%0)
51 00% £ 16.81%
53.67% 4+ 14.99%

3.74% X 1.84%
100.60% & 0.00%

Hipdteses fracas validas (%) Tempo de execugio (s}

24365+%15153%
0995+ 0.87s

1 0.1

87.71% £ 12.38%

100.00% =+ 0.00%

0035+ 0035

1000 0.1
1000 07
100 1
1 07
1000 1
100 67
150 0.4
1 1
103 01

bew (média de resultados para hipéteses fortes para T x p)

Acurdcia {%0)

50.14% == 15 43%
49.19% £ 15.41%
47 19% = 15.17%
56.52% 4 13 98%
44.71% £ 14.50%
50.05% * 15.43%
53 86% = 14.94%
47.29% 4+ 15.19%
49 19% + 19.95%

4.90% 4 1.84%
3.39% £ 1.70%
16.40% + 10.86%
100.00% + 0.00%
1.60% =+ 0.56%
30.20% + 8.96%
35.30% = 19.62%
100 G0% =+ 0.00%
55.10% & 33.1%%

1135+ 0125
102875+ 63155
1862554+ 112085
180354+ 24235
1784059895 s
127545k 11844 5
212554+ 12505
2289954+ 271935
0595 %0345

o

Hip. fracas validas (%) | Tempo de execugéo ()

32

Tabela 5.3: {(continuado)

bew (média de resultados para hipdteses fracas)

r »p Alpha Taxa de erro {%) Vetores de suporte (%) Norma Iteracoes do SMO
1 04 | 10.0000%0.0000 000%=£000% 681% = 254% 17973 7100 + 178991636 301 & 243
1 07 | 10000000000 000%£000% 1081% £251% 764944166 = 570330937 1797 & 2095
100 01 | 10.0000 0.0000 0.00% = 0 00% 1.75% = 1 04% 334.7604 = 184 4323 16 9
1 1 | 10.0000:0.0000 0.00% x000% 1667% +535% 322822 2248 -k 248327 9780 8017 £ 7173
100 04 | 100000 0.0000 0.00% +000% 2.06% % 1.12% 2562 8477 + 1283.3616 57 + 30
100 07 | 10.0000£00000 000% £000% 2.27% =+ 0.70% 4831.3097 = 3590.3131 102 + 68
1000 0.3 | 100000 0.0000 D.00% +£0.00% 0.15% 0.06% 27 4609 = 115640 2:£0
100 1 | 10000000000 0.00% 0 00% 137% % 0.75% 4123 0772 + 1374.9117 86 = 37
1000 0.4 | 10.0000 £ 0.0000 0.00% +0.00% 022% % 0.11% 251.2781 = 1614524 63
1000 07 | 10000006000 0.00% £000% 025% 4 011% 395 3559 = 203 2713 9+5
1000 1 | 100000 400000 000% = 0.00% 0.14% % 0.04% 4031479 £ 178.5044 g3
1 0.1 | 10.0000 - 0.0000 0.00% £ 000% 3.38% = 0.84% 969.5497 -+ 2283.8921 38 + 50
bew (média de resultados para hipéteses fracas para T x p)
-
oo L i s i.z;'::f//]
Taxa de erro | Vetores de su- Iteracbes do
Alpha Norma
(9%} porte (%) SMO

bew (histogramas de execugbes para configuragio com melhor desempenho)

1 sde
Acuracia (%):
+ 12.38%

B87.71%

|
|

B
Hip. fracas validas (%0):

87.71% + 12.38%

Tempo de execugéo (s):
0.035 4 0.03s

33

5.3.2 Resultados para SMO-Bg

O segundo algoritmo hibrido proposto, SMO-Bg, é a evolugio natural de SMO-B,
que procura resolver o problema de ignorar muitas hipdteses fracas. Os resultados
para 0 SMO-Bg sfio mostrados na Tabela 5.4, que passui o mesmo formato que a
Tabela 5.3. Os critérios de selecio das melhores configurac@es foram os mesmos
descritos anteriormente na Secdo 5.3.1 para SMO-B,,.

Tabela 5.4: Média de resultados e melhor resultado para o algoritmo hibride SMO-
By ap6s 10 rodadas de experimentos com conjuntos distintos de treinamento e va-

lidacdo.

bew (média de resultados para hipéteses fortes)

Acurdcia (%)

bew (média de resultados para hipdteses fortes para I x p)

e

e

T p Acurdcia (%) Hipéteses fracas vilidas (%) Tempo de execucio (s)
1000 0.4 97.62% =+ 0.00% 3.70% £ 0.00% 905425000
1 0.4 | 97.62% £ 0.00% 100.00% -k 0.00% 004540005
1 01 86 .19% 4 0.00% 100.00% + 0.00% 0.02s:£000s
100001 96.67% == 0.00% 99 90% + 0.00% 143154 0G00s
1900 0.7 96.19% 3 0 G0% 1.10% + 0.00% 28051754+ 0005
1090 1 96 67% =+ § 00% 100.00% &£ 0.60% 44431 s:: 0005
1 G7 97.14% 4 0.00% 100.60% + §.00% 2125+ 000s
1000 % 86 67% £ 0.00% 108.00% 4 0.00% 4491925+ G00s
100 0.7 97.14% & 0.00% 10.00% <k 0.00% 285855 £ C00s
100 0.4 95.24% + 0 00% 14.00% # 0.04% 1002950005
H 1 96 67% £ 0.00% 100.00% :+ 0 0% 504520005
100 9.1 97.14% =+ ¢.00% 100.00% = 0.G0% 12050005

ot

Hip. fracas validas (%) | Tempo de execugdo (s)

34

Tabela 5.4: (continuado)

Alpha

Taxa de erro {%) Vetores de suporte (%)

bew (média de resultados para hipéteses fracas)

Norma

heracbes do SMO

1 04

10.0000 + 0.0000

0.00% oz 0.00%

3.33% = 0.00%

1666.2279 + 0.0000

21%0

1 07
189 0.1

1 1
106 0.4
100 07
100G 0.1
100 1
1000 0.4
1000 07
1900 1

1 01

Alpha

2.0482 £ 0.0000
9 8656 + 0.0000
1.9346 4 0.0000
0.0247 4 0.0000
-0.1583 £ 0.0000
9.3123 £ 0.0600
0.6193 + 0 5000
-0.1294 == 0.6000
-(1.3749 & 0.0000
0.0019 £ 0.0000
10.0060 1= 00060

(%)

Taxa de erro

0.04% = 0.00%
0.00% -+ 0 00%
0.05% = 0.00%
0.02% = 0.00%
0.04% & 0.00%
0.00% + 0 0%
0.05% + 0.60%
0.02% = 0.00%
004% £ 0.00%
0.05% =+ 0 00%
0.00% = 0.00%

Vetores de su-
porte (%)

15.24% = 0.00%
3.39% £ 0.00%
22 38% £ 0.00%
14,10% = 0.00%
15.17% = G.00%
3.59% = 0.00%
22 38% % 0.00%
13.76% - 0 00%
19 46% = 0 00%
22.38% & 0.00%
2.86% £ 000%

Norma

5772.3096 + 0.0000
703.8516 £ 0.0000
100223125 £ 0.0000
6115.5771 £ 0.0000
7206.9525 + 0.0600
833.1179 = 0.0600
10056.9649 = G.0000
5602 5713 & 4.0000
8896.0666 4 0 0000
10054 5734 £ 0.0000
187.4276 £ 0.0000

bew (média de resultados para hipdteses fracas para T x p)

36820
360
663:£0
3350
456 £ 0
3940
547+ 0
325x%0
4540
549 & 0
1140

Iteracbes do
SMO

Acurdcia (%): 97.62%
+ 0.00%

J

| I—— —

bew (histogramas de execucdes para configuracio com melhor desempenho)

1

Hip. fracas vélidas (%):
97.62% £ 0.00%

Tempd de' execucdo (s):
0045 =000s

5.3.3 Resultados para SMO-B,,

SMO-B., é o primeiro algoritmo hibrido proposto que tenta combinar componen-
tes do SMO com componentes do AdaBoost.M1, ao invés de simplesmente tentar
integra-los como no SMO-B,, ¢ SMO-Bg. Os resultados para o SMO-B,, sZo mostra-

35

dos na Tabela 5.5, que possui o mesmo formato que as Tabelas 5.3 e 5.4. Os critérios
de selecio das melhores configuragGes foram os mesmos descritos anteriormente na
Secdo 5.3.1 para SMO-B,,.

Tabela 5.5: Média de resultados e melhor resultado para o algoritmo hibrido SMO-
B., ap6s 10 rodadas de experimentos com conjuntos distintos de treinamento e vali-

dagéo.

bew (média de resultados para hipdteses fortes)

T »p Acurdcia (%) Hipdteses fracas vilidas (%) Tempo de execugio (s)
1000 0.4 96.29% + 1.14% 18.15% = 2.54% 35435:£ 412
1 04| 9024% & 943% 100.00% & 0.00% 0.055+001s
1 01 95.52% =+ 2.38% 100.00% =+ 0.06% 003s+00Ls
ot 01 96.14% + 1.12% 3291% £ 4.01% 18065 098s
1000 0.7 | 96.52% 4+ 1.17% 14.37% 4 3.00% 45965 4 4.66 5
100 1 96.19% - 1.11% 21.40% * 4.92% 531s5+060s
107 | 91.19% £ 7.89% 100.00% %= 0 08% 0.06s+00%Ls
1006 1 96.25% £ 0 85% 12.07% =+ 4.28% 516455965
100 07 | 96.33% % 104% 23.00% =+ 3.65% 464503563
100 04 96.19% + 1.02% 27.90% & 5.56% 36750435
H 1 91.33% £ 8.41% 100.00% = 0 00% 0.08s £ 001s
168 01 9638% £ 1 19% 4530% % 7.84% 183540105

bew (média de resultados para hipéteses fortes para 1" x p)

e ~
Hip. fracas vélidas (%)

.

Acurdcia (%) Ternpo de execugéo (s)

36

Tabela 5.5: (continuado)

bew (média de resultados para hipdteses fracas)

Alpha

Taxa de erro (%)

Vetores
porte (%)

bew (média de resultados para hipoteses fracas para T' x p)

de su-

T p Alpha Taxa de erro {%) Vetores de suporte (%) Norma
1 04 1.3624 £ 04054 0.19% + 0.19% 15.76% £ 3.36% 399.5661 £ 122 6807
107 13731 £ 04324 0.19% % 0.17% 26.38% % 5.13% 526 2639 :: 156.5876
e o1 00144 +-0.0393 0.35% £ 0.08% 12.67% £ 0.67% 398 4358 & 21 4161
1 1 1.3330 % 04516 0.22% £ 022% 37.71% £ 5.19% 656.4435 & 164 6508
100 0.4 | -0.1293 4 00438 0.15% & 0.03% 25.65% & 3.48% 626.1287 1 79.9194
100 07 | -6.2106 4+ 00500 0.14% 4 6.03% 31.87% £ 4.38% 7144174 £ 104.9769
10600 01 -0.0853 £ 00188 0.33% 4+ 0.05% 13 26% = 0.83% 4007593 + 26 2831
100 1 01961 £ 0.0672 0.12% & 0.02% 35.89% =+ 4.82% 756.3575 £ 114.6263
1000 04 | -0.3065 4 00576 0.16% =& 0.03% 25.54% & 3.33% 639.6772 & 71.2488
100G 0.7 | -0.3853 - 0.0892 0.13% £ 0.02% 32.47% -+ 3.74% 725.3301 &£ 97.6372
1600 1 -0.4039 £ 0.0785 0.13% £ 0.02% 35.92% 4= 4.73% 789.2475 £ 96 5533
1 01 15457 £ 02571 0.12% £ 007% 543% + 157% 194 0201 % 1111667

Norma

|
i

bew (histogramas de execugdes para configuracio com melhor desempenho)

ol

Lm-&ﬁij _.._nﬁ_&__m}
Acurdcia (%): 96.52% | Hip. fracas validas (%): | Tempo de execugéo (s):
+ 1.17% 0.10% 4 0.00% 45965 £ 4.665

5.3.4 Resultados para SMO-B;

Assim como SMO-Bg sucedeu SMO-B,,, SMO-B; é a evolugio natural de SMO-B.,
aumentando ainda mais o grau de acoplamento entre SMO e AdaBoost.M1. Os re-
sultados para o SMO-B,, sdo mostrados na Tabela 5.6, que possui o mesmo formato

37

que as Tabelas 5.3 e 5.4, 5.5. Os critérios de selegfio das melhores configuragoes
foram os mesmos descritos anteriormente na Secédo 5.3.1 para SMO-B,.

Tabela 5.6: Média de resultados e melhor resultado para o algoritmo hibrido SMO-
Bs apds 10 rodadas de experimentos com conjuntos distintos de treinamento e vali-
dacdo.

bew (média de resultados para hipéteses fortes)

T »p Acurdcia (%) Hipdteses fracas vdlidas (%) Tempo de execugio (s)
1000 0.4 86.314% + 1.45% 70.54% £ 1.46% 6812s+091s
1 04 92.67% £ 4.41% 100.00% £ 0.00% 00350015
1 01 01.86% 6.38% 100.00% £+ 0.00% 0.02s5:+£001s
1000 0.1 | 96.29% - 1.63% 69.17% = 1.54% 1762540165
1000 07 96.00% £ 1.21% 71.67% &+ 2.46% 1182852355
100 1 96.14% 4 1. 56% 80.40% 1 502% 160854 038s
1 07 92.14% £ 5.98% 100.00% =k 0.00% 0035k£00%s
1000 1 05.81% £ 1.24% 73.61% £ 1.94% 16821s:£333s
100 a7 96.00% £ 1.45% 80109 £+ 3 21% 11295+ 0223
100 G4 96.19% 4 152% 80.20% & 2.60% 651501053
i 1 94.76% £ 3.47% 1G0 00% £ 0 €0% 003500035
1900 01 96.14% + 1.35% 7450% £ 3 50% 173s£ 0055

bew (média de resultados para hip6teses fortes para T x p)

Acuracia (%)

Hip. fracas vélidas (%)

Tempo de execucéo (s)

38

Tabela 5.6: (continuado)

bew (média de resultados para hipéteses fracas)

T p Alpha Taxa de erro (%) Vetores de suporte (%) Norma
1 04 1.3973 £ 03459 $16% £ 311% 7.71% % 2 86% 2115841 4 34 3790
1 97 1.3892 4- 0.3426 0.17% £ 0.12% 10.00% £ 3 99% 276 B6B1 £ 123.6461
16 01 01214 4 0.0182 0.92% £ 0.05% 11.65% £ 0 44% 447 1555 & 56.9464
1 1 15918 = 0.2485 0.10% + 0.06% 13 24% + 4.63% 340.5600 £ 95.3159
100 0.4 0.1355 : 0.0149 0.86% 4+ 008% 27.08% £ 2.33% 900.5703 :+ 129.9236
100 07 01459 4 00226 0.86% = 0.08% 34.93% = 4.44% 1395.4959 + 207.6325
1000 0.1 | 0.0599 4 0.0086 0.97% =+ 0.03% 11.77% 4 0.58% 489.3496 zk 42.2209
00 1 0.1546 & 0.0249 0.83% £ 0.11% 39.98% =+ 5.36% 2002.2801 & 406 5583
1800 G.4 0.0646 £ 0.0079 0.96% % 0.05% 23.46% & 2 B1% 8252713 4 116 4942
1600 07 0.0732 £ 00151 0.94% & 4.06% 27.19% £ 3.75% 1253.2555 4= 238 3426
1060 1 0.0808 4 0.0158 0.91% £ 0.08% 29 .69% -+ 4 Z3% 17213789 £ 362.4685
1 01 13876 4+ 0.3919 018% & 0.15% 505% £ 1.82% 130.3803 & 49 4667

bew (média de resultados para hipdteses fracas para T x p)

Vetores de su-
0,
Alpha Taxa de erro (%) porte (%) Norma

bew (histogramas de execucdes para configuragdo com melhor desempenho)

[P - — e
? | | | '

;&%l_‘_ﬂwl} me_n[[*Nﬂﬁﬂl&,‘

Acurdcia (%): 96.29% | Hip. fracas vdlidas (%): | Tempo de execugéo (s):
+ 1.63% 0.10% + 0.00% 17625+ 0.16s

5.4 Sumadario de Resultados

Esta se¢do traz tabelas com o sumadrio dos resultados de desempenho dos algoritmos
propostos e da versdo padrio do SMO para todos as 22 bases de dados selecionadas.
A Tabela 5.7 compara resultados de desempenho em termos de acurdcia, enquanto

39

a Tabela 5.8 compara tempo de execugéo.

Note que algumas células das Tabelas 5.7 e 5.8 foram deixadas em branco,
uma vez que nem todas as bases de dados foram testadas com todos algoritmos por
restricbes de recursos computacionais.

Tabela 5.7: Sumdrio de resultados de acurdcia para algoritmos hibridos.

Base de dados sMoO SMO-Bq SMO-By $MO-B., SMO-B;
bow 096.10% £ 0.97% B7.71% £ 12.38% 97.62% + 000% 9652% £ 117% 96.29% 1 163%
cdges 80,489 4 333% 70.24% + 000% 77.38% £ 000% 77.38% & 000% 83.33% & 0.00%
chess® 93.77% £ 1.38% B85.63% & 801% - 93.90% + 1.49% 93.20% = 1.68%
chess! BS 37% £ 1.41% 78.60% £ 4.76% - 84.57% £ 1.65% B82.40% 1.54%
chess® 68.37% == 1.26% 64 33% + 3.91% - 65.53% % 217% 66 63% = 2.40%
gauss® 160.00% -+ 0.00% 100.00% + 0.00% 100.00% = ¢.00% 100.00% = ¢ 00% 100 .00% & 0.00%
gauss! $8.57% % 0.68% - 498 67% + 0.00% 99.33% £ (L.00%
gauss® 92.07% 4 1.05% - 93.00% & 0.00% 93.00% = 0.00%
hepatitis BO0.64% o= 4 61% - . 78.30% 4 6.51% 75.96% 4 6 32%
ionosphere 95 09% £ 1.83% - 95 00% = 0.95% 94.72%0 4 2.74%
musk 93.01% % 2 32% - 93 01% £ 0.00% 93.71% £ 0.00%
pEs 81 25% - 8 55% 87.50% + 0.00% 8§8.12% = 4 80% 82.50% £ 5.96%
pid 76.80% + 2.51% - 75320 = 0 00% 75.71% £ 2.02% 76.19% £ 228%
ringnorm 98 47% + 0.70% - 08.13% + 0.92% 97.90% =+ 0.56%
spect? 76.36% + 0.21% - - 77 81% % 0 36% 78 50% = 3.31%
spect” 82.53% < 0.00% - £4.31% X 2.88% B82.86% = 1.65%
spiral® 5707% % 2.63% - 61.00% & 0.00% 62.67% = 0.00%
spiral! 52.63% + 1.39% - 56 67% £ 0.00% 54 67% £ 0.00%
spiral? 53.17% + 1 21% - 52.67% + 0.00% 51 00% - 0.00%
twonorm 97.97% £ 0.67% - 97.50% £ 0.70% 96.67% £ 0 80%
wdbe 95.38% + 1.37% - 93 B0% £ 2.01% 94.04% £ 147%
wpbe 79 83% + 5.65% - 75.67% & 7 54% 77.67% %k 5.3%%

40

Tabela 5.8: Sumadrio de resultados de tempo de execugio para algoritmos hibridos.

Base de dados SMOQ SMO-Bo SMO-Bs SMO-B. SMO-B;
bew 54654+ 2.40s 003s:£003s 0.04s5+000s 4596524665 1762s5+0165s
cdges 158455+ 21215 288250005 978154 000s 133754000s 28234540005
chess® 79225+3545 25255 10945 . 7960s£046s5 3557834 3485
chess! 79745217015 9845901 - 7515654 17.27s 578ls+161s
chess? 62795+ 3195 149655495 - 777150805 3591sk0Ql16s
gauss® 0.04s+00ls 006s+000s 00250005 002s54£000s 002s£0003
gauss? 0.435+013s - 446050005 1069s+0060s
gauss” 062540115 - 4211s4£000s 11225+£000s

hepatitis 0.01s5+0.00s - 103540045 331s5+003s
ionosphere 10050435 . 271510055 221540025
musk 887543865 179554+ 000s 1658350005
pgs 0195+ 0085 . 51154+ 000s 10Bls+013s5 361s£003s
pid B28Bs5+156s . B899s£+000s 973540135 1177550775
ringnorm 21.23s£ 562 - . 3289656995 2838653705
spect? 01854 003s - 3495+ 0045 00750045
spect” 027s4+002s 005540005 03750033
spiral® 38.72s £ 27515 1278254+ 0.00s 35334540005
spiral! 596530855 - 1311s:£000s 6438540005
spiral® 1715954 2665 - 49156515 0005 12450005
twonorm 072520035 - - 5205+ 036s 462254 0.165
wdbe 29850585 - - 34995+ 141s 800450975
wpbe 484543305 - 021s+001s 501s5£0045s

41

Capitulo 6

Conclusao

Tendo em vista os resultados discutidos no Capitulo 5, a conclusido mais fundamen-
tal que este trabalho possibilita é de que € possivel combinar técnicas de Boosting
e SVMSs em algoritmos hibridos que frequentemente apresentam desempenho supe-
rior a outras maquinas de aprendizado sofisticadas, tais como as proprias formula-
cbes tradicionais de SVMs. Esta conclusdo contradiz uma importante ressalva da li-
teratura de Boosting. Muitos autores consideram, dentre eles Schapire [Sch02], que
algoritmos muito complexos quando utlizados como geradores de hipéteses fracas,
ndo apresentam bons resultados na hipdtese forte computada por um algoritmo de
Boosting. Esta restricio apresentou um risco consideravel para esta pesquisa, uma
vez que SVMs sdo das mdquinas de aprendizado mais sofisticadas conhecidas na
literatura {CST00]. De acordo com os resultados do Capitulo 5, o algoritmo inicial
proposto, SMO-B,, falhou em produzir resultados melhores que a versdo original
do SMO, como j4 havia sido previsto por outros autores. No entanto, contradizendo
Schapire e outros, a partir da anélise de sua execucéo foi possivel localizar as fontes
do problema e elimina-las na versdo subsequente, SMO-Bg.

Outro ponto vem da teoria de SVMs. Uma vez que sao formuladas como
problemas de otimiza¢o, o hiperplano de separagéo alcangado por SVMs € consi-
derado étimo uma vez que seu algoritmo de treinamento converge. No entanto, foi
observado que os algoritmos hibridos propostos apresentaram desempenho ainda
melhor que a versdo original do SMO, o que indica que a formulagdo de SVMs
esta sujeita a erros provenientes da falta de exemplos de treinamento suficientes ou
ainda do desajuste de pardmetros da mdaquina e do kernel utilizados. Os resultados
obtidos indicam que em sua juncdo com Boosting nos algoritmos hibridos, esta di-
ficuldade de alcancar bons resultados com pardmetros desajustados pode ter sido
parcialmente superada.

Esta questdo nos leva a outra conclusdo. Independentemente se acoplado

42

ou ndo com Boosting em algoritmos hibridos, um dos maiores problemas praticos
de utilizar SVMs e métodos baseados em kernels em problemas de aprendizado
estd na dificuldade de ajustar seus pardmetros. Nog experimentos realizados fo-
ram examinados trés casos onde a dificuldade de ajuste de pardmetros impediu que
quaisquer dos algoritmos testados apresentassem desempenho satisfatério, especifi-
camente nas bases de dados spiral®, spiral’e spiral®>. Em um experimento isolado,
os parametros de uma SVM foram ajustados com muito mais rigor gue nos expe-
rimentos originais, aproximadamente com precisdo 6 ordens de magnitude maior.
Como resultado, o SMO conseguiu um desempenho de acurdcia préximo a 100%, re-
alcando a suceptibilidade de SVMs ao ajuste de pardmetros. A concluséo, portanto,
é que apesar desta abordagem hibrida conseguir compensar pequenos desvios nos
pardmetros de SVMs, este ajuste continua sendo um de seus maiores problemas,
acopladas a Boesting ou néo.

A conclusdo final deste trabalho, e taivez a mais importante, estd relacionada
aos promissores resultados obtidos nos experimentos. Fica claro que apesar do pro-
cesso de desenvolvimento do trabalho ter abrangido uma grande quantidade de op-
ctes, algoritmos e bases de dados, uma abordagem mais vertical pode ser utilizada
agora para explorar em mais detalhe cada um dos pontos brevemente ressaltados
aqui. A conclus#o é, portanto, que uma exploragiio mais a fundo de estratégias para
combinagio de Boosting e SVMs tern um grande potencial para produzir mdqui-
nas de aprendizado ainda mais eficientes, tanto em termos de acuracia guanto em
termos de tempo de execugio.

43

[BGL™99]

[BLCOO]

[BMS8]

[Bre94]

[Bre96]

[CacS4]

[CDH™00]

[CST0O0]

[DS593]

Bibliografia

M. B S. Brown, W N. Grundy, D. Lin, N. Cristianini, C. Sugnet, Jr
M. Ares, and D. Haussler. Support vector machine classification of mi-
croarray gene expression data. Technical report, University of Califor-
nia, Santa Cruz, 1999.

A. P Braga, T B. Ludermir, and A. E Carvalho. Redes Neurais Artificiais:
Teorta e Aplicagdes. LTC, 2000.

C. L. Blake and C. J. Merz. UCI repository of machine learning databa-
ses, 1998,

Leo Breiman. Bagging predictors. Technical report, University of Cali-
fornia at Berkeley, 1994.

Leo Breiman. Bias, variance and arcing classifiers. Technical report,
University of California at Berkeley, April 1996.

Christian Cachin. Pedagogical pattern selection strategies. Neural
Networks, 7(1):175-181, 1994,

J. Cai, A. Dayanik, N. Hasan, T. Terauchi, and H. Yu. Supervised ma-
chine learning algorithms for classification of cancer tissue types using
microarray gene expression data. Technical report, Columbia University,
2000.

Nello Cristianini and John Shawe-Taylor. An Introduction to Support
Vector Machines and other kernel-based learning methods. Cambridge
University Press, 2000.

H, Drucker, R. Schapire, and P Simard. Boosting performance in neu-
ral networks. International Journal of Pattern Recognition and Artificial
Intelligence, 7:705 — 719, 1993,

44

[Fre95]

[FS95]

[FS96a]

[FS96b]

[FS97]

[FS99]

[Hay94]}

[Heb49]

{Hop82}

[KKO1]

[(MP43]

[MP69]

Y, Freund. Boosting a weak learning algorithm by majority. Information
and Computation, 2(121):256-285, September 1995.

¥, Freund and R. E. Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. In Proceedings of the
Second European Conference on Computational Learning Theory. LNCS,
March 1995.

Y. Freund and R. E. Schapire. Experiments with a new boosting algo-
rithm. In Proceedings of the 13th International Conference on Machine
Learning, pages 148-146. Morgan Kaufmann, 1996.

Y. Freund and R. E. Schapire. Game theory, on-line prediction and boos-
ting. In Proceedings of the 9th Annual Conference on Computer Learning
Theory, pages 325-332. ACM Press, New York, NY, 1996.

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-
line learning and an application to boosting. Journal of Computer and
System Sciences, 55(1):119-139, August 1997.

Y. Freund and R. E. Schapire. A short introduction to boosting. Journal
of Japanese Sociery for Artificial Intelligence, 14(5):771~780, September
1999. Appearing in Japanese, translation by Naoki Abe.

Simon Haykin. Neural Networks: A Comprehensive Foundation. Mac-
millan College Publishing Company, Inc., 866 Third Avenue, New York,
New York 10022, 1994,

D. O. Hebb. The Organization of Behavior. Wiley, 1949.

J. J. Hopfield. Neural networks and physical systems with emergent
collective properties. In Proceedings of the National Academy of Sciences,
79, pages 2554-2558, 1982.

Michihiro Kuramochi and George Karypis. Gene classification using ex-
pression profiles: A feasibility study. In IEEE International Conference on
Bioinformatics and Biomedical Egineering, pages 191-200, 2001.

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 5:115-133, 1943.

M. Minsky and S. Papert. Perceptrons: an introduction to computational
geometry. MIT Press, 1969.

45

IMun92]

[OFG97]

{Pla98a]

[Pla98b]

[RHWB86]

{Ros58]

[RTR*01]

[5ch90]

[Sch92]

[Sch99]

[Sch02]

[§599]

P W Munro. Repeat until bored: A pattern selection strategy. Advances
in neural information processing systems, 4:1001-1008, 1992.

E. Osuna, R. Freund, and E Girosi. An improved training algorithm
for support vector machines. In J. Principe, L. Gile, N. Morgan, and
E. Wilson, editors, Neural Networks for Signal Processing VI - Proceedings
of the 1997 IEEE Workshop, pages 276-285. IEEE, 1997.

John C. Platt. Fast Training of Support Vector Machines using Sequential
Minimal Optimization. MIT Press, 1998.

John C. Platt. Sequential minimal optimization: a fast algorithm for
training support vector machines. Technical report, Microsoft Research,
1998.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representa-
tions by back-propagating errors. Nature, 323:533-536, 1986.

F Rosenblatt, The perceptron: A probabilistic model for information
storage and organization in the brain. Psychol. Rev., 65:386-408, 1958.

S. Ramaswamy, P Tamayo, R. Rifkin, S. Mukherjee, C. H. Yeang, M. An-
gelo, C. Ladd, M. Reich, E. Latulippe, J. P Mesiroy, T. Poggio, W. Gerald,
M. Loda, E. S. Lander, , and T R. Golub. Multiclass cancer diagnosis
using tumor gene expression signatures. PNAS, 98 (26):15149-15154,
2001,

R. E. Schapire. The strength of weak learnability. Machine Learning,
5(2):197-227, 1990.

R. E. Schapire. The Design and Analysis of Efficient Learning Algorithms.
MIT Press, 1992.

R. E. Schapire. A brief introduction to boosting. In Proceedings of the
Sixteenth International Joint Conference on Artificial Intelligence, 1999.

R. E. Schapire. The boosting approach to machine learning: An over-
view. In MSRI Workshop on Nonlinear Estimation and Classification,
2002.

R. E. Schapire and Y. Singer. Improved boosting algorithms using
confidence-rated predictions. Machine Learning, 37(3):297-336, De-
cember 1999.

46

[Vap95]

[VC71]

[WH&60]

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,
New York, 1995.

V. N. Vapnik and A. J. Chervonenkis. On the uniform convergence of
relative frequencies of events to their probabilities. Theory of Probability
and its Applications, 16(2):264-280, 1971.

B. Widrow and M. E. Hoff. Adaptive switching circuits. In Institute of
Radio Engineers, Western Electronic Show and Convention, 1960.

47

Strategies for Combining Boosting
and Support Vector Machines
by
Thiago Turchetti Maia

B.Sc., Universidade Federal de Minas Gerais, Brazil, 1999.

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Science in Electrical Engineering

Universidade Federal de Minas Gerais
February 2003

© Thiago Turchetti Maia, 2003

Abstract

Support Vector Machines are known in literature to be one of the most efficient
learning models for tackling classification problems, mainly due to their strong
theoretical foundation and their training based on solving a convex constrained
quadratic optimization problem. Among the many algorithms for training SVMs by
solving this problem, the Sequential Minimal Optimization (SMO) algorithm is of
outstanding performance thanks to its approach that breaks this problem up into
many smaller optimization problems, a technique otherwise known as chunking,
and uses an analytical method to solve each small chunk, as opposed to traditionai
numerical algorithms.

Meanwhile, Boosting techniques have received a great deal of attention lately
from the machine learning community. Many Boosting algorithms work by using an
ordinary classifier algorithm to produce different weak hypotheses for the learning
problem, which are later combined into a single scrong hypothesis through majority
voting. The most well known Boosting algorithms in literature are the AdaBoost
family members, which greatly increased Boosting’s appeal by solving many of the
practical problems of earlier algorithms.

In this work we combine Boosting with Support Vector Machines, namely
the Adaboost. M1 and SMO algorithms, to create new hybrid algorithms that out-
perform the standard SMO version in selected contexts. We achieve this integration
with different degrees of coupling, where the four algorithms proposed start from
the most straight forward black-box integration strategy to deep modifications and
mergers between AdaBoost and SMO components.

Although our tests show that our proposed algorithms exhibited better per-
formance for most problems experimented with, there were some particular ones
where SMO still performed better. Nevertheless, it is possible to identify trends of
behavior bound to specific properties of the problem being solved, where one may
hence apply the proposed algorithms in cases where it is known to succeed. Finally,
besides introducing this new class of algorithms and paving the way for the further
development of algorithms, we also show that part of the difficulties of using SVMs

ii

in practice, namely the tuning of appropriate machine and kernel parameters, may
be partially compensated by the hybrid approach, therefore increasing the applica-
bility of the hybrid algorithms.

jii

Contents

Abstract i
Contents iv
List of Tables viii
List of Figures X
Dedication xii
Acknowledgments xiii
1 Introduction 1
1.1 The Learning Problem C e 1
1.2 Aims and Motivations C e e e e 3
1.3 Contributions of This Work e e e e e e e 4
1.4 DissertationOutline o 5

2 Boosting 7
2.1 Pedagogical Strategies for Learning Machines 7
2.1.1 Error-Dependent Presentation Probability 9

2.1.2 FError-Dependent Repetition 9

2.1.3 Card-File System 9

2.1.4 Training Set Partition oo .10

2.1.5 RepeatUntilLearned 10

2.2 The PACFramework 10
2.2.1 The Majority-Vote Game, 11

2.2.2 Weak Learnability Using Majority Voting 12

2.2.3 Horse Racing Gambling 14

2.3 The AdaBoost Family of Algorithms 16

iv

2.3.1 AdaBoostMI e e e e e e e e e 18

2.3.2 AdaBoostM2Z e e 18
233 AdaBoostMH e 20
2.3.4 AdaBoostMO 22
235 AdaBoostMRo 24
2.3.6 AnalysisofErrorBounds 24
2.4 Advancesonthe BoostingFront 29
2.4.1 Relation to Support Vector Machines 29
2.4.2 Research and Applications, 30
Support Vector Machines 31
3.1 Generalization Theory G 5 |
3.1.1 PAC LeamingRevisited Le. 32
3.1.2 Empirical Risk Minimization 33
3.1.3 Vapnik-Chervonenkis Theory e 34
3.1.4 Swuctural Risk Minimization C e 36
3.2 Linear Learning Machines 37
3.2.1 Linear Classification, 37
3.2.2 DualRepresentation 38
3.3 Kernel-Induced Feature Spaces e e 39
3.3.1 Mapping into Feature Spaces e e e 39
3.3.2 BuildingKernels, 40
3.3.3 ExamplesofKernels, . 43
3.4 Building Support Vector Machines 43
3.4.1 Linear Support Vector Machines 44
3.4.2 Non-Linear Support Vector Machines 46
3.4.3 Soft Margin Optimization 49
3.4.4 Support Vector Regression S e 53
3.5 TrainingMethods e 55
3.5.1 General Techniques. 55
3.5.2 Decomposition and Chunking e e e 57
3.5.3 Sequental Minimal Optimization 58

Hybrid Algorithms Combining Boosting and Support Vector Machines 65

4.1
4.2
4.3

Motivations and PreviousWorks 65
Combining AdaBoostand SMO L 67
Proposed Algorithms 69
4.3.1 Naive Integration (SMO-B,) 70
4.3.2 Improved Subset Selection (SMO-Bg) 70

4.,3.3 First Heuristic Bypass (SMO-B.,) 71

4.3.4 First and Second Heuristics Bypass (SMO-Bs) 72
4.3.5 Failed Experiments 72

4.4 Algorithmic Complexityo oo 74
5 Experiments and Results 80
5.1 Descriptions of Databases 80
5.1.1 Wisconsin Breast Cancer Database (bew) 82
5.1.2 Wisconsin Diagnostic Breast Cancer (wdbe) 83
5.1.3 Wisconsin Prognostic Breast Cancer (wpbe) 83
5.1.4 Cancer Diagnosis Using Gene Expression Signatures (edges) . 84
5.1.5 Hepatitis Domain (hepatitis), 84
5.1.6 Musk Database (musk) 85
5.1.7 Escherichia coli promoter gene sequences (DNA) (pgs) 85
5.1.8 Pima Indians Diabetes Database (pid) 86

5.2

5.3

3.4

5.1.9 Johns Hopkins University lonosphere Database (ionosphere) 86
5.1.10 Bidimensional Normal Distributions With Overlapping

(gauss®, gauss!, gauss?) 87
5.1.11 Bidimensional Uniform Distributions Over Chessboard With

Noise (chess?, chess!, chess®) 88
5.1.12 Bidimensional Spiral with Noise (spiral’, spiral!, spiral®) . . 89
5.1.13 Multivariate Normal Distribution (ringnorm) 89
5.1.14 Overlapping Multivariate Normal Distribution (twonorm) . . 90
5.1.15 Real SPECT (spect’) v v v v v vt 20
5.1.16 Binary SPECT (spect®)«o 91
Preliminary Analyses 92
5.2.1 Linear Discriminanto a3
5.2.2 SVM Parameter Coarse Tuning 94
5.2.3 SVM ParameterFineTuningo 160
Experimental Results oo 103
5.3.1 Results for SMO-B, e e e e e e e e 104
5.3.2 Resulisfor SMO-Bs 107
5.3.3 Resultsfor SMO-B, 109
534 ResultsforSMO-Bs. B 1
Discussionof Results o 113
5.4.1 Linear Separability 114
542 SVMTuUning 0 vt v v e 116
5.4.3 SMO-B, and SMO-Bs: A Simple Hybrid Algorithm and its

Bvolution e e e e e e e 117

vi

5.4.4 SMO-B, and SMO-Bs: Hybrid Algorithms with Merged Com-
POTENLS « . v v vt v v e vt e et e e e
5.4.5 Performance SUMmMAaryt

6 Conclusion

7 Future Work

7.1 Non-Euclidean Input Spaces o v
7.2 Sparse Vector Operations v v v v e e e
7.3 Fixed-threshold SVMs
7.4 ReweightingwithSVMs
7.5 Multiclass Classification e e
7.6 Muldiabel Classification
7.7 RegressionProblems L oo
7.8 Automatic Kernel and Parameter Selection
7.9 Study of Theoretical Bounds

7.9.1 Bounds Imposed by Combining SVM and Boosting Theories .

7.9.2 Investigating Behavior Bounded to L or Pareto Curves .
7.10 Parallel Architectures C e

7.10.1 Parallelizing Boosting

7.10.2 Parallelizing SMO e e C e e

Appendix A Complete Results For All Datasets
A1l Preliminary Analysis e e e e
A2 ExperimentalResults oo
A.2.1 Complete Results for SMO-B, e e e
A.2.2 Complete Results for SMO-Bg
A23 Complete Results for SMO-B,
A.2.4 Complete Results for SMO-Bs

Appendix B Notes on Performance Measures

Bibliography

124

127
127
128
129
130
131
131
132
132
133
133
134
134
135
135

137
137
141
141
150
159
192

227

228

3.1

4.1

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

Al

A2

List of Tables

Summary of commonly used inner-product kernel functions. 43
Space and time requirements for the four hybrid algorithms proposed. 74

Average results for single-neuron Perceptron network after 10 rounds

of experiments with distinct training and testing sets. 94

Results for standard SMO algorithm over databases subsets of 100

instances at the mMOSE. .+« .« v o v b v e e 926

Results for standard SMO algorithm over unbounded databases that

previously failed with at most 100 instances. 99

Average and best results for standard SMO algorithm after 10 rounds

of experiments with distinct training and testing sets. D 102

Average and best results for hybrid algorithm SMO-B,, after 10 rounds

of experiments with distinct training and testing sets. 106

Average and best results for hybrid algorithm SMO-Bj after 10 rounds

of experiments with distinct training and testing sets. 108

Average and best results for hybrid algorithm SMO-B., after 10 rounds

of experiments with distinct training and testing sets. 110

Average and best results for hybrid algorithm SMO-B; after 10 rounds

of experiments with distinct training and testing sets. 112

Accuracy summary for best configuration results obtained with SMO,

SMO-B,, SMO-Bg, SMO-B,, and SMO-Bs. 122
5.10 Execution time summary for best configuration results obtained with

SMO, SMO-B,,, SMO-Bg, SMO-B,, and SMO-Bs. 123

Average results for single-neuron Perceptron network after 10 rounds

of experiments with distinct training and testing sets. 138

Average and best results for hybrid algorithm SMO-B,, after 10 rounds

of experiments with distinct training and testing sets. 141

viii

A.3 Average and best results for hybrid aigorithm SMO-Bp after 10 rounds
of experiments with distinct training and testing sets.
A.4 Average and best results for hybrid algorithm SMO-B,, after 10 rounds
of experiments with distinct training and testing sets.
A5 Average and best results for hybrid algorithm SMO-B; after 10 rounds
of experiments with distinct training and testing sets

2.1
2.2
2.3
2.4
25
2.6

3.1

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
53
5.4
5.5
5.6

57
5.8

5.9

List of Figures

Pseudo-code for a generalized version of AdaBoost. 16
Pseudo-code for AdaBoost.M1. oL 19
Pseudo-code for AdaBoost.M2. 21
Pseudo-code for AdaBoost MH. o o 23
Pseudo-code for AdaBoostMO. L o 23
Pseudo-code for AdaBoost MR.o 25
Pseudo-code for Platt’s Sequential Minimal Optimization algorithm. . 64
Schematic drawing of the internal workings of AdaBoost.M1. 68
Schematic drawing of the internal workings of SMO. 69
Schematic drawing for the proposed SMO-B,, algorithm. 76
Schematic drawing for the proposed SMO-Bg algorithm. 77
Schematic drawing for the proposed SMO-B, algorithm. 78
Schematic drawing for the proposed SMO-B; algorithm. 79
gauss’: two normal-distributed classes with no overlapping. 87
gauss': two normal-distributed classes with little overlapping. 88

gauss’: two normal-distributed classes with significant overlapping. 88
chess®: two uniform-distributed classes over chessboard with no over-

lapping. e 89
chess!: two uniform-distributed classes over chessboard with litde
overlapping caused by Gaussian noise.o 90
chess®: two uniform-distributed classes over chessboard with szgmﬁ
cant overlapping caused by Gaussian noise. 91
spiral’: two classes drawn over spiral lines with no overlapping. .. 91
spirall: two classes drawn over spiral lines with little overlapping
caused by Gaussian noise.o e o 92
spiral®: two classes drawn over spiral hnes with significant overlap-
ping caused by Gaussian noise. Lo 93

5.10 Experiment with linear discriminant (single-neuron Perceptron net-
work) over a linearly separable problem similar to gauss®.
5.11 Experiment with linear discriminant (single-neuron Perceptron net-
work) over a problem similar togauss*. L

xi

I dedicate this work to my family, for their endless unconditional support that
eased all my striving moments along the road.

xii

Acknowledgments

1 would like to thank all my family and friends who, at all times, gave me all the
support [needed to overcome the many obstacles along this long road.

I would like to thank Vetta Technologies and its crew for providing me with a re-
sourceful infrastructure where I executed all experiments in this work.

1 would like to thank my supervisor, Prof. Dr. Antdnio de Padua Braga, from whom

1 have received full support to pursue this endeavoring path and encouragement to
pursue new ones yet to come.

Thiago Turchetti Maia
Belo Horizonte, February 2003

xiil

Chapter 1

Introduction

1.1 The Learning Problem

The problem of teaching a machine how to acquire knowledge has been explored
ever since modern computer architectures came to be. The first model of an art-
ficial neuron is due to McCulloch and Pitts back in 1943 [MP43], in their classical
work of describing what was to be the basic unit of a network of neurons that would
resemble the human brain. The focus of their work was much less in the methods
for inducing knowledge into such networks, but instead in their computing abilities
[BLCOO]. Later in 1949, the learning of these networks of neurons was explored
by Hebb [Heb49], which proposed a model based on the adjustment of weights in
neuron’s inputs. This model stood on the theory that biological neurons learn based
on the reinforcement of synaptic links to other excited neurons. Widrow and Hoff
[WH60] further refined Hebb’s ideas in 1960, incorporating the method of gradient
descent to minimize the output error of each neuron. The first attempt to tackle
pattern recognition problems with neural networks is due to Rosenblatt in 1958
[Ros58] in which he introduced the Perceptron model. The Perceptron is a simple
neural network able to solve linearly separable classification problems in which the
output space is divided into complementary regions that correspond to each cate-
gory. A very brief description of the Perceptron is given in section 5.2.1, where we
use its restriction of only solving linearly separable problems to our advantage.
Though this connectionist approach ! received great attention after the work
of Rosenblatt, the machine learning community was discouraged to pursue it any
further by Minsky and Papert in 1969 [MP69]. Minsky and Papert argued that the

10ther names that have been used to name this field include connectionism, parallel
distributed processing, neural computation, adaptive networks, and collective computation
[RNO5].

limitation of not being able to solve non-linearly separable problems was too great to
be ignored, along with other restrictions such as explosive growth in space and time,
and the lack of a learning rule to muld-layered networks. The 1970’s were hence
marked by the lack of interest from the community in this area, except for a few
scattered researchers. It was not until the works of Hopfield in 1982 [Hop82] and
the development of the back-propagation aigorithm in 1986 [RHW86] that artificial
neural networks regained general interest. Hopfield explored the relation between
recurrent associative networks and physical models, which paved the way for using
Physics theories to describe the behavior of learning machines [Hop82]. Finally,
much attention was drawn to the work of Rumelhart et al. [RHW86], where they
managed to create an algorithm for training multi-layered neural networks, back-
propagation, based on the adjusting of weights in each layer according to the retro-
propagation of their output errors.

This rebirth from ashes of the connectionist school in the 1980s was fol-
lowed by a new wave of research starting in the 1990’ that explored new theo-
ries and algorithms focused not only is constructing and training powerful learning
machines, but also in reorganizing the environment around them in order to im-
prove their performance 2. Vapnik [Vap95] refers to this period as the return to
the origins of statistical learning theory. Pioneer works such as those from Munro
[Mun92], Schapire [Sch92], Drucker et al. [DSS93], and Cachin {Cac94] served
as basis for others like Breiman [Bre94], who introduced the Bagging method for
training and combining multiple copies of a learning algorithm, and also Freund
and Schapire, which later introduced the famous AdaBoost family of algorithms.
The term Boosting itself is due to Schapire in 1990 {Sch90], in the famous paper
where he first showed that any polynomial-time learning algorithm that generated
hypotheses whose error was marginally better than random could be transformed
into a polynomiai-time learning algorithm with arbitrarily smali errorn

In parallel with the development of learning models and methodologies for
improving the performance of previous algorithms, this return to the origins also
motivated the creation of several new learning machines. Among these machines,
we highlight those of Vapnik and co-workers which became known as Support Vec-
tor Machines. Relying on the previous 1965 work from Vapnik and Chervonenkis
[VC71], who developed the method of the optimal separating hyperplane, Vapnik
et al. created the idea of Support Vector Machines in 1992 [Vap95]. Since then, the

2Notice that the term performance has been used throughout the text without specifying
either time performance, space performance, or any other reference of performance measure.
Whenever it is used as such a general concept, we mean the overall performance consisting
of the combination of all relevant measures that may be applied to a given machine or
algorithm.

growing interest of the machine learning community motivated the development of
several specialized training algorithms for solving the convex constrained quadratic
optimization problem with which SVMs are formulated. New techniques such as
chunking and decomposition inspired the work of John Platt {[Pla98a, Plag8b],
whose groundbreaking Sequential Minimal Optimization (SMO) algorithm allowed
for a great popularization of SVMs due to its simplicity of implementation and dras-
tic reduction of required computational resources.

1.2 Aims and Motivations

Out of the many learning problems tackled by different machine learning algo-
rithms, in this work we chose to work with binary classification problems. The
reason for this choice is twofold. First, binary classification problems are about the
most fundamental problems in machine learning, where more sophisticated learn-
ing problems are often presented as simple extensions of the binary classification
case. Many learning models and algorithms, originally designed to deal with bi-
nary classification, have been adapted to extend their applicability to multi-class
classification, multi-label classification, and even regression problems. Although we
limit ourselves to investigating only binary classification databases, we already fore-
see the extension of this work to other problem domains, as outlined in Chapter 7.
Second, binary classification problems are the natural habitat of the two learning
machines combined in this work, namely Boosting and Support Vector Machines,
although many extensions have been proposed for both. Therefore, we are able to
validate the idea of combining them together while still using their most straight
forward original versions.

We now formalize the definition of binary classification learning problem,
assumed throughout the text. Consider the classification problem having an n-
dimensional input domain and a binary output domain, both containing [instances
such that we have a dataset (z1,v1), ..., (@, i), where each pattern z; belongs to
domain X = IR™, each label y; belongs to domain ¥ = {-1, +1}, and each pattern
x; is classified by its corresponding label y;. In this work we selected 22 databases
with which we experimented each of the algorithms proposed as well as the stan-
dard version of SMO. Out of the 22 datasets studied, 8 corresponded to real-world
biology problems, 2 to real-world genomics problems, one to a real-world physics
problem, 9 were synthetically generated with bi-dimensional inputs, and 2 were
synthetically generated with 20-dimensional inputs. A thorough description of these
datasets and their corresponding problems is given in Chapter 5.

Out of the many machine learning approaches possible of being used in bi-

nary classification problems, we are certainly interested in those which gives us the
most accurate models in the shortest executdon time. One of the most outstand-
ing machine learning algorithms recently proposed is SMO, by John Platt {Pla98a].
While relying on the great expression power given by Support Vector Machines,
Plart managed to take advantage of several particular properties of the convex con-
strained quadratic optimization problems, responsible for their training, in creating
an efficient algorithm which is generally be both faster and more accurate than
many other learning algorithms.

1t would be extremely naive if we attempted to propose a new algorithm
that would generally both faster and more accurate than SMO. Nonetheless, as Platt
took advantage of properties of the optimization problem at hand, we may extend
his approach by deriving a new algorithm that explores specific properties of the
learning problems at hand, eventually even outperforming SMO in both accuracy
and execution time. To achieve this goal, we use SMO as the basis of our new
algorithms, along with a Boosting algorithm which is expected to use its strong
theoretical background to enhance SMO’s performance.

According to Freund [Fre95], a Boosting algorithm is a learning algorithm
that uses as a subroutine a different learning algorithm. By repeatedly running a
given weak learning algorithm on a maintained distribution of the training data,
Boosting algorithms generate a so-called strong hypothesis, which is a single clas-
sifier achieved by combining the weak hypotheses through majority voting. The
first effective Boosting algorithms were presented by Schapire {Sch90] and Fre-
und [Fre95]. More recently, Freund and Schapire introduced AdaBoost, which is a
generic family of Boosting algorithms {F895, FS96a] that solved many of the prac-
tical difficulties of earlier algorithms.

Therefore, the most important goal of this work is to create a new class of
aigorithms that rely on the strongest features provided by both Boosting and Sup-
port Vector Machines, taking advantage of specific properties of learning problems
when attempting to outperform Plat’s efficient Sequential Minimal Optimization
algorithm.

1.3 Contributions of This Work

In this work we combine Boosting techniques together with Support Vector Ma-
chines, deriving new robust hybrid learning algorithms that consistently outper-
form standard SVMs in particular classification problems, both in accuracy and time.
Even though SVMs are constructed as to yield an optimal separating hyperplane for
binary classification tasks, we show that various factors such as data biasing, im-

proper kernel functions, and unfit regularization and kernel parameters are capable
of downgrading the performance of standard SVMs, which may hence be boosted us-
ing Boosting algorithms. We put together two of the most known Boosting and SVM
raining algorithms, namely Freund and Schapire’s [FS95] AdaBoost.M1, and Platt’s
[Pla98a] Sequential Minimal Optimization (SMO). We approach the integration of
AdaBoost.M1 and SMO at different levels, starting from using SVMs as black-box
weak learners, to combining the heuristics inherent to SMO with the probabilistic
selection mechanisms found in AdaBoost.M1, therefore proposing four hybrid algo-
rithms with different degrees of coupling and modifications added to AdaBoost.M1
and SMO.

One of the most important contribution of this work is to prove that the in-
tegration of Support Vector Machines with Boosting yields algorithms that, for a set
of problems with specific properties, are more efficient than other major learning
algorithms, such as SMO, both in terms of accuracy and execution time. It is known
in the machine learning literature that that overly complex classifying algorithms
used as weak learners may fail to produce good strong hypotheses through a Boost-
ing algorithm. Since SVMs are one of the most sophisticated learning machines
currently known, contradicting the fact that they are bound to this restriction is of
great relevancy to the furure development of better learning machines that incorpo-
rate Boosting and Support Vector principles.

Finally, aside from setting the first steps toward more efficient hybrid imple-
mentations, another important contribution of this work is the actual construction of
new learning algorithms that already perform better than SMO for selected learning
problems. As we discuss results and conclusions in Chapters 5 and 6, we iden-
tify several common properties in the datasets over which the algorithms proposed
obtained better results, thus segmenting the applicability of these algorithms to con-
texts where they are already known to have excelled. Also, one of the main problems
of using Support Vector Machines is the tuning of machine and kernel parameters
involved in the training process. Despite the simplicity of our tuning procedures and
since good performance standards were still able to be sustained, we found that this
hybrid approach may compensate for slightly unfit SVM and kernel parameters.

1.4 Dissertation Qutline

This dissertation is organized as follows. In Chapter 2 we review Boosting, the con-
cepts behind it, and its applicaton as a general tool for achieving better learning
machines. We start with the description of early works that originated the concept
of Boosting, including the classic ones from Munro [Mun92] and Cachin [Cac94].

Later, we introduce some of the principles of Valiant's Probably Approximately Cor-
rect (PAC) model of learning [Val841, together with important concepts such as
weak learnability. Finally, we thoroughly review the AdaBoost family of algorithms
by Freund and Schapire [FS95, Sch02], including their applicability, formulation,
and bound analyses.

Chapter 3 introduces the concepts and propositions of Support Vector Ma-
chines designed for solving classification problems. We examine concepts of gener-
alization theory for machine learning, such as empirical risk minimization, Vapnik-
Chervonenkis theory [Vap82], structural risk minimization [Bur98], inner-product
kernel functions and learning in kernel-induced feature spaces. Finally, we examine
formulations of different machines, evolving from simple linear SVMs into non-
linear and non-linear soft-margin SVMs, as well as different approaches used to
train them, including the Sequential Minimal Optimizatdon (SMO) algorithm by
John Platt [Pla98a]l.

Using all the groundwork laid down in Chapters 2 and 3, Chapter 4 proposes
the creation of hybrid algorithms that combine Support Vector Machines together
with Boosting techniques in order to create better learning machines that benefit
from desirable properties of both. We start the chapter by describing the motivations
that inspired such hybrid algorithms, followed by the description of the new hybrid
algorithms proposed.

In Chapter 5 we describe and discuss all experiments carried out and results
obtained. We first describe each database used in detail, followed by the results of
preliminary analyses performed over all databases using linear discriminants and
the standard SMO algorithm. Finally, we describe results for the hybrid algorithms
proposed in Chapter 4, along with their in-depth discussion.

Chapter 6 summarizes the results obtained from this work, and highlights
the many conclusions we reached from them. Chapter 7 looks into the future and
suggests new paths toward the continuity of this work. Each of the ideas discussed
has the potential to not only increase the applicability of the algorithms developed
up to now, but also to lead to new algorithms with better generalization and faster
execution times.

For the sake of good aesthetics, Appendix A brings the complete results for all
experiments and analyses commented throughout the text. Although smalls subsets
of these results are repeated in Chapter S, we chose to banish these complete result
descriptions to the Appendices, so as not to clutter the main body of text. For
reference on all time measures contained in the results, Appendix B brings remarks
about program instrumentation and execution environment.

Chapter 2

Boosting

This chapter brings a review of Boosting, the concepts behind it, and its applica-
tion as a general tool for achieving better learning machines. Many of the ideas
introduced here will be revisited in Chapter 4, where we combine them with Sup-
port Vector Machines to create new hybrid learning algorithms. We start with the
description of early works that originated the concept of Boosting in Section 2.1, in-
cluding the classic works from Munro [Mun92] and Cachin [Cac94]. In Section 2.2,
we introduce some of the principles of Valiant’s Probably Approximately Correct
(PAC) model of learning [Val84], together with important concepts such as weak
learnability. The PAC model is later revisited in Chapter 3, where it is used to back
up vet another fundamental theory of machine iearning due to Vapnik and Chervo-
nenkis [VC71]. Section 2.3 brings a thorough description of the AdaBoost family of
algorithms by Freund and Schapire [FS95, Sch02], including their applicability, for-
mulation, and bound analyses. Section 2.4 concludes the chapter describing some
of latest trends in Boosting, including an interesting parallel with Support Vector
Machines inspired by Réitsch et al. [R&t01].

2.1 Pedagogical Strategies for Learning Machines

In 1992, Munro introduced the term pedagogical to refer to a strategy applied in
improving the performance of learning machines {Mun92]. Later in 1994, Cachin
adopted the same names and analogies between human Pedagogy and this concept
of studying and enhancing the mechanisms of learning machines and algorithms
[Cac94]. These two authors and their respective papers pioneered the study of
optimizing the learning of known machines, which, in those cases, were multi-layer
Perceptron neural networks being trained with the back-propagation algorithm. The

focus of their work was the customized selection of input patterns® to be presented
to training algorithms. For most training algorithms, patterns in the training set
are usually presented equally, sometimes according to a predefined scheme, most
of the time ignoring the current status of the machine and the amount of learning
effectively undertaken. These selection strategies work by attempting to determine
an order in which to present patterns to the learner, therefore trying not only to
save computational time often wasted on already-learned patterns, but also trying
to avoid biasing subsets of patterns which in turn may cause the overfitting of the
training set.

There are two types of strategies to use when selecting training patterns,
one deterministic and another stochastic. Munro [Mun92] describes a determinis-
tic strategy where a pattern is repeated until its training error falls below a certain
threshold value. We shall give more attention to the stochastic strategies described
by Cachin [Cac94], once they are the ancestors of today’s modern Boosting tech-
niques. Stochastic strategies are implemented by drawing a pattern from a training
set using a distribution value which is maintained by the training algorithm in order
to reflect the current status of the learning machine. They often start with a uniform
distribution, where the probability of drawing any of the patterns from the set is the
same. As training occurs, the common property between all strategies is to increase
the probability value of patterns with higher output error, thus favoring patterns
which are harder to be learned. Specifically in Cachin’s research, this procedure
takes place at every training step, which is consistent with the use of on-line back-
propagation where weights are updated after each pattern presentation [Cac94].
Notice how important it is to still consider all patterns in the training set during
probabilistic selection, even if some of them have much lower probability of being
selected than others. Since back-propagation minimizes the error function of the
network locally [Hay94], individual patterns may be forgotten if not re-presented
from time to time during learning, which hence would lead to underfitting the train-
ing set,

The following sections shorty describe Cachin's selection strategies explored
in his paper {Cac94]. Some of them have been used in recent works with advanced
learning machines, whereas others, though more naive, still are perfectly good ex-
amples of the ideas behind boosting ? standard learning algorithms. Furthermore,
we shall see later that many advanced Boosting algorithms use recurrent error func-

1In order to keep naming consistency with Cachin's paper, we stick to the term pattern
to denote what is otherwise known as an input vectoy, an individual instance or sample of a
data-set.

2The term boosting is used throughout the text in its lowercase form to denote the gerund
of the verb to boost, as opposed to the noun Boosting used so far.

tions not unlike the first two strategies just described. For a complete description of
all strategies along with their benchmark on different learning tasks, please refer to
[Cac94]. Amazingly enough, Cachin shows how some of these strategies frequently
outperform the standard deterministic selection mechanism from back-propagation,
ever though a theoretical background is not available to back them up.

2.1.1 Error-Dependent Presentation Probability

One of the simplest forms of maintaining the probability value p;, of selecting a given
pattern k is to make it proportional to its output error Ag. This ensures that patterns
with greater error are more often selected, and vice-versa. Different functions may
be selected to implement this proportionality, for instance pr o< O, pr (Ak)g,
pr o (Ap)Y, pe o< €%, or pj 108,

Notice that the values p; for all k in the training set must be normalized after
each update to ensure that they represent a proper probability distribution, that is,
each py must be divided by the sum of all p.Vk.

2.1.2 Error-Dependent Repetition

This strategy is similar to Error-Dependent Presentation Probability, except that each
pattern is repeatedly presented according to a deterministic schedule. All patterns
are initially selected, with each A, being saved as well as its maximum value A,
Each pattern k is then repeated if p, > i—éﬁ‘,—ﬂ, where 7 iterates in 0 < i < W, This
procedure is repeated until the network error falls below an arbitrary threshold. As
before, different functions for Ay may be used for updating pr.

This approach is very similar to Error-Dependent Presentation Probability,
except for two main differences. First, it is guaranteed to present all patterns at
least once to the learner, hence avoiding underfitting. Second, due to its determin-
istic nature, higher-error patterns will be orderly presented to the learner with no
interference of lower-error ones.

2.1.3 Card-File System

This strategy consists of keeping a predetermined order to present patterns to the
learner, represented by the stack of indices of all P patterns, {i1,...,ip}. Whenever
a pattern k is selected from the top of the stack {i,...,ip}, it is presented to the
learner and repositioned in the queue on a position proportional to its output error.
This simple mechanism ensures that harder patterns are more often revisited by the
learning algorithm than patterns already mastered.

Notice that this strategy has two flavors. First, one may deterministically
pop the top of the stack to select the next pattern to be presented. Second, one may
use a probability value proportional to patterns’ positions on the stack to draw the
selection.

2.1.4 Training Set Partition

For a training set with P patterns, we divide this set into N partiions {51,...,8n}.
We start training by feeding the learner with 5y, where all patterns in the subset are
uniformly drawn from it. We then add each new partition S, incrementally to the
set of possible selection choices Sy USaU. ..U Sy, with the option of presenting only
S, for some time before reconsidering the union of all previously-selected partitions.

2.1.5 Repeat Until Learned

This is the strategy originally used by Munro [Mun92]. It consists of repeating
a given pattern until its error falls below a threshold 8. The value of 7 depends
on the learning problem at hand, where it is suggested to be proportional to the
mean squared error of all examples in the training set. Notice that even though
other strategies previously described did not necessarily converge at all times, this
particular one has the potential to be easily kept from converging when confronted
with higher-error patterns.

2.2 The PAC Framework

In this section we give an overview of Valiant's Probably Approximately Correct
(PAC) model, or distribution free learning model, The PAC framework serves not
only as a basis for the Boosting algorithms described in this chapter, but also for
the Vapnik-Chervonenkis theory presented in Chapter 3. Valiant [Val84] introduced
this model back in 1984, where he defines the accuracy of a fearning algorithm to
be 1 — ¢ and its reliability to be 1 — § if it generates a hypothesis whose accuracy
is at least 1 — ¢ with a probability of at least 1 — §. Haussler et al. [HKIW91]
showed that increasing the reliability of any learning algorithm is relatively easy
through testing the hypothesis generated over an independent set of examples to
validate its accuracy. It is straightforward to see that by running this algorithm at
least O | log (3%) /(11— 51)) times, its reliability will increase from 1 — §; to 1 — do
[Fre95].

Increasing accuracy, on the other hand, is much harder. Two variants of the
PAC model were introduced by Kearns and Valiant [KV94] to address the problem.

10

The first, the strong PAC model, takes the required accuracy 1 — € as an input, and is
required to generate hypotheses with error smaller than ¢ with polynomial resources
in 1/e. The second, the weak PAC maodel, is required to generate hypotheses with
error ¢ only marginally smaller than 1/2, that is, hypotheses marginally better than a
random guess. Although Kearns and Valiant [KV94] proved that monotone boolean
functions may be learned with the weak model, but not with the strong model,
Schapire [Sch90] proved that weak and strong PAC learning are equivalent in the
distribution free case [Fre95].

Schapire [Sch90] was responsible for presenting the first algorithm referred
to as Boosting, which consisted of a method for generating hypotheses of arbitrary
accuracy using time and space resources polynomial in 1/e. The main idea behind it
consisted of creating different weak hypotheses generated using different distribu-
tions of instances, and then combining them into a single and more accurate strong
hypothesis using the principle of weighted majority voting, detailed in section 2.2.1.
These ideas are the same behind the AdaBoost family of algorithms, described ahead
in Section 2.3. In the remaining of this section we explore the historical and basic
theories that led to the development of such advanced algorithms.

2.2.1 The Majority-Vote Game

In this section we briefly describe majority voting, one of the core concepts be-
hind Boosting learning algorithms. We do so by first presenting the majority-vote
game, thoroughly explored by Freund [Fre95], and later using it to enhance learning
machines in Section 2.2.2. Weighted majority voting was introduced by the mul-
tiplicative weight-update rule of Littlestone and Warmuth [EW94]. Before them,
many other relevant works leveraged the idea of using multiple expert predic-
tions to tackle one same learning problem, such as the classic from Cesa-Bianchi et
al. [CBFH'93], the models proposed by Vovk [Vov90], Freund et al. [FSSW97],
Kivinen and Warmuth [KW94], and those from Haussler, Kivinen and Warmuth
[HKW95]. The mapping of the problem to game theory, as we describe it below
and as used by Freund [Fre95], is due to Chung [Chu94], though it has also been
more recently explored by Schapire [Sch01].
Let there be two players, a weightor G and a chooser C. Consider a space
(X, %, V) over which the game is played, where X is the training set of input sam-
ples, ¥ is a o-algebra over X, and V' is a probability measure function. ¥ is de-
fined as a nonempty collection of subsets of X' such that the empty set is in £, for
any A € ¥ then A € %, and finally if A, is a sequence of N elements of ¥ then
N A; € T [Vap95]. The probability of any set 4 € I is given by V (4). A real-
valued parameter 0 < -y < 1/2 is fixed prior to starting the game, which proceeds in

11

two-step iterations.

On the first step, player G selects a weight measure W to be used on X,
which is a probability measure on (X, Z) denoted by W (A) where A € X. On the
second step, player C selects a set U € & such that W (U) > 1/2 + ~, and flags all
instances u € U.

These two steps are repeated until player G chooses to stop, when it is then
rewarded with all instances z € X such that each = has been flagged in more than
half of the iterations played. Let this subset of X be the reward set R such that
R ¢ X, and its complement K be the loss set. The value of the reward and loss sets
are hence given by V (R) and V (R), respectively. The goal of the weightor G is to
maximize V (R), whereas the goal of the chooser C' is to maximize V (R).

The question about the game in which we are interested is whether there
is a general strategy that guarantees a large reward for the weightor, regardless of
the probability space used. Freund [Fre95] proves this strategy to exist so that for
any probability space (X, X, V), any ¢ and any v > 0, the weightor is guaranteed to

2
receive a reward V (R) > 1 — e after at most % (;Yl—) In § iterations. The proof of the

theoretical bounds for this strategy is presented by Freund [Fre95], and is left out
of this text due to size constraints. The concept of majority voting is later used in
Section 2.2.2 for the actual boosting of learning algorithms.

2.2.2 Weak Learnability Using Majority Voting

In this section we describe the connection between boosting a learning algorithm
and the majority-vote game presented in Section 2.2.1. Parts of this description are
also presented by Freund [Fre95]. We start by defining a minimal framework of
distribution free concept learning. A concept is defined as a binary mapping from an
input domain X to {~1,+1}, where for a concept ¢ and an instance z € X, ¢(z)
denotes its label in {~1, +1}. A concept class C is a collection of concepts.

The learner knows C, but its job is to learn an approximation of a concept c €
C'. We assume that the learner has access to a source S, which returns instances z €
X drawn randomly and independently according to a given distribution D), along
with their corresponding label ¢ (z). The learner is given access to S, from which
it draws different instances and creates a hypothesis h. A hypothesis is nothing
but an algorithm that takes any arbitrary input ' € X and outputs its prediction
of what ¢(z') should be. We indicate the probability of h correctly mapping ¢ as
P (h(2") = ¢(=')) over D, which we refer to as accuracy. Analogously, the error of h
over D is P (h(2') # c(2)). If the error is less than ¢, we say h is e-good for ¢ and
D.

12

A given learning algorithm A has a uniform sample complexity m (e, §) if for
alle > 0,8 < 1,all D, and ¢ € C, given ¢ and § as parameters, A makes at most
m (e, 8) calls to S and outputs a hypothesis s with probability of at least 14 of being
e-good for ¢ and D. Suppose there exists real values 0 < eg < 1/2and 0 < dp < 1
such that each hypothesis h generated from my examples has error at most g with
probability of at least 1 — 6. The upper bound in sample size for A to achieve
this accuracy is mg. The parameters ep and & measure the difference between A
and a perfect learning algorithm that always generates hypotheses with no error
for a given concept. We then find it useful to define the parameters v = 1/2 — ¢
and A = 1 ~ &y, which measure how far a learning algorithm is from complete
uselessness, in this context where the accuracy of learning algorithms are required
to be arbitrarily better than 1/2.

We then use the principle of majority voting to combine hypotheses gener-
ated from A using different distributions, where the majority votes for input samples
are expected to be more accurate than those of each individual hypothesis. We start
by creating instances of the learning algorithm that will be boosted, which from
now on we shall refer to as weak hypotheses. Let D be a initial uniform probability
distribution with probability values 1/|X| assigned to each = € X. In order to cre-
ate a weak hypothesis, we first draw a subset U of size m from X by calling S m
times using D). We then present U to A in order to create a new weak hypothesis
h., where ¢ is the index of the hypothesis. We expect i, to have error smaller than
1/2 -+ for D. Finally, we give the learner a feedback from the Boosting algorithm
by normalizing the distribution D after updating it with an increment on the prob-
ability values of all instances x for which h, (z). These steps are repeated T times,
thus generating 7' weak hypothesis. Finally, we use majority voting to combine the
outputs of these hypotheses when evaluating new input instances in X.

The problem of updating D is equivalent to the majority-vote game described
in Section 2.2.1. The value of an instance corresponds to its probability value as-
signed by the target distribution, which is uniform in this case. The weight of an
instance corresponds to its probability assigned by the Boosting algorithm. The de-
cision to flag an instance corresponds to the learner generating a correct hypothesis
for that point. The reward set corresponds to the set on which the majority vote
was correct, and the [oss corresponds to the probability of the majority vote being
mistaken, measured with respect to the target distribution.

The theoretical proofs of bounds for this generalized way of boosting learn-
ing algorithms with majority voting, as described in this section, is given by Freund
[Fre95]. Due to size constraints, we save these proofs for Section 2.3, where we
present them for AdaBoost.

13

2.2.3 Horse Racing Gambling

It one of the first papers from Freund and Schapire about Boosting [FS95], where
they also introduce the later-described AdaBoost algorithm, an interesting fictitious
problem of a horse racing gambler is presented together with the description of a
general learning framework. The analysis of this framework and the algorithms
proposed with it provide useful insight for the understanding of the evolution from
boosting weak learners by majority voting, as presented in Section 2.2.2, to modern
Boosting algorithms such as AdaBoost, to be examined ahead in Section 2.3.

The story is that of a gambler that, frustrated by steady losses in horse racing
bets, decides to recruit a group of other gamblers to bet for him. The problem is
therefore the on-line allocation of resources among these gamblers, corresponding
to the sharing of the total amount waged at each race. Consider an agent 4 with
{1,..., N} allocation strategies to choose from. At each time t¢t € {1,...,T}, A
decides on a distribution p* over the strategies, that is, Zj\;l pt =1landpt > 0 for
all strategies. Fach strategy i suffers a loss £ € [0, 1], where the average loss of A,
referred to as mixture loss, is 3., pit = p* . £,

The goal of A is to minimize its loss relative to the best strategy, that is, its
net loss:

Ly mt_%n Li, (2.1

where the total cumulative loss of A in T runs is:
T
La=) p' £, (2.2)
t=1
and the cumulative loss of strategy i is:
T
Li=> ¢ (2.3)
=1
We may now introduce Hedge (3}, the algorithm presented by Freund and
Schapire [FS95] to solve the problem of on-line allocation of resources. It maintains
a weight vector whose value at time ¢ is w* = {w},. ., w%/}, where the inidal values
are set as to describe a uniform distribution w! = 1/N. Despite this initial setting,
these values need not necessarily sumn to one at other dmes, since the distribution

vector is updated after its normalization:

P =N (2.4)

14

The weight vector is updated using the results in the loss vector and mult-
plicative rule below, which derives from [LW94]:

with = w! - Ug (£), (2.5)
where Up : {0,1] ~ [0, 1] may be any function parametrized by 3 € [0, 1] so that:
FrslUp(r)sl1-(1-8)r (2.6)

Littlestone and Warmuth [IW94] assert that a satisfactory Ug (r) always ex-
ists for any given 8 € [0,1] and r € [0,1]. We shall now examine the upper bound
for Hedge (3} on Zf’;l w! 1, as Littlestone and Warmuth did for their weighted
majority voting algorithm, since its dictates the upper bound on the loss of the al-
gorithm.

Freund and Schapire [FS95] prove that for any sequence of loss vectors
2, €T, the following inequality holds:

—~1In (sumﬁ_ulw?'*'l)

L Hedge(p) < - - (2.7)
Furthermore, Freund and Schapire also prove that for any sequence of loss
vectors £, ..., €7 and forany i € {1,..., N}, this inequality becomes:
~1In (w}) - L;1n 3
L edgetsy < (1)—ﬁ , (2.8)

which means that Hedge () is not much worse than the best strategy ¢ for the
sequence. The two key factors that govern its behavior are the choices of 3 and the
inidal weight w! for each strategy. If we maintain w} = 1/N as suggested before,
this bound becomes:

min; L; In (1 +InN
Leagep) < 1(_/5) - (2.9)

Finally, we must now specify 3 to maximally exploit any prior knowledge we
may have about the problem being solved. Suppose we know in advance that for
the N strategies we have, there is an upper bound L. Freund and Schapire [FS95]
demonstrate how to transform Equation (2.9) into:

LHedge{ﬁ) <minL; + V oLln N +InN, (2.10)

[— i
for § = 1+v2InN/L

In general, if T is known ahead of time, we may use L = T as an upper
bound on the cumulative loss of each strategy i. Since L < T, we have that the
worst case rate of convergence for the algorithm is O (\/ (In N} /T>, However, as L

tends to zero, this rate significantly improves to O ((in N) /T") [FS95].

13

Given: (z1,y1), ..., (Zm,ym), wherez; € X, y; € ¥ = {1, +1}
Initialize: Dy (i) = 1/m
Fort=1,. .,T:

e Train weak learner using distribution D;.

e Get weak hypothesis h; : X — R.

o Choose: iy ¢ R

e Update:
) D (1) e oeihe (T4}
D 7Y =
41 (2‘) Zg
where Z, is a normalization factor (chosen so that D, ; will be a distri-
bution).
Output the final hypothesis:

T
Hi{z) = sign (Z chy (m)) .

b=l

Figure 2.1: Pseudo-code for a generalized version of AdaBoost.

2.3 The AdaBoost Family of Algorithms

Now that we have described the basics of the PAC framework as well as some of the
historical developments of Boosting algorithms, we may describe that which became
the most well-known family of boosters, AdaBoost. The first AdaBoost algorithm
was introduced by Freund and Schapire [FS95] in 1995 using the binary learning
framework described in Section 2.2.2. It emerged as a natural evolution of the
resource allocation algorithm described in Section 2.2.3. Since then, Freund and
Schapire published many papers describing their algorithms along with performance
comparisons with other learning schemes, such as [FS96a, FS96b, FS97, FS99b,
S5ch99a], and more recently [Sch02].

The pseudo-code for a generalized version of AdaBoost, as first given by
Schapire and Singer [S599] and later by Schapire [Sch02], is presented in Figure
2.1. The algorithm takes as input a training set (z1.y1),.. ., (Zm, ¥m) With m in-
stances, where z; € X andy; € Y = {—1,+1}. The distribution D, is first initialized
to a uniform distribution where Dy (i) = 1/m. In each of the ¢t = 1,...,T rounds,

16

AdaBoost calls a weak learning algorithm to construct weak hypotheses h; based on
the current status of the distribution D,. The objective of this weak learner, or base
learner, is to minimize its training error ¢;. Once h, is built and evaluated, AdaBoost
chooses parameter o, € IR which measures how relevant each hypothesis h, is.
Even though we have not explicitly defined how to compute ¢, in this gen-
eralized version of the algorithm, if we assume a binary output domain where
he € {~1,+1}, we have:
e = Priup,he (z:) # vi]. (2.11)

Also strictly for by € {—1,+1}, we may define the weight of each hypothesis

1 —
ap = —1In (1 “*‘) (2.12)
2 E;

Based on o, at the end of each round, D; is updated and normalized in an
attempt to focus the attention of the algorithm on those examples which are harder
to learn. The normalization factor Z; is chosen so that D, will be a distribution,
that is, so that the summation of all probability values in D,.,., is one. After the T-th
and final round, the strong hypothesis is computed by the weighted majority vote of
the 1" weak hypotheses where o is the weight assigned to each h,.

Pragmatically, AdaBoost has many advantages as a Boosting algorithm. It
is relatively fast, simple, and easy to program. Also, it has no parameters to tune
except for the number of rounds T, and also requires no prior knowledge about
the weak learner being used. Nevertheless, there are some requirements that must
be met in order for it to function correctly. AdaBoost will fail to work if there
is not sufficient training data or if the restriction on quality of the weak learner,
dependent on output domain of the problem, is not met [Sch02]. According to
Dietterich [Die00], Boosting seems to be specially susceptible to noise. Moreover,
Boosting may also fail to perform well given overly complex base classifiers, which
is one of the issues addressed in Chapter 4, or too weak base classifiers [Sch02].

The following sections discuss specializations of the AdaBoost algorithm.
The first two, AdaBoost. M1 and AdaBoost.M2, have been introduced by Freund and
Schapire [FS96a] in 1996. AdaBoost.M1 is the best-known version of the family,
and it is often wrongly referred to as simply AdaBoost in literature. AdaBoost.M2
is an extension of AdaBoost.M1 that works with more sophisticated base learners.
Later in 1999, Schapire and Singer [S599] proposed three other versions of Ad-
aBoost, AdaBoost.MH, AdaBoost. MO, and AdaBoost. MR, all still consistent with the
general version presented in Figure 2.1, though each one with either differentiated
input and output domains or customnized loss functions.

as:

17

2.3.1 AdaBoost.M1

AdaBoost.M1 is certainly one of the best-known Boosting algorithms in literature,
mainly due to its relative simplicity and applicability to a wide range of problems
and weak learners. The algorithm, presented in Figure 2.2, is very similar to the
generalized version presented in Figure 2.1. There are two differences worth com-
menting though. First, the output domains of the learning problems being solved
are not restricted to {—1, 41}, but instead may be a finite set of k labels {1,...,k}.
Second, even though h;, is not restricted to a binary output, the error measure takes
the same form as Equation (2.11), that is, ¢, = Prip, [he (z:) # vi).

The important theoretical property of AdaBoost.M1 is stated in Theorem 1,
which is presented [FS96a] and proved by Freund and Schapire {FS95, FS97].

Theorem 1. Suppose the weak learning algorithm, when called by AdaBoost.M1, gen-
erates hypotheses with errors €, ..., e, where ¢, is as defined in Figure 2.2. Assume
each ¢ < 1/2, and let v, = 1/2 — & Then the following upper bound holds on the
error of the final hypothesis H:

. T
[{i: H (2:) # yiH H 11 _ gl =250
m = t=1 1 4'}‘{. = -

Theorem 1 shows that a weak learner with consistent error rates marginally
better than 1/k, where k is the number of finite labels in the problem’s output
domain, may lead to strong hypotheses whose training error drop exponentially
fast. For binary problems, this means that the weak learner must only be arbitrarily
better than a random guess. Though this may be considered as a strength of the
algorithm at times, this requirement may be hard to meet for large values of k.

2.3.2 AdaBoost.M2

This extension of AdaBoost M1 attempts to overcome the limitation of the latter’s
weak hypotheses by improving the communication between the booster, AdaBoost. M2
itself, and the weak learner. Each hypothesis returned by the weak learner now may
output a set of “plausible™ labels, instead of a single one. Furthermore, each label
also contains a degree of plausibility, which corresponds to its confidence rating.
Therefore, the output of these hypotheses is no longer in {1,..., 4}, but instead
a vector in {0, 1]*, where values toward 1 or 0 mean greater or lesser plausibility,
respectively.

3Freund and Schapire [FS96a] emphasize the use of the term plausible instead of proba-
ble, 50 as not to be mistaken for probability values.

18

Given: {z1,51),- ., (Cm,ym), Wherez; € X, y; € Y = {1,... k}
Initialize: D; (i) = 1/m
Fort=1,...,T:

e Train weak learner using distribudon D,.

e Get weak hypothesis ; : X — Y.

s Calculate the error of hy: €, = Pri_p,ih (z:) # v
Ife, >1/2,setT =t — 1 and abort loop.

Set 3, = E"f'fEI and a; = log ﬁ%ﬁ

Update:
D1 () = D (1) x {ﬁt iFh {z) = v

4y 1 otherwise,

where Z, is a normalization factor (chosen so that Dy, will be a distri-
bution).
Output the final hypothesis:

H{z) = arg max R
(z) ger Z t
tehe(z)=y

Figure 2.2: Pseudo-code for AdaBoost.M1.

19

Now that the expressive power of weak hypotheses is increased, this infor-
mation must be taken into account accordingly. In order to do that, we replace the
original error measure computed with respect to a distribution over examples by a
more sophisticated pseudo-loss function computed with respect to a distribution over
the set of all pairs of examples and incorrect labels. Consider a mislabel (7, i}, where
i is the index of the training example and y is the associated incorrect label, Let B
be the set of all mislabels B = {(i,y) : i € {1,...,m},y # u}. The pseudo-loss
function is defined as:

1

€t=‘2“

37 Deliy) (1~ ke (i, 5) + b (20,)) (2.13)
{iy)ed

The complete derivation of Equation (2.13) is given by Freund and Schapire
[F897].

Theorem 2. Suppose the weak learning algorithm, when called by AdaBoost. M2, gen-
erates hypotheses with pseudo-losses €1, . . ., e, where ¢, is as defined in Figure 2.3. Let
vt = 1/2—¢,. Then the following upper bound holds on the error of the final hypothesis
H for a problem with k output labels:

T

{i : H(fr;) # i} <k-1]] T —47};5 (b= 1)e 2Ll

[£231

Theorem 2 states the bound on the training error for AdaBoost.M2. Notice
that weak hypotheses must have pseudo-loss less than 1/2, regardless of the number
of classes in the problem. Also, even though weak hypotheses output sophisticated
pseudo-loss measures, the final strong hypothesis still outputs its prediction over the
finite set of labels defined by the problem’s output domain. Finally, notice that due
to their error measure and pseudo-loss function, respectively, AdaBoost.M1 and Ad-
aBoost.M2 are equivalent for binary problems, differing only in handling problems
whose output domain contains more than two labels [FS96a].

2.3.3 AdaBoost.MH

Besides being able to deal with multiclass problems, AdaBoost has also been ex-
tended to deal with multilabel predictions, that is, where instances may belong to
any number of classes. Let T be a finite set of labels T = {1,. .,k}, such that
k = |T|. Instead of the traditional classification setting where labeled examples are
pairs (z,y) such thatz € X and y ¢ Y, where X and Y are the input and output
domains, respectively, we now have pairs (z,Y), where Y C T. Notice that the
traditional setting for single-label classification is the mere case where |V| = 1.

20

Given: (z1,%1)s. - (TmyYm), Wherez; € X,y € Y = {1,...,k}
Let B= {{i,y):ie{},.. ,m}ly#Fu}
Initialize: Dy (i,y) = 1/|B| for (,y) € B.
Fort=1,...,1T:
e Train weak learner using distribution D;.

s Get weak hypothesis b, - X x Y — [0,1].

o Calculate the pseudo-loss of hy:

1 .)
&=y Z Dy (d,y) (3 = he (i, i) + he (20, 0))
{(ty)eB

£ — 1
°® Setﬁa-_f-je—t-andmt—logﬁ!b

e Update:
Dy (2 Led s)= B (e
D£+}_ (z’y) = m‘t'z(z) ﬁ§1/2)<3~+" !{ ng) i!(uJ))
t
where Z, is a normalization factor (chosen so that D, will be a disexi-
bution).
Qutput the final hypothesis:
T

H (z) = arg Caghy (z,y)
(x) axglfea}),c;a;n(m,y)

Figure 2.3: Pseudo-code for AdaBoost.M2.

21

The AdaBoost. MH algorithm presented in Figure 2.4 incorporates this multil-
abel scenario together with a different loss function called Hamming loss. Hamming
loss assumes the multilabel prediction is reduced to the prediction of all and only
all correct labels, that is, H : X - 2T, With respect to a distribution D, the loss is:

1

Lz y)~ollh () AY]] (2.14)

where A denotes symmetric difference.

In order to minimize Hamming loss, we may split the problem into & orthog-
onal binary problems. The Hamming loss may then be seen as the average of the
error rate of h on all & problems. For Y C T, we define Y[£] for £ € T:

+1 ifeey
Y] = 2.15
” {_1 ifegy. @19

Finally, we identify any function H : X - 2T with a corresponding function
H:X %Y~ {-1,+1} as defined by H (z,{) = H (z) [{].

In Figure 2.4 we present a more abstract form of AdaBoost.MH, meaning, a
form with no definition of output domain of h;, hence also missing the definition
for a;. Schapire and Singer [S599] analyze the case where h, € {—1, +1}, where
they also provide interesting insights about comparing the use of AdaBoost. MH in
single-label problems against other simpler versions of AdaBoost.

2.3.4 AdaBoost.MO

AdaBoost. MH mapped a single-label problem into a multilabel problem by trans-
forming each pair (z,y) in a multilabel observation (z.Y') |y € Y. However, a more
sophisticated and effective mapping consists of transforming (z,vy) into (z, A {y)),
where A is a one-to-one mapping A : T — 27" and A" = |Y’|. Notice that the label
set T’ need not be equal to Y.

This coding scheme proposed by Dietterich and Bakiri {DB95] was used by
Schapire and Singer [SS99] to create AdaBoost. MO, presented in Figure 2.5. Similar
schemes with the same purpose were also used by Allwein et al. [ASS00] and
Schapire [Sch97]. There are two ways to evaluate AdaBoost.MO’s final hypothesis.
The first, referred to as Variant 1, consists of choosing the output label y € ¥ whose
mapped output code A (y) has the shortest Hamming distance to H (z). The second,
Variant 2, predicts the label y whose pair {z, v) was given the smallest weight under
the final distribution, that is, the same approach taken by other AdaBoost versions.

22

Given: (z1,Y1),. .., {@m, Yin), wherez; € X, Y; €T = {1,.. .k}
Initialize: Dy (¢,£) == 1/m - {Y].
Fort=1, ..,1:

e Train weak learner using distribution D;.

o Get weak hypothesis h; : X x ¥ — IR.

e Choose: o ¢ R

¢ Update:
) D i,g e—cl'gy,‘[e}ht(l‘,‘_,g)
Dt*%*l (23 E) = t (} 7
t
where Z; is a normalization factor {chosen so that Dy, will be a distzi-
bution).

QOutput the final hypothesis:

T
H{(z,£) = sign (Z cghy (m,(?)) A

t=1

Figure 2.4: Pseudo-code for AdaBoost. MH.

Given: (z1,41), .-, (Tm,Um), wherez; € X,y € ¥ = {1,..,k}
Given: a mapping A : Y — 2V

e Run AdaBoost. MH on relabeled data: (z, A(y1)}.. -, (Zmy A (Y))

o Get back final hypothesis H of form H (z,y') = sign {f (z,v))
where f (z,y') = Zf;l ahy (z,9').

e Qutput modified final hypothesis:

(Variant 1) H; (z) = arg mingey |A () AH (2}]
(Variant 2) H» (:B) = arg rninyey Zy'EY' EMA(y)Ey’}f(m‘y').

Figure 2.5: Pseudo-code for AdaBoost. MO.

23

2.3.5 AdaBoost.MR

All AdaBoost instances so far dealt with problems whose instances were exactly
identified with one or more finite labels. A variation of this problem is that where
the goal is to find a hypothesis which ranks labels according to their confidence
ratings. To solve this problem and create AdaBoost. MR, Schapire and Singer {SS99]
used an approach close to that used by Freund et al. [FISS98], presented in Figure
2.6.

The final hypothesis has the form H : X x T — IR, where the association of
each label £ € T with each instance x € X has a degree of confidence. With respect
to (z,Y), we only care about the relative ordering of the crucial pairs £y and €4, for
which €y ¢ Y; and £; € Y. Our goal is to find a hypothesis with the smallest number
of misorderings so that labels in Y are ranked above labels not in Y. This goal may
be measured quantitatively by a ranking loss function, described as follows with
respect to a distribution D:

_ |{(€{),€1) E('I\-‘Y) XY:H(:C,El)S H(:L‘,fo)}l
Bz v)~pl VT =7].

(2.16)

Finally, notice that in AdaBoost. MR, D, is now maintained over {1,...,m} x
Y x Y, and that the weight increases and decreases are computed as a function of
the difference in ratings h; (zi, fo) ~ he (zi, £1).

2.3.6 Analysis of Error Bounds

Given that our main interest for AdaBoost in this work is for dealing with binary
problems, we now take the time to analyze the training and generalization errors
for the generalized version of AdaBoost presented in Figure 2.1. Notice that this
version is equivalent to AdaBoost. M1 from Figure 2.2 if the latter is adjusted to
a binary output domain instead of a finite set of labels with arbitrary number of
elements.

We start by analyzing the training error, since Schapire {Sch02] considered
it to be the most basic theoretical property of AdaBoost. The following theorem
proved by Schapire and Singer {SS991, which is itself the generalization of another
theorem from Freund and Schapire [FS95, FS97], states the bounds on the training
error of the final classifier. Other works by Schapire [Sch99b, Sch99¢] and Freund
and Schapire [FS99a] also bring interesting analyses of the theory of AdaBoost as
well as its convergence with game theory.

24

Given: (z1,11),...,{(Tm,¥Ym), wherez; € X, V; C T ={1,.. ,k}
1 (YT -1 i i : ;
Initialize: D (i,fo,fl)m{ [(m- [T =Yi) if ¢ Yiand £y € Y]

0 otherwise.
Fort=1,...,T:

e ‘Train weak learner using distribution ;.
s Get weak hypothesis by : X x Y — R,

e Choose: o; € R

¢ Update:

. D‘ Z:EJ 7£ E%Q‘(ht(ﬂ:i‘eo)‘ht(ﬂ:i’[])}
Dy (2389,31}2 AUt l)

Zy
where Z; is a normalization factor (chosen so that D, will be a distri-
bution).
Output the final hypothesis:

T
H(z,)= ahy(z,)
t=1

Figure 2.6: Pseudo-code for AdaBoost. MR.

253

Theorem 3. Assuming the notation of Figure 2.1, the following bound holds on the
training error of H:

m

e

1 1 iy 5T b (s

;“nﬁl{'l : H(.’Lz) e yt}| < ;;‘;.Ze Yi 2 pey ceehe{zi) :[[Zc
t==1

fu]

Proof We prove the theorem by unraveling the recursive definition of the update
rule.

. D (i)g-at!fi"‘!(wi)
Dy (i) = = — .
N e‘ﬂiz;'{;:“:ht(xi) (2~17)

= gl B
mntmi Ze
Moreover, if H (x;) # y; then we have that y; ‘T& apyihy {z;} < 0, which also
T [£:53
implies that ™ Zie=1 @¥:he(z:) > 1 Thus,
(H (25) # yi] < e~ Simr cavihelz) (2.18)

Combining Equations (2.17) and (2.18) gives the stated bound on the training error:

=Y H (@) #Aw] <5 TL =¥ Liay @thu(zi)
=2 im1 (Htrmi Ze) Dyyy (4} (2.19)
= HgT_-;l Z
O

Theorem 3 suggests that a custom selection of «; and k, can minimize Z;:
ki
Zy =y Dy (i) emeviiel=d) (2.20)
faml

For binary classifiers, we use the definition of o, given in Equation (2.12),
which yields the following bounds on the training error:

T

; . o
[Nz =[level-c)l=]]Ji-d2<e?Tia®, (2.21)
t=} 1 t=1

t=

where v, = 1/2—¢,. Therefore, if the weak learner is marginally better than random,
that is, if v, > «y for some -y > 0, then the training error drops exponentially fast in
T since the bound in Equation (2.21) is at most e~277",

Now that we have dissected the behavior of AdaBoost with respect to its
training error, we proceed to analyze its generalization error, which is much more
relevant when evaluating and boosting learning machines. One of the most popular
methods for doing this analysis is Vapnil’s method of structural risk minimization

26

[Vap82], which we later use in Chapter 3 to explain the foundations of Support
Vector Machines. This method was also previously used by Schapire et al. [SFBL97,
SFBL98]. We state Vapnik’s theorem below, in the context given by Freund and
Schapire [F597].

Theorem 4. Let X be a class of binary functions over some domain X. Let d be the
Vapnik-Chervonenkis dimension of H. Let P be a distribution over the pairs X x {0, 1}.
For h € H, we define the generalization error of h with respect to D to be:

£g {h) = Pr{m.y)wDih (:L) # y}

Let 5 = {(x1,Y1).,..., (Tm, Yin)} be the training set with m independent random sam-
ples drawn from X x {0, 1} according to D. Define the empirical error of h with respect

to the set S to be; .
ey = @0 20l

Then for any & > 0 we have that:

d (i 32 9
PrLHheH:|é(h)—~eg(h)|>2\/ (P +1)+hg,

m
where the probability is computed with respect to the random choice of the sample S.

Let 8 : IR — {0, 1} be defined by:

1 ifxz>0
f(z) = {2.22)
0 otherwise,
and, for any class functions H, let @y (H} be the class of all functions defined as a
linear threshold of T' functions in H:

7
er(H) = {9 (Za;ht - b) tboay,. . ,ar e Rehy, . Ry € H} . (2.23)
£l
Hence, if all hypotheses generated by the weak learner belong to some class
H, then the final strong hypothesis, after T’ rounds of boosting, belongs @ (H).
Thus, Theorem 5 provides an upper bound on the VC-dimension of the class of final
hypotheses generated of AdaBoost in terms of the class of weak hypotheses.

Theorem 5. Let H be a class of binary functions of VC-dimension d > 2. Then the
VC-dimension of O (H) is at most 2 (d + 1) (T + 1) logy (eT + e).

Therefore, if the hypotheses generated by the weak learner are chosen from a
class of VC-dimension d > 2, then the final hypothesis generated by AdaBoost after T
iterations belong to a class of VC-dimension at most 2 (d + 1) (T + 1) log, (T + e).

27

Proof. We use a result about the VC-dimension of computation networks proved
by Baum and Haussler [BH89]. We can view the final hypothesis output by Ad-
aBoost as a function that is computed by a two-layer feed-forward network where
the computation units of the first layer are the weak hypotheses and the computa-
tion unit of the second layer is the linear threshold function which combines weak
hypotheses. The VC-dimension of the set of linear threshold functions over R7 is
T + 1 [WD81]. Thus the sum over all computation units of the VC-dimensions of
the classes of functions associated with each unitis 7d + (T'+ 1) < (T + 1) (d + 1).
Baum and Haussler’s Theorem 1 [BH89] implies that the number of different fune-
tions that can be realized by h € ©¢ (H) when the domain is restricted to a set of
size m is at most (T + 1) em/ (T + 1) (d+ 1) T*VED 17g > 2 T > 1 and we
set m = [2(T +1){d + 1}log, (T + e)], then the number of realizable functions
is smaller than 2™, which implies that the VC-dimension of @y (H) is smaller than
m. a

Alternatively, another way of analyzing the generalization of AdaBoost was
proposed by Schapire et al. [FISS98]. Following the research by Bartlett [Bar98],
they derived a different analysis in terms of the margins of the training examples.
The margin of example {x,y) is defined as:

Y 23;.-1 ahy (z)

Z:T=1 jou|

This margin is a real value in [—1, +1], and is positive if and only if H cor-
rectly classifies the example. Also, the magnitude of the margin may be interpreted
as a measure of confidence in the prediction [Sch02]. Schapire et al. [FISS98]
proved that larger margins on the training set translate into superior upper bounds
on the generalization error, which is at most:

R . - d
Primargin; (z,y) < 8]+ O (\/ W} (2.25)

for any ¢ > 0 with high probability #. Interestingly enough, note that this bound is
entirely independent of 7', that is, the number of boosting rounds run by AdaBoost.
Schapire et al. proved that Boosting is aggressive at reducing the margin, since it
concentrates on examples with smallest margin magnitudes.

margin, (z,y) =

(2.24)

40 corresponds to the soft-O complexity notation, which disregards both logarithmic and
constant factors,

28

2.4 Advances on the Boosting Front

Although there have been many advances in Boosting over its brief existence in
literature, Boosting is yet a very incipient area of research. Several new fields have
received plenty of attention from the machine learning community, and new ground-
breaking discoveries still happen from time to time. The next few sections explore
some the newly developed concepts related to Boosting, as well as their practical
applications in different problems.

2.4.1 Relation to Support Vector Machines

Aside this text, it is rare to find work combining Boosting with Support Vector Ma-
chines. One such example is the interesting paper by Rétsch et al. [RMSMO02]
in which they built a framework for converting algorithms based on SVM princi-
ples into new Boosting algorithms. Another example is by Freund and Schapire
[FS99b], where they point out the differences and similarities between SVMs and
Boosting. These authors conclude that though SVMs and Boosting methods differ,
both work well in very high-dimensional feature spaces. One can think of Boosting
as a Support Vector approach in high-dimensional feature spaces spanned by the
weak hypotheses. Similarly, one can think of an SVM as a Boosting approach in
high-dimensional space.

Despite the insightful conclusions obtained by Rétsch et al., their interest in
the combination of Boosting and SVMs is rather different than the approach ex-
plored in this work, where we used SVMs as customized weak learners for well-
studied Boosting algorithms. Nonetheless, yet another remark from Rétsch et al, is
worthwhile pointing out, which is the similarity between Boosting and SVMs. Ac-
cording to them, it has become “common folklore” to mistake the internal workings
of Boosting and SVMs as essentially the same, except for the way they measure the
margin, Boosting with a 1-norm ® and SVMs with the 2-norm.

SVMs and Boosting use totally unique strategies to handle high or even in-
finite dimensional spaces. First, SVMs use the 2-norm to implicitly compute scalar
products in the feature space with the aid of an internal kernel. No other norm may
be expressed in terms of scalar products. Boosting, on the other hand, performs
the computation explicitly in the feature space, where a T-norm is used to induce
sparseness on the separating hyperplane solution to protect it from from the high or
even infinite dimensionality of the feature space [RMSMO02]. Freund and Schapire
[FS99b] draw yet another analogy between SVMs and Boosting, where they asso-
ciate the SVM approach with solving a quadratic programming (QP) problem, and

Please recall that ||z}, = ¥, ..

29

the Boosting approach with a greedy search based on linear programming.

2.4.2 Research and Applications

Though not directly inserted in the context of the discussions regarding Boosting
presented in this chapter, it is worth mentioning a few authors whose works not
only are innovative, but also may lead to some of the future work described in
Chapter 7.

Several authors worked on interesting problems of boosting text classifica-
tion machines, which differ significantly from standard problems in Euclidean input
spaces. For instance, the BoosTexter system from Schapire and Singer [SS00], the
RankBoost algorithm from Iyer et al. [ILST00], and a text filtering scheme from
Schapire et at. [SS598]. Abney et al. [ASS99], though not directly classifying
chunks of text, used Boosting techniques in a natural language tagging application.
Collins et al. [CSS00] give a unified account of Boosting and logistic regression
in which each learning problem is cast in terms of the optimization of Bregman
distances.

Freund et al. [FMSO01] present an interesting new algorithm, not at all in-
spired on AdaBoost, with which they show how computing the weighted average of
hypotheses, instead of simply selecting the best hypothesis from a set, can protect
against overfitting. Rosset et al. [RZHO02] study Boosting from a new perspec-
tive, where they show that it approximately minimizes its loss criterion with an L
constraint, and as this constraint diminishes in a separable problem, the solution
converges to a “Ly-optimal” separating hyperplane. Finally, Rétsch [R#t01] pro-
poses a statistical learning theory framework for analyzing Boosting methods with
which he explores means of improving the robustness of Boosting algorithms via
mathematical optimization techniques.

30

Chapter 3

Support Vector Machines

This chapter introduces the concepts and propositions of Support Vector Machines
designed for solving classification problems, starting with a simple linear machine
and gradually evolving into an advanced non-linear soft-margin machine. In Sec-
tion 3.1 we examine concepts of generalization theory for machine learning, such
as empirical risk minimization, Vapnik-Chervonenkis theory {Vap82], and structural
risk minimization [Bur98]. In Section 3.2 we use a trivial linear discriminant to in-
troduce a basic learning framework later used to describe Support Vector Machines
from the bottom up. Section 3.3 introduces the concepts of inner-product kernel
functions and learning in kernel-induced feature spaces, which are some of the key
features behind the representation power of SVMs. Finally, in Section 3.4 we ex-
amine formulations of different machines, evolving from simple linear SVMs into
non-linear and non-linear soft-margin SVMs. Concluding the chapter, in Section
3.5 we describe different approaches used to train these learning machines, start-
ing with reviews of simple algorithms and later focusing on the Sequential Minimal
Optimization (SMO) algorithm by John Platt [Pla98a].

3.1 Generalization Theory

There are many advanced learning methodologies based on learning in high-dimen-
sional feature spaces. One of them, based on kernel-induced feature spaces, further
discussed in Section 3.3, offers great expressive power to learning machines. Even
though this is a most welcome feature for solving difficult learning problems, this
power must also be controlled to avoid undesirable phenomena such as overfitting,

One of the learning theories able to guarantee generalization bounds on
learning machines is that of Vapnik and Chervonenkis [Vap82]. Not only this is
the most appropriate theory for describing Support Vector Machines, it has also his-

31

torically motivated them. Vapnik [Vap95] divides learning theory into four parts:
e Theory of consistency of learning processes.
s Non-asymptotic theory of the rate of convergence of learning processes.
¢ Theory of controlling the generalization ability of learning processes.
o Theory of constructing learning algorithms.

In this section we shall examine concepts regarding the first three parts,
where we establish the foundations to explore the forth part when we discuss the
intricacies of Support Vector Machines.

Even though we do not address this issue here, other learning theories such
as Bayesian analysis may be used to describe SVMs. A brief outline of such analysis
is given by Cristianini and Shawe-Taylor [CST00].

3.1.1 PAC Learning Revisited

We now explore Valiant’s Probably Approximately Correct (PAC) model, or distribu-
tion free learning model, under a new light. We examined both weak and strong PAC
learning in Section 2.2 in the context of Boosting, using them to explain the moti-
vations behind majority voting and the principles of Boosting algorithms. We shall
now revisit some of these issues and introduce new concepts that together serve
as basis for the Vapnik-Chervonenkis theory, which we will use later to describe
Support Vector Machines.

According to Cristianini and Shawe-Taylor {CSTOO0], one of the key assump-
tions of the PAC model is that training and testing data in a learning procedure are
generated independently and identically (i.i.d.) according to an unknown vet fixed
distribution D. There are refinements of the model that consider the distribution
D changing over time, or even cases where the learning algorithm may influence
the selection of data. These refinements will not be considered in this discussion, in
which we assume the i.i.d. case.

Since data samples are drawn according to D, we may introduce an error
measure for a generic binary classification function f to define the probability of
misclassification of a random example:

ertp (f) = D{(=,y) : flz= #v)}, (3.1)

where z € X and y € ¥V = {-1,+1}. We refer to this error measure as risk
functional. The purpose of this analysis is to assert bounds on the error of the
hypothesis, for instance in terms of the number of training examples required to

32

obtain a particular level of error. This concept is known as the sample complexity of
the learning problem.

Consider the selection mechanism of a hypothesis function f from a class
F, such that the selection must be based on a set S = ((x1,11),..., (&N, yn)) of
N gaining examples chosen i.i.d. according to D. We may use the PAC model
to examine the generalization bounds of this selection mechanism, the learning
algorithim itself, through the bound ¢ = € (N, F, §), where § is a parameter specified
by the algorithm. This bound asserts that with probability of at least 1 — § over the
training sets in S, the generalization error of f is bounded as follows:

errp (f) < ¢ (N, F,6), (3.2)

or, in other words, is probably approximately correct [CST00]. Put differently, we
may state this inequality in terms of the small probability that the training set gives
rise to a hypothesis function with large error:

DS :errp (f) > e(N,F,§)} <6 (3.3)

3.1.2 Empirical Risk Minimization

We may define the risk functional given in Secdon 3.1.1 more formally, where the
hypothesis function derived by the learner is f (z,w) — v, and where w € Wisa
parameter for the learning algorithm chosen from the set of all possible parameters,
We then define a generic loss function L (y, f (x,w)), where L is implemented ac-
cording to the domain Y, which contains all possible y. For instance, given a binary
classification problem, a simple example of loss function would be:

0 ify=f(x,w)
1 ify# f(z,w).
Many other examples of loss functions may be used, for example in regres-

sion problems where Y is continuous. Finally, we may state the generic form of the
risk functional as described by Almeida [ABBO1b] and Burges [Bur98]:

R(w)=3 [L6f @) pey (2.0), 35)

Ly, f(z,w)) = { (3.4)

where pg, (2, y) is the probability density function that describes D. Hence, the job
of the learning algorithin is to find the minimum value of R {w}, which is equivalent
to finding f (z,w’) where w' is the optimal parameter set.

If poy (x,y) is know, minimizing R (w) becomes relatively easy. When this
density function is unknown, though, its solution is no longer trivial as it becomes
an ill-posed problem [ABBO1b].

33

The inductive principle of empirical risk minimization is a method for es-
timating the minimization of the functional risk in terms of a loss function. Now
that we have defined the functional risk in Equation (3.5), we may also define the
empirical functional risk as:

N
1
Remp ('w} = _‘QN"“ E L (yisf (mi,w)) : (3.6)
jom]

Note that there are no probability distributions in Equation (3.6). Remp (w)
is fixed for a particular choice of w and for a particular training set {(x;, ;) [Bur98].

Assume that wqg and w; are the optimal parameter sets for the empirical
functional risk and functional risk, respectively. We have that R, (wo) and R (wq)
will converge to the same value as the number of samples N tends to infinity
[ABBO1b]. Moreover, for a given w’ and some value n such that 0 < n < 1, ac-
cording to Vapnik [Vap95], the following bound holds with probability 1 — #:

R (w!) < Remp (wl) + \/h (log (21/h) “*“ll) - log (77/4)1 (3.7)

where £ is the Vapnik-Chervonenkis dimension of the class . Burges [Bur98] refers
to inequality (3.7) as risk bound, and to the second term on its right hand side as
VC confidence.

3.1.3 Vapnik-Chervonenkis Theory

Given a finite set of hypotheses, we may obtain a bound in the form of the inequality
(3.2). Assume the selection of f is consistent with the training examples in S. The
probability that all N independent examples are consistent with a hypothesis f such
that errp (f) > € is bounded by:

DN{S . f consistent and errp (f) > €} < (1 - e)N < e N, (3.8)

We have now that the probability of one single hypothesis in I’ being con-
sistent with 5, even if all | F| hypotheses have large error, is at most |Fle~¢Y by the
union bound on the probability that one of several events occurs [CST00]. We may
now bound the probability of any consistent hypothesis fs, as in inequality (3.3):

DY{S : f consistent and errp (fs) > ¢} < |[Fle™ (3.9

In order to keep |Fle~* < §, we have that:

L

e=c(N,Fd) = < lni (3.10)

34

Equation (3.10) demonstrates how the complexity of the function class F,
measured by its cardinality, has a direct effect on the error bound, where a |F|
too large may lead to overfitting. This result shows that a property relating the
true error to the empirical error holds for all hypotheses in F, for which reason it is
said to demonstrate uniform convergence. According to Cristianini and Shawe-Taylor
[CSTOO0], learning theory relies on bounding the difference between empirical and
true estimates of error uniformly over the set of hypotheses and conditions that can
arise, where the major contribution of the theory by Vapnik and Chervonenkis is to
extend such analysis to infinite sets of hypotheses.

The bounding over an infinite set of functions is done by bounding the proba-
bility of inequality (3.3) by twice the probability of having zero error on the training
examples but, high error on a second random sample 5:

DN{§:3f € Ferrs (f) =0,errg (f) > ¢} <

9D?N{S§:3f € F: errs (f) = 0, errs (f) > eN/2}. (3.11)

This bound is an application of Chernoff bounds, provided that N > 2/e
[CSTOO]. In order to obtain a union bound on the overall probability of the right
hand side of inequality (3.11), we define what Vapnik [Vap95] called one of the
three milestones of learning theory, the growth function:

Bp(N)= max [{(f(@1),..../ (an)): f € F} (3.12)
(:1:1,‘ ,fBN)EAN

It is interesting to observe that this function may not exceed 2V since the sets
over which the maximum is searched are all subsets of the set of binary sequences
of length N. A set of points (x;, ..,ay) is said to be shattered by F if:

{(h(z1), .. h(en)): feF}={-1,+1}" (3.13)

The growth function is equal to 2 for all V if there are sets of any size which
can be shattered. Finally, consider the case where the largest size of shattered set is
h, and where the growth function can be bounded as follows for N > h:

h
Bp{N) < (E—?) , (3.14)

giving polynomial growth with exponent h. The value d is known as the Vapnik-
Chervonenkis (VC) dimension of the class F'. The VC dimension is a measure of the
richness or flexibility of the function class, and it is ofter referred to as its capacity
[CSTO0]. We may now rewrite inequality (3.3) as:

11 2eN N‘__NQ
D {S:E]fEF:errg(f)z{},eer(f)>e}<2(—h——> 9N/, (3.15)

35

which results in a PAC bound for any consistent hypothesis fg:

err (f)<e(NF6)—_1~ N1 Eﬁ{y««%lo 2 (3.16)
D —_ 1 1 - N Og h g (5‘ ' ‘
This demonstrates the fundamental theorem of learning due to Vapnik and

Chervonenkis [VC71].

Theorem 6. (Vapnik and Chervonenkis) Let F' be a hypothesis space having VC di-
mension h. For any probability distribution D on X x {—1,+1}, with probability 1§
over N random examples S, arty hypothesis f € F that is consistent with S has error
no more than:

errp (f) < € (N, F, 8) = -Nl— (h kog-‘?—iﬁ + log %) ,

provided h < N and N > 2/e.

VC theory not only provides a distribution free bound on the generalization
of a consistent hypothesis, but also shows that the bound is tight up to log factors.
This property is shown in the following theorem.

Theorem 7. Let F be a hypothesis space with finite VC dimension h > 1. Then for any
learning algorithm there exist distributions such that with probability at least § over N
random examples, the error of the hypothesis f returned by the algorithm is at least:

F—-1 1 1 E
M\ BN NS
3.1.4 Structural Risk Minimization

The VC theory outlined so far applies only when hypotheses are consistent with the
training data. This theory may be adapted to allow for a number of errors on the
training set by counting the permutations which leave no more errors on the left
hand side. The resulting bound on the generalization error is given in the following
theorem.

Theorem 8. Let F be a hypothesis space having VC dimension h. For any probability
distribution D on X x {—1,+1}, with probability 1 — & over N random examples S,
any hypothesis f € F that makes k errors on thee training set S has error no more
than:

2k 2eN 4)

4
errp (f) < e(N,F§) = —N—+_1\7 (hlogT-i—logg

provided h < N.

36

This theorem suggests that a learning algorithm for a hypothesis class F' must
minimize the number of wraining errors, since everything else in the bound has to
be fixed by the choice of F. This is the inductive principle known as empirical risk
minimization, discussed in Section 3.1.2, since it seeks to empirically minimize the
value of the risk functional.

Let us extend the application of Theorem 8 to a nested sequence of hypoth-
esis classes F} ¢ Fy ¢ ... < Fyr by using 6/M, hence making the probability of
any one of the bounds failing to hold to be less than §. If an ideal hypothesis f;
with minimum training error is searched in each class F;, then the number of er-
rors k; over the fixed training set S will satisfy the monotonic increasing inequality
ky 2 ko 2 ... 2 kpr. Similarly, the VC dimension for each class H; will also satisfy
a monotonic increasing inequality hy > hs > .. > hyy. The bound of Theorem 8
may be used to choose the hypothesis h; for which the bound is minimal, that is,
the reduction in the number of errors outweighs the increase in capacity. Building a
learning machine may therefore start with the selection of most appropriate hypoth-
esis class H. This induction strategy, due to Vapnik {Vap82], is known as structural
risk minimization.

3.2 Linear Learning Machines

In order to describe advanced non-linear learning machines such as Support Vec-
tor Machines, in this section we first explore the basic principles of linear learning
machines. These simple concepts form the very basis of many supervised learning
algorithms, and historically have initiated and motivated the field. Simple models
such as the McCulloch and Pitts [MP43] model of an artificial neuron are perfect
examples of this pioneer work, which was later followed by names such as Hebb
[Heb49], Rosenblatt [Ros58], and Widrow and Hoff [WH601.

We start our discussion with a simple display of a linear classification model,
equivalent to that known as the McCulloch and Pitts neuron. Later, we extend this
model to its dual representation, which will be used in the description of SVMs
themselves.

3.2.1 Linear Classification

Consider a binary classification problem with a real input domain X € IR®, and an
output domain ¥ € {—1,+1}. We shall use a classification function f : X C R™ —
IR such that the input = is assigned to the positive class if f(xz) > 0, and to the
negative class otherwise. Considering that f is a linear function of € X, we may

37

define f as:
fl@) =(w x)+b

= ZIL___l w;T; + b,
where (w,b) € IR™ x IR are the parameters governing f. In the context of the Mc-
Culloch and Pitts neuron, w is known as the weight vector, and b as the threshold
value. Since the output solely depends upon an inner product between two vectors
exceeding or not the threshold value, this learning machine may only describe a
linearly separable problem [DHS01, Hay94, BLCO0]. Geometrically, f may be inter-
preted as defining a separating hyperplane of dimension n — 1 between classes in a
n-dimensional space.

Among the many possible ways to determine the optimal values for (w, b),
that is, for training the learning machine, the first iterative algorithm to do so was
Rosenblatt’s Perceptron [Ros58]. The Perceptron algorithm works by starting with
arbitrary initial values for the weight vector and the threshold value. Then, follow-
ing repeated iterations, these values are adjusted based on the error values defined
as the difference between the output value of the machine and the ideal value ex-
pected.

(3.17)

3.2.2 Dual Representation

Strang [Str86] exemplifies duality in a three-dimensional space, where he states
that the minimum distance to the points on a line is equal to the maximum distance to
planes through that line. We refer to the former representation of the same concept
as its primal form, and to the latter as its dual form. Dual representations are most
useful in optimization problems, where one often attempts to minimize a primal
form while at the same time attempting to maximize a dual form. If the prob-
lem obeys the strong duality theorem, presented by Cristianini and Shawe-Taylor
[CSTOO], both forms will equal once their optimum value are found, that is, there
will be no duality gap on the solution.

Consider the linear classification machine and its training algorithm, the Per-
ceptron, described in Section 3.2.1. Cristianini and Shawe-Taylor [CST00] demon-
strate that, without loss of generality, if the initial weight vector and threshold value
are the zero vector and zero, respectively, the final hypothesis output by the algo-
rithm will be a linear combination of the training points:

i
W= e, (3.18)
i=]

where 0 is the augmented weight vector w which incorporates the original thresh-
old value b, and [is the number of iterations run by the algorithm. We may now

38

rewrite the decision function in Equation (3.17) using its dual representation:

filz) =(w z)+b
= (Yie; catsi - @) + b (3.19)
=Yoo il) + b

Besides writing the decision function in its dual form, Cristianini and Shawe-
Taylor {CSTOO] also describe the primal and dual forms of the Perceptron algorithm
pseudo-code, along with an interesting analysis of bounds from learning theory.

3.3 Kernel-Induced Feature Spaces

This section describes what Cristianini and Shawe-Taylor [CST00] described as one
of the main building blocks of Support Vector Machines, which is the use of kernel-
induced feature spaces for translating the original input space. Haykin [Hay94] also
highlights the concept, where he states that the basic idea of an SVM is summarized
by the non-linear mapping of an input vector into a high-dimensional feature space
that is hidden from both the input and output, where later an optimal separating
hyperplane is sought.

3.3.1 Mapping into Feature Spaces

The difficulty of a learning task varies with the complexity of the target function to
be learned, which in turn depends on how this function is represented. A common
strategy in machine learning is the preprocessing of data, where its representation
is changed as follows:

= (Ly,.. Tp) — p(&) = (1 (x),... ,¢n(x)). (3.20)

It is equivalent to say that the input space X was mapped into a new space
F = {¢(x)|x € X}. The space F is referred to as feature space, where the process
of finding the most suitable representation for the data is known as feature selection.
A suitable representation is characterized for making learning easier than in the
original input space, for instance by mapping a non-linear problem into a linear
one.

There are several approaches for feature selection. Common techniques seek,
for instance, eliminating features which are irrelevant to the problem, Others, such
as principal component analysis, atternpt to map the original input space a into
feature space with less dimensions, thus trying to avoid the so-called curse of dimen-
sionality [CST00, Hay94, BLC0O].

39

Consider the linear learning machine described in Section 3.2.1. We may
rewrite Equation (3.17) incorporating mapping into a feature space:

N
flz) = wis(z) +b. (3.21)
il

As shown in Section 3.2.2, a important property of linear learning machines
is the ability to represent them in their dual form. Hence, we may rewrite Equation
(3.19) incorporating mapping into a feature space, which is analogous to the dual
form of Equation (3.21):

i

filae) =) eyl {z) ¢ (z)) +b (3.22)

FES

-

We now define the kernel function, which is a way of directly computing
the internal product (¢ (@;) - ¢ (z}). Using a kernel function, we are thus able to
transform a linear learning machine into a non-linear learning machine. A kernel is
a function K, such that for all 2, z € X

Kz, z)= (¢p{x) o (z)). (3.23)

There are interesting remarks about using a kernel function in learning ma-
chines. First, a consequence of the dual representation is that the dimension of the
feature space need not affect the computation of the kernel. Furthermore, we do not
need to known the underlying feature map to be able to learn in the feature space.
Also, since feature vectors are not explicitly represented, potential computational
problems inherent in evaluating the feature map are automatically overcome.

3.3.2 Building Kernels

Since the number of operations required to compute the inner product evaluated
by a kernel function is not necessarily proportional to the number of features, using
kernel functions as feature maps is often very interesting in terms of computational
resources. The first step in order to use such mapping is to determine the most
appropriate kernel function. Even though it may seem more intuitive to build a
kernel function starting with building its corresponding feature space, in practice,
the approach taken is to define the kernel function directly, hence implicitly defining
the feature space. We now state the necessary conditions to ensure that a given
function X is a kernel for some feature space.
First of all, a kernel function K (z, z) must be symmetric, that is:

Kz z)= (@ (2} ¢(2)) =(@(z) ¢(z)) = K(z,x) (3.24)

40

Also, it should satisfy the inequalities that follow from the Cauchy-Schwarz
inequality !:

K(z,z) =(¢(x) o(2)* < |6 (2) |l (=)]
= (¢ (z)- & (z)) (o (2)- ()P =K (z,2) K (z,2)

Finally, it may obey Mercer’s theorem, which provides a way for character-
izing a kernel function, described as follows. Consider a finite input space X =
{z1,...,z1}, and suppose K (x,z} is a symmetric function on X. Consider the
matrix K

(3.25)

= (K (@i, 25))],; (3.26)

We have that K is symmetric and there is an orthogonal matix V such
that K = VAV’ where A is a diagonal matrix containing the eigenvalues A, of
K and the corresponding eigenvectors v, = (vy)l.,, which are the columns of V,
Assuming all eigenvalues are non-negative, consider the feature mapping:

b wmyp - (\/X;'Uti)n elR"i=1, . .n (3.27)

We have now that:

(¢ (i) ¢ (z5)) Z/\twq = VAV = Kij = K (z4,2;), (3.28)

which implies that K (x;,x;) is a kernel function with the corresponding feature
mapping ¢. The proof that the eigenvalues \; must be non-negative is presented by
Cristianini and Shawe-Taylor [CST00], given by contradiction based on their effect
on the geometry of the space.

We may generalize an inner productin a Hilbert space by introducing weights
a; for each dimension, hence allowing infinite dimension in the feature vectors:

(¢(z ZA i () 61 (2) = K (w, 2) (3.29)

According to Mercer's theorem, a continuous symmetric function K (z, z)

may be represented as:
o0

> Nidhi (=) i (=), (3.30)

FE=3]

'Please notice that during the text, whenever we write |||, we mean the 2-norm, or
Euclidean norm, of vector ®. In selected contexts, we use ||z|], to refer to the 1-norm of
vector T.

41

where all \; are non-negative, which is equivalent to X (x, z) being an inner product
in the feature space F' 2 ¢ (X), where F is the [y space of all sequences ¥ =
(41, ... v, ...) for which 392, Mp? < oo,

This will induce a space defined by the feature vector, and as a consequernce
a linear decision function. We represent both primal and dual forms of this decision
function as follows, where the term on left hand side is the primal and the term on
the right hand side is the dual:

o0 {
fle) = Ao (@) +b=_ ajyK (z,2;) +b (3.31)

=1 i=1

Although we do not address the issue in detail here, the contribution from
functional analysis comes from the study of the eigenvalue problem for integral
equations of the form:

K (x, z)¢(z)dz = A (x), (3.32)
K

where K {x,z) is a bounded, symmetric, and positive kernel function and X is a
compact space. The details of this analysis are presented by Cristianini and Shawe-
Taylor {CSTO0], along with many other interesting considerations about building
kernels that are beyond the scope of this text, such as reproducing kernel Hilbert
spaces, building kernels from kernels, and building kernels from features.

We next conclude the discussion by stating Mercer’s theorem.

Theorem 9. (Mercer) Let X be a compact subset of IR™. Suppose K is a continuous
symmetric function such that the integral operator Ty : Lo (X) — La (X),

(T f) () = [K K () f () de,

is positive, that is,

/ K (=, 2z) f{z) f(z)dedz > 0,
AxX

forall f € Ly (X). Then we can expand K (x, z) in a uniformly convergent series {on
X x X) in terms of T}.'s eigen-functions ¢; € Lo (X), normalized in such a way that
liéjlir, = 1, and positive associated eigenvalues «; > 0,

K (z,2) = Aigy (@) b5 (2)
7=l

42

Name Kz, z;),i=1,...,N | Comments

Polynomial (- z; + 1) Power p is a parameter
determined a priori.

Radial-basis function (RBF} | exp (—BE;_,%E;‘JE) Width ¢? is a parameter
determined a priori.

Two-layer Percepiron tanh (Joz - @; + 5:) Mercer’s theorem is satis-
fied only for some values
of By and f.

Table 3.1: Summary of commonly used inner-product kernel functions.

3.3.3 Examples of Kernels

There are many possible functions that satisfy all requirements necessary to be used
as kernels. One of the steps of building a Support Vector Machine, as will be de-
scribed ahead in Section 3.4, is the selection of the most appropriate kernel for the
problem in hand. Table 3.3.3 presents some of the most commonly used kernels in
literature [Bur98, ABRO1b, CST00].

There are many interesting works about creating customized kernels for
problems whose input spaces are non-Euclidean. Some of these are referenced in
Section 7.1, where we suggest their use among others in future follow-ups of this
work.

3.4 Building Support Vector Machines

In this section we combine the concepts introduced in the previous sections of this
chapter to build learning machines known as Support Vector Machines. We start by
describing the principles of building a simple SVM for linearly separable problems.
Then, using this basic machine as a basis, we incorporate inner-product kernels into
the model to make learning possible on the corresponding induced feature spaces.
As we shall see later, this learning machine based on finding a separating hyper-
plane in an induced feature space has the ability to tackle problems with non-linear
input spaces. Completing our description of classification machines, we add slack
variables to this separating hyperplane in order to cope with noisy data. Though
the main focus of this chapter is to describe Support Vector Machines for classifi-
cation problems, we conclude the section by briefly describing the use of SVMs in
regression problems.

43

3.4.1 Linear Support Vector Machines

Consider the linear Jearning machine and the binary classification problem described
in Section 3.2. Assume that the machine is trained on linearly separable data. Con-
sidering an input space with n dimensions, the geometrical interpretation for the
decision function f (z) = (w - z) + b is a separating hyperplane with n — 1 dimen-
sions. Notice that the points « lying on this hyperplane imply that f {z) = 0, where
w is normal to the hyperplane, |b|/||z|| is the perpendicular distance from the hy-
perplane to the origin, and {|x|} is the Euclidean norm of w. Let us define ~.. as the
shortest distance from the separating hyperplane to the closest positive example,
similarly for -v.. and the closest negative example. We define the important concept
of geometric margin of a separating hyperplane as -y = -+, + «y—. For a linearly sep-
arable case, the support vector machine attempts to find the separating hyperplane
with the largest margin possible.

Consider the margin of the decision function output as the functional mar-
gin. Cristianini and Shawe-Taylor [CST0O] prove that the geometric margin is the
functional margin of a normalized weight vector. Therefore, we may optimize the
geometric margin by fixing the functional margin to 1 and minimizing the Euclidean
norm of the weight vector. Consider a positive example o+ and a negative example
a~. If the functional margin is fixed to 1, we have that:

(w-z™y+b = +1, (3.33)
(w-x"y+b = -1 (3.34)

We now compute the geometric margin -y by normalizing w:

T =3 ((nﬁ” x) - mﬂ))
= gy ((w - 2¥) = (w-27)) (3.35)
.
= Tl

Therefore, we achieve the maximum margin v by minimizing the norm of
the weight vector |jw||. Burges [Bur98] proves the same result by determining the
maximum margin between two parallel hyperplanes that contain the closest positive
and negative examples. The formulation of the problem is given as follows.

Proposition 1. Given a linearly separable training sample:
S = ((ﬂ?l, yl) [(ml: yi)})
the hyperplane (w, b) that solves the optimization problem:

minimize,,, (w . w),
subject to yi ({w-a) +b) > 1,
i=1,.,1

44

realizes the maximal margin hyperplane with geometric margin v = 1/||w||.

In order to maximize the margin, we choose the approach of using the La-
grangian of the problem:

l
1, o x—

Lp (w.b.a) = Sjjw||* - >;, cufys ((w - @) +b) — 1), (3.36)
where o; > 0 are the Lagrange multipliers. Aside from minimizing this primal form,
given that this is a convex quadratic programming (QP) problem, we may also solve
it by maximizing its dual form. We first differentiate L p with respect to w and b:

{
OLp (w,b, o) .
—ow mE U - Z; yioumy = 0, (3.37)
{
OLp (w,b,) . .
——-—-———-———-——ab = ii 1 YiCy; == 0. (338)

Since these are equality constraints in the dual formulation, we can substi-
tute them into the primal form from Equation (3.36) to obtain the dual form:

Lp (w,b,a) = §wl ~ Tiey aalys ({w i) +8) - 1],
= 4 0 e Vil (@i @) = Tk vseeg(m @) + Dl e,
= ngl Qg %Zi,‘jml yiyeioy (T - ;).
(3.39)
Recall that after differentiating the primal form of the Lagrangian of the
linear SVM in Equation {3.37), we may write the weight vector as:

!
w = Z Y00 5. (3.40)
i=1
The formulation of the dual problem uses this definition of w, and is given

after Proposition 1.

Proposition 2. Given a linearly separable training sample:

S={(z1,0n), . (zLuw),

and suppose the parameters o' solve the following quadratic optimization (QP) prob-
lem:
maximize Lp (o) = Yiey 06 ~ 2500 vivjaia{w; -),
subject to St_, yie; = 0,
ai%{),iml, ,[

45

Then the weight vector w' = Y ._, wiolx; realizes the maximal margin hyperplane

with geometric margin:
1

4=

i}

Since the threshold value b is not present in the dual problem, we compute
¥ using the primal constaings:

maxy, =—1 ({(w' - ®;)) + miny, = (W' z:)})
- 2
We now describe the Karush-Kuhn-Tucker (KKT) conditions for constrained
optimization problems. All KKT conditions are satisfied at the solution of the con-
strained optimization problems for Support Vector Machines, since all constraints in
this context are linear {Bur98]. The KKT conditions for the primal form Lp from
Equation (3.36) are given below:

y =

(3.41)

l
?—@%——mu;::b’ﬁl = Wy ; iyt = 0 v=1,. ,n (3.42)
OLp (w,.b.) : |
= ; aiy; = 0 (3.43)
vi{m - wy+b)—-1> 0 i=1,...,1 (3.44)
a; > 0 Vi {3.45)
o; (i ((w) +6)~1)= 0 Vi (3.46)

According to Burges [Bur98], who in turn relies on the results from Fletcher
[Fle87], solving the SVM problem is equivalent to finding a solution to the KKT
conditions, which are necessary and sufficient for w, b, and « to be a solution. For
a complete reference of the subject, Bazaraa [BSS92] brings a thorough survey of
most concepts used so far to model SVMs, such as constrained convex optimiza-
tion problems, KKT conditions, Lagrangian duality, as well as several algorithms for
solving optimization problems.

3.4.2 Non-Linear Support Vector Machines

After introducing the basic Support Vector Machine from Section 3.4.1 for solving
linearly separable problems, we now move to the Support Vector Machine that Cris-
tianini and Shawe-Taylor [CST00] considered the easiest to understand and yet the
basis of many other more complex SVMs. This classifier relies on the same principles
of achieving the maximal margin hyperplane as its linear predecessor, only it does
so in a kernel-induced feature space, hence also allowing for non-linear problems.

46

Consider an optimal solution ¢/, (w',b) for the dual problem in Proposition

2. According to the KKT complementarity condition in Equation (3.46), we have
that:

affy; ((w' @)+ 6) = 1] = 0,vi (3.47)

This implies that the non-zero values of «; are only those whose inputs «; have func-
tional margin one and therefore lie closest to the hyperplane. These input vectors
are referred to as support vectors, since they are the ones that determine the solution
of the machine. If we consider the dual representation of the separating hyperplane,
we may write the optimal separating hyperplane disregarding non-support vectors:

S wd{w Ty + U

N (3.48)
Zie{support vectors} y;’&;— <mi :’B) +¥

Also after the KKT complementarity condition in Equation (3.46), we may
write the square of the Euclidean norm of the weight vector alternatively:

(w' w') =3 vyelel (- @)
= Y ie(sv} Vi 2oieleny Vici (T T5)
= Zje{w} 0«’} (1 — ;0"
= 2oje(sut O

(3.49)

We may now extend Proposition 2 by writing the solution’s geometric mar-
gin, first defined in Equation (3.35), in terms of the Lagrange multipliers:

_ 1
T = Tl

= (Zje{su} C“’J)

Consider a kernel function X (x;,x;). If we replace the internal product of
input vectors {(w; - x;) from Proposition 2 with this kernel function, we have that the
separating hyperplane is sough in the feature space defined by K (z;, ;). Notice
that the geometric margin of the solution, defined solely in terms of the Lagrange
multipliers, is not altered, despite the change in space. We synthesize these results
on the following proposition.

(3.50)

Proposition 3. Given a training sample:

S=({zr,m1), ., (@nw),

where S is linearly separable in the feature space implicitly defined by the kernel
K (@, 24), suppose the parameters o and b/ solve the following quadratic optimization

47

{QP) problem:

. . ¥ A 3
maximize Lp (@) = 3 i — § 34 oy Vivoaog I (m, xj)

subject to Yb_, yiay =0,
o; > 0i=1,...,L

Then the decision rule given by sign (f (x)), where f (x) = Ziml it K (g,) + ¥, is
equivalent to the maximal margin hyperplane in the feature space implicitly defined by
the kernel K {x, z), and this hyperplane has geometric margin:

je{sv}

Notice that since the kernel K (z, z) must satisfy Mercer's theorem, the op-
timization problem is convex [CSTOO0]. Hence, one of the properties required for a
kernel function to define a feature space is that the maximal margin optimization
problem has a unique solution, that is, that there is duality gap.

We now consider the expected generalization error for the Support Vector
Machine described so far in this section. It is interesting to notice the effect that the
number of support vectors of a given solution has over its expected generalization,
where the fewer support vectors, the better generalization, According to Cristianini
and Shawe-Taylor [CST0Q], this is consistent with the principle known as Ockham’s
Razor, which may be interpreted in this context as favoring more compact repre-
sentations for classification functions as opposed to more complex ones®. We next
present a theorem given by these same authors on SVM generalization bounds, after
Theorem 6 from Vapnik and Chervonenkis.

Theorem 10. Consider the thresholding real-valued linear functions L with unit weight
vectors on an inner product space X. For any probability distribution D on X x
{—1,+1}, with probability 1 — & over | random examples S, the maximal margin hy-
perplane has error no more than:

1 el
T— e
errp{f) < = (diog 7 —I—logl&),

where d is the number of support vectors.

20¢kham’s Razor is the principle proposed by William of Ockham in the fourteenth cen-
tury: Pluralitas non est ponenda sine neccesitate, which translates to “entities should not be
multiplied unnecessarily”.

48

3.4.3 Soft Margin Optimization

Even though the non-linear maximal margin classifier described in Section 3.4.2 is
the basis for many more advanced Support Vector Machines, its direct applicability
suffers from its lack of ability to handle noisy data, which is almost always the case in
real-world problems. Since the maximal margin classifiers outputs hypothesis with
zero training error, the machine’s behavior is dictated by its training data, which in
turn may include outliers and idiosyncrasies that jeopardize the quality of the final
solution. We now explore the concept of margin distributions, where we add slack
variables to the maximal margin classifier to allow for its margin constraints to be
violated.

Recall from Proposition 1 the primal optimization problem for the maximal
margin case. We introduce slack variables that allow the margin constraints to be
violated in order to optimize the margin slack vector:

minimize,,;, (w-w),
subjectto i {(w;-x) +B) 21 —Ei=1, (3.51)
& =20,i=1,..,0

Cristianini and Shawe-Taylor [CST00] demonstrate the bounds on the gener-
alization error in terms of the 2-norm of the margin slack vector, also called 2-norm
soft margin, which contains &; scaled by the norm of the weight vector. Their result
suggests an optimal choice for C in the optimization problem, as follows.

minimizeg (W -w) +C Yi_, &,
subject to yi(fw-z)+0)>1~&i=1, .1, (3.52)
£2>0i=1,...,L
The same approach may be adapted for the 1-normm case, where the opti-
mization problem minimizes another combination of the norm of weights and the
1-norm of slack variables. Once there is a value of C that corresponds to the optimal
choice of ||w||, C will give the optimal bound as it will correspond to achieving the
minimum of [{§;]|; with the given value of ||w]|.

minimizeé‘w‘b (w cw) + Ziml &,
subject to yi({w-a) +b)>1-¢&,i=1, I (3.53)
£ 20d=1,...,1L
Consider the case for 2-norm soft margins. We have that the primal La-
grangian for the problem in Equation (3.52) is:

—~

{
Lp(wb,6,0) = Slww)+ 5 i = 1683 afys (e @) +6)~1+6]. (354

f==]

49

If we calculate the partial derivatives for Lp we have:

BLp (w,b, €, &) L

D = w — ._E 1 Yy Ly = 0, (3.55)
OLp (w,b, €,) _

5 = Cf-a=0, (3.56)
OLp(w.b,&,0) o~

% = ii. 1 Yoy = 0. (3.57)

Since these are equality constraints in the dual formulation, we can substi-
tute them into the primal form from Equation (3.54) to obtain the dual form:

l !
1 1
Lp(w,b,€ o) = Zai -3 Z Yiyjaiog(m; - xp) ~ "é"""‘”é‘;(ini L), (3.58)
i=1 ij=1
Hence, maximizing the dual representation above is equivalent to Proposi-
tion 4, where 4;; is the Kronecker § defined to be 1 if 4 = j and 0, and the corre-
sponding KKT complementarity conditions are:

aifyi ((w z)) +8) —1+&]=0,i=1,. 1 (3.59)
Proposition 4. Consider classifying a training sample:

S=((z1,01),. . (TLw),

using the feature space implicitly defined by the kernel K (z, z), and suppose the pa-
rameters «' solve the following quadratic optimization (QP) problem:

. { ‘! -
maximize Lp{c) =i ai— § 3 0 vityone; (K (@, 2;) + £655)
subject to Y wioy =0,
oy %D,’l: 1,. ,l

Let f{x) == ZL} Y K (y,) -+ b, where V' is chosen so that yi f (z;) = 1 ~ o!/C
for any i with o} 5 0. Then the decision rule given by sign (f (x)) is equivalent to the
hyperplane in the feature space implicitly defined by the kernel K (x, z) which solves
the optimization problem (3.52), where the slack variables are defined relative to the
geometric margin:

50

Proof. The value of ¥ is chosen using the relation «; = C&; and by reference to the
primal constraints which by the KKT complementarity conditions:

ca,-[yi((wi-a:,—)wf»b)—-lui-;fi]=0,i=1,u_,l,

must be equalities for non-zero «;. It remains to compute the norm of w’ which
defines the size of the geometric margin.

(W' w) =3 el K (2)
= 2 jefon} Y% Lie(s) Vit (@ -)
= Ljegany & (1~ & = b))
= Ljetsn) % lzae{sv} o€
= Zjé{sv}] (0: @)
o

According to Cristianini and Shawe-Taylor [CST0O0], this quadratic optimiza-
tion problem is equivalent to a simple change in the function:

K'(@,2) = K (2, 2) + -é-am (z). (3.60)

Consider now the case for 1-norm soft margin. We have that the Lagrangian
for the 1-norm soft margin optimization problem is:

! ! {
1
Lp (w,b,€,0,7) = 2 (w - w) + §=; ;az (w-m) +b) ~1+&] - };va—&,
{3.61)
with a; > 0 and r; > 0. We then calculate the partial derivatives for Lp:
!
aLp ('lU,b,&,OC,T') _) -
o = w- Zyia,;:ni = 0, (3.62)
5Lp ('UJ: b: gu &, T) — Cr — — {}, (363)
O¢;
!
8Lp (w,b,§,c,7) o ‘
o = Z yice; = 0, (3.64)

We substitute these relations into the primal form from Equation (3.61) to
obtain the dual form:

{

I
1 -
Lp{w,b & a,r)= S ai— g E iy (e ®;), (3.65)
i=1

fj=1

51

which is identical to that for the maximal margin, except that the constraints C —
a; —7; = 0 and r; > 0 enforce a; < C, while & s 0 only if r; = 0 and therefore
«; == C. The corresponding KKT complementarity conditions are therefore:

oy ((w-a) +0) =14+ &] =0, i=1, ..

§ilai ~ C) =0, i=1 1 (3.66)

Notice that these KKT conditions imply that there may only be non-zero slack
variables if a; = C. Points with non-zero slack variables have geometric margin less
than 1/|{w||, where points for which 0 < «; < € lie at distance 1/{|w]| from the
separating hyperplane. Proposition 5 formalizes the problem.

Proposition 5. Consider classifying a training sample:

S= ((mltyi) poo ’(mhyi))a

using the feature space implicitly defined by the kernel K (z, z), and suppose the pa-
rameters o solve the following quadratic optimization problem:

. . . [¥ -
maximize Lp ((3{) = Zi:l oy — % Zi.j=1 y,-yja.iajK (il':i, m),) s

subject to Zi:z yio; = 0,
C'Eai ZU,LZ }. ,l

Let f{z) = Zﬁ:x il I (g,) + O, where ¥ is chosen so that y; f {(z;) = 1 for any
i with C > «} > 0. Then the decision rule given by sign (f (x)) is equivalent to the
hyperplane in the feature space implicitly defined by the kernel K (a, z) which solves
the optimization problem (3.53), where the slack variables are defined relative to the
geometric margin:

(=31

v = (> yayeielK (-’L‘i,m;‘))

Je{sv}

Proof The value of V' is chosen using the KKT complementarity which imply that if
C > a; > 0both & = 0 and:

ai[yi ((w ‘ CE;‘) + b) -1 "i“fi] = {
The norm of w’ is clearly given by the expression:

(whw') = ZE,jm vy K (i - @) ‘
= Zje{sv} Zie{su} y-i'ijY'EC‘r}K (@ - xj).

52

Notice that all o; are upper bounded by C, which brings up the name box
constraint since the vector « must lie inside a box with length C in the positive
orthant. C is hence a regularization parameter that adjusts the trade-off between
accuracy and generalization. Another interesting outcome is that this constraint
also ensures that the feasible region is bounded and hence the primal always has
a non-empty feasible region. The concepts around box constraints with 1-norm
soft margins are explicitly explored by the Sequential Minimization Optimization
algorithm, later described in Section 3.5.3.

Pontil and Verri [PV98] explored the effects of the regularization parameter
C over the solution of the SVM. They concluded that some support vectors whose
Lagrange multipliers are smaller than C, referred to as margin vectors, play a dis-
tinct role in the composition of the solution. Given the optimal separating hypet-
plane described by a decision surface, this hyperplane can be written as a sum of
two orthogonal terms, the first depending only on the margin vectors, the second
proportional to the regularization parameter. Therefore, this result from Pontil and
Verri enables us to better predict the effects of changes in C over the solution.

3.4.4 Support Vector Regression

Even though the focus of this work is the use of Support Vector Machines in classi-
fication problems, one of the possible future works to follow is the use of the same
hybrid techniques developed here in regression problems, as described in Section
7.7. The approach of using support vectors, so far only described for classification
problems, can be adapted to regression problems as well. This adapted approach is
based on the same concepts of learning a non-linear function with a linear learning
machine in a kernel-induced feature space. For complete references on using SVMs
in regression problems, please refer to Burges [Bur98] or Cristianini and Shawe-
Taylor [CST0O0].

Like the classification approach, in regression we seek to optimize the gen-
eralization bounds according to a loss function that ignores errors within a certain
distance of the correct value. This loss function is referred to as e-insensitive loss
function, where there are variables &; that measure the error for each of the training
points, and §; = 0 if vector ¢ is within the so-called e-insensitive band. The are many
choices for this function, for instance the linear e-insensitive loss and the quadratic
e-insensitive loss, which correspond to the 1-norm and 2-norm of the loss vector,
respectively.

Lets consider first the quadratic e-insensitive loss case. We skip the descrip-
tion of the function itself and directly describe the formulation of the corresponding

53

primal optimization problem:
minimize ||w]||*+ C }:i=1 (63 + f?) ,
subjectto ({w @) +b) —y <e+&,i=1,...,1, (3.67)
Ui -—(('UJCB;) +b) = €+‘Ei:i = 11 al5
g?éi Z 077* =1, -*1[1
where two slack variables are introduced, one for exceeding the target value by
more than ¢, and another for being more than € below the target. The dual problem
is derived using the same approach as in the classification case, only now taking into

account that £¢; = 0 and therefore that o;&; holds for the corresponding Lagrange
multipliers:

maximize 3 v (6 — o) — € 3Ly (6 + o)
1l ~ ~
- % Zi;jml (ai - ai) (sz' - aj} (<$1 ’ mj) + éé}j) (3.68)
- f N _ N
subjectto >, (di—a;) =0,
éﬂi z O:ai Z D;l = 11-“1!:
where the KKT complementarity conditions are:
o ({w) +b—yi—~e—&)=0, i=1,...,1
Gilyi—(w @) —b-ec—&) =0, i=1, (3.69)
Ei€i = 0, 46k, i=1,. ,l
Consider now the linear e-insensitive loss case. We may write the the corre-
sponding primal optimization problem as follows:

minimize 3{[w|]* + C Y, (gt. + 5}) 1

subjectto ({w x;) +b) —y; < +éni=1,. .1, (3.70)
yi—((w m) +b)Seti=1,.0
g&>0i=1 .1

The corresponding dual problem is:
maximize Ziﬂl yi (& — o) — € Z:zi (& + o)
\f n ~
- %Zi,jm} (i — ay) (dj ~ aj) (=i~ x;)

3.
subject to ZL} (a; —) =0, (3.71)
dfi ...<... C-n&i 2 071 = 11""1""!
where the KKT complementarity conditions are:
o ((w) +b—y;—~e—-£)=0, i=1,.. .1,
(3.72)

§i&i = 0, €6y, i=1,...,1L

!
Giyi—(w-m)—b—e=&) =0, i=1,.1
!
(ai—C)fiz(),(dimC')éi:O, ’iml,.‘...,l‘

54

Notice that if we replace (z; - @;) by K (z;,z;) in the dual forms for both
the quadratic and linear e-insensitive loss cases above, we have machines that learn
in the corresponding kernel induced feature space. This is the same technique used
before to map input spaces to kernel induced feature spaces in classification prob-
lems.

There are different approaches for support vector regression other than us-
ing e-insensitive loss functions. One these approaches explores the case where ¢ = 0
for the quadratic loss function, which corresponds to least squares regression with a
weight decay factor. This approach is referred to as ridge regression, and it is thor-
oughly described by many authors including Cristianini and Shawe-Taylor [CST00].

3.5 Training Methods

In previous sections, we described how the problem of training a Support Vector Ma-
chine may be reduced to a constrained optimization problem. Solving constrained
optimization problems has been widely studied in literature, specially for the con-
vex case. In this section we describe methods for training SVMs, starting with well
known generic optimization methods, shifting to enhanced methods that take ad-
vantage of specific SVM properties.

Despite having a wide range of methods for training SVMs from optimiza-
tion literature, the problem has particular characteristics that suggest the use of
customized approaches. For instance, large training sets impose serious resource
restrictions due to the quadratic complexity of the problem in space. The dimen-
sionality of the kernel matrix grows with the square of the training set size, thus
potentially generating a substantial number of variables to be optimized. Further-
more, SVM problems are rather sparse, therefore computational resource consump-
tion and performance may be substantially improved if the algorithms being used
are able to deal efficiently with sparseness.

3.5.1 General Techniques

We shall now describe some techniques based on generic optimization methods for
solving the problem of training classification Support Vector Machines. Consider
the problem stated in Proposition 5, where C' = oo gives the hard margin case, an
adaptation of the kernel as described in Equation (3.60) gives 2-norm soft margin
optimization, and € < oo gives the 1-norm soft margin case. We also have that the
Karush-Kuhn-Tucker complementarity conditions for the 2-norm and I-norm soft
margin cases are given by Equations (3.59) and (3.66), respectively. Recall that the

55

convexity of the problem ensures that a solution can always be found efficiently,
where satisfying all KKT conditions is necessary and sufficient for finding a solution.

There are many numerical approaches to this problem, where algorithms
iteratively increase the value of the dual objective function without leaving the fea-
sible region, until a stop criterion is met. Cristianini and Shawe-Taylor [CST00]
describe three different stopping criteria derived from the properties of the prob-
lem, as we describe next.

1. One of the simplest stop criterion possible is monitoring the growth of the
dual objective function. Since there are no local maxima in the problem, the
function will reach its maximum value at the solution. Therefore, one may
monitor the fractional rate of increase between iterations to fall below a given
threshold, and hence stop the iterative training.

2. Since meeting all KKT conditions is necessary and sufficient for a solution,
these conditions provide a natural stopping criteria. For the 1-norm soft mar-
gin case, we have that:

0oy <C,
> 1 for points with o; = 0,
. . (3.73)
yif (®:) (=1 for points with0 < a; < C,
< 1 for points with a; = C.
For the 2-norm soft margin case, we have that:
HEAZ
>1 for points with ¢ = 0, (3.74)
yif (@) . . .
=1 q;/C for points with o; > 0,

where slack variables are implicitly defined by &; = «;/C.

3. Considering that the duality gap at the solution is zero in convex quadratic
optimization problems, one may monitor progress by assessing the difference
between the primal and dual objective functions. The following ratio may be
computed and checked against a threshold value as it converges toward zero:

Lp - Lp

Tro1 G75)

where Lp is the primal objective function and Lp is the dual objective func-
tion.

56

The simplest method for achieving a numerical solution for a convex opti-
mization problem is using gradient ascent, also known as steepest ascent algorithm.
It works by iteratively shifting the soiution toward the direction of the steepest as-
cent by steps ¢ of fixed length, factored using a learning rate n, similarly to many
neural network training algorithms [BLCOO0, Hay94]. The update of Lagrange mul-
tipliers at time ¢ is given by:

ot = of +misi. (3.76)

Though very simple to implement, this approach suffers from the general problems
associated with naive gradient ascent, such as convergence speed and oscillation
before convergence. Cristianini and Shawe-Taylor [CST00] introduce the topic of
training SVMs with a thorough description of this method, which is also explored
by Almeida et al. [ABBO1b].

Another iterative method similar to gradient ascent is that of projected con-
jugate gradients (PCG). Although the concepts behind both methods are essentially
the same, where the solution is achieved by climbing the convex region up to its
maximum, the direction of each step is computed in a more sophisticated and effi-
cient way.

Yet another iterative algorithm was proposed by Mangasarian and Musicant
[MM98, MM99], called Successive Over Relaxation (SOR). It consists of relaxing
some of the equality constraints in the problem formulation, leaving it with only
inequality constraints. One of the interesting properties of SOR is its ability to deal
with massive datasets [MM99, BMM99]. According to Cristianini and Shawe-Taylor
[CSTOO0}, SOR is equivalent to stochastic gradient ascent combined with sample
selection heuristics such as those described by Platt [Pla98a].

3.5.2 Decomposition and Chunking

One of the drawbacks of the iterative algorithms described in Section 3.5.1 is their
computational resource requirements, more specifically the necessity to store the
data in the form of a kernel matrix, thus implying quadratic complexity in space,
New algorithms emerged attempting to make Support Vector Machine training effi-
cient even for large data sets. One of the techniques derived from this effort is the
so-called active set or working set method in optimization, which consists of discard-
ing inactive constraints to simplify the problem, where selection heuristics are used
to determine which constraints are active and which are not.

One of these heuristics is called chunking, where the algorithm starts by train-
ing the SVM using an arbitrary subset of the data, also called active or working set.
Chunking is analogous to the divide and conquer strategy for algorithms, where a

57

problem is broken down into smaller more tractable sub-problems. The SVM is re-
peatedly trained with new data subsets, where each subset of chosen as to keep
the support vectors from the previous iterations together with the points that most
violate KKT conditions. The algorithm iterates until a stop criterion is found, where
the values of the Lagrange multipliers yield the final solution, This algorithm does
not change the complexity requirements of SVM training, where the kernel matrix
must only be stored in memory for the working set currently being processed.

Inspired by chunking techniques, Joachims [Joa98a] introduced SVM“eht,
which selects the Lagrange multipliers of its active set positioned on the steepest fea-
sible descent direction, determined based on a first order approximation of the ob-
jective function. Chunking techniques do not have theoretical convergence proofs,
though in practice, they are remarkably efficient for dealing with large data sets.

Another more advanced heuristic based on chunking is sometimes referred to
as decomposition, introduced by Osuna et al. [OFG97]. Instead of focusing in finding
the optimal data set over which the optimizer must be executed, decomposition
attempts to optimize the global problem by processing small chunks of data at a
time. Osuna et al. proved that the algorithm asymptotically converges if at least
one point violating KKT conditions is added to the working set. Osuna et al. also
suggest that the number of Lagrange multipliers should be fixed, where for each
multiplier added to the working set, another has to be removed.

3.5.3 Sequential Minimal Optimization

We now describe one the key algorithms used in this work, the so-called Sequen-
tial Minimal Optimization {SMO). SMO is due to John Platt [Pla98a, Pla98b], who
extended the ideas by Osuna et al. [OFG97] about decomposing a quadratic pro-
gramming (QP) optimization problem into a series of smaller problems in order to
decrease the resources needed to execute the algorithm. Platt took this concept to
the extreme, where the original problem is divided in the smallest possible QP prob-
lems, which allows them to be solved analytically rather than iteratively. This way,
SMO requires a linear amount of memory and a linear-to-quadratic time in the train-
ing set size, whereas other chunking methods, such as projected conjugate gradients
chunking, require linear-to-cubic times [Pla98a]. The efficiency of SMO compared
to previous SVM training algorithms is certainly one of the factors that triggered
the recent interest that SVMs have received in different application domains, often
outperforming many other traditional techniques.

Recall the problem stated in Proposition 5, where C' = oo gives the hard mar-
gin case, an adaptation of the kernel as described in Equation (3.60) gives 2-norm
soft margin optimization, and C' < co gives the 1-norm soft margin case. The KKT

58

conditions for both 2-norm and 1-norm soft margin cases are given by Equations
(3.59) and (3.66), respectively. We have that Lagrange multipliers o; and «; must
obey a linear equality constraint. Therefore, it follows that the smallest possible QP
sub-problem derived from the original problem must optimize two Lagrange mul-
tipliers at a time. The main advantage of SMO is that solving the problem for two
Lagrange multipliers can be done analytically, thus avoiding expensive numerical
iterative algorithms. Also, since the maximum number of multipliers in the working
set is two, only a two-by-two matrix is required to store the kernel matrix.

The SMO algorithm may be broken down into three parts: an analytical
method for solving the optimization problem for two Lagrange multipliers, a selec-
tion heuristic to choose which two Lagrange multipliers to optimize, and a method
for computing the threshold value of the SVM. We now describe each one of these
COmpoOnents.

Consider the linear constraint relating any two Lagrange multipliers oy and
cs chosen to be optimized such that Z§=1 a;y; = 0 holds. It follows that oy and
ay are constrained in a box defined by 0 < @1, a2 < C according to this condition,
where «; and as must lie in a diagonal line such that:

oYy + Qays = constant, (3.77)

This geometric display offers another means for explaining the minimum
number of Lagrange multipliers to be selected, where the algorithm would not be
able to fulfill all constraints if only one multiplier was to be updated at a time.

Without loss of generality, the algorithm first computes the second Lagrange
multiplier a» and computes the ends of the diagonal line segment in terms of as. If
y1 # yo, then the following bounds apply to as:

L = mex (0,8 ~ o), H = min (C,C + ag - agtd). (3.78)
If 14y == yq, then these bounds become:
L = max (0, adld 4 agld ~ C) ,H = min (C‘, adld 4 chM) : (3.79)

Let E; be the difference between the machine’s output f (z) and the target
classification on training points @, and s, such that:

!
Ei=flz))—y= (Z oy K (x5, 24) *H-’) — Y, i = 1,2, (3.80)
J==1

where ¢ (-) is the mapping to the feature space corresponding to the kernel func-
tion K (-,). Consider also the second derivative of the objective function along the

59

diagonal line:
n=K(zy,z) + Kz, @) — 2K (1, 32) = || (1) — ¢ (m2) |§2 {3.81)

We must now compute the location of the constrained maximum of the ob-
jective function while allowing only two Lagrange multipliers to change. Under
normal circumstances, there will be a maximum lying along the direction of the
linear equality constraint and < 0 . In this case, we have that the following
unconstrained maximum:

aalew — ngld _ yQ(_Ein":_'_E_El (3.82)

Next, we find the constrained maximum by clipping the unconstrained maximum to
the ends of the line segment:

H ifol*>H
afe ifL <ol < H . (3.83)
L ifedv <L

agmu,cli'pped -

We now compute the first Lagrange multiplier, a.;, based on o2¢Wc/Pped,

arllew —_ ag!d + y1ya (agld . agew.cl:pped)) (384)

The second derivative n will not be negative under normal circumstances,
though SMO does not fail should this happen. Notice that may be equal to zero if
more than one training point has the same input vector.

Cristianini and Shawe-Taylor [CSTO0Q] present the analytic solution for two
Lagrange multipliers as a theorem, which they prove based on the partial derivative
of the objective function with respect to as and the geometric properties of the
problem.

Next, we describe the selection heuristics used by SMQO to determine the
pairs of Lagrange multipliers to optimize at each iteration. According to Osuna et al.
[OFG971, a chunking algorithm will asymptotically converge if points that violate
KKT conditions are always added to the working set. It follows that the algorithm
tends to converge faster if the points that most violate KKT conditions are selected,
since they have larger contributions to the gap between the current and optimal
solutions [CST00]. Although always selecting the two points that most violate KKT
conditions ensures that the algorithm will converge with less iterations, evaluating
these conditions for all points is computationally expensive. Therefore, selection
heuristics must be used to select two points with a reasonable contribution toward
the solution, though yet computationally cheap to be sought.

60

Platt uses two nested heuristics for selecting Lagrange multipliers, where the
first heuristic selects oy, and the second selects an based on the first choice.

First Choice Heuristic The first choice heuristic provides the outer loop of the SMO
algorithm, which scans through all points determining those that violate KKT
conditions. When found, these points are selected for optimization and han-
dled over to the second choice heuristic. In order to speed up training, the
algorithm only scans points whose Lagrange multipliers «; satisfy 0 < o; < C,
that is, those points not on the boundary of the feasible solution. Only after
all such points do not viclate KKT conditions, the algorithin resumes scanning
through the complete list of points, including those on the boundary of the
feasible solution.

Second Choice Heuristic The selection of the second Lagrange multiplier must
take into consideration the selection of the first, where the pair that yields
the greater contribution toward the solution is ideal. In order to quickly de-
termine this pair, SMO evaluates the step size |E; — Ey| and selects the pair
with its largest value, where error values F; vi | 0 < a; < C are cached by
the algorithm to avoid repeated evaluations of the kernel function. It follows
that if B is negative, SMO chooses an example with minimum error Fs, and
if F) is positive, it choose an example with maximum FE». If this choice of as
fails to deliver a significant increase in the dual objective, SMO attempts scans
through every non-bound example, and if this new choice still fails to provide
a relevant contribution, SMO searches through the complete set.

Notice that all condition checks against KKT conditions are made within a
margin €. According to Platt [Pla98a], this loose checking of KKT conditions inhibit
the incidence of numerical errors, empirically shortening the convergence time de-
pending on its value.

The error cache used in the heuristics is kept for all values £; whose Lagrange
multipliers lie within the feasible region, that is, 0 < «; < €. When a non-bound
point is selected for optimization, that is, a point not lying over the bounds of the
feasible region, its error value is set to zero. After each optimization step, the error
values for every non-bound multipliers «, are updated as follows:

E}?ew — EEM 1 (Ck?ew . a?ld) K (mi,mk.)

' g 3.85
+1o (a;ew,chpped _ Ofgld) I (3:2,51?},:) + bold - b"e‘w, ()

where b is the threshold value of the SVM. Finally, after solving for all Lagrange
multipliers in the optimization problem, we must determine how to compute b. After
every step, b is re-evaluated so that KKT conditions are fulfilled for both optimized

61

example selections. A threshold value b, is valid when o}** is not at the bounds,
since it forces the SVM to output y; given the input vector =,

by == By + 1y (a?ew - ai’ld) K (@1, xy) + ya (agew‘c“pped - agld) K (), 29) + b
(3.86)
Similarly, a threshold value b, is valid when % is not at the bounds , since it forces
the SVM to output y, given the input vector xs:

by = Ey + 41 (ar;ew _ acl;ld) K (@1, @) + yo (agew,ctirfped _ agid) K (2o, 20) + pold
(3.87)
Whenever both &y and by are valid, we have that b; = by. When both o and
a lie over the bounds and I > H, the interval between b; and b, provides infinite
possible thresholds that are consistent the KKT, where SMO sets b to the halfway
point by + &2z,
Figure 3.5.3 brings the pseudo-code for the SMO algorithm as originally por-
trayed by Platt [Pla98a].

target = desired output vector
point = training point matrix

procedure takeStep{il.i2)
if (i1 === {2} return 0
alphl = Lagrange multiplier for il
vyl = target[il]
El = SVM output on point{il] — y1 (check in error cache)
§ = y1*y2
Compute L, H
if (L == H)
return 0
k11l = kernel(point[il],point[il]}
k12 = kernel{point[il],point[i2]}
k22 = kernel{point[i2} point[i2])
eta = 2*k12-k11-k22
if (eta < 0)
{
a2 = aiph2 — y2*(El1-E2}/eta
if (a2 < L) a2 = L
else if (a2 > H) a2 = H
}

else

62

10

20

Lobi == objective function at a2=L
Hobj = objective function at a2=H
if (Lobj > Hobj+eps)

aZ = [,
else if {Lobj < Hobj—eps)
a2 =H 30
else
a2 = alph2
}
if (ja2—alph2| < eps*(a2+alph2+eps))
return 0

al = alphl+s*{alph2-a2)
Update threshold to reflect change in Lagrange multdpliers
Update weight vector to reflect change in al & a2, if linear SVM
Update error cache using new Lagrange multipliers
Store al in the alpha array 40
Store a2 in the alpha array
return 1
endprocedure

procedure examineExample(i2)
y2 = target[i2]
alph2 = Lagrange muitiplier for i2
E2 = SVM output on pointfi2] — y2 (check in error cache)

r2 = E2%y2
if ((r2 < —tol && alph2 < C) }| (r2 > tol && alph2 > 0}) 50
{

if (number of non—zero & non-C alpha > 1)

{

il = result of second choice heuristic
if takeStep(il,i2)

return 1
b
loop over all non—zero and non-C alpha, starting at random point
{
il = identity of current alpha 60
if takeStep(il,i2)
return 1
by
loop over all possible il, starting at a random point
{

il = loop variable

63

if takeStep(il.i2)
return 1
}
} 70
return 0
endprocedure

main routine:
initialize alpha array to all zero
initialize threshold to zero
numChanged = 0;
examineAll = 1;
while (numChanged > 0 | examineAll)
{ a0
numChanged = 0;
if (examineAl)
Ioop 1 over all training examples
numChanged += examineExample(l)
else
loop 1 over examples where alpha is not 0 & not C
numChanged += examineExampie(I)
if {(examineAll == 1}
examineAll = 0
else if (numChanged == 0) 90
examineAll = 1

Figure 3.1: Pseudo-code for Platt’s Sequential Minimal Optimization algorithm.

64

Chapter 4

Hybrid Algorithms Combining
Boosting and Support Vector
Machines

Using all the groundwork laid down in Chapters 2 and 3, this chapter describes the
use of hybrid algorithms that combine Support Vector Machines together with Boost-
ing techniques in order to create better learning machines that benefit from desir-
able properties of both. As we shall see, these two learning approaches have many
individual strengths and weaknesses, where we expect that hybrid combinations
will use these strengths to implicitly overcome some of each other’s weaknesses. We
start the chapter describing the motivations that inspired such hybrid algorithms
in Section 4.1, followed by a brief modular review of our two building blocks, Ad-
aBoost M1 and SMO, in Section 4.2. We conclude the chapter with Sections 4.3 and
4.4, where we describe the new hybrid algorithims and their complexity analyses,
respectively.

4,1 Motivations and Previous Works

In Chapter 3, we have seen that training a Support Vector Machines for binary classi-
fication problems consists of solving a quadratic programming (QP) problem, where
different algorithms may be used to find the optimal separating hyperplane that
maximizes the margin to its closest training points. Despite the fact that these solu-
tions are found to be optimal in the context of the optimization model being used,
solutions by SVMs are far from being optimal in the general context of the learning
problem. Even though SVM principles are guaranteed to provide good generaliza-

65

tion when compared to other machine learning approaches, it is clear that their
solution is not perfect for either the lack of enough training data to fully character-
ize the problem, a failure or unfitness of the SVM model and its formalization, or
both. SVMs may also fail to perform well in the unfortunate case of having poor
kernel selection for the problem in hand, or even in noisy problems where there are
excessive outliers.

Similarly to Support Vector Machines, Boosting aiso offers theoretical guar-
antees that the final solution will lower its generalization error, this time toward a
bound given by a probabilistic expression dependent on the properties of the prob-
lem, as described in Chapter 2. Nonetheless, Boosting algorithms also fail to pro-
vide a perfect solution to learning problems, even more so than SVMs. According
to Freund and Schapire [FS99b], most of the work of applying SVMs or Boosting
to a specific learning problem come down to selecting a kernel function or a weak
learner, respectively. Schapire [Sch02] states that the performance of Boosting on
a particular problem is clearly dependent on the data and weak learner. Accord-
ing to him and consistent with theory, Boosting may fail to perform well if given
insufficient data, noisy data, too complex or too poor weak classifiers.

We shall extend the analysis of differences between Boosting and Support
Vector Machines, as we previously started in Section 2.4.1, now based on Freund
and Schapire [FS99b]. According to them, some of the most distinguished differ-
ences are:

Different weight vector norms. SVMs use the 2-norm, or Euclidean norm, for the
weight vector, where Boosting uses the 1-norm. Although the difference be-
tween these norms may seem irrelevant in low-dimensional spaces, SVM and
Boosting work with very high-dimensional spaces, which implies possibly large
differences between margins.

Different searching approaches. SVM training is mostly done by solving a QP pro-
gram, where the optimal solution is sough in the induced feature space by the
means of the kernel function. Boosting, on the other hand employs greedy
search to iteratively walk in the solution space.

So, given that neither SVMs nor Boosting are perfect silver-bullet machine
learning approaches despite their very attractive theoretical properties, we can de-
vise new ways for combining both together, trying to take advantage of their differ-
ences to make up for each one’s individual inefficiencies. It would be interesting if
a hybrid algorithin were able to combine features such as SVM’s ability to handle
noise well, in which Boosting fails, and Boosting’s ability to overcome poor weak
learners, where SVMs suffer with bad kernel selections and parameter tuning.

66

This hybrid approach has been tried before in literature. Onoda [ORMOO]
describes a similar approach where a boosted SVM was compared to the classical
K Nearest Neighbors algorithm, and to RBF and MLP neural networks. The prob-
lem discussed was a multi-dimensional classifier applied to a monitoring system for
household electric appliances. Although the author did not present any outstanding
results, nor did he explore the learning aspects or the algorithms used in training
the boosted SVM, the paper did prove feasible the concept of applying Boosting
techniques to a Support Vector Machine.

Other related works also validate the idea of using instance pre-selection
schemes in order to enhance the performance of Support Vector Machines, for in-
stance those from Almeida et al. [ABB00, ABBOla]. These authors first used an
a priori cluster selection strategy to accelerate the training of classification SVMs
[ABBOO]. Later, the same authors created a new training algorithm based on gra-
dient ascent and error-dependent repetition techniques described in Sections 3.5.1
and 2.1.2, respectively, in which KKT conditions need not be evaluated. Interest-
ingly, they report generalization errors equal to or better than those from SMO for
a couple of problems [ABBO1a].

4.2 Combining AdaBoost and SMO

Motivated by previous results of combining Support Vector Machines with Boost-
ing and similar pattern selection mechanisms, in this work we attempted to com-
bine the AdaBoost algorithm, more specifically AdaBoost. M1, with Platt’s Sequential
Minimal Optimization training algorithm. As we next present in Section 4.3, there
are different strategies to accomplish this integration with different degrees of cou-
pling. Before that, we shall re-examine some of the internal working details of both
AdaBoost.M1 and SMO.

Consider the schematic drawing in Figure 4.1 for the AdaBoost.M1 algorithm
first presented in Section 2.3.1. We may divide the several steps that compose the
algorithm into separate modules for individual analysis. We first have a repository
of training data where all input patterns in X are available with their corresponding
labels in Y. There is a probabilistic selection mechanism based on distribution D,
which is first initialized to a uniform distribution at time 0. This mechanism selects
aset (z,y)" of size n such that (z,y) € (X,Y), where each tuple {z, y) is drawn from
{X,Y) regardless if it has been already selected, a method we refer to as selection
with replacement. This extended set of the training set is the data effective fed to
the weak learning algorithm, also referred to as base classifier. This weak learner
outputs a weak hypothesis h, at time ¢, which is passed to a hypothesis evaluator. In

67

Probabilistic D Hypothesis
Seiector Evaluator
Yy Y
XY XY H(x).0 '
Yy ¥
Weak
Learner H(x)

Figure 4.1; Schematic drawing of the internal workings of AdaBoost.M1.

turn, this evaluator assess the quality of the hypothesis and translates its measure
to a weight value w, {previously addressed as ¢, in Chapter 2), which is stored
with h, and used to update the dismibution D. Finally, when all T iterations are
completed, the final hypothesis H is output by combining all weak hypothesis h;
using a majority vote weighted by .

Consider now the schematic drawing in Figure 4.2, corresponding to Platt’s
SMO algorithm described in Section 3.5.3 and transcribed in Figure 3.5.3. As with
AdaBoost.M1, we have a repository of training data where all input patterns in X
are available with their corresponding labels in Y. In SMO, the role of the prob-
abilistic selector from AdaBoost is fulfilled by two selection heuristics that deter-
mine which two instances from the complete training set will be chosen to undergo
the optimization step. This optimization, in turn, is the analytical solution of the

68

First Heuristic

"

x Second Heuristic

l
x2
¥ ¥ ¥

Optimization Step

Figure 4.2: Schematic drawing of the internal workings of SMO.,

QP problem determined by two Lagrange multipliers corresponding to the two in-
stances just selected from the training set. The final output of the algorithm is given
after it converges to the optimal solution, when all optimization steps have updated
the values of the vector of Lagrange multipliers « and the bias term b.

4.3 Proposed Algorithms

In this section we describe our proposed hybrid algorithms that combine SMO with
AdaBoost.M1 using different degrees of coupling. All algorithms described next,
namely SMO-Bs, SMO-B,, SMO-B.,, SMO-B;, will be addressed as such in Chapter
5, where we describe their experiments and results. We shall then refer to the stan-
dard form of the SMO algorithm from Figures 3.5.3 and 4.2, as originally described

69

by John Platt [Pla98a, P1a98b], simply as SMO.

4.3.1 Naive Integration (SMO-B,)

The most straight forward way of integrating AdaBoost and SMO is using both of
their native forms, where AdaBoost uses SMO as its weak classifier. The schematic
for this approach is presented in Figure 4.3. Since no modifications have yet been
introduced to AdaBoost or SMO in this hybrid version, few remarks remain for how
they interface. First, the selected data used to train SMO is drawn using selection
with replacement, which may induce duplicate instances in the training set. Sec-
ond, each weak hypothesis output by SMO must be stored by AdaBoost in order to
be recreated later when computing the final strong hypothesis. We do that by stor-
ing, for each weak hypothesis, the vector of Lagrange multpliers o, the bias term
b, and the mapping between each instance fed to SMO and its original tuple on Ad-
aBoost’s training set. Notice that we need not store which vectors are considered
support vectors for each hypothesis, since they are all instances whose correspond-
ing Lagrange multipliers are greater than zero, that is, those instances i such that
oy > 0.

Notice that the behavior of this hybrid algorithm is governed by two input
regularization parameters. The first, n, determines the size of the subset fed to SMO
by AdaBoost’s probabilistic selection mechanism at each iteration. We implemented
this parameter as a proportion of the size of the original waining set in AdaBoost’s
repository, p, where for this case of selection with replacement, n may be larger
than the cardinality of the training set. The second, T', is the number of Boosting
iterations that must be executed, consequently also corresponding to the number of
weak hypotheses to be evaluated and later combined into the strong hypothesis.

4.3.2 Improved Subset Selection (SMO-Bg)

The first modification proposed to the SMO-B, algorithm, described in Section
4.3.1, is a different probabilistic selection mechanism that enforces the selection
of a proper subset of a training set, thus not allowing the duplication of instances.
We refer to this method of probabilistic selection as selection without replacement,
where we have that (X',Y"} ¢ (X,Y). In literature, this selection algorithm is
known as probabilistic roulette selection [BLCO0], which in this case is drawn with
respect to distribution D. The schematic for this modified version of the hybrid
algorithm is presented in Figure 4.4.

There are two motivations for replacing the original probabilistic selector.
First, we have empirically observed that the distribution update mechanism in Ad-

70

aBoost often places too much emphasis on outliers. The unfortunate side effect of
using selection with replacement is that the training set passed to SMO tends to
contain repeated duplicates of these outliers, thus excessively biasing the genera-
tion of weak hypothesis. Second, SMO handles as an exception the case where the
two Lagrange multipliers chosen for optimization correspond to equal input vectors.
Recall from Equation (3.81) that, in this case, the second derivative of the objective
function is zero, therefore implying in a division by zero in the Lagrange multiplier
update expression from Equation (3.82}.

Recall from Chapter 2 that, for binary classification problems, AdaBoost re-
quires weak hypotheses with average error ¢ marginally better than random, that
is, ¢ < 1/2. Despite having enough motivation to replace the original probabilistic
selector by a probabilistic roulette, this brings a most undesirable effect in AdaBoost
that one of the convergence properties of the recursive weight distribution update
function ceases to hold. The result is that, for some degenerated subsets of the
training set, the requirement which demands that ¢ < 1/2 also fails to hold. Notice
that if we allow a hypothesis with € < 1/2, its corresponding weight w assigned by
AdaBoost would be non-positive, thus breaking the majority voting principle. Most
Boosting implementations abort their iteration loop when confronted with such bad
hypothesis, thus computing the strong hypothesis with whatever number of good
hypothesis have been calculated up that point. Instead, we have introduced an ex-
rra hypothesis check step, where good-enough, € < 1/2, hypotheses from SMO get
to be stored by AdaBoost, whereas hypothesis where ¢ > 1/2 are simply ignored
and the algorithm proceeds to the next iteration. Notice that if ¢ = 1/2, we have
also that w = 0, that is, such hypotheses would be automatically disregarded in the
final weighted majority voting. Also, notice that since now some weak hypothesis
may be ignored, after the T iterations we may have 7" valid hypothesis to compute
the final strong hypothesis, where 77 < T.

4.3.3 First Heuristic Bypass (SMO-B.)

Starting with the two simple integration strategies used in SMO-B, and SMO-Bg,
we now proceed not only with unilateral modificadons in Boosting or SMO, but
also with the integration of some of their common components. The most obvious
components that share the same functionality are AdaBoost’s probabilistic selection
mechanism, already considering its modified roulette form, and SMO’s heuristics
for selecting two instances that create small QP problems to be analytically solved.
In our first attempt, we eliminate AdaBoost’s probabilistic drawing of the training
subset and SMO’s first selection heuristics. At each iteration, the same probabilistic
principle behind roulette selection is employed to draw the first instance of the QP

71

problem, originally selected using SMO's first heuristic. This instance is then fed
to SMO’s second heuristic, which examines the complete training set to choose the
second instance that tries to maximize the contribution of the optimization step
toward the solution.

Notice how we rely on Boosting’s maintenance of the distribution D to se-
lect the first instance of the QP problem, which in turn directly influences the se-
lection of the second heuristic. The principle of SMO’s first heuristic, which is to
select instances that violate KKT conditions, is hence replaced by the probabilistic
assumption that these violating KKT conditions will be automatically selected based
on their contribution to the overall training error of all hypotheses computed thus
far. As with SMO-Bg, the same hypothesis check is necessary to avoid hypothesis
with € < 1/2, and consequently w < 0. The schematic for this merger berween
AdaBoost and SMO components is presented in Figure 4.5.

4.3.4 First and Second Heuristics Bypass (SMO-B;)

We now extend the approach used in SMO-B., to SMO’s both first and second heuris-
tics. These two heuristics are therefore replaced by a modified probabilistic selection
mechanism, where the two instances corresponding to the two Lagrange multipliers
in the QP problem are drawn from the training set with respect to D. The schematic
for this algorithm is presented in Figure 4.6.

More so than with SMO-B.,, we now rely on Boosting to select both points to
be analytically optimized regardless of any heuristic based on KKT conditions and
the estimation of contribution toward the solution. This selection corresponds to a
2-element probabilistic roulette selection on the training set, where it is expected
that the distribution of probability values implicitly emphasizes those instances that
are harder to learn, which in turn intuitively tend to most violate KKT conditions.
Notice that as with SMO-Bg and SMO-B,, the same hypothesis check is again nec-
essary to avoid negative hypothesis weights.

4.3.5 Failed Experiments

In order to get to SMO-B,, SMO-Bg, SMO-B.,, and SMO-B;, previously described
in Section 4.3, we have attempted to create several other algorithms that system-
atically failed to converge in most of the databases in which they were executed.
Although we do not address these algorithms in detail, nor did we run exhaustive
tests with them, we now provide a brief description of most relevant approaches
experimented.

72

Incremental generation of hypothesis. Boosting techniques, including AdaBoost,
assume that the generation of a weak hypothesis in time ¢ has no relationship
whatsoever with the weak hypothesis generated in time t — 1, except for the
update of the distribution D with which examples are drawn to be presented
to the weak learner. Using various approaches, we tried to extend this rela-
tionship by using the hypothesis generated in time ¢ — 1 as the starting point
for the generation of the hypothesis in time ¢. We found that these attempts
failed to converge since the current hypothesis training was excessively biased
toward the direction of the previous hypothesis. Specially in cases of small n,
that is, where the size of the subset selected by AdaBoost was much smaller
than the original training set, the subsets drawn in different iterations were
substantially different, thus resulting in great instability by SMO which started
optimizations from initial solutions fit for rather different training subsets.

Hypothesis evaluation based on validation set. Boosting re-evaluation of the dis-
gibution D, with which the subset presented to the weak learner is drawn,
is based on the training error of the weak hypothesis measured over this
same training subset. In order to evaluate the generalization error of the
final hypothesis, we divide the complete data set into two separate and non-
overlapping sets, one for training and another for testing. We attempted to
change this evaluation mechanism by dividing the complete data set into three
non-overlapping subsets, namely training, testing, and validation sets. The
training and testing sets were used to train weak hypotheses and evaluate the
generalization error of the final hypothesis, respectively. Instead of evaluating
the training error of each weak hypothesis with the same training set used
for its training, we attempted to evaluate this measure based on the error of
validation set. Unfortunately, Boosting failed to converge with this strategy.

SMO reweighting. Besides the probabilistic selection of samples based on a dis-
tribution maintained according to the evaluation of weak hypothesis, Freund
and Schapire {FS96a, FS99b] describe the use of a reweighting strategy that
requires weak learners able to accommodate multiplicative weight parame-
ters that regulate the influence of each of the training instances in the training
process. As we describe in more detail in Section 7.4, SMO does not origi-
nally have the ability to handle such weights. We attempted to modify SMOQ’s
analytical solver to do so, where the computationally expensive steps of prob-
abilistic selection are skipped and each weak hypothesis is computed using
different contributions for each of the vectors used, where weights correspond
to AdaBoost’s distribution values. Although the algorithm failed to converge,

73

further investigation of this problem may result in a more efficient algorithm
that is equivalent or better than its probabilistic counterpart, as we suggest in
Chapter 7.

4.4 Algorithmic Complexity

In this section we make a few considerations about the complexity of the four hy-
brid algorithms just introduced. It is clear that the complexity analyses of these
algorithms depend on the individual analysis of both SMO and AdaBoost. We hence
start by examining SMO, later proceeding to AdaBoost.

As we described in Section 3.5.3, when John Platt introduced SMO [Pla98a],
he stated that it required an amount of memory linear in the training set size in
order to execute, as opposed to the traditional quadratic requirements of other SVM
training algorithms. In terms of execution time, Platt described SMO as requiring
time somewhere between linear and quadratic in the training set size, which was
considered a great improvement over other algorithms such as projected conjugate
gradient chunking, which required time between linear and cubic in the training set
size. More formally, using the big-O notation, given a training set with n samples,
we say that SMO has space complexity O(n), and time complexity between O(n)
and O(n?).

Recall from Chapter 2 that the analysis of AdaBoost, on the other hand, is
bound to T, the number of weak hypotheses evaluated by the algorithm, instead
of the training set size n. The analysis of AdaBoost in terms of n is rather straight
forward, where it requires O(n) space to store its data subsets while evaluating
weak hypotheses, and O(n) time to select this subset using its original selection-
with-replacement mechanism. In terms of 1, we have that AdaBoost requires O(T)
for both space and time, where the main loop of the algorithm that computes and
stores weak hypotheses is repeated T times. This is consistent with the analysis per-
formed by Kaynak and Alpaydin [KAQO], where they also extend their investigation

Algorithm | Space Requirements Time Requirements
intermsof n in terms of T’ in terms of n in terms of T
SMO-B,, linear linear between linear and quadratic linear
SMOQ-Bg linear linear between log-linear and guadratic linear
SMO-B., linear linear berween fog-linear and guadrazic linear
SMO-B; linear linear between log-linear and quadrasic linear

Table 4.1: Space and time requirements for the four hybrid algorithms proposed.

74

to several other classification machines.

When we combined AdaBoost and SMO in SMO-B,,, we kept AdaBoost’s
original probabilistic selection mechanism. For all three other algorithms, though,
we have that the modified version of this mechanism no longer requires time O(n),
but O(nlogn) instead since it performs selection without replacement. Table 4.4
summarizes these complexity analyses and depicts the specific requirements for the
four hybrid algorithms proposed, in space and time, for both parameters n and 7.

75

First Heuaristic

'

Second Heuristic

x2

\

Optimization Step

WeakK Leamer: SMO .

76

Probabilistic D Hypothesis
Selector Evaluator
Yy ki
XLy e x,Y/ / H(x)o |
Yy oo ¥
F 3
H{x)

Figure 4.3: Schematic drawing for the proposed SMO-B,, algorithm.

/ bt

AR

H(x)e |

Modified Hypothesis
Probabilistic i« D Evaiuator
Selector

H (x)

First Heuristic

T

x Second Heurlistic

L¥)

1

Optimization Step

Wea{{ Cearner: SMO

Figure 4.4: Schematic drawing for the proposed SMO-B; algorithm.

77

Single-Instance D Hypothesis
Probabilistic Selector Evaluator
Y
Error ﬁ(.‘(),(,l) ¥
Check
'y
Abort
L) ¥
*1 T
H({x)
/ o,b ;
%1 F
v v

Second Heuristic

i
x2
¥ ¥ 9

Optimization Step

Modified Weak Learner

Figure 4.5: Schematic drawing for the proposed SMO-B,, algorithm.
78

Error

Tor. K(x),o
Check

Single-Instance D | Hypothesis
Probabilistic Selector Evaluator

Abort

H (%)

Optimization Step

Modified Weak Learner

Figure 4.6: Schematic drawing for the proposed SMO-B; algorithm.
79

Chapter 5

Experiments and Results

This chapter describes the methodology of all experiments conducted in this work,
as well as their results and analyses. Many decisions regarding kernel and parame-
ter tuning have been made during each of the steps described in the next sections.
These decisions are most relevant, since they determine the incremental tuning pro-
cedure the learning machines suffered, starting from a simple analysis with linear
discriminants up to tweaking Boosting parameters in hybrid algorithms.

We start by describing each database in detail in Section 5.1, where we also
display results and references of experiments with different algorithms by other
authors. Secondly, in Section 5.2, we describe results of preliminary analyses per-
formed over all databases using linear discriminants and the standard SMO algo-
rithm. Thirdly, we describe results for the hybrid algorithms proposed in Chapter 4
in Section 5.3. Finally, we discuss the results obtained in ail these experiments in
Section 5.4,

5.1 Descriptions of Databases

In this section we give an outline of the datasets used to evaluate all learning algo-
rithms described in this work. We have selected 22 different datasets from various
sources, each one with distinct characteristics. All datasets have binary outputs in
{~1,+1} and inputs in [~o0, +00], thus meeting all requirements for the binary clas-
sification experiments conducted. Some databases have binary dimensions, which
were all converted to the {—1, +1} domain in order to remain orthogonal with the
common output domain.

We may classify these 22 datasets into four groups based on their main fea-
tures and their impact over learning problems:

80

Biology There are 8 biological databases, many of them describing problems of
disease diagnosis. Out of these 8 databases, 2 of them have been made avail-
able by their authors with distinct training and testing sets, which are very
useful when comparing generalization capabilities between different learning
algorithms. Many of these datasets are classics well explored in the machine
learning literature, mostly available at the UCI Repository of Machine Learn-
ing Databases [BM98]. Others have been collected in recent biology studies,
combining advances in molecular biology with modern pattern recognition
techniques.

Genomics There are 2 genomics databases, one about cancer diagnosis using mi-
croarray data of tissue samples, and another about determining promoter gene
sequences. The first dataset was obtained from a recent study on multi-class
classification of tissue types using Support Vector Machines, while the second
is available at the UCI Repository of Machine Learning Databases [BM98].

Physics There is one single physics database describing an experiment with radar
waves, also available at the UCI Repository of Machine Learning Databases
{BM98].

Bidimensional Synthetic There are 9 synthetic databases with bidimensional in-
put spaces. These databases were generated from three functions, each one
parametrized in 3 different ways to generate sets with different degrees of
overlapping between classes. Since these bidimensional databases may be
easily visualized, they are displayed in Figures 5.1 to 5.9 in the following sec-
tions.

Multidimensional Synthetic There are 2 synthetic databases with 20-dimensional
input spaces. These databases were generated by Leo Breiman in a study of
bias and variance of learning algorithms [Bre96]. Each class was drawn using
Gaussian distributions bound to specific constraints that provide a theoretical
expectation of misclassification by binary classifiers.

Except for the 2 biology databases with independent training and testing
sets available, all other databases had no such separation. All experiments with
these databases drew independent training and testing complementary subsets from
the original datasets, where for each new experiment conducted, a new selection
procedure was executed.

The bias toward selecting biology and genomics databases in this work is in-
tentional and justified. These problems often pose interesting challenges to learning

81

machines, since it is not unusual for them to contain massive quantities of data or-
ganized in vectors with large dimensionality. Therefore, the use of advanced learn-
ing machines capable to deal with these difficult large problems, such as SVMs,
motivate the interest in testing new approaches with the potential to outperform
previous ones. Due to this reason, SVMs have received a great deal of attention
from the bicinformatics community, where several new applications have been at-
tempted. For instance, taking direct advantage of SVMs ability to handle large
data sets, different problems related to microarray gene expression data have been
tacked at different levels, such as classifying genes according to their specific func-
tions [BGL*99, KK01], and classifying cancer tissue samples [CDH00, RTR*+01].

The following sections detail each database used, describing benchmark re-
sults of other learning algorithms and literature references when available.

5.1.1 Wisconsin Breast Cancer Database (becw)

This breast cancer database was obtained from the UCI Repository of Machine
Learning Databases [BM98]. It was originally created at the University of Wisconsin
Hospitals, Madison, by Dr. William H. Wolberg. It describes a binary classification
problem that labels tissue samples with cancer as benign or malignant. Each tissue
sample underwent a series of cytological tests that described its cells’ characteristics,
creating feature-vectors with 9 dimensions of continuous values that form the input
of the problem. There are 699 samples, 458 (65.5%) being benign, 241 (34.5%)
being malignant.

A subset of this database has been studied before by Wolberg and Mangasar-
ian {[WM90], who used a multisurface method of separating hyperplanes pairs to
divide the enneadimensional input space in two halves. The subset had only 369 in-
stances then, which were all tissue samples collected so far. They report the result to
be consistent with 50% of the dataset when using two pairs, and 93.5% accurate on
the remaining 50%. When using three pairs, they report the result to be consistent
with 67% of the dataset, and 95.9% accurate on the remaining 33%.

Zhang also reports experiments with this same database subset [Zha92], to
which he applied a nearest-neighbors classifier. The average of ten executions of the
1-nearest-neighbor algorithm yielded 93.7% accuracy, where the training set was a
random sample with 54% of the instances, and the testing set was the remaining
46%.

This database originally contained 16 missing values in one of its input di-
mensions. These missing values are due to a change in the way data were collected
during the base construction. Since Support Vector Machines are not tolerant to
missing data, each missing value has been replaced by zero for the purpose of con-

82

ducting the experiments described in this work.

5.1.2 Wisconsin Diagnostic Breast Cancer (wdbc)

There are many studies in both machine learning and medical literatures about
breast cancer diagnosis. This database, also obtained from the UCI Repository of
Machine Learning Databases [BM98], is based on the same studies from the Uni-
versity of Wisconsin Hospitals, Madison, by Dr. W. H. Wolberg, described in Section
5.1.1. Wolberg, Street and Mangasarian alone have published six papers with results
of different learning techniques on the same problem, the latest being [MSW95].
This binary prediction problem has two output classes, labeled benign and malig-
nant, to describe breast cancer tissues. Each of the 569 samples contains a real-
valued vector of 30 features that describe properties of cancer cells nucleus. There
are 357 instances of benign samples, and 212 instances of malignant samples.

Wolberg, Street and Mangasarian report results using separating hyperplanes
in a subspace of the input space with only 3 dimensions, where they disregarded the
remaining 27 features available. Using 10-fold cross-validation, they estimate an
accuracy of 97.5%, which was later confirmed with 176 new patients all correctly
diagnosed.

5.1.3 Wisconsin Prognostic Breast Cancer (wpbc)

A follow-up study of the breast cancer problem described in Sections 5.1.1 and
5.1.2 consists of determining cancer prognostics, that is, whether or not patients
experienced recurrence of the disease after there had been no further symptoms for
a predetermined amount of time (24 months). Wolberg, Street and Mangasarian
used the same 30 features from their previous work [MSW95], together with 3 new
features that described properties of the recurrent disease [SMW95]. This binary
problem is therefore made of a 33-dimensional input space of real values, and a
binary output that corresponds to labels recurred and did not recur. This database,
as described in [SMWO95], is available from the UCI Repository of Machine Learning
Databases [BM%8].

Wolberg, Street and Mangasarian report results using the same technique
of separating hyperplanes in a restricted 4-dimensional subspace of the original
33-dimensional input space. They obtained 86.3% accuracy over the 198 input
instances, of which 151 were labeled did not recur and 47 were labeled recurred.

83

5.1.4 Cancer Diagnosis Using Gene Expression Signatures (cdges)

Many of the recent advances in bioinformatics rely on gene expression signatures
to diagnose different types of cancer. The use of microarray-based tumor gene ex-
pression profiles provides an objective technique to cancer diagnosis, outperform-
ing standard subjective interpretations of clinical and histopathological information.
One of these studies was published by Ramaswamy et al. [RTR*01], where they
used Support Vector Machines (SVMs) along with a One Versus All (OVA) strategy
to distinguish between 14 classes of cancer based on 16063 genes and expressed
sequence tags per sample. In this paper, Ramaswamy et al. focus on the problem of
differentiating between 14 types of cancer and normal tissue. They used 314 tumor
and 98 normal tissue samples, from which 218 tumor and 90 normal tissue samples
passed quality control criteria and were used for subsequent data analysis. Out of
these 318 samples, 28 yielded low-confidence predictions, and were disregarded by
the authors.

The database we built using the data used by Ramaswamy et al. [RTR+01]
combined all 14 classes of cancer into a single class labeled tumor, and all healthy
samples in a class labeled normal. This binary-output database contained 280 tissue
samples, of which 190 were some type of tumor, and 90 were normal. Each sample
was formed by 16063 dimensions that corresponded to continuous gene expression
levels.

5.1.5 Hepatitis Domain (hepatitis)

This database was obtained from the UCI Repository of Machine Learning Databases
[BM98]. It describes a binary classification problem that distinguishes patients with
hepatitis between those who died, and those who managed to survive the disease.
Each sample consists of 13 binary and 6 continuous dimensions that describe pa-
tients’ characteristics, symptoms and clinical test results. There are 155 instances of
patients, of whom 32 died and 123 lived.

This prediction problem has been studied before by Cestnik et al. {CKB871.
They proposed a new machine learning algorithm called Assistant-86, which per-
formed with 83% accuracy over the database.

This database contained 167 missing values scattered across different input
dimensions in a few samples. These missing values are due to lack of specific infor-
mation about patients during the base construction. Since Support Vector Machines
are not tolerant to missing data, each missing value has been replaced by zero for
the purpose of conducting experiments. All binary dimension representations in the
database have been converted to the {1, +1} set, which is particularly useful when

84

representing data blanks as zeros.

5.1.6 Musk Database (musk)

This dataset describes a set of 92 molecules of which 47 are judged by human ex-
perts to be musks and the remaining 45 to be non-musks!. It therefore describes
a binary classification problem that uses 166 real-valued features to describe these
molecules according to their shape and conformation. There are 476 sarnples of
molecules, of which 207 are found to be musks and 269 are found to be non-musks.
This database was obtained from the UCI Repository of Machine Learning Databases
[(BM98].

Dietterich et al. have studied this problem with axis-parallel rectangles in
[DLLP97], where they also report results on a second musk dataset. Using 10-fold
cross-validation, they describe average, minimum and maximum generalization re-
sults for five of their proposed algorithms, 92.4% [87.0%-97.8%], 91.3% [85.5%—
97.1%], 90.2% [84.2%~96.3%], 83.7% [76.2%~91.2%], 80.4% [72.3%—88.5%)],
respectively. These results are also compared to those of a back-propagation neu-
ral network with 127 hidden units, 75.0% [66.2%-83.8%], and to those of C4.5
(pruned), 68.5% [40.9%—61.3%].

5.1.7 Escherichia coli promoter gene sequences (DNA) (pgs)

The problem of determining promoter gene sequences is one of the classic prob-
lems of bioinformatics. Many studies about the bacterium Escherichia coli have
been published, both in the light of biological sciences and in the light of machine
learning. Harley and Reynolds compiled and analyzed 263 promoters with known
transcriptional start points for Escherichia coli DNA genes in [HR87], which served
as basis for many other developments. Based on their results, Towell et al. used the
106-instances compiled database to evaluate a hybrid learning algorithm that uses
examples to inductively refine preexisting knowledge [TSN90]. Using a leave-one-
out methodology, they obtained generalization errors as low as (4/106), which they
compared against other machine learning techniques such as a back-propagation
neural network (8/106), nearest-neighbor algorithm (13/106), Quinlan’s decision

! According to the Webster’s Revised Unabriged Dictionary {Por981, musk is a substance
of a reddish brown color, and when fresh of the consistence of honey, obtained from a
bag being behind the navel of the male musk deer. It has a slightly bitter taste, but is
specially remarkable for its powerful and enduring odor. It is used in medicine as a stimulant
antispasmodic. The term is also applied to secretions of various other animals, having a
similar odor.

85

tree builder (19/106) [Qui92], and O'Neill (12/106), which is an ad hoc technique
from the biological literature [O'N89, OC89].

The database contains 106 instances, of which 53 are promoters and 53
are not promoters. For each sample, the original database contained a sequence
of 57 bases, each being either adenine (A), citosine (C), guanine (G), or timine
(T). These bases were naively translated from the {4, G.T,C } input space to the
{~1,+1}? space, each base having a unique pair in {~1,+1}?, hence loosing all
sequence information in purpose. Each base originated two independent dimen-
sions, thus forming 2 114-dimensional binary input space. A much more sophisti-
cated approach that does not ignore sequence information is suggested in Section
7.1, though it was not attempted due to research time constraints. Finally, the
output space was also translated to the {~1,+1} binary domain. The original se-
quence database derived by [HR87] and used by [TSN90] was obtained from the
UCI Repository of Machine Learning Databases [BM98].

5.1.8 Pima Indians Diabetes Database (pid)

This database describes another case of disease diagnosis problem, this time of dia-
betes mellitus on a specific population of Pima American Indians. Diagnostics were
binary, determining whether each patient showed signs of diabetes according to
World Health Organization criteria, that is, if their 2-hour post-load plasma glu-
cose was at least 200 mg/dl at any survey examination, or if found during routine
medical care. There are 768 samples of patients, 500 of which tested negative for
diabetes and the remaining 278 tested positive. Each sample contains 8 real-valued
features describing patients’ blood test results, body mass, and age. This database
was obtained from the UCI Repository of Machine Learning Databases [BM98].

Smith et al. studied this problem using the ADAP algorithm [SED+88]. This
algorithm makes continuous predictions in [0,1], which were discretized using a
cutoff function. Using 75% of the data as a training set, they report 76% success in
predicing the remaining testing set.

5.1.9 Johns Hopkins University Ionosphere Database (ionosphere)

Sigillito et al. investigated the problem of finding evidence of structure in the jono-
sphere using radar signals [SWHB89]. The data were collected by a system in Goose
Bay, Labrador. This system consisted of a phased array of 16 high-frequency an-
tennas with a total transmitted power of around 6.4 kilowatts. Targets were free
electrons in the ionosphere. Good radar returns were those showing evidence of
some type of structure in the ionosphere, and bad returns were those whose signals

86

passed through the ionosphere. The learning problem was consisted of determining
whether a reading is good or bad, based on a 34-dimensional real-valued feature
vector. The database contains 351 instances of readings, where 126 are labeled as
bad and 225 are labeled as good.

Sigillito et al. report investigating the problern with back-propagation and
Perceptron neural networks. Using the first 200 equally-balanced instances for train-
ing, they found 90.7% accuracy with a linear Perceptron, 92% with a non-linear Per-
ceptron, and 96% with a back-propagation-trained multi-layer Perceptron network.

5.1.10 Bidimensional Normal Distributions With Overlapping
(gauss®, gauss?, gauss?)

One of the most classic binary problems is that of separating two classes of bidi-
mensional points with a separating hyperplane. We have generated three instances
of this problem, where we used different degrees of overlapping between the two
classes, starting from non-overlapping. The three datasets, namely gauss’, gauss?,
and gauss®, can be seen in Figures 5.1, 5.2, and 5.3, respectively. Each of the
three datasets, drawn with their corresponding distribution parameters, contain

1000 points evenly distributed between the two classes.

T L L T B
Figure 5.1: gauss”: two normal-distributed classes with no overlapping.

A preliminary analysis of these databases, along with all other databases
used, was performed prior to any other more advanced experiments. A detailed dis-
cussion of this analysis, specifically for databases gauss® and gauss’, are described
ahead in Section 5.4.1.

87

10 A L % : - L + L L '
~10 -8 -8 -4 -2 & 2 4 & i 14

Figure 5.3: gauss?: two normal-distributed classes with significant overlapping.

5.1.11 Bidimensional Uniform Distributions Over Chessboard With
Noise (chess’, chess!, chess?)

A very interesting binary bidimensional classification problem is that of distributing
points in a chessboard-like fashion. Each class is drawn form a uniform distribution,
and Gaussian noise is added to each point to obtain overlapping. We have generated
three instances of this problem, where we used different degrees of overlapping
between the two classes, starting from non-overlapping. The three datasets, namely
chess®, chess!, and chess?, can be seen in Figures 5.4, 5.5, and 5.6, respectively.
Each of the three datasets, drawn with their corresponding distribution parameters,
contain 1000 points evenly distributed between the two classes.

88

Figure 5.4: chess®: two uniform-distributed classes over chessboard with no over-
lapping.

5.1.12 Bidimensional Spiral with Noise (spiral®, spiral!, spiral®)

Another interesting binary bidimensional classification problem consists of using a
spiral function to draw points along semi-parallel spiral lines. Each point is drawn
from (7 sin (@) 7 cos (@)}, with o as a linear function of r, and r ranging between
the minimum and maximum radii desired. Gaussian noise was added to both di-
mensions of the points to obtain overlapping. We have generated three instances
of this problem, where we used different degrees of overlapping between the two
classes, starting from non-overlapping. The three datasets, namely spiral’, spiral!,
and spiral®, can be seen in Figures 5.7, 5.8, and 5.9, respectively. Each of the
three datasets, drawn with their corresponding distribution parameters, contain
1000 points evenly distributed between the two classes.

5.1.13 Multivariate Normal Distribution (ringnorm)

Breiman describes an algorithm for generating a synthetic dataset for binary learn-
ing problems in [Bre96]. The binary-output problem generated has an input space
with 20 dimensions, drawn from a multivariate normal distribution. Class 1 has
mean zero and covariance 4 times the identity, while class 2 has mean (a,q,.. ,a)
and unit covariance, where a = ““25"6‘ Breiman reports a theoretical expected mis-
classification rate of 1.3% for the problem. The dataset generated has 1000 in-
stances, of which 503 are from class 1 and 497 from class 2.

89

Uy el
EYHN

Figure 5.5: chess!: two uniform-distributed classes over chessboard with little over-
lapping caused by Gaussian noise.

5.1.14 Overlapping Multivariate Normal Distribution (twonorm)

Along with the dataset described in Section 5.1.13, Breiman also describes an-
other algorithm for generating a dataset with two overlapping normal distributions
[Bre96]. The binary-output problem generated has an input space with 20 dimen-
sions, drawn from a multivariate normal distribution. Class 1 has mean {a,a,...,a),
while class 2 has mean (~a, ~a, ..., ~a), wherea = %, Breiman reports a theoret-
ical expected misclassification rate of 2.3% for the problem. The dataset generated
has 1000 instances, of which 505 are from class 1 and 495 from class 2.

5.1.15 Real SPECT (spect”)

This dataset describes the diagnosing of cardiac Single Proton Emission Computed
Tomography (SPECT) images. It has been studied by Kurgan et al. [KCT+01], where
they used computer vision techniques and an integer programming algorithm. All
of the 267 SPECT images, each corresponding to a single patient, were classified as
either normal or abnormal. These images were processed with feature extraction
algorithms to produce 44-dimensional real-valued feature vectors for each patient.

Kurgan et al. describe the results of their integer programming algorithm,
trained with a training set of 80 instances, over a distinct testing set of 269 in-
stances, where they obtained 77.0% accuracy using cardiologists’ diagnoses as ref-
erence. This same database, as described in [KCT+01], may be obtained from the
UCI Repository of Machine Learning Databases [BM98].

90

''''''

ask, N LA

(71 S
Mo, CI - o N

gaps T LA u -t

02

e) :“ L A. L i ’ ("-

)

[+ o2 o4 a4 a8 ' 1.2

Figure 5.6: chess?: two uniform-distributed classes over chessboard with significant
overlapping caused by Gaussian noise.

5

Al

. L " " . L : 5 A
2 -k -3 -2 - o 1 K4 3 “* 5

Figure 5.7: spiral®: two classes drawn over spiral lines with no overlapping.

5.1.16 Binary SPECT (spect’)

The same problem of cardiac SPECT images described in Section 5.1.15 was further
refined by Kurgan et al. and translated into a binary problem {KCT*01]. Each of the
44-dimensional real-valued feature vectors they had previously obtained was trans-
formed into 22-dimensional binary feature vectors, that is, an input space transla-
tion from [—co, +oo]* to {—1,+1}%.

Kurgan et al. then used the same integer programming algorithm on the
binary database, trained with a training set of 80 instances, and this time tested
over a testing set of 187 instances. Their results improved significantly, from 77.0%
to 84.0% accuracy, again using cardiologists’ diagnoses as reference. This same

91

Figure 5.8: spiral': two classes drawn over spiral lines with little overlapping
caused by Gaussian noise.

post-processed binary database, as described in [KCT*01], may obtained irom the
UCI Repository of Machine Learning Databases [BM98].

5.2 Preliminary Analyses

Before undergoing experiments with hybrid algorithms combining Support Vector
Machines and Boosting proposed in Chapter 4, we have preliminarily analyzed each
dataset using other well-known learning machines. The first preliminary analysis
attempted to determine the linear separability of the datasets, in which we used a
simple linear learning machine.

The second analysis was performed with the standard version of SMO on
a very restricted subset of each dataset. The goal of such study was to verify the
applicability of the selected SVM kernels and kernel parameters to each problem,
and occasionally coarse-tune them.

The third and last preliminary analysis conducted used the same standard
SMO version, only this time with the complete datasets and using the kernels and
kernel parameters from the previous analysis. The goal of this study was to explore
the effects of different kernel parameters and SMO’s C parameter, which regulates
the trade-off between the training error and the margin, in order to select the best
combinations to proceed to the next experiments.

Notice that for each of the three analyses presented next, in this section
we restrict ourselves to presenting results for the bew (Wisconsin Breast Cancer)
database for illustration purposes only. Experiment methodologies and result dis-

92

» : L . . : : ; n
5 -4 ~3 -2 -t 0 1 2 3 4]

Figure 5.9: spiral®: two classes drawn over spiral lines with significant overlapping
caused by Gaussian noise.

cussions are still held in this section, where we omit other result tables and graphs
for remaining databases due to size constraints. The complete results for all these
databases are presented in Appendix A so as not to clutter the main text.

5.2.1 Linear Discriminant

The first analysis to which we submitted all databases aimed to verify their prop-
erty of linear separability. This analysis consisted of attempting to solve each binary
classification problem with one of the simplest learning machines available, a Per-
ceptron neural network with a single neuron [Ros58]. We now revisit the classic
linear classification machine previously described in Section 3.2.1.

According to the theory behind the McCulloch and Pitts neurons [MP43],
thoroughly described in {Hay94] and [BLCO00], a single neuron is only able to cor-
rectly classify all instances of a learning problem if the latter is linearly separabie.
Though a complete description and proof of these simple properties is beyond the
scope of this text, which is focused on much more sophisticated learning models
and algorithms, we may easily assert this linearity property by analyzing the output
of a single McCulloch-Pitts neuron:

y = sign (Wx — b) (5.1)

where x is the input vector, w is the weight vector associated with the neuron,
and b is a threshold value. Since the output solely depends upon an inner product
between two vectors exceeding or not the threshold value, this learning machine
may only describe the solution for a linearly separable problem [DHS01, Hay94,

93

BLCOO0]. Such linear discriminant is not capable of describing what Duda, Hart, and
Stork called the simplest non-linear problem of all, which is the result of a Boolean
bi-dimensional XOR function [DHS01]. This was one of the main arguments that
Minsky and Papert used in [MP69], where they outlined many of the deficiencies of
the Perceptron model.

Each databased was repeatedly analyzed with the Perceptron node for 10
times, each time with different selections of non-overlapping complementary train-
ing and testing sets corresponding to 70% and 30% of the dataset, respectively. The
Perceptron node used a learning rate n = 0.01, an error tolerance tol = 0.1, and a
maximum number of epochs epochmaz = 100000,

Table A.1 displays a complete description of the results with the linear dis-
criminant, whereas Table 5.1 brings example results for the bew dataset only. For
each of the databases, the average ratio of correct classifications (denoted accuracy)
is displayed along with the medium squared error, the average number of iterations
and the average execution time? required by the algorithm.

Together with the average values and their respective standard deviations for
each of the quantities described in Tables 5.1 and A.1, we also display the histogram
of such measures collected through the 10 rounds of experiments. This display is a
visual aid that aims to provide a better notion of the dispersion of the experiments,
thus complementing the information contained in those two statistical properties
calculated.

Table 5.1: Average results for single-neuron Perceptron network after 10 rounds of
experiments with distinct training and testing sets.

Database Accuracy MSE Iterations Execution time
T | i
| } . i] |
= B R |
bew 96.24% -+ 1.81% 0.0376 <+ 0.0181 100000 £0 4185+ 0.03s

5.2.2 SVM Parameter Coarse Tuning

The aim of this analysis was to quickly evaluate whether the default SMO parameter
set could be used to solve each of the problems selected. This default parameter

2By execution time we mean the time required to train the algorithm as well as the time
required to evaluate the testng set.

94

set consisted of using an RBF kernel, with a variance parameter p,» = 1.000 and
scale parameter p, = 1.000. Recall the definition of a radial-basis function (RBF),
which may be expressed as exp (m”mg”;fg"g), where s is known as the linear scale
parameter, and o as the variance parameter.

Subsets of size 100 where drawn from each dataset, with complementary
non-overlapping training and testing sets of size 70 and 30, respectively. Table 5.2
displays a description of the results with SMO and the default parameter set for
bew only, where results for remaining datasets are omitted due to space constraints.
Three-dimensional graphs of the ratio of correct classifications (denoted accuracy)
are displayed along with graphs for medium squared error, ratio of support vec-
tors, norm of the separating hyperplane, number of iterations and execution time
required by the algorithm. The z axis of each graph corresponds to each of the six
measures just described, where the z and y axis contain variations of p,e and p,.
Finally, for each of the six measure, there are three independent graphs for three
different values for the limit of Lagrange multipliers in SMO, otherwise known to
SVMs as C.

In summary, Table 5.2 contains graphs describing results of all possible per-
mutations of three parameter that govern the generalization performance of SMO:

e The trade-off between training error and the margin (C), where C was chosen
from the set {10~3,10%,10%}.

o RBF kernel parameter for variance (p,z), where p,2 was chosen from the set
{1072, 10%,10%}.

o RBF kernel parameter for scale (p,), ps chosen from the set {107%,10%,10%}.

Notice that the z and y axis of all graphs were plotted using logarithmic
scales, and the z axis was plotted in a scale that maximizes the visualization of
details in the graphs. The surface drawn between the neighboring points was pro-
duced with a low pass filter that converted scattered data to grid data using a norm-4
distance measure. The objective of the graphs in Tables 5.2 is to provide a visual
comparison between different parameter sets for the same algorithm on the same
problem.

95

Table 5.2: Results for standard SMOQ algorithm over databases subsets of 100 in-

stances at the most.

<

10¢
109
o?
16
103
109
Hia
10t
103

104

1p-3
108
1o~
10
108
104
104

19

1g?

H

10*

Paz
1c®
10()
109
17
iU““
103
10
10
109
103
T
168
10-11
10—
10

H

ot
1ot
108

16—+

Pa

g3

10?

10~
19

10

104

Hiit

107
19
10—3

100

192
1g?
10?
1p-H
1o?
103
e
i
1 0(]

103

Accuracy (55)
73 33% 4+ $.00%
46,6730 £ 0.08%
96.67% = 0 00%
46.67% £ 0 009
46 67% £ 0 00%
46 §7% & 0 00%
£6.67% 3k 0.00%
66 67% X 0 00%
66 67% 4+ 0 00%
96 67% -t ¢ 00%:
66.67% & 3.00%
66.67% £ 0.00%
66.67% 4 0 00%
66.67% & 0 00%
73 33% £ 0 00%
66 §7% £ 0 00%
46.67% £ 0.00%
66.67% :k: 0 00%
96.67% X 0 009%
66.67% + ¢ 90%
46 67% =1 G 00%
0 00% - &.00%
46 67% & O 00%
46.67% & 0 02%
96 67% & 0 00%
96 67% & 0 00%

£66.67% & 0.00%

bew (average data results)

Suppart Vewors {%%)

82.86% -+ 0 00%
95 71% £ 0.00%
45 715 + 0 00%
95 7196 :& 0 00%
95.71%6 £ ¢ 00%
95.71% £ 0.00%
08 573 = 0.00%
97 1450 & 0 00%
98 57% == 0 0G%
654.29% £ 0 00%
97 14% & 0.00%
97 145 :1: 0 00%
98 57% = 0 00%
98 57% £ 0 00%
80 008 & ¢ 80%
S8 57%% & 0.00%
G5 719 % 0 0%
97 14% :k 0 0%
20 00% 4 0 0B%
97.14% = 0 00%
95 71% £ 0 00%
94 29% 4= 0 00%
95 715 :k 0 00%
95 71% = ¢ 0%
62 86 X £ G0%
20.00% == 0.00%

$7.14%% :k 0.050%

Norm
338512 4 0.0080
54.0112 £ 0 0008
23 4067 & ¢ G000
540112 £ 40000
540112 & 0.0000
54 0112 X 0.0000
0.0002 £ & 4000
01249 £ ¢ 6000
00801 & 00000
23 4080 1 0.0000
00003 £ 00000
0.00¢1 £ 00000
400081 1 00080
£ 0001 = 0 0000
37 739% + 00000
0.4001 4 0 000¢
61 4228 % 00800
0 0000 + G H000

3265 6689 & 0.0600
0 0G0t 4 00000
61 4228 £ 0 0080
00000 X 0 0000
61 4228 &+ 00000

61 4228 & 0 6000

MSE
0 2667 £ 0.0000
05333 4 0 0000
0.0333 4 ¢ 0060
05333 % $ 6000
0 5333 + 0.0008
€ 5333 & 00000
£.3333 & 00000
03333 & 00000
03333 & 00000
0 (1333 0.0000
(.3333 4: 0.0000
03333 £ 00080
03333 4 00000
03333 & 00000
4 2667 4= 8000
G 3333 & 06000
£.5333 £ 0 000G
03333 & 00000
00333 £ 00400
03333 + 00800
0 5333 :k; 0.0000
(1000 4= 0 G000
05333 £ 00080

05333 £ 40000

22168 2188 & £ 000 G (323 & G 0000

3272 8018 & ¢ 6000

103 17250 4 0.0000

443233 = 0.0008

0.3333 = 0.0000

lterations Execution Time (s}

270
461+ 0
1940
46 1 0
46 3 0
46 0
160
1240
26k O
oS+
15420
1540
2640

W0

B340
150
7%0

ato

0075 £ 006s
0ils+000s
00254 000s
0105 000s
01050005
011540005
081540005
00520005
0025 £000s
0015 +£000s
00ls::000s
00150005
G0ls£000s
00is £ G00s
00450005
00is£0Q00s
00350005
G254+ 0005
06520005
0015 £ 800s
00354000
00350005
00350005
0055+ 000s
000540005
00730005

G025 £ 0005

96

Table 5.2: (continued)

bew (average result graphs for p,2 x p)

C=10"% =10 C=108 C=10"% C=10% C =10

Iterations Execution Time (s)

After these preliminary results, we found that SMO managed to partially clas-
sify the following databases, hence validating the RBF kernel and coarse parameter
selection:

e bew, chess®, chess!, chess?, hepatitis, ionosphere, musk, pgs, pid, ring-
norm, spectb, spect’, twonorm, wdbc, wpbc.

Meanwhile, the following databases required further tweaking of parameters
and kernel types, since not at all were properly classified by SMO, which produced
a 100% error rate:

o cdges, gauss®, gauss®, gauss?, musk, spiral’, spiral’, spiral®.

For these databases, we found out that the upper bound imposed on the
database subset drawn to carry out the experiments was far too small, eliminating
important features without which the problem became unlearnable to SMO with
RBF kernel setups. In order to proceed, we first explored the results of the previ-
ous analysis using a linear discriminant. Since five of these eight databases, namely
cdges, gauss®, gauss!, gauss?, and musk, were linearly separable, we safely as-
sumed that their learning would be possible via an RBF kernel with the trivial so-
lution of having two radial-basis areas, one on each side of the linear separating
hyperplane. Second, for databases spiral®, spiral!, and spiral?, we relied on Lee

97

[Lee(0], who reported successful experiments with the same binary spiral prob-
lems using SVMs with an RBF kernel. Reassuring these considerations, we executed
the same experiments as above, this time eliminating the 100-instance subset up-
per bound and using the complete database to create training and testing sets, still
keeping their 30%/70% cardinality proportion. For illustration purposes, Table 5.3
displays results for database cdges in the same formar as Table 5.2, where results
for all rermnaining datasets are omitted due to space constraints.

98

Table 5.3: Results for standard SMO algorithm over unbounded databases that pre-

viously failed with at most 100 instances.

10
108

10%

Py Pa
10 190
10% 10~d
1% 10*
10-3 1o
w3 1pm?
w3 107
10?9 10°
108 10f
1% 1p-3
10 1073
10 1o?
108 10
w0~ 100
13 o3
1e® 1ot
w03 108
¢ 103
10% 10t
10° 1o?
0% 10-?
10 oY
108 107
1™ 10-3
13 167
107 10
1w -3
10?108

Accuracy (98
67 86% 1 0 00%
67 86% £ 0.00%
67 .86% & 0.00%
67 86% =+ 0 00%
67 86% & 0 00%
67.86% + 0.00%
67 86% &+ 0 00%
67 B69b = & 00%
67 86% :: 0 00%
67.86%% £ 0.00%
67 B6% = 0 00%
77 38% + 0 00%
67.86% £ 0.00%
67 B6%% :k: 0 00%
67 B6% = 0 00%
67 B6%b o 0 00%
67 86% £ 000%
67 86% & 0.00%
£7.86% £ 0 00%
67 B6% & 0 005
67 86% +: 0 00%
67 86% 1 0.00%
67 BB% £ 0 003
67 B6GL & 0 00%
75 00% & ¢ 00%
67 8636 £ 0.00%

78.57% & 0.00%

cdges (average data resuits)

Suppart Vactors (%5)
160.00% £ 0 00%
100 Q0% & ¢ 00%
100.00% : 0 00%
100.00% £ 0.00%
100.60% + 0 0%
100 G0% 3k 0 009
64.80% X 0 009
T2.86% & 0 009
64.80% k= 0.00%
104 00% & 0 80%
64.80% X 4 00%
83 16% = & 0%
64 80% =k 0.00%
64,8086 & 0 00%
100.00% £ 0.00%
64 80% £ 0 009
160 0086 & € 00%
64,8006 & 0 Q0%
100 00% & 0.00%
64.80% £ 0 G0%
100 0% £ 0 00%
65 3195 :k 0 005
100 00% £ 0.00%
180.00% £ 0 00%
95 9246 1 0.00%
100 00% & 0.00%

88.27% & 4.00%

Norm
92 8422 & ¢ 000G
Q28421 £ 0.000C
94 9912 4: 0.0000
92 B42% £ 0 0000
928421 £ 00000
92 8421 4+ 0.0000
0.0001 = 0 0000
433778 £ 00000
0.0081 £ 0 0080
34 6911 £ 0.0000
0.0001 & & 0000
49 0887 £ 00000
00001 £ 0.0000
0.0003 £ 00000
170 6628 =+ 0 4000
Q0001 £ 00000
£70 9711 £ 00000
£4001 - 00080
167 4624 4 0.0000
00001 £ 08000
174 9604 £ 0 0000
40801 4 000GD
170 9942 4 ¢ 4008

170 9966 £ 0 8000

MSE
0.3214 3 0.0000
03214 £ 00000
03214 4 00600
03214 £ 00000
0.3214 < 00000
03214 &= 0 0000
43214 £ 0 G000
83214 £ 0.0000
0.3214 :: 0 G000
03214 & 00000
03214 £ 0 0000
02262 4 0.0000
03214 = 00000
03214 4= ¢ 000D
G 3234 & 40000
£ 3214 £ 0.0000
0.3214 4 0 0000
03214 :k 00000
03214 4 00000
03214 0.0000
0.3214 : 0 0000
03214 &= 0 000
03214 & ¢ GUOC

43234 80008

7367 5454 4 0 0000 € 2500 4= 00000

167 4231 =+ 00000

03214 = 0 0000

1639.0208 £ 0 0000 0.2143 & 00000

{terations Execution Time (s}

26505 k0008
26218+ 0008
26284 £ 0.085
234950005
24795 £ 000s
2376s::000s
124850005
41525+ 0085
1253520008
25805 000
12595 £ 0063
5632520005
217520005
12425220005
302650005
12635 £ 000s
W23+ 600
12555 £ 0003
W97 s 000s
1260520005
287550005
136150005
2661520005
30s5::000s
165605 = 0005
27625+ 0005

269 445 000s

99

Table 5.3: (contnued)

cdges (average result graphs for p,2 X ps)

C=10"% =100 C=10° C=10"3% Cc=10" C=10°

Norm MSE

i

Tterations Execution Time (s)

5.2.3 SVM Parameter Fine Tuning

Now that we qualitatively evaluated the feasibility of using SMO with an RBF ker-
nel for ali databases, we must use this setup to run a more thorough experiment
followed by a quantitatively analysis. There are two very important reasons to carry
out this analysis:

Reliable Parameter Tuning. Although we already used SMO on all databases dur-
ing the experiments described in Section 5.2.2, databases were cropped to
100 instances and there was no concern with statistical relevance. In this ex-
periment, not only entire darabases were used to generate different training
and testing sets at each run, each parameter configuration was repeated for
10 runs to avoid statistical flukes. The reason for such rigid criteria was to
determine reasonably good pseudo-optimal values for C, p,2, and p; for all
databases. These values for the standard version of SMO, for consistency of
results, were the same used in experiments with the proposed hybrid algo-
rithms.

Performance Benchmark., As we describe results for the proposed hybrid algo-
rithins in Section 5.3, it is interesting to compare these results with the stan-
dard version of SMO proposed by Platt [Pla®8a]. Furthermore, parameters

100

C, po2, and p, are kept the same for SMO and all four hybrids, thus avoiding
wrongful performance comparisons due to different SVM parameters.

As before, all three parameters were varied in ranges where all possible con-
figurations were experimented with, For the trade-off between training error and
the margin, C, the possible values were chosen from the set {107%,10°,10%}. For the
RBF kernel parameter for variance, p,z, values were chosen from {1072, 10%, 10%}.
For the RBF kernel parameter for scale, p,, from {107%,10°,10%}. Before each exe-
cution, non-overlapping complementary selections for training and testing sets, cor-
responding to 70% and 30% of the dataset, respectively, were drawn with respect
to a uniform distribution.

Results for this experiment are presented in Table 5.4 for the bew database,
where results for all remaining databases are omitted due to space constraints. Re-
sults are formatted the same way as those from Tables 5.2 and 5.3, with three-
dimensional graphs that vary the two kernel parameters in = and y axis, which are
plotted in logarithmic scale, and each quantitative performance measure is given in
the = axis using a range that maximizes the visualization of details in the graphs.
Surfaces drawn between neighboring points were produced with a low pass filter
that converted scattered data to grid data using a norm-4 distance measure. Besides
these three-dimensional plots, Table 5.4 also brings complete average data descrip-
tion for each parameter setup, as well as histograms for each measure using the best
parameter configuration, determined through the 10 rounds of experiments. These
best parameter configurations, one for each of the databases used, are shown high-
lighted in the tables. The two criteria with which to sort and pick a best parameter
configuration were, in order:

o Best accuracy, where better configurations yield smaller generalization errors;

e Faster execution times, where if there is a tie with the accuracy criterion, the
fastest configuration is selected.

If a tie still results from these two criteria, a random choice for best con-
figuration is made. The three parameters that describe this best configuration are
the basis for the new setups built for all further experiments with hybrid algorithms
described in Section 5.3.

101

Table 5.4: Average and best results for standard SMO algorithm after 10 rounds of
experiments with distinct training and testing sets.

bew (average data results)

C Py2 P Aceuracy (%) Support Vectors (%) Norm MSE fterations Execuricn Time {s)
102 109 107§ 6520%:k 243% 69 08% 3 2 17% G000 £ GO000 G3471 460243 32410 0455003
-3 1% o? £529% £ 243% 68.79% £ 211% 00040 £00003 0347100243 27 £8 02550035

w? 1?10 657299h + 243% 6B 77% <k 2 11% 43661 £ G3347 03471200243 276 0255k 002s
10~ 10t 107 65720% £ 243% 6B 79% £ 2 08% 0.0040 & 0.0002 03471£ 00243 2346 oR4st002s
10~% 10-% 109 65 20% o 2 43% 69 20% 2 21% 0.0003 4 00000 03471 £00243 3311 04150043

1% 10— 08 67905 - 3999 75 13%:k 2B0% 3255565: 134327 03210400399 3611 2085 C8ls

169 108 0 55250 £ 249% 68.75% & 209% 00021 £00018 03471£ 00243 10£2 22350023

wt 1e® 107 56,0006 £ 109% 18.88% £ 0 61% 432219 4+ 07215 0.0400:: 00109 5315 0285:007s

0¥ 109 10-2 | 6843% 4 394% 7513k 272% 3255555 :h 134260 03157 £00394 48%£30 22654099

108 ot 1w’ 65708 = 24356 68834 7119 73520624 3147489 03471 £ 00243 30227 92085487885
10-% 10— 108 65795 4 2.43% 68,969 £ 2.09% 0.0003 4 00000 03471200243 2010 0445 002

108 109 10% 06.10% - 097% 0069 & 1.43% 6075 9512 = 584.4494 0.0300 :k 0.0097 531 £ 209 5465k 24038

wh 108 1wl 05 7696 & 0 96% 18 16% 0 74% 41721 131884 7256512 00424 £ 00096 335 Di6sk 001

107 10% 16~ | 6843% £ 304% 78510% £ 0.98% 3351146139536 03157:£ 00394 942 172540195

(0% 109 10~ | 68463045 7B60%E 1499 335119039558 03157£00394 0% 2 163520215
wd w0t 1e® B3 05% + 24 06% 68 75% = 2 09% 00000 £ 00000 01605+ 02406 30 19025+ 070s

163 10% i 91 76% & 1 76% S8 53% :k 129% 189.0334 & 4 9804 0.0824 £ 00176 S1k 12 5885k 1275

1wt o w0t 6700% + 350% 7B 73% 1 40% 3351064 39696 03210200399 02 17750245

1% 1% 10® 96.00% & 1 09% 18.96% & C.68% 432211+ 07283 0.0400£ 00109 49 1F 03450195
1079 10-3 10 | 652996k 2435 69.06% & I 19% 00003 00000 03471400243 32% 10 04050025

109 1079 103 | 684356k 394% 7594% . 433% 3255636 % 134304 031572 00394 9411 16750575

w08 1 a0 68 470 4+ 3 04% TET5% £ 124% 3350858 39545 03157200394 92 15650185

1? 10% 1o 91 2450 209% 58 63% & 126% 1495065 4- 51123 00876+ 00209 5024 4335+ 228s
w0-? 10 1o 65 29% 2 43% 68 755 & 2 09% 0000G x 00000 03471300243 832 0195 001s

10¢ 1073 10° 6790% 4 399% 74769 & 3.69% 3255480 : 134255 03210:£ 00399 48221 2315::080s

1e* 1t 1ot 06.10% 4= 0978 ©10% < 1419 6076.7823 564 6272 C.0300 k40097 509k 169 52552255
10=* 10 10 65 29% 4 243% 6% 35% & 1,989 00011 + 00007 0347100243 3912 0465k 0045

102

Table 5.4: {continued)

bew (average resuit graphs for p,2 X ps)

C=10"% C=10 C=10° C =103 C=100 ¢=10°

e

Iterations Execution Time (s)

bew (experiment histogram for parameter setup that yielded best results)

—
.,.n_mswl_m l_._l.”ﬂ_!
5 (%): 06% =+
Accuracy (%): 96.10% £ 0.97% Support Vectors (%): 9 °
1.43%
JWJ,_EJ JWJ
Norm: 6075.9512 4 584.4494 MSE: 0.0390 £ 0.00697
jnw!wu o
Iterations: 531 & 209 Execution Time (5): 5.46 s & 2.40 s

5.3 Experimental Results

In Section 5.2, besides exploring interesting properties of each of the 22 learning
problems tacked, we were able to tune SVM parameters, namely the trade-off pa-
rameter C between training error and the margin, and the two kernel parameters for

103

the RBF kernel, for each of the corresponding datasets. In this section we describe
the results for the four proposed hybrid algorithms in Chapter 4, which are tested
for each dataset using the SVM parameters tuned in Section 5.2 as configuration
bases.

Each of these experiments were performed using different parameter con-
figurations attempting to induce different behavior patterns from the Boosting algo-
rithm and from the hybrid frontier between the booster and the weak learner. As we
did in Section 5.2, in these experiments we observed the results for the algorithms
based on the variation of two regularization parameters:

o T, the target number of weak hypotheses that the Boosting algorithm must
build using the weak learner and later combine into the strong hypothesis
using majority voting, chosen from the set {1,100, 1000};

e p, the fraction of the training set cardinality which determines the cardinality
of the training subset selected using the probability distribution maintained
by the Boosting algorithm, chosen from the set {0.1,0.4,0.7,1.0}.

The 12 possible combinations of these two sets of parameters were tested
over all 22 datasets with each one of the four hybrid algorithms. In most cases,
experiments were repeated 10 times for statistical relevancy, except in specific in-
stances where computational resource limitations forced the experiments to be car-
ried out lesser times. These experiments and their results are described in the fol-
lowing sections.

5.3.1 Results for SMO-B,

The first hybrid algorithm proposed, SMO-B,, is the most straight forward and
naive way of integrating Boosting and Support Vector Machines. Complete results
for experiments with SMO-B,, are presented in Table A.2, where partial results for
the bew database are also presented in Table 5.5. Before each execution of the
algorithm, non-overlapping complementary selections for training and testing sets,
corresponding to 70% and 30% of the dataset, respectively, were drawn with respect
to a uniform distribution.

For each dataset, these tables first present average results for the final strong
hypotheses computed by the Boosting algorithm. Besides the textual representation
of the results, which display average results and corresponding standard deviations,
three-dimensional graphs are used to describe each quantitative performarce mea-
sure over the variation of the two regularization parameters, T' and p, where p is
given in the y axis, T'is given in logarithmic scale in the z: axis, and all measures are

104

given in the z axis using a range that maximizes the visualization of details in the
graphs. Surfaces drawn between neighboring points were produced with a low pass
filter that converts scattered data to grid data using a norm-4 distance measure.

Secondly, Tables 5.5 and A.2 bring average results collected from each in-
dividual weak hypothesis created by the weak learner. As with the results for the
strong hypotheses, data are presented in a descriptive table as well as in graphs.
For both strong and weak hypotheses data displays, the best parameter configura-
tion obtained is highlighted. The three criteria with which to sort and pick the best
parameter configurations were, in order:

e Best accuracy, where better configurations yield smaller generalization errors;

» Faster execution times, where if there is a tie with the accuracy criterion, the
fastest configuration is selected;

s Greater percentage of valid weal hypotheses, where if there is a tie with the
two criteria above, the configuration with lesser occurrences of invalid weak
hypotheses is selected.

If 3 tie still results from these three criteria, a random choice for best config-
uration is made. Notice that for SMO-B,, which uses the standard heuristics from
AdaBoost.M1, the algorithm halts processing whenever an invalid weak hypothesis
is found. This issue, which is changed in the upcoming algorithms, is most relevant
when using the percentage of valid weak hypotheses as a selection criterion.

Finally, Tables 5.5 and A.2 bring the histograms for the repeated executions
of the best configuration for the algorithm and each database, where the dispersion
of the three quantitative measures for strong hypotheses are displayed.

Notice that due to limitations in computational resources, not all datasets
were able to be experimented with SMO-B,,. Therefore, Table A.2 brings results for
only those problems which were able to be solved in reasonable time. Moreover,
due to the excessive training time required by the algorithm, as depicted in Tables
5.5 and A.2, not all experiments were repeated 10 times, some being executed only
once. For this reason, corresponding standard deviations for measures taken over
the average of different executions are shown as zero.

105

Table 5.5: Average and best results for hybrid algorithm SMO-B,, after 10 rounds of

experiments with distinct training and testing sets.

bew (average results for strong hypotheses)

T »p
1000 0.4
1 04

Accuracy {%)
51.00% = 16.81%
53.67% + 14.99%

3.74% + 1.84%
1006.00% £ 0.00%

Good Weak Hypotheses (%) Execution Time (s)

243651515
09953+ 087s

1 01

87.71% =k 12.38%

100.00% = 0.00%

00350035

1000 41
1000 &7
100 1
1 07
1068 i
100 0.7
100 04

1 1
100 01

bew (strong hypotheses’ average result graphs for T x p)

Accuracy (%)

50.14% = 15 43%
49.19% 4= 15.41%
47.19% % 15.17%
56.52% & 13.98%
44.71% + 14.50%
50 05% = 15.43%
53.86% 4 14.94%
47.29% £ 15 19%
49.19% + 19 55%

Good

4.90% = 1.84%
3.39% % 1.70%
16.40% = 10.86%
100.00% = 0 40%
1.60% = 0.56%
30.20% £ 8.96%
35.30% £ 1962%
100.00% =+ 0 00%
55.10% & 33.19%

Weak Hyp. (%)

11350125
10287 s £ 63155
186255+ 11208 5
18035424235
178405+ 9895 s
127.54 5% 118.44 5
2125s:4£1250¢
228995271935
05950345

Execution Time (s)

106

Table 5.5: (continued)

bew (average results for weak hypotheses)

T » Alpha Error Rate (%) Support Vectors (%) Norm SMO lterations
1000 04 | 10000000000 000% £ 0.00% 022% +011% 251 2781 = 161.4524 643
1 04 | 10.00000.0000 0.00% & 000% 681% & 2.54% 17973.7100 & 17899.1636 301 4 243
1 0.1 | 10.0000 4 0.0000 0.00% + 0.00% 3.38% £ 0.84% 969.5497 - 2283.8921 38 £ 50
1000 0.1 | 10.0000 & 0.0000 0.00% + 0.00% 015% % 0.06% 27.4609 % 11.5640 240
1000 0.7 | 10.0000 £ 0.0000 0.00% £ 0.00% 025% % 0.11% 395.3559 + 203 2713 95
100 1 | 100000400000 000% & 0.00% 137% +0.75% 41230772 1374 9117 86 = 37
1 07 | 10000000000 000%=000% 1081% x251% 76494 4166 57033 0937 1797 & 2095
1000 1 | 10.0000 £ 0.0000 000% £ 0.00% 014% = 0.04% 403,1479 + 178.5044 8£3
100 07 | 100000400000 000% %000% 227%-:070% 4831.3097 4 3550.3131 102 = 68
100 0.4 | 10.0000 00000 0.00% = 000% 206%:£112% 2562.8477 + 1283 3616 57 % 30
1 1 | 10000000000 000%D00% 1667% £ 5.35% 3228222248 £ 248327.9780 8017 £ 7173
100 ©.1 | 10.0000 £ Q0000 000% £ 0.00% 1.75% & 1.04% 334 7604 + 184.4323 169
bew (weak hypotheses’ average result graphs for 7' x p)
. £
e L e LT
Error Rate | Support Vec- SMO Itera-
Alpha Norm .
(%) tors (%) tions
bew (experiment histogram for parameter setup that yielded best results)
| |
TR X s Li_ ul
Accuracy (%): 87.71% | Good Weak Hyp. (%): | Execution Time (s):
+ 12.38% 100.00% =+ 0.00% 0.03s+0.03s

5.3.2 Results for SMO-Bg

The second hybrid algorithm proposed, SMO-Bg, is a natural evolution of SMO-B,,
aimed to solve the problem of ignoring far too many weak hypotheses, as previously
shown in the data from Tables 5.5 and A.2. The results for SMO-Bg are shown in

107

Tables 5.6 and A.3, where results are presented using the very same format as in
Tables 5.5 and A.2, respectively. These tables first show results for the final strong
hypotheses, then average results for all generated weak hypotheses, and finally the
histogram for the best configuration achieved.

The criteria for selecting the best configuration were the same as described
in Section 5.3.1 for SMO-B,, the only implicit difference being the new mechanism
of ignoring invalid weak hypotheses without halting processing.

It is worthwhile noticing that, as in experiments with SMO-B,, not all datasets
were able to be tested due to limitations in computational resources. Also, due to
excessive training time required by the algorithm, no experiment with SMO-B,, was
repeated more than once. For this reason, standard deviations for these measures
are shown as zero.

Table 5.6: Average and best results for hybrid algorithm SMO-By after 10 rounds of
experiments with distinct training and testing sets.

bew (average results for strong hypotheses)

Accuracy (%)

Good Weak Hyp. (%)

T p Accuracy (%) Good Weak Hypotheses (%) Execution Time (s)
1000 04 97.62% =+ 0.00% 3.70% == 0.00% 905425+ 0005
1 04 | 97.62% i 0.00% 100.00% -k 0.00% 0045 £ 0.00s
1 01 | 96.19% £ 0.00% 100.00% = 0.00% 00250003

1009 01 96.67% = 0.00% 99 50% & 0.00% 1431s£0.00s
1000 0.7 96.19% -+ 0.00% 1.10% = 0.00% 2805175+ 0005
100 1 96.67% £ 0.00% 100.00% & 0 00% 44431540005
1 07 97.14% £ 0.00% 100.00% = 0.60% 212540005
100 1 96.67% 4 0.00% 100.00% =+ 0 00% 4491925 £ 0005
100 07 97.14% = 0.00% 10.00% = 0.00% 285855+ 0005
100 04 95.24% = 0.00% 14 00% % 0.00% 1002950005
Pl 96.67% =+ 0.00% 100.00% £ 0.00% 5045 000s
100 0.1 97.14% =+ G.00% 100.60% = 0 00% 1.205 £ 000

bew (strong hypotheses’ average result graphs for T’ x p)

| R
L:::—" ._::’-v' Mf’fb}
~»-q_;-;_}/ e o el L

Execution Time (s)

108

Table 5.6: (continued)

bew (average results for weak hypotheses)

bew (weak hypotheses’ average result graphs for T x p)

T p Alpha Error Rate (%) Support Vectors {%) Norm SMO Iterations
1000 0.4 | -0.1294 £ 0.0000 0.02% £ 000% 13.76% £ 0.00% 56025713 + 0.0000 325+0
1 0.4 | 10.0000 &£ 0.0000 0.00% = 0.00% 3.33% £ 0.00% 1666.2279 - 0.0000 21+0
1 01} 100000:£00000 0.00%+000% 286% £ 000% 187 4276 £ 0.6000 11+0
1000 0.1 9.3123 £ 0.0000 0.00% £ 0.00% 3.59% % 0.00% §33.1179 4 0 0000 9:k0
1000 07 | -03749 £ 00000 004% £ 0.00% 19.46% % 0.00% 8896 0666 - ©.0000 454 £ ¢
0 1 0.0193 & 00000 0.05% :: 0.00% 22.38% £ 0.00% 100569649 £ 0.0000 547 &£ 0
1 07 2.0482 4 0.0000 004% £ 0.00% 1524% +000% 57723096 £ 0.0000 368 4+ 0
1000 1 0.0019 + 0.0000 0.05% £ 0.00% 22.38% +000% 10054.5734 0.0000 549 % 0
100 0.7 | -0.1583 £ 00000 0.04% £=000% 19.17% £ 000% 7206.9525 + 0.0000 459 &£ 0
100 04 0.0247 & 0.0000 0.02% = 0.00% 14.10% + 0.00% 61155771 % 0.0000 33540
i1 19346 4 0.0000 005% £ 0.00% 22.38% 4 000% 100223125 £ 00000 663 £ 0
100 01 9.8656 = 00000 0.00% = 0.009% 339% &= 0.00% 703.8516 :+ 0.0000 3640

]
Error Rate | Support Vec- SMO ltera-
Alph . .
i (%) tors (%) Norm tions
bew (experiment histogram for parameter setup that yielded best results)
S T B B
| 0 1
Accuracy (%): 97.62% | Good Weak Hyp. (%): | Execution Time (s):
+ 0.00% 100.00% + 0.00% 0.04s+000s

5.3.3 Results for SMO-B,

SMO-B,, is the first hybrid algorithm that attempts to merge components from SMO
together with AdaBoost.M1, instead of simply integrating them as in SMO-B,, and
SMO-Bg. Results for SMO-B., are shown in Tables 5.7 and A4. As in Section 5.3.2,

109

the format of these two tables is the very same as the one described in Section 5.3.1,
also used in Tables 5.5 and A.2. Notice that Table 5.7 brings complete results for the
bew dataset only, where Table A.4 brings complete results for all datasets.

The criteria for selecting the best configuration were the same as described
in Section 5.3.2 for SMO-Bg, where the same mechanism of ignoring invalid weak
hypotheses without halting the algorithm was used and considered by the last se-
lection criterion.

Finally, although we managed to experiment SMO-B., with all 22 databases,
executions for 8 of them were not repeated more than once due to computational
resource limitations. For these databases, namely cdges, gauss®, gauss!, gauss?,
musk, spiral®, spiral!, and spiral®, standard deviations show as zero.

Table 5.7: Average and best results for hybrid algorithm SMO-B., after 10 rounds of
experiments with distinct training and testing sets.

bew (average results for strong hypotheses)

Accuracy (%)

ke
Good Weak Hyp. (%)

T »p Accuracy {36) Good Weak Hypotheses (%) Execution Time (s}
1900 G4 96.29% - 1.14% 18.15% £ 2 54% 35435+ 4125
1 04 90 24% £ 9.43% 100.00% =+ 0.40% 005540015
1 01 95.52% £ 2.38% 100 00% = 0 G0% 003s54+£001s
106G 01 96.14% =+ 1.12% 32.91% £+ 4.01% 18065+ 0985
1000 0.7 | 96.52% £ 1.17% 14.37% =+ 3.00% 45965 - 4.66s
100 1 96.19% = 1.11% 21.40% = 4.92% 53154+ 060s
1 07 91.19% % 7.89% 100.00% < 0.00% 006s+£001s
1000 1 96.29% + 0.85% 12.07% 4. 28% 51.645:% 5965
0 o7 96.33% £ 1 04% 23.00% £ 3.69% 46454+ 0565
100 0.4 96 19% + 1 02% 27.90% 4 5.56% 36750435
i 1 91.33% 4 841% 100.00% = 0.00% 00854 00%s
190 01 96.38% = 1 19% 45 .30% 4+ 7.84% 1.83s£0.10s

bew (strong hypotheses’ average result graphs for 7' x p)

Execution Time (s)

110

Table 5.7: (continued)

bew (average results for weak hypotheses)

Alpha

Error Rate (%)

bew (weak hypotheses’ average result graphs for T' x p)

Support Vectors
(%)

Norm

T »p Alpha Error Rate (%) Support Vectors (%) Norm
1000 04 03065 = 00576 0,16% £ 0.03% 25.54% 3 3.33% 639.6772 & 71 2488
1 04 1.3624 = 04054 0.19% = 0.19% 15.76% 4 3.36% 399.5661 = 122 6807
1 01 1.5457 &+ 02571 0.12% £ 0.07% 5.43% = 1 57% 194 0201 & 111.1667
1000 0.1 -0.0853 = 0.0188 0.33% £ 0.05% 13.26% £ 0.83% 400.7593 £ 26.2831
1600 9.7 | -0.3853 - 0.0892 0.13% = 0.02% 32.47% 4- 3.74% 725.3301 X 97.6372
00 1 0.1961 £ 0.0672 012% + 0.02% 3589% 4 482% 7563575 3 114 6263
o av 13731 = 04324 0.19% £ 0.17% 2638% £ 513% 5262639 £ 156 5876
1000 1 04039 2 0.0785 0.13% £ 002% 3592% % 4.73% 789.2475 £ 96.5533
108 47 02106 = 0.0500 0.14% % 0.03% 31.87% £ 4.38% 714.4174 £ 104.9769
138 GA -0.1293 £ 00438 0.15% £ 0.03% 25.65% = 348% 6261287 & 799104
1 1 1.3330 = 04916 0.22% £ 0.22% 37 71% £ 5.19% 656.4435 = 164.6508
100 01 00144 = 00393 0.35%::008% 1267% £067% 3984358 % 214161

+ 1.17%

IJ.AL&M.E
Good Weak Hyp. (%):
14.37% = 3.00%

|
[

[mm

bew (experiment histogram for parameter setup that yielded best results)

ol .

Execution Time
45065+ 4668

(s):

5.3.4 Results for SMO-B;

As SMO-Bg succeeded SMO-B,,, SMO-B; is the natural evolution of SMO-B-, tight-
ening even more the merger between SMO and AdaBoostM1. Results for SMO-
B; are shown in Tables 5.8 and A.5. Again, the format of these two tables is the

111

very same as the one described in Section 5.3.1, previously used in many other ta-
bles. While Table 5.8 is restricted to the bew dataset only, complete results for all
databases are presented in Table A.5.

Again, the criteria for selecting the best configuration were the same as de-
scribed in Section 5.3.2 for SMO-Bg, and later in Section 5.3.3 for SMO-B,,. Finally,
although we managed to experiment SMO-B;s with ail 22 databases, executions for
8 of them were not repeated more than once due to computational resource limita-
tions. For these databases, namely cdges, gauss®, gauss!, gauss?, musk, spiral’,
spiral!, and spiral®, standard deviations show as zero.

Table 5.8: Average and best results for hybrid algorithm SMO-B; after 10 rounds of
experiments with distinct training and testing sets.

bew (average results for strong hypotheses)

Accuracy (%)

Good Weak Hyp. (%)

T p Accuracy (%) Good Weak Hypotheses (%) Execution Time (5)
1000 O+ 96.14% =+ 1.45% 70.54%6 £ 1.46% 68125+ 0%1s
1 G4 92.67% £ 4.41% 100.00% =& ©.00% 0.03s:0601s
i 01 91.86% + 6.38% 100.00% 4= 0.00% 0.02s£001s
1000 0.1 | 96.29% & 1.63% 69.17% & 1.54% 17.62s+0.16s
1000 Q7 96.00% £ 1.21% 71.67% =4 2.46% 11828s5:£ 2355
100 1 96.14% £ 1 56% 80.40% £ 5 02% 160854 038s
1 07 92.14% % 598% 100.00% = ©.00% 0.03s4+001s
00 1 95 81% £ 1.24% 73.61% £ 1.94% 168.215%£ 3335
68 07 96.00% 4= 1 45% 80 10% & 3.21% 112950225
100 04 | 96.19% £ 1.52% 80.20% =+ 2.60% 651540105
1 1 04.76% & 3.47% 100.00% & 0.00% 003540005
100 01 096.14% =+ 1 35% 74 50% 1 3.50% 1.735+005s

bew (strong hypotheses’ average result graphs for T x p)

Y

Execution Time (s)

112

Table 5.8: (continued)

bew (average results for weak hypotheses)

Alpha

Error Rate (%)

bew (weak hypotheses’ average result graphs for T' x p)

Support Vectors

(%)

T »p Alpha Error Rate (%) Support Vectors (%) Norm
1600 G4 0.0646 = 0.007¢ 096% £ 0.05% 23 46% £ 281% 8252713 £ 116.4942
1 04 1.3973 £ 0.3459 {.16% £ 0.11% 7.71% £ 2.86% 211.5841 -+ 34.3790
1 a1 1.3876 + 0.3919 0.18% o= 0.15% 5.05% 4 1.82% 130.3803 = 49.4667
1000 0.1 | 0.0599 4 0.0086 0.97% -+ 0.03% 1L.77% - 0.58% 489.3496 - 42,2209
1000 0.7 0.0732 :k 0.0151 0.94% = 006% 27.19% £ 3.75% 1253.2555 & 238.3426
100 1 (.1546 + 00249 083% +=0.11% 39.98% 4 536% 2002.2801 £ 406.5583
1 47 13892 + 0.3426 017% £ 012% 10.00% : 3.99% 276.8681 £ 123 6461
1060 1 00808 + 00158 0.91% & 0.08% 2969% £ 4.23% 1721.3789 £ 362.4685
100 07 0.1459 4 00226 086% = 0.0B% 34.93% : 4.44% 1395.4959 k 207.6325
00 04 0.1355 &+ 0.0149 0.86% = 0.08% 27.08% £ 2.33% 9005703 & 1299236
i 1 15918 4 0.2485 0.10% % 006% 13.24% = 4.63% 340.5600 £ 95 3159
100 0.1 01214 £ 0.0182 092% £ 0.05% 1165% £ 0.44% 4471555 £ 56.9464

Norm

bew (experiment histogram for parameter setup that yielded best results)

] rmﬁ I

i_n__n_ﬂsz Emhlﬂﬂ.__ﬂ LJ‘LMI

Accuracy (%): 96.29% | Good Weak Hyp. (%): | Execution Time (s):
+ 1.63% 69.17% 4 1.54% 17625+ 0.165

5.4 Discussion of Results

In this section we discuss the results partally presented in Sections 5.2 and 5.3,
and further completed for all databases in Appendix A. We first highlight the main
findings of the three steps of preliminary analysis for each of the databases, namely

113

the step that explores linear separability of data and the other two that attempt to
properly tune SVM parameters. Secondly, we comment on the results of the four
hybrid algorithms proposed in Chapter 4, which are the main focus of this work.

5.4.1 Linear Separability

The aim of the experiment described in Section 5.2.1 was to determine the linear
separability of databases. Hence, we may divide all databases into two distinct
groups, one for the linearly separable and another for those non linearly separa-
ble. All databases found to be linearly separable were cdges, gauss®, ionosphere,
musk, pgs, spect”, and twonorm, where all remaining databases were not linearly
separable.

It is important to describe the criterion with which these databases were
just classified. Notice that since we use a single-neuron Perceptron network, the
Perceptron training algorithm will only stop when either all training instances are
correctly classified, or the maximum number of iterations is reached. Furthermore,
we repeated the experiment with each database 10 times, each time drawing new
training and testing sets from the original dataset. Even though stating with 100%
accuracy that these database were linearly separable was only possible if each com-
plete dataset was used the training set for these experiments?, we consider low the
probability of repeatedly drawing degenerated training and testing sets that might
have led to false conclusions. Therefore, those datasets where the Ferceptron al-
gorithm managed to halt before reaching the maximum iteration stop criterion are
considered as linearly separable.

For those linearly separable databases such as, for instance, gauss?, it may
seemn rather trivial employing more advanced learning machines to solve a trivial
binary classification problem. Nonetheless, there are two reasons for doing so. First,
there are groups of similar databases where only one member of these groups is
linearly separable. In these cases, it is interesting to analyze the change in behavior
of learning algorithms from one group member to another, regardless of the triviality
of some databases. One such example is database gauss®, which is similar to the
non linear separable databases gauss® and gauss®. The trivial linear result of this
experiment for gauss® may be observed in Figure 5.10, in a similar dataset whose
points where drawn with the same Gaussian probability distributions.

Databases gauss® and gauss?, on the other hand, impose an unbeatable chal-
lenge on linear learning algorithms. Since these two problems contain overlapping

3We chose to draw distinet non-overlapping training and testing sets for these experi-
ments in order to be able to measure the generalization abilities of the Perceptron neuron
and training algorithm for the databases used.

114

Figure 5.10: Experiment with linear discriminant (single-neuron Perceptron net-

work) over a linearly separable problem similar to gauss’.

ciasses, linear discriminants will never reach a solution with zero training error.
Specifically in the case of Perceptrons, the criterion of maximum training epochs
must be used to avoid the training algorithm never ending, where the separating
line floats around the overlapping area between the two classes and no 100% accu-
rate soludon is ever found. The result of this experiment may be observed in Figure

5.11 in a problem similar to gauss'.

[

Figure 5.11: Experiment with linear discriminant (single-neuron Perceptron net-

work) over a problem similar to gauss’.

The second reason for conducting experiments on linearly separable prob-
lems is to examine the behavior of the algorithms proposed for databases with par-
ticular characteristics. Take, for instance, the cdges database, which is composed

115

of vectors with 16063 dimensions. Despite its apparent triviality, the study of this
database in this work is still very relevant to evaluate the effects of such high dimen-
sionality on the proposed algorithms, which is known to be one of the key factors
that limit the expression power of many learning machines, as well as significantly
increase their training times.

5.4.2 SVM Tuning

In order to execute the experiments with hybrid algorithms, we first investigated
which SVM parameters would best suit each of the databases used. The goal of this
analysis was to determine good values for each of the three parameters specific to
the standard version of SMO, namely the parameter for trade-off between training
error and margin (C), and the two RBF kernel parameters. Each of these 3-tuples,
for each dataset, was used as the basis of the configuration of all following hybrid
algorithm experiments, where we varied other parameters with respect to Boosting
and the interface between Boosting and the SVM.

This tuning process was divided into two steps, one for coarse-grained tuning
and another for fine-grained tuning, The coarse-grained tuning step, described in
Section 5.2.2, aimed to quickly evaluate whether the default SMO parameter set
could be used to solve each of the problems selected. This default parameter set
consisted of using an RBF kernel with a variance parameter p,z = 1.000 and scale
parameter p, = 1.000. In order to speed up experiments, all databases were cropped
to at most 100 instances, where the standard 30%/70% ratio between testing and
training sets, respectively, was maintained. Although speeding up this step was
rather beneficial, it caused a degradation of results for 8 databases, namely cdges,
gauss®, gauss’, gauss?, musk, spiral®, spiral!, spiral®>. These results are partially
presented in Table 5.2. Since SMO failed to perform well for these cropped datasets,
producing error rates of 100%, we attempted the same experiments with these entire
datasets, regardless of how many instances they had. Results for this experimental
follow-up are partially presented in Table 5.3. Notice that for these two coarse-
grained experiments, each experiment was executed only once. Thus, standard
deviations for all results collected show zero.

Coarse-grained tuning yielded that all 22 databases selected were learned
by a Support Vector Machine using an RBF kernel. This result was most welcome
and necessary to both simplify the testing of algorithms without worrying about
switching between machines with different kernels, and also assure that each and
every dataset used could be learned with reasonable generalization by an SVM,

Now that at least the kernel type for all problems was set to be RBE we pro-
ceeded with the fine-grained tuning of SVMs for each dataset. Again, we used SMO

116

and varied the possible configurations using different values for the three parame-
ters described above. Values for C were chosen from {10~2%,10°,10%}, and values
for both RBF kernel parameters were also chosen from {107%,10%,10%}. In order to
increase the statistical relevance of the experiment, each configuration was run over
all datasets for 10 times. For illustration purposes, partial results for this experiment
are shown in Table 5.4.

After the execution of all tests, we determined which configurations were
best suited to handle each learning problem using an RBF-based SVM. The criteria
for ranking each configuration, previously described in Section 5.2.3, were based
on each one’s average outcome for accuracy and execution time. One example of
such best configuration is highlighted in Table 5.4. Interestingly, although a few
configurations were repeatedly chosen as best in more than one dataset, no obvious
pattern was obtained from all best configurations, which widely explored the range
of possible parameter combinations.

Another objective of enduring this SVM tuning procedure, aside the deter-
mination of parameter configurations itself, was to set benchmarks for the standard
SMO algorithm, both in terms of accuracy and execution time. Except in datasets
with excessive added noise, such as chess?, SMO managed to yield reasonably good
accuracy results, all above 75%, most within the 85% — 100% range. The remark-
able outlier for this good performance was the spiral-function family of databases,
spiral®, spiral!, and spiral®>. Although the accuracy rates obtained in these ex-
periments was rather poor, roughly around 50%, similar databases were reportedly
well learned by SVMs with RBF kernels in literature. Motivated by these studies,
we attempted to fine-tune the SVM with even finer-grained parameters in order to
improve accuracy. We found that this problem is particularly sensible to all SVM pa-
rameters, where small variations of 10~ often vielded significantly different results.
Since in our automated tuning procedure we varied our parameters by 10%, 6 orders
of magnitude more than these variations, it is clear that a more sophisticated heuris-
tic for parameter tuning would certainly enhance the performance of SMO. Since
these parameter-determination heuristics are not the focus of this work, we solely
relied on our own not-so-fine-grained tuning procedure, where the performance of
hybrid algorithms was to be verified even in cases with badly-tuned parameters.

5.4.3 SMO-B, and SMO-Bs: A Simple Hybrid Algorithm and its Evolu-
tion
The first couple of hybrid algorithms we experimented with were SMO-B, and

SMO-Bg, proposed in Section 4.3.1 and 4.3 .2, respectively. The SMO-B., algorithm
is the simplest and most naive form of integrating Boosting and SVMs, and SMO-Bg

117

may be considered as an evolution of the original SMO-B, toward efficiency. SMO-
B, is the classical implementation of AdaBoost.M1 with SMO as a weak learner,
where SMO-B; proposes its enhancement by extending the original probabilistic
selection mechanism.

Using the best configurations found for each dataset during the tuning pro-
cedure previously described, hybrid algorithms were set up to execute with different
configurations for two regularization parameters, one for the number of weak hy-
pothesis to be evaluated, T, and another for the fraction of the training set to be
selected by the booster and presented to the weak learner, T. T was chosen from
set {1,100,1000}, while p was chosen from set {0.1,0.4,0.7,1.0}. All 12 parameter
combinations were merged with the previous best configurations and executed over
each dataset.

Notice that due to limitations in computational resources, we could not af-
ford, time wise, to repeat all experiments 10 times as originally planned. Instead,
most experiments for SMO-B,, and SMO-Bg were executed only once, as one may
easily infer from some zero standard deviation values in Tables A.2 and A.3. Ad-
ditionally, due to the same reason, we have also omitted specific experiments with
SMO-B,, and SMO-B over a few databases. The complete results for all databases
used to evaluated these two hybrid algorithms are presented in Table A.2 for SMO-
B, and Table A.3 for SMO-Bg.

Although the construction of SMO-B,, was well supported by concepts from
both AdaBoost.M1 and SMO, its results were far from ideal, almost always perform-
ing worse than the standard SMO. Schapire [Sch02] advocates that Boosting may
fail to perform well when overly complex weak learners are used, so one may won-
der if that may be the cause for SMO-B,'s failure since SVMs are rather complex
learning machines. A deeper investigation of the results in Table A.2 explained how
such phenomenon may take place, where most weak hypotheses generated by SMO
with the subsets drawn by AdaBoost.M1 where either invalid or saturated. Recall
from Chapter 2 that weak hypotheses for binary classification problems must pro-
duce error rates of at most 50%. Since many hypotheses did not make such require-
ment, the original implementation of AdaBoost.M1 in SMO-B, halted the algorithm
once an invalid weak hypothesis was built, thus yielding very poor results. Further-
more, another phenomenon, this time numerical, made that many null hypotheses
with norm zero, obtained from training with degenerate cases of training subsets,
were saturated with the largest possible weight values for w;. These degenerate
cases, in turn, were obtained by SMO-B,’s selection-with-replacement mechanism.
Recall from Chapter 3, Equation (3.81) and the SMO algorithm in Figure 3.5.3, that
SMO may reach a division by zero if two input instances refer to equal input vectors.

118

Therefore, when using selection with replacement to select the training subset, re-
peated instances were often presented to SMO, which produced ill weak hypotheses.
These ill weak hypotheses were wrongfully saturated with very high weights by the
AdaBoost grading mechanism, hence totally biasing the vital principle of majority
voting.

In an attempt to solve this problem, SMO-B; was proposed with a selection-
without-replacement selection mechanism. This new mechanism makes it impos-
sible to insert repetitions in SMO’s training subset unless the original training set
contains duplicates. An extra step was also added to the modified hybrid algorithm,
allowing for invalid weak hypotheses to be ignored without halting the algorithm.
The results for SMO-By, presented in Table A.3, show that it often outperforms
SMO both in terms of accuracy and execution time, thus validating the idea that the
appropriate combination of Boosting and SVMs may lead to better learning algo-
rithms that not only have better generalization abilities than the standard SMO, but
also execute in less time. Despite these promising results, specially for the enhanced
accuracy compared to that of SMO, we noticed that most training times were not
faster to SMO’s, although there were a few exceptions. On the contrary, for cases
with large values for T, SMO-Bg required a substantial amount of time to complete,
some runs lasting for hours and even days %.

A complete comparison of results between all hybrid algorithms and SMO,
both in terms of accuracy and execution time, is later presented in Section 5.4.5.

5.4.4 SMO-B, and SMO-Bs: Hybrid Algorithms with Merged Compo-
nents

Finally, after discussing the promising results of the first two hybrid algorithms in
Section 5.4.3, we now discuss the results for SMO-B., and SMO-By, two hybrid al-
gorithms built with much tighter integration berween AdaBoost.M1 and SMO com-
ponents. Instead of simply integrating AdaBoost.M1 and SMO using a weak learner
interface with minor modifications, the structural changes introduced by SMO-B,
and SMO-B; take apart and eliminate some of the main building blocks from its
two parent algorithms. SMO-B,, changes the paradigm of selecting a subset using
the distribution maintained by the booster, where this same distribution is used to
draw individual instances from the whole training set. Moreover, SMO-B., elimi-
nates the frst SMO selection heuristic, which implemented one of SMO’s checking
mechanisms to ensure that all KKT-violating instances were selected for analytical
optimization. Fxtending this concept even further, SMO-B; disposes of both first

4please refer to Appendix B for notes on program instrumentation and execution
environment.

119

and second SMO selection heuristics, relying the very convergence of the machine,
originally achieved by selecting two training instances that most contribute toward
the optimal solution, to the probabilistic selection mechanism fed by the booster.

When experimenting with SMO-B.,, and SMO-B;;, as with SMO-B,, and SMO-
Bg, we used the best configurations found for each dataset during the SVM tuning
procedure to execute the algorithms with different configurations for two regular-
ization parameters, one for the number of weak hypothesis to be evaluated, T, and
another for the fraction of the training set to be selected by the booster and pre-
sented to the weak learner, T'. T was chosen from set {1,100, 1000}, while p was
chosen from set {0.1,0.4,0.7,1.0}. All 12 parameter combinations were merged
with the previous best configurations and executed over each dataset.

Also analogously to the first two hybrid algorithms, due to limitations in
computational resources we could not afford, time wise, to repeat all experiments
with all datasets 10 times. Experiments with 8 databases, namely cdges, gauss’,
gauss®, gauss?, musk, spiral®, spiral!, spiral?, were repeated only once, where
those with the remaining 14 datasets were carried out 10 times as planned. The
complete results for all databases used to evaluated these two hybrid algorithms are
presented in Table A.4 for SMO-B.,, and Table A.5 for SMO-B;.

Despite the rather drastic approach of eliminating the first SMO heuristic,
we found that SMO-B,, performed remarkably well, outperforming SMO’s accuracy
in 11 datasets, exactly 50% of the databases. Those in which SMO performed bet-
ter, we found that the difference between accuracy results obtained with SMO and
SMO-B., were marginal, validating the robustness of the novel hybrid learning ma-
chine. In terms of execution time, SMO-B., was faster than SMO in only 4 of the 22
databases.

Results for SMO-B; were equally good, specially considering its even more
drastic approach of eliminating SMO strategies and relying solely on Boosting’s
probabilistic selection mechanism, Like SMO-B,, SMO-B; outperformed SMO for
11 datasets, the same number of datasets in which it outperformed SMO-B., itself.
Although slightly faster than SMO-B.,, SMO-B; was still slower than SMO in aver-
age, where it manage to execute in less time only over 6 databases.

Besides comparing the overall performance of all algorithms with respect to
the number of datasets with which they obtained good results, we may also iden-
tify recurring patterns in these datasets that highlight strengths and weaknesses
of each algorithm. For instance, SMO-B., and SMO-B; were consistently more ac-
curate than SMO in some synthetic problems with artificial noise added, such as
the chess family and the spiral family, SMO-Bs even more so than SMO-B,. In-
terestingly, this trend was reversed for the synthetic databases with multivariate

120

normatl distributions, ringnorm and twonorm, which were also one order of mag-
nitude slower than SMO on both SMO-B., and SMO-B;. Dimensionality of datasets
also seems to greatly impact the time performance of algorithms, where for the
16063-dimensional cdges database, SMO-B., executed more than 10 times faster
than SMO, and 20 times faster than SMO-B;.

It is worthwhile pointing out that, despite accuracy differences between SMO
and the four hybrid algorithms proposed, these 5 algorithms most often outper-
formed other studies published with these datasets, described in Section 5.1. One
such exception is the cdges database, previously analyzed in Section 5.2.1, that de-
spite being linearly separable, did not produce good results with any the SVM setups
used.

A complete comparison of results between all hybrid algorithms and SMO,
both in terms of accuracy and execution time, is presented next in Section 5.4.5.

5.4.5 Performance Summary

This section brings performance summary tables that describe the best results ob-
tained with each one of the algorithms experimented with over all 22 datasets,
namely SMO, SMO-B,,, SMO-By, SMO-B,,, and SMO-B;. These best results were
selected from the complete set of experimental results described in Appendix A us-
ing the sorting criteria previously described in Sections 5.2.3 and 5.3.

Table 5.9 compares the accuracy of the best results for all algorithms, and
Table 5.10 compares their execution times. Notice that the entries in Table 5.10 are
not the fastest execution times obtained with each algorithm. Instead, these entries
represent fastest execution times obtained with the most accurate configurations, as
implicitly pointed out by the sorting criteria.

Notice that some cells in Tables 5.9 and 5.10 are left blank, where not all
datasets were able to be executed by all algorithms due to computational resource
limitations. For this sarme reason, some experiments which were originally planned
to be repeated 10 times were executed only once. These experiments are identified
by the standard deviation of some of their measures, which therefore are equal to
ZEro.

121

Table 5.9: Accuracy summary for best configuration
SMO-B,, SMO-Bg, SMO-B,, and SMO-B;.

results obtained with SMO,

Dataset 5MO SMO-Ba SMOQO-Bg SMO-B., SMO-Bs
bew 96.10% == 0.97% B7.71% £ 12.38% 97.62% + 0.00% 96.52% £ 117% 9625% = 1.63%
edges 80.48% + 3.33% 70.24% 0.00% 77.38% + 0.00% 77.38% £ 0.00% 83.33% £ 0.00%
chess® 93.77% £ 1.38% 85.63% 1+ 8.01% - 93.90% £ 1.49% 53.20% £ 1.68%
chess? B85.37% + 1.41% 78.60% 4.76% 84 57% + 1.65% B82.40% = 1.54%
chess® 68.37% + 1.26% 64.33% 1 3.91% 66.53% + 2.17% 66.63% £ 2.40%
gauss® 100.00% £ 0 00% 100.00% 3 0.00% 100.00% = 0.00% 100.00% = 0.00% 100.00% = 0.00%
gauss! 98.57% + 0.68% - 98.67% £ 0.00% 99.33% £ 0.00%
gauss? 92.07% + 1.05% 93.00% = 0 Q0% 93.00% - 0.00%
hepatitis 80.64% 4 4.61% - 7830% % 651% 75.96% £ 6.32%
ionosphere | 95.09% 4 1.83% - 95.00% + 0.95% 9472% &k 274%
muslk 93.01% % 2.32% - - 93.01% & 0.00% 93.71% % ¢.60%
pgs 81.25% £ 8.95% . 87.50% & 0.00% 88.12% + 4.80% 82.56% = 5.96%
pid 76.80% = 2.51% - 75320% £ 0.00% 7571% £ 202% 7615% £ 2.28%
ringnorm 98.47% + 0.70% - . 98.13% + 092% 97.90% x 0.56%
spect® 76 36% =+ 0.21% - . 77.81% £+ 0.36% 78.50% & 3.31%
speect” 82.53% + 0.00% - 84.31% :+ 2.88% B286% 165%
spiral® 57.07% 2.63% 61.00% x 0 00% 62 67% + (0.00%
spiral! 52.63% 4+ 1.39% 56.67% + 0.00% 54.67% = 0.00%
spirat? 53.17% + 1.21% 52.67% + 0.00% 51.00% % 0.00%
twonorm 97.97% £ 0.67% 97 50% £ 0 70% 96.67% 3 0.80%
wdbc 95.38% & 1.37% - 93 80% 1 201% 94.04% & 1.47%
wpbe 79.83% £ 5.65% - . 75.67% £ 7.54% 77.67% & 53%%

122

Table 5.10: Execution time summary for best configuration results obtained with
$MO, SMO-B,, SMO-Bg, SMO-B.,, and SMO-B;.

Dataset SMO SMO-B, SMO-By SMO-B, SMO-B;
bew 546552405 00350035 00450005 4596s+:466s 1762s5x016s
cdges 158455421215 28825+ 000s 97.815:£000s 1337s54£000s 282345£000s
chess® 79225+ 354s 25255k 10945 - 79695 %0465 35578s£3485
chess! 7974517015 98454£901s - 7515654+ 17275 578ls:k 1615
chess® 6279543195 1496529495 77715+ 0805 359150165
gauss® 0.045400ls 0065%000s 0025::000s 0025+000s 0.025£000s
gauss! 0.43s5+013s - - 4460s+000s 10695=000s
gauss” 06254 011s - - 42115+000s5 1122540005
hepatitis 0.015s£0.00s - . 10350045 3315+003s
ionosphere 10050435 - - 271546055 22150025
musk 88753865 178554 000s 165835 000s
pgs 019s:008s 511s+0.00s 108150135 361s+003s
pid 8285+ 1.565 - BROG s 000s 973s54£013s 117.755%077s
ringnorm 21235+ 5625 - - 228965+ 6995 283.86s+370s
spect" 018520035 - - 349540045 007520045
spect” 027s£002s 005640005 017540035
spiral® 38725 % 2751 s 127825 £ 000s 3533450005
spiral® 5.96s+ 0855 - 131150005 6438s5+000s
spiral® 17158952665 - - 49156515 £ 000s 124s54+000s
twonorm 072520035 - - 920540365 46225420165
wdbe 298s 0585 34995+ 314ls B004skQ97s
wpbec 4845+330s 021sk001s 50150045

123

Chapter 6

Conclusion

In the light of the results described and discussed in Chapter 5, the most fundamen-
tal conclusion of this work is that it is possible to assemble Boosting and Support
Vector Machines together in hybrid algorithms that will often outperform other so-
phisticated learning methods such as Support Vector Machines themselves. This
conclusion contradicts an important remark from the Boosting literature. Many
authors have argued, including Schapire [Sch02], that overly complex weak hy-
pothesis may fail to produce good strong hypothesis using a Boosting algorithm.
‘This issue, previously discussed in Chapter 2, imposed a serious threat to this work,
since SYMs are among the most sophisticated learning machines available [CST00].
Recall from Chapter 5 that the naive hybrid aigorithm SMO-B,, failed to beat SMO
practically in all databases. Nonetheless, we were able to locate the source of the
problem and build a hybrid extension, SMO-Bg, with consistently better accuracy
than that of SMO, thus contracting the warning by Schapire and others.

Another interesting point comes from the theory of Support Vector Machines,
described in Chapter 3, which formulates the training of learning rnachines as solv-
ing convex constraint optimization problems, where an optimal solution is reached
when the training algorithm converges. Based on the principle of structural risk
minimization, SVMs are supposed to be the most accurate learning machines, i.e.
with the greatest generalization abilities, given that SVM parameters and kernel are
properly tuned for the problem in hand. Since tuning SVMs is often a problem as
hard as solving the learning problem itself, it is expected that SVMs perform sub-
optimally. The results obtained in this work show that by using of principles such as
those from Boosting theory, one is able to effectively boost the accuracy of SVMs to
compensate for this lack of proper parameters.

This issue leads to another interesting conclusion. Regardless if coupled or
not with Boosting in hybrid algorithms, one of the main practical problems of em-

124

bracing SVMs, as well as other kernel methods, as generally-preferred learning ma-
chines is their necessity to have machine and kernel parameters properly setup in
order to perform well. In our experiments, we examined such problem for the spiral
family of datasets, spiral®, spiral!, and spiral®>. These problems were fined-tuned
by hand in a much tighter parameter range, roughly 6 orders of magnitude more
precise. As a result, SMO was able to nearly achieve 100% accuracy in spiral®. Since
the tuning procedures undertaken in this work were based on a much coarser grain,
SMO and all four hybrid algorithms proposed failed to perform well for this dataset,
with best accuracy around 63%. The conclusion is hence that although these hybrid
approaches tend to compensate for a slight misconfiguration of the machine and its
kernel, big discrepancies are still the Achilles’ heel of SVMs, together with Boosting
or not.

Specific deficiencies known to Boosting and Support Vector Machines also ap-
pear to have benefited from the hybrid approach. According to Dietterich {Die00],
Boosting is specially susceptible to noise, yet hybrid algorithms outperformed SMO
in synthetic databases with artificial noise added. Furthermore, Support Vector Ma-
chine training algorithms, such as SMO, often suffer in terms of training time when
datasets have great dimensionality, great cardinality, or both. As expected, the prob-
abilistic selection strategy from Boosting greatly reduced the expensive evaluation
of internal kernels, allowing hybrid algorithms to be faster than the standard SMO
for high-dimensional datasets such as cdges.

Except for SMO-B,, which served as basis for the development of its cus-
tomized counterpart, one of the most interesting properties observed for SMO-Bg,
SMO-B.,, and SMO-B; is the robustness associated with the high quality of the solu-
tions obtained. For all datasets experimented, these algorithims either outperformed
or were marginally worse than each other and than the standard SMO. This ro-
bustness in accuracy is most desirable, meaning the algorithms tend to converge to
narrow near-optimal ranges. Considering that one of Boosting’s properties is to en-
hance accuracy as more weak hypotheses are evaluated, provided there is enough
training data, these proposed algorithms have the potential to greatly outperform
other standard learning machines, including SVMs. Although some algorithms did
require a great amount of time to execute, it is important to point out that they were
also consistently faster that SMO in different databases with specific properties, such
as the cdges dataset just described.

The final and perhaps most important conclusion of this work has to do with
the promising results already obtained and the development approach used so far.
The development process carried out during the undertaking of this work was rather
horizontal, meaning it spanned over many different possibilities, options, and even

125

datasets, in search for promising results that would lead the way to even more
groundbreaking algorithms. Now that these promising results have been found, it
is clear that many of the issues briefly tacked in this work deserve to be further
explored in a more vertical approach. Therefore, the final conclusion is that the fur-
ther exploration of strategies for combining Boosting and Support Vector Machines
has a great potential to result in even better learning machines, both in terms of
accuracy and execution time. Several suggestions for different types of follow-up
works which may lead to yet more interesting conclusions and contributions are
presented next in Chapter 7.

126

Chapter 7

Future Work

The results and conclusions of this work gave rise to a series of issues that suggest
the further deepening of the research conducted so far. Due to time limitations,
the investigation of these issues have been currently postponed, though it does not
mean they are any less relevant or promising than the topics so far explored.

Some of these ideas are based on previous developments in either Support
Vector Machine or Boosting literatures, where it is yet to be seen what their effect
would be on algorithms that combine both together. Each one has the potential to
not only increase the applicability of the algorithms developed up to now, but also to
lead to new algorithms with better generalization and faster execution times. The
following sections describe these ideas, and sow the seed to future developments
and new research work.

7.1 Non-Euclidean Input Spaces

In real-world applications, there are many classification problems that cannot be
encoded using Euclidean input spaces. Despite most often having a standard finite
set of labels as output, the fact that their input space is non-Euclidean substantially
narrows the availability of learning machines to solve them.

There are many papers in the Support Vector Machine literature about cus-
tomized kernels that have been used to classify different kinds of input data. By
using the principles of kernel induced feature spaces described in Section 3.3.2,
SVMs are able to map non-Euclidean input spaces into linearly-separable feature
spaces, thus making learning possible.

One of the applications with greatest appeal for such technique is text clas-
sification, where one must classify chunks of text according to their content. Note
how difficult it is to encode textual information in Euclidean spaces, where the sense

127

of sentences represented by the selection and disposal of words in the text must be
preserved. There are several examples of SVM uses in text classification problems,
for instance the ones by Joachims [Joa98b] and Dumais, Platt et al. [DPHS98].
Furthermore, there have also been examples of the application of Boosting tech-
niques to text classification, such as BoosTexter from Schapire and Singer [SS500],
RankBoost from Iyer et al. [ILS*00], and a text filtering scheme from Schapire et at
[SSS98]. The combination of these Boosting techniques with the appropriate SVM
setup for text classification is yet to be experimented.

Another application that has earned the interest of the machine learning
community is the classification of biological sequences, powered by the recent ad-
vances in bioinformatics and biological data acquisition techniques. Take, for in-
stance, the problem of determining promoter gene sequences described in Section
5.1.7. Its encoding must not only consider which bases form the sequences, as we
in purpose did, but also consider the order in which they appear A much better
approach than the one we adopted would have been the use of a customized kernel
able to incorporate sequence information. Examples of such advanced kernel tech-
niques are plenty in the bioinformatics literature, namely the work by Jaakkola and
Haussler [JH99] using hidden Markov models in protein homology detection, the
work by Watkins [Wat99a, Wat99b, Wat99c] using probabilistic context free gram-
mars to build kernels, and the work by Haussler [Hau99] on kernels for discrete and
sequential data such as biological sequences. Other examples are also discussed by
Cristianini et al. [CSTO0].

The effect of using such customized kernels with the algorithms described
in Chapter 4 is yet to be determined. Since using problem-specific kernels have
the potential to increase the quality of each weak hypothesis evaluated by those
algorithms, interesting observations may arise with respect to hypotheses weight
distributions and the impact of the number of weak hypotheses on the quality of the
strong hypothesis.

7.2 Sparse Vector Operations

A very common optimization of the standard SMO algorithm was proposed by Platt
himself in [Pla98a]. It consists of implementing customized operations for dealing
with sparse vectors more efficiently. According to Platt, much of the computation
time of SMO is spent on kernel evaluations, which may be significantly improved
for sparse data problems if customized operators are used. If the sparse data are
binary, the optimization is even more efficient, where floating-point operations are
replaced by simple increment and decrement operations.

128

Since one of the drawbacks of the algorithms proposed in Chapter 4 is their
relatively large consumption of computer resources when repeatedly evaluating dif-
ferent weak hypotheses, the use of such small optimization techniques may lead to a
great reduction in the algorithms’ execution times, therefore potentially enhancing
their overall applicability for large problems with sparse or binary sparse inputs.

7.3 Fixed-threshold SVMs

Platt describes the origins of SMO in [Pla98a], where he compares SMO to previous
SVM and other optimnization algorithms. According to him, SMO can be considered
a special case of the Osuna algorithm, where the working set is of size two and both
Lagrange multipliers are replaced with new multipliers at every step.

It is interesting, though, to consider a modification of SMO that uses a work-
ing set of size one, hence only replacing one Lagrange multiplier at each step. The
immediate consequence of such change is that the SVM would not have the linear
restrictions imposed by Eguation (7.1) on the dual representation of the optimiza-
tion problem (Chapter 3), therefore fixating the threshold variable.

[
S =0and0< o< CVi=1,2.. 1 (7.1)
i=1

The standard Lagrange multiplier update rule used by SMO, described in
Equation (7.2), would therefore be replaced by the new rule described in Equation
(7.3), which only considers one multiplier update at a time.

oneY — C}:Otd o Yo (E1 - EQ}
2 2 ok(ay,19) — k (a1, 41) — k (22, 72) (7.2)

where By = f"ld{ 1) — v

By
k (21, 21) (7.3)
where By = o4 (7)) — wi

o = aold

Platt states that the fixed-threshold version of SMO for a linear SVM is similar
in concept to the Perceptron relaxation rule [Pla98a, Hay94], where the output of
a node is adjusted every time there is an error, so its output lies over the separating
margin. The drawback of this approach is exactly the loss of the maximum margin
property of SVMs, which is the core of the structural risk minimization principle

129

described in Chapter 3. Its benefit, though, is thar different selection heuristics for
SMO may be used, only this time for selecting a single Lagrange multiplier instead
of two. The impact of this major change in SMO’s capacity to derive good hypothesis
on its own must be evaluated separately before attempting to use it together with
Roosting. Nevertheless, the potential for different coupling strategies of this single-
multiplier selection strategy with Boosting selection mechanisms is great, specially
considering that the probable loss of generalization caused by the structural risk
minimization violation may be absorbed when combining weak hypotheses to derive
a strong hypothesis.

Yet another potential benefit of using a fixed-threshold SMO, also a direct
consequence of the single multiplier update rule, is described further ahead in Sec-
tion 7.10.2.

7.4 Reweighting with SVMs

The AdaBoost algorithm described in Chapter 2 contains an implementation detail
that consists of selecting the mechanism for exchanging weight information with
the weak hypothesis generator. For learning algorithms that easily accept weighting
parameters, this is done by maintaining weight values together with each instance
of the training set, which is the booster’s distribution vector D;. This weight vector
is then passed to the weak hypothesis generator, which uses this information to bias
its learning toward the instances with greater weight. This technique is referred to
as reweighting [F§96a, FS99b].

Consider a Multi-Layer Perceptron neural network, for instance. The output
of neurons on the first hidden layer may be evaluated as:

y = sign{wx — b) (7.4)

where x is the input vector, w is the weight vector associated with the neuron, and b
is a threshold value. Applying reweighting for such simple algorithm would multiply
D, by each input vector x, hence producing:

y = sign (WxDy — b) (7.5)

For learning algorithms which do not accept weighting parameters, another
means for passing this information along is necessary. Resampling is then used,
which consists of selecting a subset of the training set using D, as a probability dis-
tribution. This technique was used for interfacing SMO with AdaBoost in this work,
since there is no obvious way for biasing SVM training on specific input vectors.

130

Further research into SMO mechanics may suggest an efficient way for us-
ing vector biasing information during SVM training. This modification of SMO
for reweighting would be integrated with AdaBoost, as we already did using re-
sampling, and its results would provide interesting data for comparison between
reweighting and resampling when using SMO as a weak hypothesis generator. Fur-
thermore, the combination of both techniques could be explored, evaluating the
effects of overemphasizing the principle of weighted majority voting behind the
Boosting theory.

7.5 Multiclass Classification

A natural extension of the standard binary classification problems we explored in
this work would be the replacement of the output domain {—1,+1} by a finite set
of n labels {1,...,n}. In order to do that, we would first need a Boosting algorithm
and an SVM-based weak hypothesis generator able to solve such problems.

There are several methods of extending AdaBoost to work with multiclass
problems [$S99, Sch02]. Some of them are simple generalizations of AdaBoost.M1
[FS95], while others divide a multiclass problem into multiple binary problems,
such as Schapire and Singer’s AdaBoost.MH [S598] and Freund and Schapire’s Ad-
aBoost.M2 [FS$95].

Just like Boosting algorithms, there are many Support Vector Machines tech-
niques for transforming a multiclass problem into a set of binary problems. One
such example is the one versus all (OVA) pairwise comparison technique, for in-
stance used in [RTR¥01] for classifying tissue samples among 15 different types of
cancer.

The combination of such multiclass Boosting and Support Vector Machine
algorithms may lead to an new class of algorithms able to solve a much wider range
of problems than the binary version explored in this work.

7.6 Multilabel Classification

Another extension that follows the multiclass classification described in Section 7.5
is multilabel classification. Given a problem with a finite output set with n labels
{1,...,n}, multilabel classification would assign confidence levels to each of the n
labels when presented a new data sample.

The most well-known multilabel extension of AdaBoost is AdaBoost.M2, due
to Freund and Schapire [FS95, FS96a, FS99b]. AdaBoost.M2 extends the commu-
nication with the weak learner by considering a set of plausible labels from each

131

weak hypothesis instead of a single output label. Thus, each hypothesis outputs a
vector [0, 1]*, where components close to 0 or 1 correspond to lower or higher de-
grees of plausibility, respectively. Also, AdaBoost. M2 replaces the usual prediction
error of each hypothesis by a much more sophisticated error measure that Freund
and Schapire refer to as pseudo-loss. The internal workings of AdaBoost.M2 are
thoroughly deseribed in [F§96a, SS99], where they are also compared to those of
AdaBoost.M1.

As with Boosting, Support Vector Machines also must provide extensions to
cope with confidence measures. One of the most straight forward confidence mea-
sures for SVMs is the Euclidean distance of a sample point to the separating hyper-
plane. A similar approach has been explored in [RTR*01] for choosing between
results of machines trained in one versus all pairwise comparisons.

Similarly with multiclass classification, multilabel extensions to both Boost-
ing and Support Vector Machines may be combined to deal of more sophisticated
classification problems, increasing even more the applicability of the algorithms.

7.7 Regression Problems

Aside from exploring different input spaces, we may also tackle problems with dif-
ferent output spaces other than the discrete ones we have so far described. One
of the most interesting applications of Support Vector Machines is on regression
problems, that is, problems with output space in [—co, +oo} [CSTO0]. Many recent
advances have also widened the applicability range of SVMs in regression problems,
such as the work of Flake and Lawrence [FLO1] to build a new version of SMO
[Plag8a] for real-value output problems. Due to its structural risk minimization
principle, SVMs are often found to outperform other regression machines.

Using Boosting on regression problems has also drawn much attention from
the Machine Learning community. New papers and theses have been published
[RMR99, Rit01], where previous methods of Boosting in classification problems
have been adapted to work on regression as well. The combinadon of Boosting
regression techniques with SVM regression may vield learning algorithms with a
great potential for solving non-discrete problems.

7.8 Automatic Kernel and Parameter Selection

One of the decisions made in this work was that the selection of SVM kernels and
kernel parameters would be fixed for each problem solved, thus sparing the Boost-
ing algorithm from this decision. One of the newest research topics in the Support

132

Vector Machine community is the discovery of methods for automatically determin-
ing SVM kernels and kernel parameters.

Examples of such techniques are described by Jaakkola [JH98], Cristianini
et al. [CSTC98], and Amari and Wu [AW89], which use decisions derived from
the problem data, Other works explore empirical findings based on specific prob-
lems, such as Ali et al. [AA02]. Other examples of automatic kernel selection are
discussed by Cristianini et al. in {CST00].

Another interesting area is determining the regularization parameter C' of
SVMs with soft margins. Pontil and Verri [PV98] of study the effects of C over the
solution, where they find interesting results by identifying more relevant support
vectors that play a key role in determining the optimal separating hyperplane of the
problem.

It may be possible to derive techniques for automatic kernel and parameters
selection and tuning based on Boosting principles, where instead of training weak
hypotheses based on the reweighting or resampling of input vectors, a initial train-
ing step would take place for producing a strong hypothesis containing a refined
kernel for the given problem. Among the multiple ways of translating such idea
into a Boosting algorithm, one possibility would be to keep a set of possible kernel
parameters from which the algorithm would use distribution values to select from
and build new weak hypothesis at each step.

7.9 Study of Theoretical Bounds

One of the most promising post-studies of the algorithms proposed in this work is
the derivation of their theoretical bounds on both training error and testing error
(generalization). These derivations may take place in various ways, for instance
exploring the theories of Support Vector Machines and Boosting, or even verifying
the behavior of algorithms bound to well-known curves.

7.9.1 Bounds Imposed by Combining SVM and Boosting Theories

According to the concepts in Boosting theory based on the Probably Approximately
Correct (PAC) model [Fre95, Vap95, CST00], AdaBoost.M1, which has been used
in all algorithms described in Chapter 4 in its generalized form, outputs a strong
hypothesis with the following training error upper bound:

T T T
€H SEZ:WE\”“‘L%Q < exp (-m?tzz\'ﬁ) (7.6)

133

where T is the number of weak hypotheses generated, 1 = 1/2 ~ €, and ¢ is
the error measure associated with weak hypothesis ¢ {[FS96a]. Schapire shows in
[Sch02] that the customized selection of Z; leads to narrower error bounds, hence
improving the algorithms’ convergence by producing better weak hypotheses. No-
tice, however, that the selection of Z, depends on the output domain of each weak
hypothesis h; (z). In order to determine and restrict the output of h; (z), Support
Vector Machine theory may be used to derive consistent ways of ensuring restricted
output bounds, thus improving the use of SVMs as better weak hypothesis genera-
tors.

Similar approaches may be used to restrict error bounds on Support Vec-
tor Machines, which in turn rely on the Vapnik Chervonenkis (VC) theory {Vap82,
Vap95]. Several aspects of the VC theory provide tools for determining margin-
based bounds on SVM generalization [CST00], which may be explored with the
intent of combining weak hypotheses using weighted majority voting. This voting
strategy is too powered by the PAC model, which coincidently is founded on the
same principles as is the VC theory.

7.9.2 Investigating Behavior Bounded to L or Pareto Curves

A new stream of research work on learning machines has attempted to study gen-
eralization bounds using well-known curves. Examples of such work have been de-
veloped for Multi-Layer Perceptron neural networks using Pareto curves by Teixeira,
Braga et al. [Tei01, TBTS00, TBTS01]. Their proposed Multi-objective algorithm
minimizes the norm of MLP weight vectors along with the sum of squared errors to
obtain Pareto-optimal solutions.

A similar approach may be derived for SVM algorithms as well as the com-
bination of SVMs and Boosting described in this work. These bounds may follow
a Pareto-curve as discovered for MLPs by Teixeira, Braga et al., or even other more
sophisticated shapes such as L-curves [Han99]. Either way, such discovery would
enhance both the knowledge and the applicability of the algorithms here proposed.

7.10 Parallel Architectures

In order to overcome the substantial consumption of computer resources demanded
by the algorithms described in Chapter 4 when repeatedly evaluating different weak
hypotheses, parallel implementation techniques may be used to take advantages of
advanced architectures such as multi-processed machines and networks of clustered
machines. Whether distributing processing among several microprocessors or sev-

134

eral nodes in a cluster, the principles and problems behind parallelizing Boosting
and SMO still remain the same. Either way, such implementations may transform
these algorithms into viable solutions for real-world applications with strong data
and execution time constraints.

7.10.1 Parallelizing Boosting

mplementing parallel versions of Boosting algorithms, such as those from the the
AdaBoost family, has no theoretical limitations whatsoever. Since the evaluation of
each weak hypothesis is done independently from one another, threads or cluster
nodes may keep copies of the entire set of input samples and evaluate separate
batches of hypotheses in parallel. After a predetermined amount of hypotheses or
time, these threads or cluster nodes would synchronize in order to produce a strong
hypothesis.

This simple approach would reduce the weak hypothesis generation time of
Boosting algorithms by a factor of 1/n, where n is the number of processors or clus-
ter nodes used. Notice, however, that neither the complexity of the algorithm nor
the time required to combine all hypotheses would be reduced with such approach.

7.10.2 Parallelizing SMO

Implementing a parallel version of SMO, which is quite controversial since SMO
stands for Sequential Minimal Optimization, has theoretical limitations that have
not yet been overcome. As described in Chapter 3, SMO trains a Support Vector
Machine by solving the corresponding QP problem with the decomposition method
taken to its extreme, that is, by selecting and optimizing two Lagrange multipliers at
each step [CSTOO0, Bur98]. This way, each pair of multipliers is solved analytically
and therefore ceases to violate Karush-Kuhn-Tucker (KKT) conditions.

The problem with parallel implementations of SMO lie exactly on the pair-
wise replacement of multipliers. Since every two multipliers in the original set may
be selected by the SMO selection heuristics, it is highly likely that inconsistencies
between two parallel instances are created. These inconsistencies, in turn, would
result in the eventual optimization of multipliers selected with an inconsistent mate,
allowing for former to violate KKT conditions as other multipliers change, even after
being previously updated. Considering this difficulty, two approaches may be used
to implement naive parallel versions:

o Consistently synchronizing the updated values of multipliers, thus avoiding all
inconsistencies but at the same time eliminating almost all parallelism possi-
ble.

135

o Neglect these inconsistencies and bet that the benefits of evaluating Lagrange
multipliers in parallel will overcome the hassle of re-evaluating all multipliers
with violating KKT conditions during synchronization cycles.

Though it seams rather obvious that the former approach is doomed to fail,
the latter has been attempted by Etin and Elias [EE0O0], which report marginal per-
formance benefits over standard SMO with twice as much computer resources (a
network with two identical computer nodes).

A novel approach to building parallel versions of SMO relies on the princi-
ples of using fixed-threshold SVMs, briefly described in Section 7.3. Since training
fixed-threshold SVMs with a modified version of SMO implies that single Lagrange
muldpliers will be updated at each step, we now may distribute this processing
across parallel units without the problem of incorrectly updating Lagrange multipli-
ers due to inconsistencies in their pairs.

Notice that this approach also comes with the generalization drawbacks also
described in Section 7.3. Nevertheless, considering the capabilities of Boosting al-
gorithms to combine weak hypotheses into a strong hypothesis, evaluating poorer
SVMs with parallel implementations may be not bring serious generalization de-
creases to the algorithm and yet improve its execution times.

136

Appendix A

Complete Results For All Datasets

This appendix brings the complete results for experiments with all datasets de-
scribed in Chapter 5. These results have been omitted from the main text body
due the great number of databases used and consequently their relatively large size.
Section A.1 brings partial results for preliminary analyses previously described in
Section 5.2, where only results for the linear discriminant analysis are shown. Com-
plete results for the SVM tuning procedure were omitted due to their relatively large
size, where we restrain ourselves to showing examples for datasets bew and cdges
in Sections 5.2.2 and 5.2.3. Section A.2 brings complete results with all datasets
for the algorithms proposed in Chapter 4, whose experiments were first commented
in Section 5.3. Besides the description of experiments distributed among Chapter
5 and Appendix A, algorithms’ analyses and results are discussed in more detail in
Section 5.4.

A.1 Preliminary Analysis

Table A.1 brings the complete results of the experiment using a Perceptron single-
neuron network as a linear discriminant. Each databased was repeatedly analyzed
with one Perceptron node for 10 times, each time with different selections of non-
overlapping complementary wraining and testing sets corresponding to 70% and
30% of the dataset, respectively. The Perceptron node used a learning rate n = 0.01,
an error tolerance tol = 0.1, and a maximum number of epochs epoche, == 100000.

137

Table A.1: Average results for single-neuron Perceptron network after 10 rounds of

experiments with distinct training and testing sets.

Database Accuracy MSE Iterations Execution time
e | . —
| | ! | |
E : ‘ ,
I e T I |
bew 96.24% 4+ 1.81% 0.0376 + 0.0181 100000 %0 4185 +£0.03s
L! | "
e & . al B .
cdges 89.520% + 2.05% 0.1048 :x 0.0205 279+101 15.74s+ 2235
rw..w___m__ml l —
| |
1_m o - W&j_u_an _H] =y LLJ
chess? 48.67% 4 2.54% 0.5133 £ 0.0254 100000:4+0 3.45s:k 0.04 s
rwm,.._____m_y. e
|
. ™ B Bem I L ekt B B m
chess? 51.00% =+ 1.90% 0.4900 + 0.0190 100000+ 0 348s5=0.03s
;me___ .
|
| el B | el o imE B
chess? 50.83% + 2.77% 0.4917 + 0.0277 100000+ 0 3.48s:4+0.025s
!Mlm._ I - O E— N e £ - N S - 1
gauss{] 00.90% + O 21% 0.0010 £ 0.0021 2 + 0 0.01s4+000s
. | ..
| e B H B L¢”kJ
gau581 97.97% + 0.85% 0.0203 4+ 0.0085 100000 %0 3475+ 0.035s

138

Table A.1: {continued)

Database Accuracy MSE Iterations Execution time
S -
1 | i
e b H L. I R P I
gauss” 87.73% + 5.54% 0.1227 + 0.0554 10000040 3.455+0.03s
™ [
g J
m B el g.ln_m_l_ml b S _n.__ln,!_n
hepatitis 76.17% 4+ 8.34% 0.2383 + 0.0834 10000040 1.7554+0.02s
E —_
z | _J L |
L8) Bl R - Ll .
ionosphere | 82.83% £ 2.34% 0.1717 + 0.0234 99580 4 1258 6.215+0.085
________m[5 l
an
_!mk,m.l __nm_ﬂ m1 J__M,.E __ﬂ-w.ﬂ“mﬂ
musk 82.87% + 3.13% 0.1713 + 0.0313 1064 +284 0.565+0.105s
M%l E.J__m_l WB_ k
pEs 76.56% 4 6.74% 0.2344 1+ 0.0674 0.03s+000s
e
| |
i_mnmd nL LL_N_”;; b B
pid 68.31% = 8.31% 0.3169 + 0.0831 427s+£0.045s
— | "
! i
B e LB I T
ringnorm 66.00% + 4.70% 0.3400 + 0.0470 100000+ 0 12.12s5+0.02s
M i
1 |
L R ; l __Lﬂ_ﬁ_ﬂ
Spect” 75.84% 4 0.00% 0. 2406 i O 0000 100000+£0 143s+0.01s

139

Table A.1: {continued)

Database Accuracy MSE Iterations Execution time

TR — i e
| i i o i |

. . L e

spect” 70.63% -+ 0.00% 0.2937 £ 0.0000 32038+ 0 0.82s54+001s
_mwe 1 i | l nnnnn o
_u.nJ‘-J% J...L.ml [____ W&j L‘n_wnd#-

spiralo 48.93% + 3.46% 0.5107 £ 0.0346 100000+ 0 3.44s=% 0.03s
| | i | |

. i %

o B B L.&.J_J._l . el

Spirall 49 .20% + 2.119% 0.5080 -+ 0.0211 100000 i O 3455+ 0025
 _pm. B L i ._u_u,m; .,___mimﬁ#w L B ol m

spiral2 50.50% & 2.25% 0.4950 + 0.0225 100000+ 0 34554 0.03s
Hg M ﬂ @ H [:: L.mE .. __.__.ME _“_.___mmi

twonorm 9&63% 4 0.85% 0.0337 £+ 0.0085 90303 £ 29092 10.97 s £ 3.51s
Lm_. . ola L j elbn_m) P E e @

wdbc 02.63% + 3.44% 0.0737 + 0.0344 100000 :i: O 92654 005%
' i . |
Law,_k.,: e - 0 e .

wpbc 69.67% + 10.40% 0.3033 + 0.1040 100000 £ 0 3.385+£0.025

140

A.2 Experimental Results

In this section we present the results previously described in Section 5.3 and later
discussed in Section 5.4. Results for each of the four hybrid algorithms proposed in
Chapter 4 are displayed in the following sections.

A.2.1 Complete Results for SMO-B,

Table A.2 brings the complete results for the hybrid algorithm SMO-Bg, as previ-
ously described in Section 5.3.1. The algorithm was experimented with variations
of T" and p, its two regularization parameters that influence the behavior of the
Boosting module and its interface with the weak learner. The results presented in
this section are further analyzed in Section 5.4.3, where they are thoroughly dis-
cussed.

Table A.2: Average and best results for hybrid algorithm SMO-B,, after 10 rounds
of experiments with distinct training and testing sets.

bew (average results for strong hypotheses)

T p Accuracy (%) Good Weak Hypotheses (%) Execution Time {s)
1660 G4 51.00% 4 16 81% 3.74% -+ 1.84% 24365:£ 15155

1 04 53.67% = 14.99% 100.00% % 0.00% 0.99s=087¢

1 0.1 1 87.71% - 12.38% 100.00% = 0.00% 0.03530.03s
1000 01 50 14% £ 15.43% 4.90% = 1.84% 11350125
1000 0.7 49.19% + 15.41% 3.39% £+ 1.70% 102875463153
100 1 47.19% + 15.17% 16.40% = 10.86% 186255 : 112085

1 ©7 56.52% = 13.58% 100 00% & 0.00% 1803524235
1000 1 44 71% + 14.50% 1.60% 4 0.56% 176405980855
100 0F 50 05% £ 15.43% 30.20% 4 8.96% 1275454 11844 5
100 04 53 86% 4 14 94% 35.30% £ 19 62% 212554+ 12505

i 1 47.29% 4 15.19% 104.00% £ 3 .60% 228995 4 27193 s
100 01 49.19% & 19.95% 55.10% :£ 33 19% 0595 £0345s

141

Table A.2: (continued)

bew (strong hypotheses’ average result graphs for 7' x p)

L L .y
Accuracy (%) Good Weak Hyp. (%) Execution Time {s)

bew (average results for weak hypotheses)

T p
1000 0.4
1 04

Alpha
10.0000 & 0.0000
10.0000 £ 0.0000

Error Rate (%) Support Vectors (%)

©.00% = 0.00%
0.00% =+ 0.00%

0.22% 4+ 011%
6.81% + 2.54%

Norm
2512781 & 161.4524
17973.7100 £ 17899.1636

SMO Iterations

6+3
301 £ 243

1 0.1

10.0000 = 6.0000 0.00% -k 0.00%

3.38% - 0.84%

9609.5497 - 2283.8521

38 + 50

1000 0.3
1006 0.7
00 1

T 47
1600 1
100 0%
100 04

1 1
100 C.1

10 GC00 4= 0.0000
10.0000 4 0 0000
10.0000 % 0.0000
10.0000 £ 0.0000
10.0000 £ 0 6000
10,0000 % 0.0000
100000 £ 0.0000
10 0000 - 0.00G0
14.6000 + 0.00G0

0.00% % 0.00%
0.00% £ 0.00%
(1.00% =+ 0.00%
£.00% = 0.00%
0.00% £ 0.00%
0.00% o+ 000%
0.00% + 0.00%
0.00% = 0.00%
0.00% % 0.00%

0.15% % 0.06%
.25% £ 0.11%
1.37% = 0.75%
1081% £ 251%
0.14% + 0.04%
2.27% & 0.70%
206% £ 112%
16.67% % 5 35%
1.75% = 1.04%

27 4609 -+ 11.5640
395.3559 & 203.2713
41230772 £ 1374.9117
76494 4166 + 57033 .0937
403.1479 + 178 5044
4831 3097 £ 3590.3131
25628477 & 1283 3616
3228222248 -+ 248327.9780
334.7604 + 184 4323

bew (weak hypotheses’ average result graphs for T' x p)

Alpha

Error
(%)

Rate

-~

Support Vec-
tors (%)

Norm

tions

240
95
86 + 37
1797 4 2095
8§43
102 £ 68
57 £ 30
8017 £ 7173
16+9

bew (experiment histogram for parameter setup that yielded best results)

L.E-ﬂ-

Accuracy (%): 87.71%

= 12.38%

|
1
(I

Good Weak Hyp. (%):
100.00% = 0.00%

Execution Time
0.03s+0.03s

(s):

142

Table A.2: (continued)

cdges (average results for strong hypotheses)

cdges (strong hypotheses’ average result graphs for T' x p)

Accuracy (%)

0.70% % 0.00%
100.00% = 0. 00%
100 00% = 0 00%

1.20% £ 0.00%

2.00% =+ 0.00%

12.00% £ 0.00%

Good Weak Hypotheses (%)} Execution Time (s)

52355+ 000s
24205+ 0005
9855 000s
1427 5:£000s
214785+ 000s
2148550005

100.00% & 0.00%

28.82s5 £ 0.00s

T p Accuracy (%)
1060 04 | 51.19% 4= 0.00%
1 04§ 51.19% & 0.00%
1 01§ 48.81% £ 0.00%
1000 0.1 | 51.19% % 0.00%
1000 67 | 70.24% 2 0.00%
100 1 51.19% + 8.00%
1 0.7 | 70.24% == 0.00%
1000 51.19% = 0.00%
100 07 § 70.24% X+ 0.00%
100 0.4 | 51.19% % 0.00%
11 70.24% = 0.00%
100 01 | 53.19% = 000%

o

(.80% = 0.00%
12 00% £ 0.00%
21.00% = 0.00%
100.00% = 0.00%
64.00% == 0.00%

Good Weak Hyp. (%)

150645 £ 000s
123075+ 000s
131.07 s = 0.00 s
578754+ 000s
36855 000s

Execution Time {s)

cdges (average results for weak hypotheses)

T op
1000 G4

1 04

i 01
1004 0.1
1000 07
100 1

Alpha

10.0008 + 0.0000
10.0000 0.0000
10.0080 £ 0 0000
110000 =+ 0.0000
1400600 = 0.0000
10.0000 £ 0.0600

0.00% + 0.00%
0 80% £ 0.00%
0.00% + 0.00%
0.00% 4 0 00%
0.00% £ 0.00%
0.00% == 0.00%

Error Rate (%) Support Vectors (%)

0.41% £ 0.00%
75 00% = 0.00%
22.62% £ 0.00%
0.24% = 0.00%
1.27% & 0.00%
8.90% £ 0.00%

Norm

SMO Iterations

15 4946 £ 0.0000

2645.6855 £ 0.0000
731.3799 + 0.0000

9 2934 + 0.0000
38.0956 %= 0.0000

266 3392 £ 0.0000

1+0
380
160
140
1440
240

1 67

10,0000 &£ 0.0000 0.00% = 0.00%

122.62% =+ 0.00% 4147.3276 - 0.0000

2140

1000 1
100 07
100 04
o
100 01

10.0000 % £.0000
10.0000 = 0.0000
10.00G0 £ 0 0000
100000 %= 0.0060
10.0600 & 0.0060

0.00% £ 060%
0.00% + 0.00%
£.00% & 0.00%
0.00% = 0.00%
0.00% =+ 0,00%

0.64% £ 0.00%
8.92% =+ 0.00%
11 54% X 0.00%
153.57% =+ 0.00%
11.81% =% 0 00%

194240 £ 0.6000

276.107C £ 0.0000
4223412 £ 0.0000
5781.1938 4 0.0000
458.2767 £ 0.0000

140
240
4%£0
22+0
940

143

Table A.2: {continued)

cdges (weak hypotheses’ average result graphs for T' x p)

5
Error Rate | Support Vec- SMO Itera-
Alph
pha (%) tors (%) Norm tions
cdges (experiment histogram for parameter setup that yielded best results)
T
Aceuracy (%): 70.24% | Good Weak Hyp. (%): | Execution Time (s):

£ 0.00%

100.00% = 0.00%

28.82s5+0.00s

chess® (average results for strong hypotheses)

T 5
1003 0.4
1 04
1 01
1000 01
oo oT
100 1
t a7
1000 1
160 0.7

Accuracy (%)
83.97% = 8.02%
76.57% % 5.78%
56.97% =+ 3.58%
82.17% 4 B.13%
69.90% £ 11.58%
64.67% £ 7.38%
81.13% £ 4.08%
63 33% £ 10.40%
68 50% -+ 16.09%

7.89% 4 2.43%
100.00% =+ 0 00%
100.60% == 0.00%
18.05% =4 12.33%

6.04% + 1.33%
37.00% & 13.53%
100.00% £ 0.00%

3.71% k 1.36%
57.90% % 14 92%

Good Weak Hypotheses (30) Execation Time (s)

39155425995
13550355
008s+£002s
102756003
57535k 50645
42865+ 7.67s
41754+ 206s
7307s+£680s
4275546305

100 0.4

85.63% z 8.01%

60.10% = 32.18%

25.25 s 4+ 10.94 5

1 i
100 01

82.27% & 2.49%
85.60% % 7.28%

100.00% &% 0.00%
74.00% =k 30.78%

9.6554£ 5095
39154 155s

144

Table A.2: {continued)

chess? (strong hypotheses’ average result graphs for T' x p)

Accuracy (%)

Good Weak Hyp. (%)

et

Execution Time (s)

chess® (average results for weak hypotheses)

Error Rate (%) Support Vectors (%)

0.00% + 0.60%
0.00% £ 0.00%
0.00% =+ 0.00%
0.00% £ 0.00%
0.00% = 0.00%
(.00% £ 0.00%
0.00% <= ¢ 50%
0 00% & 0.00%
0.00% = 0.00%

3.84% =k 1.06%
82.67% =+ 1 64%
22.67% £ 033%
3.58% 4 2.42%
3.24% + 0.50%
23.00% £ 6 84%

127 .33% = 5 30%

2.33% & 0.74%

31.50% £ 6.03%

10.0000 - 0.0000 0.00% == 0.00%

30.17% £ 15.32% 59.6627 :k 28.0318

T p Alpha
1000 0 4 10.0000 & 0.0000

1 a4 10.0000 4 0.0060

1 01 10.0000 + 0.0000
1000 01 10.0000 = 0.6000
1309 0.7 10.0000 + ¢.0000
160 1 10 0000 + 0.0000

1 07 160000 = 0.0000
1000 1 10.0000 = 0.0060
100 0.7 10.0000 % 0.0G00
100 0.4

i i 10.0000 -+ 00000
100 01 10.0000 &£ 0.0000

0.00% £ 0.06%
0.00% =+ G G0%

162.67% -+ 8.35%
14 76% % 6.07%

chess® (weak hypotheses’ average result graphs for T x p)

Norm SMO Iterations

7.5144 & 1.7952 1+£0
1963264 = 94521 22 %5
619287 - 15567 10 £ 4
92388 &£ 61715 240
5.0552 £ 0.4924 10
32.7467 + 69988 440

3558742 £+ 93,3104 28 4 12
32827 & 0.9158 1449
48 7881 & 7.5404 610
72

371.1604 :+ 78.1281 48 4 29
38.7785 + 159310 72

Error Rate | Support Vec- SMO Ttera-
Al
pha (%) tors (%) Norm tions
chess? (experiment histogram for parameter setup that yielded best results)
|] T
A LH LE_n B
Accuracy (%): 85.63% | Good Weak Hyp. (%): FExecution Time (s8):

+ 8.01%

60.10% + 32.18%

252554+ 10945

145

Table A.2: {continued)

chess! (average results for strong hypotheses)

chess! (strong hypotheses’ average result graphs for T' x p}

T p Accuracy (%) Good Weak Hypotheses (%) Execution Time (s)
1000 04 74.33% £ 5.72% 9.33% 4 4 28% 45595 12935
1 904 66.57% 4 03% 100.00% = 0.00% 1.365+ 0535
1 Gl 57.77% + 3.57% 100.00% + 0.60% 0.08s::002s
1000 0.1 | 78.60% = 4.76% 16.68% =+ 18.14% 9.84s £ 9.01s
1000 0.7 63.97% £ 4 54% 6.36% £ 1.48% 62175 £6.92s
woe 1 63.10% £ B.62% 34.5006 == 13.92% 47265 £965s
1 07 75.23% & 4.55% 100.00% &+ 0.06% 5425425325
1600 1 £62.67% £ 9.98% 3.76% 4 1.25% 76.65 5% 680 s
100 07 64.97% X 6.68% 52.90% + 13.17% 45455+ 5453
160 04 76.10% £ 5 41% 67.60% % 25 36% 3152s+ 10405
1 1 72.87% = 3.32% 100 00% <+ 0 00% 928534365
100 0.1 76.07% & 4.87% 74.00% £ 32.62% 398s:k 1625

Accuracy (%)

Good Weak Hyp. (%)

Execution Time (s)

chess! (average results for weak hypotheses)

T »p Alpha Error Rate (%) Support Vectors (%) Norm SMO Iterations
1600 G4 10.0000 £ 0 0000 0.00% +0.00% 439% £ 1.77% 13.3867 + 73156 140
1 04 10,0000 £ 00000 0.00% £ 000% B8030% = 257% 4385983 4 442.6472 25+ 11
1 01 10.0000 £ 0.0000 0.00% £ 0.00% 22.67% = 0.49% 99.6662 - 107.5999 1146
1000 0.1 | 10.0000 - 0.0000 0.00% £ 0.00% 3.30% 4 3.55% 11.8840 + 12.6099 241
000 0.7 | 10.0000 & 00000 0.00% +000% 3.31% £ 0.55% 10 8595 4+ 9.7191 10
100 1 10.0000 = C.0000 0.00% £ 0.00% 21 25% £ 6.69% 65.0907 4 32.1331 4+0
i a7 | 100000400000 000% +000% 123.90% % 7.39% 1510.1827 4 2386.2431 35428
w1 10,0000 + 0.0000 000% £ 000% 2.34% £ 0.64% 80160 * 64058 1+0
100 07 ! 100000400000 0.00% +0.00% 29.75% £ 5.73% 1161931 & 115.G793 60
100 04 1 10.0000 + 00000 0.00% 4 000% 33.06% £ 1190% 96,2734 £ 27.0194 B2
1 1 10,0000 == 0.0000 0.00% & 000% 159.43% + 10.10% 2594 7407 & 3563.6063 37 + 18
100 0.1 | 100000+ 0.0000 0.00% % 000% 14.90% £ 6.47% 57.4934 4 51.269% 742

146

Table A.2: (continued)

chess! (weak hypotheses’ average result graphs for T x p)

Alpha

Error
(%)

Rate

Support Vec-
tors (%)

e

Norm

chess! (experiment histogram for parameter setup that yielded best results)

i.L .

[~

Accuracy {%): 78.60%

+ 4.76%

]

|

Good Weak Hyp. (%):
16.68% -+ 18.14%

—
§ .

Execution Time

0.845+9.01s

(s):

chess? (average results for strong hypotheses)

T p
1000 G4
1 04
1 a1

Accuracy (%)
63.77% £ 3.88%
58.93% 4+ 2.91%
51.67% =+ 2.06%

9.21% & 4 %1%
100.60% -+ 0 00%
100.00% =+ 0.00%

Good Weak Hypotheses (%) Execution Time (s)

46335 £ 1781s
184s+ 1785
0.07s:£001s

1000 0.1

64.33% - 3.91%

26.72% £ 18.69%

14.96 5 4= 9.49 5

1000 07
100 1
1 07
1000 1
0 97
100 64

100 01

60.47% = 5.90%
56.53% = 4.44%
62.20% % 2.32%
55.03% £ 430%
61.07% & 4.71%
62 37% £ 3.03%
62.80% + 2 81%
64.10% % 3.50%

597% % 1.59%
38.50% + 12.53%
100.00% + 0.60%

3.39% & 1.45%
47.50% 4 13 63%
93.60% = 10.90%
100.00% & 0.00%
61.40% =+ 30.00%

65035:£11.39s
55.125:% 13955
6515+ 3.645
788151141
40625455945
4382545625
105254+ 2265
33751535

147

Table A.2: (continued)

chess? (strong hypotheses’ average result graphs for 1" x p}

Accuracy (%)

Good Weak Hyp. (%)

Execution Time (s}

chess® (average results for weak hypotheses)

T] Alpha Error Rate (%) Support Vectors (%) Norm SMO Iterations
1000 0.4 10.0000 & 00000 0.00% £ 0.00% 4.25% £ 2.06% 17.2177 £ 9.6422 1£0
1 04 10.0000 « 00000 0.00% £ 000% B81.10% £ 3.06% 4316170 X 4124177 27 424
1 01 10.0000 + 0.0000 0.00% 4= 0.60% 22.90% £ 0.30% 68.3830 + 4.0520 841
1000 0.1 | 10.0000 < 5.0000 0.00% £ 0.00% 5.24% = 3.64% 19,2020 £ 13.9891 341
1000 0.7 10.0000 4 00000 0.00% £000% 3.13% = 061% 12.6131 £ 3.7084 1£0
100 1 10.0000 4+ 0.0000 0.00% % 0.00% 23.55% £ 607% 81.2367 4 20 5459 40
1 0% 10.0000 £+ 0.0000 0.00% == 0.00% 12153% + 3.60% 11432826 £ 693 6101 44 + 19
1000 t 10,0000 £ 0.0000 000% £ 0.00% 2.10% =+ 0.77% 8.2996 & 2.8439 140
100 0.7] 10.6000 & 00000 0.00% & 0.00% 2670% = 540% 1005397 * 446596 5%0
100 0.4 10.0000 == 8 0000 0.00% £ 000% 44.35% £ 529% 159 9251 & 66.6741 1141
1 1 10.0000 % 0.0000 000% + 0.00% 15237% £ 617% 15232606 & 671.0082 41 4+ 10
100 01 10.0000 + 0.0000 5.00% £ 000% 12.33% + 5.89% 41.8047 & 22.0975 G2

chess? (weak hypotheses’ average result graphs for T" x p)

;‘_:_HL/

Error Rate | Support Vec- SMO lItera-
Alph N
pha (%) tors (%) orm tions
chess? (experiment histogram for parameter setup that yielded best results)
T e o
LL_m_ﬂ__nJ | Wy LLM&_E_M
Accuracy (%): 64.33% | Good Weak Hyp. (%): | Execution Time (s):

4 3.91%

26.72% + 18.69%

14965+ 9495

148

Table A.2: (continued)

gauss® (average results for strong hypotheses)

T p Accuracy (%) Good Weak Hypotheses (%) Execution Time (s)
1000 04 52.67% £ 0.00% .,400 =+ G.00% 693540005
1 04 47 33% 4 0.00% 100.00% = 0.00% 0.02s5£000s
1 01 47.33% - 0.00% 100.00% 4z 0.00% 002s:£000s
1006 01 52.67% - 0.00% 7.70% % 0.00% 15150005
1000 0.7 47 .33% & 0.00% 5.30% £ 0.00% 17255+ 0005
100 1 52.67% * 0.00% 49 .00% -+ 0.00% 30554+ 000s
1 a7 100.00% + 0.00% 100.00% & 0.00% 013s+000s
1000 1 47 33% £ 0.00% 4.40% =+ 0.00% 31.77s£000s
100 07 47.33% = 0.00% 32.00% + 0.00% 17254000s
100 04 52.67% - 0.00% 52.00% = 0.00% 098540005
11 100.00% - 0.00% 100.00% - 0.00% 0.06 s £ 0.005
0 01 100.00% =+ 0.00% 12.00% % 0.00% 0.i5s+000s

gauss® (strong hypotheses’ average result graphs for I" x p)

Accuracy (%)

Good Weak Hyp. (%)

Execution Time {s)

gauss® (average results for weak hypotheses)

T p
1000 04
1 04
1 0l
1000 0%
1000 0.7
100 1
1 07
1000 1
100 07
100 0.4

Alpha
10.0000 £ 0.0860
10.6600 + 0.6000
10.0000 & © 0000
10.0000 £ 0.0000
10.0000 4= 0 0000
10.0000 £ 0.0000
10.0000 &= 0.0000
106000 & 0.0000
106000 4 $.0000
10.0000 £ 0.0000

Error Rate (%) Support Vectors (%)}

0.00% = ¢.00%
0.00% == G 00%
0.00% = 0.00%
0.00% == 0.00%
0.00% £ 0.00%
0.60% 2 0.00%
0.00% + G.00%
0 00% & 0.00%
0.00% =+ 0.00%
0.00% = 0.00%

0.00% + 0.00%
1.00% £ 0.00%
1.33% £ 0.00%
0.07% £ 0.00%
0.08% =+ 0.00%
0.74% = 0 G0%
1.33% £ 0.00%
008% =+ 0.00%
0.45% + 0 00%
0.64% = 0.00%

Norm
35032 4 0.0000
1444 5056 & € 0000
695.9318 = 0.0000
45 8893 4 00000
35.6975 £ 0.0000
322.1009 + 0.0000
9799987 & 0.0000
27.2773 £ 0.6000
222.5380 4 0.0000
367.1458 4 0.0000

SMO Iterations

140
11+0
1940
140
16
440
48 4 0
140
3:x0
60

I 1

10.0000 4 0.0000 0.00% £ 0.00%

1.00% -t 0.00%

1281.9319 4 0.0000

840

104 8.1

10.0008 + 0.0000

0.00% £ 0.00%

0.11% + 0.00%

76.1266 £+ 0.0000

1+0

149

Table A.2: {continued)

Alpha

Error
(%)

gauss® (weak hypotheses’ average result graphs for T' x p)

g s
Rate | S - tera-
e | Support Vec Norm S‘MO ltera
tors (%) Hois

|1

Accuracy

{%):

100.00% + 0.00%

1

Good Weak Hyp. (%):
100.00% -+ 0.00%

gauss® (experiment histogram for parameter setup that yielded best results)

1

Execution Time
0.06s5+0.00s

{s):

A.2.2 Complete Results for SMO-Bg

Table A.3 brings the complete results for the hybrid algorithm SMO-Bg, as previ-
ously described in Section 5.3.2. The algorithm was experimented with variations
of T and p, its two regularization parameters that influence the behavior of the
Boosting module and its interface with the weak learner. The results presented in
this section are further analyzed in Section 5.4.3, where they are thoroughly dis-

cussed.

150

Table A.3: Average and best results for hybrid algorithm SMO-Bg after 10 rounds of

experiments with distinct training and testing sets.

bew (average results for strong hypotheses)

1600 64

Accuracy (%)
97.62% = 0.00%

3.70% == 0.00%

Good Weak Hypotheses (%) Execution Time (s}

905425+ 000s

1 0.4

97.62% = 0.00%

100.00% £ 0.00%

00450005

1 01
1000 01
1000 0.7
100 1

I 67
1000 1
106 07
100 04

1 1
100 0%

bew (strong hypotheses’ average result graphs for T’ x p}

Accuracy (%)

96.19% x 4.00%
96.67% + 0.00%
96.19% + 0.00%
96.67% % 0.00%
97.14% 4+ 0.00%
96.67% = 0. 00%
97 14% & 0.00%
95.24% <t 0.00%
96.67% 4 0.00%
97.14% = 0.00%

S

g e

s

100.00% == 0 00%
99 90% = 0 00%
1.10% £ 0.00%
100.00% =+ 0 00%
100.00% £ 0.00%
100.00% £ 0 00%
10.00% + 0 .00%
14 00% = 0.00%
100.00% % 0.00%
100.00% £ 0.00%

bl
s -

Good Weak Hyp. (%)

0025+ 000s
143150005
2B05.175+ 0.00s
444315k 000s
2125+ 000s
4491925+ 0005
285855+ 0005
100295+ 000s
5045:£ 0005
12054 000s

_ Execution Time (s)

151

Table A.3: (continued)

bew (average results for weak hypotheses)

T p Alpha Error Rate (%) Support Vectors (%) Norm SMO lterations
1000 0.4 -0.1294 4 0.0000 002% £ 000% 13.76% = 0.00% 5602.5713 & 0.0060 325 %0
1 0.4 | 10.0000 - 0.0000 0.00% = 0.00% 3.33% -+ 0.00% 1666.2279 + 0.0000 2140
1 81 100006 4+ 0 000G 0.00% £ 0.00% 2.86% & 0.00% 187.4276 £ 0.0000 110
el 93123 £ 00000 0.00% % 0.00% 3.59% £ 0.00% 833.1179 £ 0.0000 39+0
1068 0.7 L0.3749 £ 0.0000 0.04% £ 000% 19.46% -2 0.00% 8896.0666 £ 0.0000 454 £ 0
106 1 0.0393 £ 00000 005% :£000% 2238% 4 0.00% 100569649 £ 00000 5470
1 07 2.0482 4 0.0000 0.04% 4 0.00% 1524% == 0.00% 5772 3096 £ 0.0000 36840
1000 % 00019 & 0.0030 0.05% 4 0.00% 22.38% £ 0.00% 100545734 £ 0.0000 549 & 0
100 Q7 10,1583 £ 0.0000 0.04% £ 000% 19.17% £+ 0.00% 72069525 + 0 0000 459 £ 0
100 04 00247 £ 00000 002% £ 000% 1410% = 0.00% 61155771 = 00000 33540
1 1 1.934€ = 00000 0.05% & 0.00% 22.38% % 0.00% 10022.3125 4 0.0000 663 £ 0
100 01 9 8656 4+ 0.0000 0.00% £ 0.00% 3.39% = 0.00% 703 8516 + 0.0000 360

bew (weak hypotheses’ average result graphs for T' x p)

Error Rate | Support Vec- SMO ltera-
Alph
pha (%) tors (%) Norm tions
bew (experiment histogram for parameter setup that yielded best results)
N I N
; E |
Accuracy (%): 97.62% | Good Weak Hyp. (%): | Execution Time (s):
+ 0.00% 100.00% £ 0.00% 0.045+0.00s

152

Table A.3: (continued)

cdges (average results for strong hypotheses)

100.00% +x 0 00%
100.00% = 6.00%
100.00% = 0.00%
99 90% &= 0.00%
100 00% + 0.00%
100.00% + 0.00%

Good Weak Hypotheses (%) Execution Time (s}

17109.49s £ 0005
30465 £ 00065
9785+ 000s
57943520005
72728075+ 000s
17091.035 0005

100.00% = 0.00%

97.815+0.00s

T p Accuracy (%)
1000 04 | 7619% % 0.00%
1 04 | 76.19% & 000%
1 01 67 86% x 0.00%
1000 01 76.19% = 0.00%
1000 0.7 | 77.38% = 0.00%
100 1 77.38% £ 0.00%
1 0.7 | 77.38% % 0.00%
1060 1 77.38% £+ 0.00%
100 ¢7 | 77.38% X 000%
100 04 | 7619% £ 000%
1 1 77.38% = 0.00%
100 01 76.19% < 0.00%

100.00% 2= 0.00%
100.00% £ 0.00%
100.00% £ 0.60%
100.00% =+ G (0%
100.00% =+ $.00%

71691005 £ 0.00 5
7211175+ 0003
1670105 £ 0,005
143895+ 0005

66275+ 0005

cdges (strong hypotheses’ average result graphs for T' x p)

el

Accuracy (%)

Tl

e
L o

Good Weak Hyp. (%)

R

Execution Time (s)

cdges (average results for weak hypotheses)

Error Rate (%) Support Vectors (%)

0.00% £ 0.00%
0.00% + 0 00%
0.00% £ 3.00%
0.00% £ 0.00%
0.00% =+ 0.00%
0.00% =+ 0.00%

90.91% = 0.00%
92 86% £ 0.00%
22.62% = 0 60%
22 13% :k G 00%
158.12% = 0.00%
224 98% + 0.00%

Norm
4369.0028 & 00000
3819.5847 4 0.G000
483.1850 £ 0.G000
1100 6379 & 0.0000
7134 6612 = 0.0000
9630.2028 + 0.0000

SMO [terations
3440
48 40
60
1540
49 =0
56:%0

0.00% = 0.00%

160.71% == 0.00%

7992.8071 &+ 0.0000

5840

T p Alpha
1000 ¢4 | 100000+ 00000
1 04 | 100000 03000
1 01 10.0000 & ¢ 0000
ica o1 10.0C0G - G.0000
1060 0.7 [10.0000 £ 0.0000
100 1 10.6000 + 0.0000
1 0.7 | 10.0000 £ 0.0000
1000 1 100000 = 0.0060
100 07 } 100000 0.0600
00 04 10.0000 = 0.0000
11 10.0000 % 0.0000
100 01 10.0000 + 0.6000

0.00% % 0.00%
0.00% £ 0 00%
(.00% == 0 00%
0.00% £ 0 00%
0.00% =+ 4.60%

224 95% £ 0.,00%
157 99% = 0.00%
90.63% == 0.00%
225.00% % 0.00%
22.25% £ 0.00%

9630 2196 + 0.0000
7111.6097 £ 0.0000
4331.4845 4= 0.0000
9629.5186 = 0.0000
1110.1486 + 0.0G00

3540
48 + 0
BEO
46 & 0
1640

153

Table A.3: (continued)

cdges (weak hypotheses’ average result graphs for T x p)

Alpha

=
Error Rate | Support Vec-
‘ ‘ N
(%) tors (%) orm

SMO
tons

cdges (experiment histogram for parameter setup that yielded best results)

-

churacy (%0):
+ 0.00%

77.38%

Good Weak Hyp. (%):
100.00% £+ 0.00%

ﬁ.;ecution Time
978154 0.005s

gauss’ (average results for strong hypotheses)

T p Accuracy (%) Good Wealk Hypotheses (%) Execution Time (s)
1006 04 100 80% £ 0.60% 100.00% £ 0.00% 13785 = 0005
1 0.4 | 100.00%:£ 0.00% 100.00% = 0.00% 0.025 = 0.005
1 Q1 100 00% & 0.00% 100 00% = 0.00% 0.035+000s
1000 9.1 160.00% < 0.00% 100.00% == 0.00% 36550005
1000 07 100.00% & 0.00% 100.00% £ 0.00% 2872540005
190 1 160.00% + 0.00% 100.06% + 0.00% 3975+ 0005
167 100,00% -+ 0.00% 100.00% -+ 0.00% 003540005
1000 1 100 00% & 0.00% 100.00% £ 0 00% 32565+ 0060s
106 07 100.00% & 0.00% 100.00% = 0.00% 2625:£000s
100 04 100 60% + 0.00% 100.00% £+ G.00% 14550005
1 1 100 80% =+ 0.60% 100 00% = 0.00% 0045+ 0008
100 01 100.00% =+ ¢.00% 100.00% + 0.00% 037540005

154

Itera-

(s):

Table A.3: (continued)

gauss® (strong hypotheses’ average result graphs for T' x)

]

-/-

Accuracy (%) Good Weak Hyp. (%)

T2 Sty

——

Execution Time (5)

gauss® (average results for weak hypotheses)

T p Alpha Error Rate (%) Support Vectors (%) Norm SMO Iterations
1000 0.4 10.0000 £ 0.6000 0.00% < 0.00% 0.96% == 0.08% 1172.8804 == 0.0000 120
1 0.4 | 10.0000 = 0.0000 0.00% = 0.00% 1.00% £ 0.00% 848.4375 = 0.0000 B0
i 01 10.0000 + 0.0000 0.00% £ 0.00% 1.00% & 000% 381.5545 £ 0.0000 1240
1000 0.1 10.0000 & 0.0000 0.00% £ 0.00% 0.92% :: 000% 6473489 : 0.0000 1040
1000 0.7 | 100000+ 00000 0.00% £ 0.00% 1.00% + 0.00% 14185664 3 0000 16+ 0
e 1 10.0000 & 50000 000% £ 0.080% 101% £ 0.00% 1540.5376 = 0.0000 1940
1 07 | 10000000000 0.00%:000% 100%£000% 1445 3323 £ 00000 1240
1000 1 100000 = 00000 0.00% % 0.00% 1.01% £ 000% 1540 5912 + 0.0000 2040
100 ©7 | 10.0000 £ 00000 0.00% 4 0.00% 100% £ 000% 14164849 = 0.0G00 14%0
100 04 | 10000000000 0.00% 4 000% 097% 4 000% 11593766 & 05000 440
1 i 10 0000 & 00000 0.00% + 0.00% 1.00% £ 0.00% 15365115 & 0.0000 10%0
100 0 18,0000 4+ 0.0000 0.00% £ 000% 0.92% ::0.00% 6514590 % 0.0000 10:+0

gauss’ (weak hypotheses’ average result graphs for T’ x p)

o

Tty
Error Support Vec-
(%) tors (%)

s
SMC Itera-
tions

Rate

Alpha Norm

gauss® (experiment histogram for parameter setup that yielded best results)

e —
8 N . |
Accuracy (%): | Good Weak Hyp. (%): | Execution Time (s):
100.00% = 0.00% 100.00% + 0.00% 0.025+000s

155

Table A.3: (continued)

pgs (average results for strong hypotheses)

T p Accuracy (%) Good Weak Hypotheses (%) Execution Time (s)
1000 04 81 .25% =+ 0.00% 100.00% =+ 0.00% 1011540005
1 04 71.88% = 0.00% 100.00% o= 0.00% 004540005
1 01 40.62% £ 0.00% 100.00% =+ 0.00% 00454 0605
1000 01 71 88% X 0.00% 98.70% = 0.00% 06250005
1008 07 B7.50% £ 0.00% 100.00% £ 0.00% 50895+ 000s
100 1 84 38% + 0 00% 100.00% £ 0.00% 2011540005
1 07 78.12% £ 0.00% 100.00% £ 0.00% 0065+ 000s
1000 1 84.38% £ 0.00% 100.00% £ 0.60% 188025 0.005
100 0.7 | 87.50% =+ 0.00% 100.00% :k 0.00% 51154 0.00s
100 04 81.25% £ 0.00% 100.00% £+ 0.00% 0995+ 000s
1 1 84 38% = 0.00% 100.00% 4 0.00% 0165 %0005
100 01 75.00% £ 0.00% 98.00% = 0 00% Q07s£000s

pgs (stong hypotheses’ average result graphs for T x p}

Accuracy (%) Good Weak Hyp. (%) Execution Time (s)

pgs (average results for weak hypotheses)

T p Alpha Error Rate (%) Support Vectors (%) Norm SMO Herations
1500 0 4 106000 4 0.0000 0.00% £ 000% 85.14% £ 0.00% 24B.6430 =4 0.0000 90
1 04 10,6000 £ 00000 000% 4 0.00% 84.38% 4 000% 237.0542 £ 0.0000 940
1 0l 100000 4 00000 0.00% £000% 21.88% 4 0.00% 43.1786 £ 0.0000 640
1060 0.1 10.0000 £ 0.0000 0.00% 3 0.00% 21.51% £ 0.00% 54.9214 = 0.0000 60
1000 0.7 10,0000 £ 0.0000 0.00% 4 0.00% 131.41% £ 0.00% 442.4716 £ 0.G000 1840
100 1 10.0000 + 0 0000 0.00% % 0.00% 176.78% £ 0.00% 611 1197 £ 0.0000 384+0
1 07 10.0000 = 0.0000 0.00% £ 0.00% 134.38% 4+ 0.00% 434.8931 = 0.0000 1340
1000 1 10.0000 -+ 0.0000 0.00% & 0.00% 176.45% = 0.00% 611.1284 £ 0.0000 3640
100 6.7 | 10.0000 = 0.0000 0.00% - 0.00% 131.44% = 0.00% 446.4440 - 0.0000 1840
100 64 | 100000 4+ 00000 Q00%:000% B85.72% £ 0.00% 2463571 £ 0.0000 9:+0
1 10.0000 £ 0.0000 0.00% £ 0.00% 175.00% £ 0.00% 611.2856 - 0.0000 27+%0
100 01 106000 £ 0.0000 0.00% £ 000% 21.38% £ 0.00% 53.9706 3 0.0000 60

156

Table A.3: (continued)

pes (weak hypotheses’ average result graphs for T' x p)

Edit
Alpha

Error
(%)

Rate | Support Vec-

tors (%)

tions

pgs (experiment histogram for parameter setup that yielded best results)

Accuraz;m (9%): B7.50%

£ 0.00%

—
i

L&
Good Weak Hyp. {(%):
100.00% + 0.00%

1

Execution Time
51154+ 0.00s

{(s}:

pid (average results for strong hypotheses)

T p Accuracy (%) Good Weak Hypotheses (%) Execution Time {s)
1000 04 74.03% £ 0.00% 1.50% £ 0.C0% 1455545 0005
1 04 74.03% + 0.00% 100.00% 4= 0 00% 26850005
1 01 72.29% + 0.06% 100.00% + 0.00% 00650005
1000 0.1 | 75.32% 4= 0.00% 4.90% £ 0.00% 88.99 5 +0.00s
1006 0.7 74 03% £+ 0.00% 1.80% 2 0.00% 4276865+ 0005
100 1 74.89% £ 0.00% 100.00% £ 0.00% 7495650005
1 a7 73.16% + 0.00% 100 00% £ 0.00% 53854 0.00s
W00 1 74 89% == 0.00% 100.00% =+ 0 00% 7628795+ 0005
100 4.7 74.03% == 0.00% 6.00% & 0.00% 415905+ 000s
100 G4 73 59% -+ 0 .00% 17.00% 3 0 80% 15009546005
1 i 74.89% 0.00% 100.00% - 6 00% 6325 £000s
100 0.1 72.29% 4+ 0.00% 36 00% + 0.00% 71650005

157

Table A.3: (continued)

pid (strong hypotheses’ average result graphs for T x p)

Accuracy (%) Good Weak Hyp. (%) Execution Time (5)

pid (average results for wealk hypotheses)

T p Alpha Error Rate (%) Suppori Vectors (%0) Norm SMO Iterations
1000 04 | -0.1425 4 00000 0.29% £000% 65.12% +0.00% 63659361 = 0.0000 1275+ 0
1 04 1.2082 4 0.0000 0.19% - 0.00% 49.35% + 0.00% 5041.8750 £ 00000 2050+ 0
1 61 2.3336 £ 0.0000 0.02% £ 0.00% B8.23% -+ 0.00% 3624.7500 £ 0.0000 153 £ ¢
1000 0.1 | -0.3175 & 0.0000 0.07% =+ 0.00% 18.27% 4 0.00% 3470.8524 - 0.0000 39540
1000 07 | -0.0B10 % 0.0000 043% £000% 99.39%:£000% B4255555 & 0.0000 1948 4+ 0
JLECY 0.0064 + 0.0000 {.51% £ 0.00% 121.71% £ 000% 117116100 00000 210140
1 07 0.9013 £ 00000 0.33% 4 000% 83.55% 3 000% 1061450004 0.0000 2957 %0
1000 1 0.0006 + 00000 051% +000% 12172% 4+ 000% 117176790 £ 00000 2165:k0
100 07 | -D.0451 £ 00000 043% £0.00% 9928% & 0.00% 8744 7141 £ 0.0000 1861+ 0
100 04 | -0D0633+£00000 030%=000% 56.73% +=000% 63988391 £ 0.0000 1325:%0
1 1 0.6390 + 0.0000 0.51% £ 000% 121 21% 4 6.00% 11787.8750 £0.0000 17500
100 &1 -0.0160 £ 0.0000 0.07% £ 000% 17.67% 3+ 0.00% 3549.5643 & 0.0000 32040

pid (weak hypotheses’ average result graphs for I’ x p)

Error Rate | Support Vec- SMO Itera-
Alph o
pha (%) tors (Y%) Norm tions
pid (experiment histogram for parameter setup that yielded best results)
|
mracy (%): 75.32% | Good Weak Hyp. (%): | Execution Time (s):
+ 0.00% 4.90% =+ 0.00% 88.99 s + 0.00s

158

A.2.3 Complete Results for SMO-B,

Table A.4 brings the complete results for the hybrid algorithm SMO-B,, as previ-
ously described in Section 5.3.3. The algorithm was experimented with variations
of T and p, its two regularization parameters that influence the behavior of the
Boosting module and its interface with the weak learner. The results presented in
this section are further analyzed in Section 5.4.4, where they are thoroughly dis-
cussed.

Table A.4: Average and best results for hybrid algorithm SMO-B, after 10 rounds of

experiments with distinct training and testing sets.

bew (average results for strong hypotheses)

Accuracy (%)

bew (strong hypotheses’ average result graphs for T x p)

Good Weak Hyp. (%)

T p Accuracy (%) Good Weak Hypotheses (%) Execution Time (3)
1006 04 96 29% £ 1.14% 18.15% =+ 2.54% 3543544125
1 04 90 24% + 9.43% 100.00% £ 0.00% 005s+001s
1 01 ©5.52% =+ 2 38% 100.00% = 0.00% 003s5x£001s
1000 0.1 96.14% = 1.12% 32.91% £ 4.01% 180654+ 0985
1000 0.7 | 96.52% + L17% 14.37% 1 3.00% 45965 £ 4665
162 1 96.19% 4 1.11% 21.40% £ 4.92% 531s:4+060s
1 a7 | 91.19% 4 7 89% 100.00% = 0.00% 006s5£001s
1060 1 96.29% + (.85% 12.07% =+ 4 28% 51.64s+ 5965
100 07 96 33% % 1.04% 23.00% =% 3.69% 4.64s =056
100 04 96.19% £ 1.02% 27.90% = 5.56% 36750435
1 1 91.33% + 8.41% 100.00% & 0.00% 0085£0015s
100 01 56.38% x 1.19% 45 30% £ 7.84% 183501035

Execution Time (s)

159

Table A.4: {continued)

bew (average results for weak hypotheses)

T »p Alpha Error Rate {%) Support Vectors {36} Norm
1000 04 | -0.3065 £ 00576 0.16% £003% 2554%+ 3.33% 6396772 & 71.2488
1 04 1.3624 & 04054 0.19% £ 0.19% 15.76% £ 3.36% 399.5661 + 1226807
1 01 1.5457 £ 0.2571 0.12% £ 007% 543%: 157% 1940201 = 111 1667
1000 0.1 | -0.0853 = 0.0188 0.33% - 0.05% 13.26% <= 0.83% 400.7593 & 26.2831
1000 0.7 | -0.3853 40,0892 0.13% = 0.02% 32.47% - 3.74% 7253301 = 97.6372
100 1 -0.1961 £ 0.0672 0.12% £ 002% 3589% + 4 82% 7563575 £ 114.6263
1 07 1.3731 + 04324 0.19%::017% 26.38% £+ 513% 5262639 £ 156.5876
1000 1 {.4039 = 0.0785 0.13% +0.02% 3592% £ 4.73% 789.2475:: 96.5533
100 6.7 | -0.2106:: 00500 0.14% £ 0.03% 3187% & 4.38% 7144174 & 1049769
100 G4 | -01293 400438 0.15% £ 003% 2565% £ 3.48% 6261287 % 79.9194
1 1 1.3330 £ 0.4916 022% £ 0.22% 37.71% £ 519% 656.4435 = 164.6508
100 01 | -0.0144+00393 035% 0.08% 12.67%+ 0.67% 398 4358 = 21 4161

bew {weak hypotheses’ average result graphs for T° x g)

Alpha

Error Rate (%)

Support Vectors
(%)

Norm

bew (experiment histogram for parameter setup that yielded best results)

_x.n&_ﬂjw

Accuracy (%): 96.52%

4+ 1,17%

)

i

Good Weak Hyp. (%):
14.37% + 3.00%

H

ol

Execution Time
45965+ 4.66 5

160

{s}:

Table A.4: (continued)

cdges (average results for strong hypotheses)

T p
1000 0.4
1 04
1 06t
1000 01
1000 07
w00 1

Accuracy (%)
77.38% = 0 00%
31 19% + 0.00%
G 00% & 0.00%
77.38% = 0.00%
77 38% £ 0.00%
77.38% 4 0.00%

Good Weak Hypotheses (%) Execution Time (s)

94.30% % 0.00%
1006 .00% = 0. 00%
0.00% = 0 00%
88 90% == 0.00%
95 80% + 0.00%
91.00% = 0.00%

2310225+ 0005
116054 000s
98150005

600705k 000s

40020554 000s

560165+ 0.00s

1 07

77.38% £ 0.00%

100.00% = 0.00%

13.375 £ 0.00s

1000 1
100 47
163 G4
L ¢
100 01

77.38% - 0.00%
77.38% & 0.00%
77 38% & 0 00%
75.00% £ 0.00%
61.90% = 0.00%

94.90% = 0.00%
94 00% £ 0 06%
95.00% + 0.00%
100.00% = 0.00%
89 00% £ 0.00%

5665905 £ 000s
407.01 s+ 0005
24042540005
14935+ 0005
691150005

cdges (strong hypotheses’ average result graphs for T' x p)

Accuracy (%)

Good Weak Hyp. (%)

Execution Time (s)

edges (average results for weak hypotheses)

T p

Alpha

Error Rate (%) Support Vectors (%)

Nomm

1000 0.4
1 04
1 01

1000 § 1

1600 0.7

100 %

0.7625 & 0.0000
0.2828 £ 0.0000
-0.0306 £ 0.0000
(.1475 = 0.0000
1.5132 £+ 0.0000
4.6086 + 0.0000

0.63% £ 0 00%
0.85% =k 0.00%
1.20% 4 0.00%
1.07% +4 0 00%
0.29% £ 0.00%
0.11% & 0.00%

83 07% = 0.00%
82 14% == 0.00%
19 05% % 0.00%
21.73% £ 0.00%
143.76% = 0.00%
199.23% 4 0.00%

3923 7487 & 0.0000
2398 3770 :k 0.0000
1758.7495 + 0.0000
959.9760 4 0.0000
6133.3806 = 0.0000
7870.3905 & 0.0000

1 0.7

1.4616 = 0.0000 0.12% £ 0.00%

139.29% £ 0.00%

7380.6626 I 0.0000

1000 1
100 07
100 04
HI |
164 0.1

5.1173 £ 0.00C0
1.3251 £ 0.0000
0.7255 £ G £000
2.6365 + 0.0000
0.1414 £ 0.0000

0.09% £ G.00%
0231% + 0.00%
0.67% 4= 0.00%
0.01% + 0 00%
1.07% x 0.00%

200.17% £ 0.00%
143 70% = 0.00%
B2 67% £ 0.00%
204.76% 4= 0.00%
21.96% + 0.00%

8037 4230 4 0.0000
6008.3653 £ 0.0600
3717.7524 £ 0.0000
83339365 = 0.6000
903.1495 4 0.0000

161

Table A.4: {(continued)

edges (weak hypotheses’ average result graphs for T' x p}

Alpha

Error Rate (%)

(%)

Support Vectors

Norm

cdges (experiment histogram for parameter setup that yielded best results)

—

Accuracy (%): 77.38%

+ 0.00%

Good Weak Hyp. (%):
100.00% =+ 0.00%

Execution Time
13.37s +0.00s

{s):

chess® (average results for strong hypotheses)

T »p
1000 04
1 04
101
1000 0.1
1000 07
160 1
1 07
1600 1

Accuracy (%)
$3.77% £ 1 52%
70.23% £ 4.13%
56.37% £ 1.94%
93.17% £ 1 54%
93.67% 4 1.35%
93 .27% £ 2.07%
82.00% & 5.62%
93.00% £ 2.01%

99.76% & 0 21%
100 00% £ 0.00%
1006.00% =+ 0 00%
97 12% £ 1.19%
99.61% + 0.43%
99.50% = 0.67%
160.00% =+ 0.00%
98.07% = 2 .83%

Good Weak Hypotheses (%) Execution Time (s}

473785+ 2125
0495 £ 0015
013s£001s

124375031 s

796005k 4545

116185+ 0895
0825+ 0015

1100375 4+ 10,19 s

106 0.7

93.90% * 1.49%

99.60% - 0.92%

79.69s 40465

100 04
1 1
100 01

93.27% =+ 1 50%
85.53% x 6 70%
91.77% = 2.15%

59.80% + 0.40%
100.00% + 0.60%
97.70% £ 2.05%

474552022
1125+ 001 s
12445+ 003 s

162

Table A.4: (continued)

chess? (strong hypotheses’ average result graphs for T’ x p)

s

Accuracy (%)

Good Weak Hyp. (%)

Execution Time (s)

chess? (average results for weak hypotheses)

T g
1000 04
1 04
1 0k
1000 0.1
1600 0.7
100 1
1 07
1000 1

Alpha
1.5102 & 0.0262
0.7588 £ 0.1113
02167 £ 0.0321
0.2223 4+ 0.0126
2.7891 + 01016
8.1435 £ 1.2775
1.4665 4+ 0.1490
8.1030 + 2.40386

Error Rate (%) Support Vectors (%)

0.38% + 0.02%
0.42% + 0.08%
0.92% £ 0.04%
0.97% = 0.01%
0.11% % 0.00%
0.00% + 0.01%
0.12% + 0.03%
0.01% =+ 0.01%

90.72% & 0.50%
91.00% = 1.12%
23.60% + 0.13%
23.51% £ 0.04%
152.45% + 1.27%
209.73% £ 2.17%
153.77% = 245%
209.86% & 2.10%

Norm
2911688 = 27.1275
211.4808 -+ 14.8662

606072 + 3.3533
81.6400 £ 9.2504
434,0435 £ 37 9946
552 4172 £ 53.3453
384 5562 = 74.8701
545.7416 = 49.6236

100 0.7

2.6472 4 0.0946 0.11% £ 0.01%

152,60% + 1.21%

431.5629 £ 37.1213

1606 04
1 1
100 &1

chess? (weak hypotheses’ average result graphs for T' x p)

Alpha

14096 = 0.04B2
6.6027 - 3.3987
0.2225 4 0.0092

0.38% £ 0.02%
(.00% == 0.60%
0.97% + 0.01%

Frror Rate (%)

90 74% £ 0.48%
210.97% = 2.44%
23.51% £ 0.02%

283.9617 -+ 24.1754
504.7328 £ 353104
649219 £ 1.9526

(%)

chess? (experiment histogram for parameter setup that yielded best results)

e — e
i i

_m__&ﬂ! mewmm &&vm

Accuracy (%): 93.90% | Good Weak Hyp. (%): Execution Time (s):

* 1.49% 99.60% 4 0.92% 79.69s5+046s

163

Table A.4: (continued)

chess! (average results for strong hypotheses)

T p
1000 04
1 04
1 81
1000 0.1

Accuracy (%) Good Weak Hypotheses (%) Execution Time (s}

83.83% £ 183%
64 53% X 6.66%
54 87% + 2.96%
82.10% =+ 2.46%

89.01% =+ 7.07%
100.00% -+ 0.60%
100.00% £ 0 00%
94.78% = 1.72%

457525 % 9.14s
049s£001s
01350005

123125+ 0.565

1000 0.7

84.57% £ 1.65%

81,91% o 7.68%

751565 4 17.275

160 1
1 07
1000 1
100 07
100 04
1 1
100 01

B83.40% £ 1 55%
75.97% £ 5.87%
82.97% =+ 3.14%
84.07% & 2.20%
83 00% £ 1.32%
7403% + 7.98%
83.47% £ 1.53%

65.60% £ 19.95%
100.00% 4 0.00%
49.88% + 21.59%
B4 30% k 7.36%
92.60% =+ 4.84%
100.00% =4 0 00%
98 60% & 1.6%%

100.845:k 407 s
081s:001s
590.40 5 3= 38.57 5
75495+ 1495
46,175 £ 0.70s
109s5+0.02s
1244540035

chess! (strong hypotheses’ average result graphs for T' x p)

Accuracy (%)

chess! (average results for weak hypotheses)

T p Alpha Error Rate (%) Support Vectors (%) Norm
1000 0.4 05617 £02703 049% £002% 89.05% 1 0.83% 11344328 & 589.7147
i 04 0.6637 £ 01086 0.49%:£008% 8%.80% £ 0.50% 251 9552 * 16.1336
1 &1 01571 £ 00287 098% £003% 23.40% £ 0. 20% S58.8958 4 3.7823
1000 0.1 0.1352 £ 0.0196 103% £ 001% 23.37% = 0.06% 309.9936 -+ 169.3858
1000 0.7 | 0.6571 = 0.4133 0.22% 4 0.02% 147.40% == 2.06% 1458.2767 682.7649
100 & 06373 £ 07010 0.07% + 0.03% 201 08% 4 3.75% 1502.7503 £ 640.2227
1 07 1.2484 - 0.1546 0.18% £ 0.05% 151 50% = 1.93% 474 6025 + 29 1068
1000 1 03014 £ 0.7024 0.13% £ 015% 201.54% £ 3.76% 1307 2925 & 5404607
160 0.7 07217 £ 03761 021% £ 002% 147.68% £ 191% 13773964 & 671.5539
100 04 0.5894 £ 02510 0.49% £ 002% 8%938% £ 0.73% 951.5431 £ 440.2647
1 1 1.9507 207375 0.13% =+ 0.21% 206.07% 4+ 4.25% 686.7002 & 38.7519
188 61 01730 £ 00103 1.00% £ 001% 23 50% = 0.03% 94.0435 & 49.9580

164

Table A.4: {continued)

chess! (weak hypotheses’ average result graphs for T' x p)

Alpha

Error Rate (%)

=i~

(%)

Support Vectors

Norm

chess! (experiment histogram for parameter setup that yielded best results)

"

i

H
Lol B

Accuracy (%): 84.57%

+ 1.65%

Good Weak Hyp. (%):

81.91% =+ 7.68%

|
R

Execution Time
751565+ 17.27 s

(s):

chess? (average results for strong hypotheses)

T
1000 O 4
1 04
1 01
1000 01
1000 07
108 1
1 07
1000 1

Accuracy (%)
65.70% =+ 1.91%
56 30% £ 1.77%
53.13% £ 2.11%
65.33% £ 1.87%
65.97% + 1.93%
65 37% £ 1.91%
60.30% £ 4 27%
656.43% £ 2.33%

93 21% + 3.57%
100.00% & 0 00%
1G0.00% £ 0.00%
93.40% £ 1.39%
84.61% £ 5.25%
50 80% £ 11.96%
100.00% == 0 0%
32.02% £ 14.61%

Good Weak Hypotheses (%) Execution Time (s}

468.78 s £ 351 s
04954 001s
0135 %£001s

123445+ 0325

771834 880s

1016851755
0.82s5kE001s

993,665+ 16825

100 Q.7

66.53% 4+ 2.17%

88.00% =k 4.60%

77715+ 0.80s

100 44
1 1
100 0.1

65 67% £ 1.97%
62.23% = 3.79%
63.70% =+ 2.32%

95.90% = 3.78%
106 .00% =+ 0.00%
95.80% = 1.25%

4724540315
1.11s£001s
12415+ 003s

165

Table A4 (continued)

chess? (strong hypotheses’ average result graphs for T' x p)

Accuracy (%)

Good Weak Hyp. (%)

Execution Time (s)

chess® (average results for weak hypotheses)

T »p
1000 0.4
1 04
1 01
1000 0.1
1000 0.7
001
1 07
1000 t

Alpha
£.3923 £ 01125 0.63% & 0.02%
0.5157 4 0 0649 0.61% £ 0.06%
01338 £ 0.0367 101% £ 004%
0.0749 £ 0.0064 1,08% =+ 000%
0.5728 4 02494 0.31% £ 0.02%
0.1633 £ 02394 012% £ 0.04%
09487 £ 00821 031% £ 005%
-0.2731 £ 03161 .14% £ 0.06%

Error Rate (%) Support Vectors (%)

90.75% = 6.30%
90 97% 4 1.08%
23.53% £ 0.16%
23 47% + 0.02%
151.51% 4 0 84%
207 93% + 1.82%
153.57% £ 1.73%
208.18% £ 1.79%

Norm
513.6626 & 85 0442
305.5724 4 243011

66.5284 4 47710
104,7901 £+ 131210
809.5122 + 1047689
84,1589 £ 74.0892
605.5052 4 33.3293
9749410 £ 92,1293

100 0.7

0.6210 4 0.2387 0.31% == 0.02%

151.81% - 0.82%

789.6537 £ 96.0523

100 64
1 1
100 01

chess? (wealk hypotheses’ average result graphs for T x p)

Alpha

04419 & 80928 064% £ 0.02%
1.7811 £ 04038 009% % 0.09%
0.1183 £ 0.0030 1.04% £ (G 01%

Error Rate (%)

91 00% == 0 26%
211.57% £ 1.97%
23.53% £ 0.03%

Support Vectors
(%)

455.8521 = 54.5770
859 4505 J: 33.3921
74.2223 4- 5.3344

Norm

chess? (experiment histogram for parameter setup that yielded best results)

Accuracy (%): 66.53%

+ 2.17%

g
i !

i
1

1 P

Good Weak Hyp. (%0):
88.00% =+ 4.60%

e |
Execution Time
777154+ 080s

166

(s):

Table A.4: (continued)

gauss’ (average results for strong hypotheses)

T p Accuracy (38) Good Weak Hypotheses (%) Execution Time (s)
1000 04 | 100.00% + 0.00% 99.80% + 0.06% 101754+ 0005
1 0.4 | 100.00% % 0.00% 100.00% == 0.00% 0.025:£000s
1 01] 100.00% £ 0.00% 100.00% -+ 0.00% 0035+ 000s
1000 01 100.80% = 0.00% 100.00% =+ 0.00% 845s+000s
1000 0.7 | 100.G6% & 0.00% 100.00% £ 0.00% 12035+ 000s
100 1 100.00% £ 0 00% 100.60% £ 0.00% 1905+ 0005
1 07 | 10000% 4 0.00% 100 00% - 0.00% 0035%000s
1000 1 100.00% £ 0.00% 100.00% % 0.00% 12075+ 000s
160 07 | 160.00% 4 0.00% 106 00% + 0.00% 175540005
166 04 § 10000% + 0.00% 100.00% = 0.00% 13350005
11 100.00% £ 0.G0% 100.00% - 0.00% 0055 £ 000s
100 01 100.00% = 0.00% 100 00% £ 0.00% 08750003

gauss® (strong hypotheses’ average result graphs for T x p)

i
L
Sty

ol

Accuracy (%)

Good Weak Hyp. (%)

Execurion Time {s)

gauss’ (average results for weak hypotheses)

Error Rate (%) Support Vectors (%)

Norm

0.00% % 0.00%

2.45% + 0.00%

1350.5541 & § 0000

10.0000 =+ 0.0000 0.00% =+ 0.00%

4,33% -+ 0.00%

1323.1578 £ 0.0000

T p Alpha
1000 &4 9.8027 & ¢ 0000

i 04

1 01 32748 & 0 0C00
1000 01 9.4905 == 0.6000
1600 0.7 9.9436 +: 00000
e 1 9.8690 + 00000

107 10.000¢ % 0.0000
100G 1 9.9663 -+ 0.0000
100 0.7 9.9327 4 0.0000
100 0.4 97744 + 0.0000

1 1 10.0C00 £ 0.0000
0 91 8.9667 =+ 0.0000

0.00% £ ¢ L0%
0.00% £ 0 00%
0.00% =+ 0.00%
0.60% + 0.00%
0.G0% -+ 0 00%
(4.£0% +£ 0.00%
0.00% £ 0.00%
0.00% £ 0.06%
£.00% =+ 0.00%
0.00% =+ 0.00%

2.67% + 0.00%
2.09% £ 0.00%
2.72% 4 0.00%
4.15% + 0.00%
4.33% + 0 00%
2.63% = 0.00%
3.82% £ 0.00%
3.02% + 0.00%
4.33% & 0.00%
2.14% £+ 0.00%

302 4907 := 0 000G
1244 0704 £ 0 0000
1328 5686 & 0.0000
1323.3400 £+ 0.0050
1323.1578 & 0.0000
1450 7894 £ 0.0G00
1133 4881 £ 0.0000
1227.0154 & 0 0000
12737454 £ ¢ 0000
1197.0902 £ 0.0000

167

Table A.4: (continued)

gauss® (weak hypotheses’ average result graphs for T’ x p)

Alpha

Error Rate (%)

(%)

Support Vectors

Norm

gauss® (experiment histogram for parameter setup that yielded best results)

Accuracy

100.00% & 0.00%

(%):

Good Weak Hyp. (%):
100.00% + 0.00%

-

Execution Time (s):

0.02s+0.00s

gauss! (average results for strong hypotheses)

T op Accuracy (%) Good Weak Hypotheses (%) Execution Time (s
1000 G4 | 97.67% £ 0.00% 11.50% - 0 00% 36.265+0.00s
1 04 | 9800% £ 0.00% 100.00% + 0.00% 0035+000s
1 01 | 96.67% % 000% 100.00% £ 0.00% 0025+ 000s
1060 01 | 98.33% =% 0.00% 32.40% £ 0.00% 2371s+£000s
1000 0.7 | 98.67% = 0.00% 10.90% =4 0.00% 44.605 £ 0.00s
100 1 98.33% £ 0.00% 11.00% -+ 0.00% 4645+ 000s
1 07 | 96.00% £ 0060% 100 60% £ 0.00% 005540005
1000 1 98.67% = 0.00% 4.20% £ 0.00% 5073540005
100 07 | 97.67% £ 0.00% 22 00% £ 0.00% 463s+000s
100 04 | 98.33% % 0.00% 21.00% £ 4.00% 3815x000s
3 4 96.33% == 0.00% 100 00% & 0.00% 00850005
100 0.1 | 98.33% = 0.00% 29.00% £ 0.00% 2245+ 0005

168

Table A.4: (continued)

gauss' (strong hypotheses’ average result graphs for T’ x p)

L

Accuracy (%)

Good Weak Hyp. (%)

Execution Time {s)

gauss' (average results for weak hypotheses)

T p Alpha Error Rate (%) Support Vectors (%) Norm
1600 G4 204500 £ 0.0000 0.08% £ 0.00% 12.23% =+ 0.00% 47794 2388 % 0.6000
1 04 1.9837 £ 0.00C0 004% £ 0.00% 3.33% 3 0.00% 15034.0742 & 0.0000
1 01 16911 00000 008% £ 000% 2.33% = 0.00% 154(.8752 £ 0,0000
1000 0.1 -0.1653 4+ 00000 0.18% £ 0.00% 8.31% £ 0.00% 28039.749% + 0 0000
1000 0.7 | -0.4228 -+ 0.0000 0.06% = 0.00% 14.93% == 0.00% 40125.6203 £ 0.0000
100 1 4023 £ 0.0000 0.06% 4+ 0.00% 14 66% £ 0.00% 690979893 & 0 0000
1 07 1.7632 4= 00000 0.07% £ 0.00% 8.67% 4 0.00% 4142 4697 = 0.0000
000 1 06123+ 00000 005% £ 000% 1649% £+ 0.00% 41228 2788 £ 0.0000
10 07 -0.1360 £ 0.0000 007%:£000% 1514% £000% 81610 2185 £ 0.0000
100 04 -0.4109 £+ 00000 0.08% % Q00% 12.59% 4= 000% 35343.1107 £ 0.0000
1 1 1.9459 4= 0 0000 005% £ 0.00% 17.00% £ G.00% 3386.1904 2 0.0060
100 01 -0.1224 4 0.0000 0.18% 4= 0.00% 7.63% + 0.00% 7958.7905 + 0 00CG0

gauss' (weak hypotheses’ average result graphs for T' x p)

Alpha

2L

Error Rate (%)

LA

St

Support Vectors
(%)

Norm

gauss! (experiment histogram for parameter setup that yielded best results)

|
!
i

Accuracy (%): 98.67%
+ 0.00%

Good Weak Hyp. (%!}:

10.90% +£ 0.00%

i
Execution Time (s):
446054 0.00s

169

Table A.4: (continued)

gauss” (average results for strong hypotheses)

T »p
1600 0 4
1 04
1ol

Accuracy (%)
290 00% £ 0 00%
78.67% £ 0.00%
90.33% £ 0.00%

22.30% = 0.00%
100 00% £ 0. 00%
100.00% £ 0.00%

Good Weak Hypotheses (%) Execution Time (s}

122605+ 000s
6095+ 000s
0.04s5::000s

1600 0.1

93.00% £ 0.00%

46.50% = 0.00%

42.115:4+000s

1006 0.7
100 1
1 07
1000 1
160 07
100 a4
1 1
100 0.1

89.00% =% 0.00%
92.33% = 0.00%
68.00% X+ 0.00%
90.33% + 0.00%
92 00% &£ 0.00%
88.67% £ 0.00%
47.33% £+ 0 00%
91 .33% % 0.00%

12.60% = 0.00%
19.00% =+ 0.00%
100.00% = 0.00%
8.20% £ 0.00%
22.00% = 0.00%
31 00% = 0.00%
100.00% % ¢.00%
47 00% + 0.00%

169425+ 0005
2233540005
018540005
2062954+ 000s
177750005
12365+ 000s
0255£000s
41750005

gauss” (strong hypotheses’ average result graphs for T x p)

Accuracy {%)

=i

Good Weak Hyp. (%)

—~

Execution Time (s}

gauss” (average results for weak hypotheses)

T p
100G 04
1 04
1 01

Alpha
-0.0595 & 0.0000 0.50% =+ 0 60%
0.5267 £ 0.00C0 0§ 60% - 0.00%
1.0454 £+ 0.0000 0.26% & 0.00%

Error Rate (%) Support Vectors (%)

47 96% =+ 0.00%
26.00% £ 0.00%
9.00% * 0.00%

Norm
4133 3771 £ 0.0000
2568 6262 + 0 6000
1073.9448 & 3.6000

1000 0.1

-0.0045 £ 0.0000 0.78% =+ 0.00%

15.82% -+ 0.00%

2750.2747 & 0.0000

1000 0.7
100 1
147
1000 1
108 07
160 04

100 01

-0.1616 £ 0.0000 0.39% = 0.00%
-0,0581 + 0.0600 0.42% % 0.00%
0.6123 #4 00000 0.53% £ 0.00%
-0.2271 £ 0000 0.34% = 0.00%
-0.1176 £ 0.0000 0.42% + 0.60%
-0.0658 4 0.0000 0 45% 4 0.00%
01177 4 0.0060 1.03% & 000%
0.0095 £ 0.0000 0.68% =+ 0.00%

66.36% & 0 00%
84.35% =+ 0.00%
58.00% £ 0.00%
79.91% £ 0.00%
67.33% £ 0.00%
47 02% = 0.00%
90.33% =+ 0.00%
15.51% == 0.00%

59523016 = 0.0000
11699.4812 = 0.0000
1350.0762 £ 0.0000
9332 7204 £ 0.0000
2009 8065 £ 0.0860
5309.7124 4 0 0000
603.8593 = 0.0000
9153.1181 = £.0000

170

Table A.4: {continued)

gauss” (weak hypotheses’ average result graphs for T' x p)

Alpha

Error Rate (%)

4_?__:;_3‘_;
Support Vectors
(%)

e

Norm

gauss® (experiment histogram for parameter setup that yielded best results)

Accuracy (%): 93.00%

+ 0.00%

Good Weak Hyp. (%):
46.50% + 0.00%

Execution
421154 0.00s

Time (s):

hepatitis (average results for strong hypotheses)

T p Accuraey (%) Good Weak Hypotheses (%) Execution Time (s}
1000 0.4 77.23% £ 5.79% 49 87% + 1.90% 4585+£008s
1 04 | 45.96% 3 32.42% 70.00% + 45.83% 002540005
1 01 | 5638% £ 2925% 80.00% -+ 40.00% 001540005
1603001 74.68% + 4.09% 59.36% + 1 .41% 1245 001s
1000 0.7 76.60% £ 7.25% 37.32% 3.09% 7485+ 0205
100 1 78.30% 4 6.51% 41.50% = 7.59% 103530045
1 07 | 53.62% & 2814% 80.00% £ 40 0% 002s5::000s
1000 1 75 32% £ 6.25% 25.79% £ 3.81% 99150335
100 07 76 .60% 4= 9.03% 50 70% % 7 .50% 077s+:003s
100 04 74 89% &+ 6 98% 56 60% & 3 .72% 04752:00Ls
11 61 06% £ 21.57% 90 00% + 30.00% 00250005
100 01 75.11% + 4.04% 63.70% -+ 4.03% 0,145+ 0005

171

Table A.4:

{continued)

hepatitis (strong hypotheses’ average result graphs for T' x p)

Accuracy (%)

:
[7
"“‘“ﬂt‘—...‘_;'/

Good Weak Hyp. (%;

Execution Time (s)

hepatitis (average results for weak hypotheses)

Error Rate (%) Support Vectors (%)

0.96% & 6 04%
0.95% 0.39%
0 84% £ 0.28%
1.11% = 0.01%
0.87% £ 0.05%

63.57% 4 1.10%
54 26% £ 6.18%
13.40% = 3.93%
16.70% + 0.14%
105.66% + 2.63%

Norm
1942240.8494 & 426623.6388
518308.1625 & 1395607 0577
1681441.3516 4 1750213.9897
2663605.2557 & 4464522596
1900553.4893 + 403250.8987

-0.0214 £ 0.0267 0.84% £ 0.07%

142.24% £+ 5.30%

2522477.4449 4 973428.0580

T p Alpha
1060 0.4 | -0.0008 & 0.0044
1 04| 01953 £03788
1 01 0.2934 £ 0.2678
1000 0.1 | 0.0185 £ 0.0027
1000 0.7 | -0.0400 & 0.0109
100 1
1 071 02516034565
1008 1 -3.1027 4 00227
100 0.7 | 0.0101:4£001%90
100 04 | 00250400102
1 1 0.3112 £ 0.2055
i00 0.1 | 00375400128

0.89% £ 0.37%
0.85% * 0.08%
C.87% £ 0.08%
0.95% =+ 0 05%
081% £ 021%
1.07% & 0.04%

101.7G% £ 10.46%

141 84% £ 4.47%
104 94% + 3.54%
62.92% + 1.16%

147.87% % 10.65%

16.65% + 0.29%

23208777984 4 6026747 3535
2765383 0264 & 403173.9623
2484364.5240 & 957892.3037
1900874.3873 4 626200.2510
799494 0656 + 3983293.0464
2282995 9531 & 623600.0470

hepatitis (weak hypotheses’ average result graphs for I' x p)

Alpha

Error Rate (%)

Support
(%)

Vectors

Norm

hepatitis (experiment histogram for parameter setup that yielded best results)

..

Accuracy (%): 78.30%

+ 6.51%

n Ba mele

Good Weak Hyp. (%):
41.50% £ 7.59%

i

ola s
Executon Time (s):
1.03s 4+ 0045

172

Table A.4: (continued)

ionosphere {average results for strong hypotheses)

T p
1000 0.4
1 04
1 01
1000 0.1
1000 0.7
00 1
1 07
1000 1
100 0.7

Acecuracy (%)
94 81% * 1.05%
86.51% & 12.85%
71.32% % 8.77%
94.72% + 0.96%
9387% £ 0.63%
93.68% £ 0.85%
89.25% =+ 8.16%
93.77% 4 0.63%
94.06% 4= 0.60%

98 93% + 0.46%
100.00% = 0.00%
100.00% == 0.00%
98.76% & 0.40%
98.64% + 0.72%
90.50% = 16.51%
100.00% + 0 00%
93.33% £+ 11.91%
98.40% + 1,36%

Good Wealt Hypotheses (%) Execution Time (s)

26695k 0445
0075+ 0005
004540015
8355+ 0.08s
41785 £ 0795
550s5+012s
0.08s+0.00s
54595k 1465s
42250093

100 0.4

95.00% £ 0.95%

99.30% =k 0.64%

271540053

1 1
100 01

92.08% - 1.75%
94 34% + 0.84%

100.00% x 0.00%
99.30% &£ 0.64%

0.09s £ 0005
08750015

jonosphere (strong hypotheses’ average result graphs for T" x p)

e
Pl

’JL::I,“»”:%

L=

Accuracy (%)

Good Weak Hyp. (%)

Execution Time (s)

ionosphere (average results for weak hypotheses)

Alpha

Error Rate (%) Support Vectors (%)

Norm

21495 £ 0.1519
1.4730 £ 0.4438
04890 = 02341
0.5505 + 0.0441
40387 & 05026
7.4226 £ 1.9393
18385 £ 05165
8.0601 = 1 4797
3.7323 & 0.5087

013% £ 001%
0.16% + 0 16%
0.65% % 0.19%
0. 64% + 0.03%
0.05% = 001%
0.04% 4 0.03%
0.10% = 0.15%
0.03% =+ 0.03%
0.66% + 0.01%

70.90% £ 1 31%
68.21% + 4 98%
20.94% =+ 1.83%
22.60% & 023%
108 87% £ 2.20%
141 68% £ 391%
105.75% £ 5.17%
141.12% & 3.83%
108 .82% =+ 2.46%

72.0871 % 5.0645
52.8561 48,5701
15.6440 £ 3.0738
27.2588 £ 1.4261
95.5864 4 7.2172
114.8033 £ 11.2721
84 7279 4 10.8406
1146120 + 9.5313
05.1675 + 6.9367

2.1153 £ 0.1755 0.13% = 0.02%

70.98% + 1.42%

72,0412 - 5.2055

8.4595 + 30813
0.5580 4 0.0483

0.00% + 3.01%
0.64% =+ 0.03%

140.57% + 550%
22.58% 4 0.19%

112.8380 £ 9.6049
25.7481 = 1.5086

173

Table A.4: (continued)

ionosphere (weak hypotheses’ average result graphs for I' x p)

Alpha

Error Rate (%)

(%)

Support Vectors

Norm

ionosphere (experiment histogram for parameter setup that yielded best results)

i
i

Accuracy (%): 95.00%

* 0.95%

1

99.30% = 0.64%

Good Weak Hyp. (9%):

| T

E

o ol B !

Execution Time (s):
2.715£0.05s

musk (average results for strong hypotheses)

T »p
100004
104
i 01
100001
13000 4.7

Accuracy (%) Gooed Weak Hypotheses (%) Execution Time (s)

89.51% =+ 0.00%
84 62% == 0.00%
62.24% + 0.00%
90.21% = 0.00%
90.91% % 0.00%

92.30% &£ 0.00%
100.00% £ 0.00%
100.00% £ 0.00%
94.60% £ 0.00%
89.60% + 0.00%

90225+ 0.00s
02850005
021s54+000s
269850005

13858 5 0.00s

100 1

93.01% 0.00%

73.00% = 0.00%

17.95s + 0.00s

1 67
1000 1
106 07
100 04

I 1
100 01

88 81% = 0.00%
93 .01% = 0 860%
91.61% == 6.00%
90.21% = 0.00%
83.22% + 0.00%
90.21% 4 0 00%

100.00% = 0.00%
73.60% + 0.00%
92.00% % 0.00%
90 00% % 0.00%
100.60% &£ 0.00%
90.60% = 0.00%

0325+ 000s
1791050005
14085+ 0005
913540005
0365+ 000s
280510005

174

Table A.4: (continued)

musk (strong hypotheses’ average result graphs for T' x p}

b g
el 1

< _

Accuracy (%) Good Weak Hyp. (%) Execution Time (5)

musk (average results for weak hypotheses)

T p Alpha Error Rate (%)} Support Vectors (%) Norm
1600 04 | 07131 £0.0000 0.38% 4 000% 72.02% - 000% 2715244 = 0.0000
1 04| 09154400000 0.32%+000% 66.43% + 0.00% 223.5538 & 06000
1 01§ 02739400000 085%:000% 1748% x0.00% 623143 4 0.0000
1000 01 1 01954 4 00000 094% =0.00% 2152% =000% 81.2018 = 0.0000
1000 0.7 | 1.0166 &= 0.0000 0.21% +£0.00% 10814% £ 0.00% 383.2084 £ 0 0000
100 1 0.7966 % 0.0000 0.15% =+ 0.00% 140.62% -+ 0.00% 478.0366 & 0.0000
107 | 13005400000 0.16% £ 0.00% 106.99% £ 000% 391 3265 & 0.0000
1000 1 1.1870 4 0.0000 015% + 0.00% 140.76% £ 0.00% 478 3758 & 0.06000
100 07 | 09043 00000 ©0.20% £ 000% 10954% £ 000% 392.3124 £ 0 0000
100 04 ! 0.5968 400000 0.38% +0.00% 7201% = 000% 2717855 & 0.0000
1 1 12139 £ 0.0000 0.19% £ 0.00% 142 66% % 0.00% 3%4 3179 4= 0.0000
100 01 | 92071400000 094% £000% 21.13% £ 0.00% 74.2074 £ 0.0000

musk (weak hypotheses’ average result graphs for I' x p)

Support Vectors

Alpha %)

Frror Rate (%) Norm

musk (experiment histogram for parameter setup that yielded best results)

A - {_—_ T .
B i i
1‘ |

i

Accurécy (%): 93.01% | Good Weak Hyp. (%):
+ 0.00% 73.00% -+ 0.00%

ﬁcuﬁ Time
17955+ 000s

{s}:

175

Table A.4: {continued)

pgs (average results for strong hypotheses}

T » Accuracy {%) Good Weak Hypotheses (%) Execution Time {s)
1000 04 | 87.19% + 6.47% 99 61% 3= 0.23% 490s:£002s
1 04 | 74.69% 3 11.81% 108.00% £ 0.00% 00350005
1 &1 | 55.00% £ 1048% 100.00% =+ 0.00% 00350005
1000 01 | 85.31% £ 6.26% 87 28% + 1.60% 132540015
1000 0.7 | 86.88% = 538% 98 86% = 0.43% 79650075
we 1 85.62% = 6.43% 99.30% = 0.78% 1.10s£ 0013
1 07] 78.75% £8.12% 100.60% 4- 0.00% 0.035:4001s
1006 1 88.12% o4 4.80% 98.70% £ 0.75% 10.815+0.13s
100 07 | 8438%+541% 99.20% & 0 98% 0825 00%s
100 04 | B6.88% X 556% 99.90% 4 0.30% 05250005
i1 83.75% £ 8.71% 100.00% £ 0.00% 004540005
160 01 | B406% £ 677% 91.40% =+ 4 22% 01650005

pgs (strong hypotheses’ average result graphs for T’ x p)

[
[

i
“E'I“‘J
M b

o
LN

e

Accuracy (%) Good Weak Hyp. (%) Execution Time (s)

pgs (average results for weak hypotheses)

T »p Alpha Error Rate (%) Support Vectors (%) Norm
1000 04 11787 £ 00773 042% £ 004% 8833% £ 047% 2699470 9 5668
1 04 0.7067 + 0.173% 047% £ 013% 8625% £ 400% 214 3950 = 31.2374
1 401 0.2393 4 0.1035 0B9% = 0.11% 2468% L 094% 626179 £ 16.2788
1600 &1 0.1657 £ 00177 0.98% £ 0.02% 24 64% & 0.04% 659010 £ 07574
1000 07 | 28079+ 02713 0.16% £ 0.02% 14044% = 139% 3975320 17.4978
100 1 88283 £ 0.4086 002%-£001% 185.97% £3.01% 506.7662 & 27.5523
1 o7 1.1809 = 0.2388 0.22% + 0.08% 137.50% £ 7.40% 363.4417 £ 37.1731
1000 1 9.1858 - 0.2847 0.02% - 0.01% 186.79% + 2.47% 506.2360 =k 26.1591
100 07 | 25972403177 0.16% £ 002% 140.58% + 125% 3956311 17.9595
100 04 11199 & D.0905 0.42% + 004% B88.29% : 046% 2672556 :k 96664
1 3 8.4290 4 3.1419 0.01% £+ 0.01% 1B7.19% % 6.77% 4985016 & 396821
100 01 0.1936 + 00281 0.96% +0.02% 24.58% £ 0.09% 64 3529 £ 21929

176

Table A.4: (continued)

pgs (weak hypotheses’ average result graphs for I' x p}

Error Rate (%)

(%)

Support Vectors

Norm

pgs (experiment histogram for parameter setup that yielded best results)

—

oo BB
Good Weak Hyp. (%):

98.70% % 0.75%

:

Accuracy (%): 88.12%

+ 4.80%

—

wml Hl

Execution Time
10815+ 0.135s

(s):

pid (average results for strong hypotheses)

T »
1000 04
1 04
1 01
1000 0.1
1000 07
100 1
107
1000 1
160 07

Accuracy (%)

72.60% -t 4.02%
40.22% 4 32.85%
60 52% £ 20.56%
74.46% £ 2.94%
73.03% : 337%
74 42% & 2.30%
45.84% & 30.67%
72.99% 4 2 58%
73.51% £ 2.73%

43.329 £ 2 54%
60 60% £ 48.99%
90.60% = 30.00%
54.15% 1.54%

30.31% £ 3.09%

36.10% £ 4 53%
70.00% + 45.83%
20.69% £ 2.65%

48 80% £ 4.92%

Good Weak Hypotheses (90) Execution Time (5}

96245+ 1.07 5
01154+ 001s
06450015
254852 011s
15933528558
21.765 4+ 046 s
01854+ 0015
214255+ 3985
1625540345

100 0.4

75.71% £ 2.02%

58.00% =+ 3.82%

9735+ 0.135

100 01

51.86% + 26 35%
74.89% + 1.96%

80.00% % 40.00%
62.60% k 3.41%

0255+ 002s
25750045

177

Table A.4: (continued)

pid (strong hypotheses’ average result graphs for 7' x p)

Rt

Accuracy (%)

-

Good Weak Hyp. (%)

3

Execution Time (s)

pid (average results for weak hypotheses)

Error Rate (%) Support Vectors (%)

100% £ 0.02%
0.9%9% = 0.29%
0.83% - 0 25%
1.11% = 0.01%
0.92% + 0.02%
0.84% £ 0.03%
0.98% £ 0.30%
0.83% =+ 0.04%
0.93% = 0.05%

62.36% + 0.52%
54.11% = 4 87%
12.99% 4+ 1.81%
15.82% =+ 0.06%
105.12% =% 1 55%
141.90% + 2.54%
97.40% & 6.04%
142.91% £ 2.68%
104.41% 4= 1 89%

Norm
3755.7432 £ 263.8403
53597477 4 3064 8897
4008.4712 + 1025 5685
4089.3071 £ 270.3493
5210 8183 £ 462.6854
7510 0867 -+ 988 8801
6022 7163 =+ 5393.6630
7537.0769 4 933.8704
54104378 4 732.6878

0.0177 3- 0.0044 0.98% :£ 0.03%

61.72% £ 0.69%

3950.6172 1 431.6465

T p Alpha
1000 0.4 | -D.0062 £ 0.0027

T 04 | 0.1535%02597

1 01 | 0.2997 £0.2238
1000 01 | 0.0033 & 0.0010
1000 07 1 -0.8236 % 0.0055
100 % -0.0162 £ 0.0075

1 07 | 01616 + 0.2690
1000 1 -0.0444 £ 0.0097
100 0.7 | 0.0043 & 0.0096
100 0.4

11 0.2428 4 0.2396
160 01 ; 0.0229 4 0.0047

090% £+ §627%
1.09% = 0.03%

143 55% + 6.19%
15.63% £ 0.26%

B371.4107 & 4273.5946
44843355 & 602 0800

pid (weak hypotheses’ average result graphs for T' x p)

Support Vectors

(%) Norm

Alpha Error Rate (%)

pid (experiment histogram for parameter setup that yielded best results}

— .

| |

Lu_nﬂmlui

Good Weak Hyp. (%):
58.00% &+ 3.82%

(s):

Execution Time
97354 0.13s

- -1
Accuracy (%): 75.71%
+ 2.02%

178

Tahle A.4: (continued)

ringnorm (average results for strong hypotheses)

T »p Accuracy (%) Good Weak Hypotheses (%) Execution Time ()
1000 ¢4 97 .67% = 0.60% 65.23% + 3.29% 16775542645
1 04 86.30% + 7.13% 100.00% = 0.00% 024541001 s
1 01 70.13% & 5.74% 100 00% + 0.00% 3125+ 00%1s
10600 01 97 80% 0.65% 54,73% + 2.47% 55095+ 0305
1600 07 | 97.83% £ 067% 66.41% = 3 96% 257585+ 3965
100 1 97 .83% + 0.86% 64.40% + 10.98% 331350425
1 07 94.63% 1.49% 100.00% £ 0.00% 034s+0.01s
1000 1 08.13% } 0.92% 56.81% :k 12.83% 3289656995
100 0.7 | 97.63% % 095% 71.80% + 3.68% 25855+ 0445
100 ¢4 97 80% = ¢.78% 72.90% £ 1.97% 1705540285
1 1 95.10% 4= 3.16% 100.00% £ 0.00% 04254+001s
100 01 95.30% = 0.80% 70.60% £+ 4.43% 5605k 0.06s

ringnorm (strong hypotheses’ average result graphs for 7" x p)

Accuracy (%)

Good Weak Hyp. (%)

Execution Time (s)

ringnorm (average results for weak hypotheses)

T p Alpha Error Rate (%) Suppert Vectors (%) Norm
1000 04 | 013504+00339 025% £001% 53.44% = 088% 45071634 = 15085922
1 04 | 1089903093 0.27% 4+ 0.14% 51.10% £ 206% 38875249 + 3181230
1 01§ 0497501509 0.64% 4 0.14% 14.50% £ 1.09% 843 1483 & 162 4613
1000 01 | 00251 400113 0.74% £001% 1820% £ 007% 11187691 =% 31.4782
1000 67 | 01886400721 014% +0.01% 8102% £ 147% 71566166 £ 292.6553
00 1 01927 £ 0.1413 0.10% £ 001% 10377% £ 1.88% 9164.2359 & 388.0517
1 07| 15739401888 0.10%£003% 7927% +227% 6539.8313 & 409.3843
1000 1 0.0202 4 0.3190 0.10% = 0.01% 103.98% £ 1.91% 9091.6499 4 381.B765
100 07 | 02344+ 00647 0.14% = 002% BO.96% £ 145% 7246 6255 4 245 6685
100 04 | 02390-£00182 025% £002% 5380% :£078% 45441175 £ 94.9750
11 16818 & 0.2742 0.09% 4 0 06% 104430 = 2.72% 8877 2621 & 656.1083
100 0.1 | 0.1300 400186 0.74% £ 0.02% 17.69% £ 0.17% 1114.9491 4 33.2755

179

Table A.4: {(continued)

ringnorm (weak hypotheses’ average result graphs for T' x p}

Alpha

Error Rate (%0)

(%)

Support Vectors

Norm

ringnorm (experiment histogram for parameter setup that yielded best results)

|

|

L

Accuracy ‘(%) : 98.13%

+ 0.92%

Un_slille o
Good Weak Hyp. (%):

56.81% %= 12.83%

[-

Execution Time (s):
328965+ 6995

spect” (average results for strong hypotheses)

T op
1000 04
1 04
1 01
1000 0.1

Accuracy (%)
77.06% 3 0 61%
67.81% < 23.79%
72.35% & 9.22%
77.27% £ 0.64%

46.83% + 1.70%
0.00% -+ 30.00%
100.00% # 0.00%
46.85% + 1.45%

Good Weak Hypotheses (%) Execution Time (s)

228540035
0.02s£000s
002520005
18665+ 001s

1000 0.7

77.81% £ 0.36%

52.77% &£ 1.74%

349510045

163 1
1 07
1000 1
100 07
100 04

100 63

77.11% £ 0 89%
73.48% + 10,18%
77.54% = 0.83%
77.38% £ 0.86%
76.58% £ 0 7%%
72.25% & 7 05%
77.65% 3 1.50%

54.80% -+ 12 34%
160.06% = 0.00%
63.73% * 2.66%
66.10% + 3 83%
66.90% & 4 97%
100.00% 4= 0.00%
76.10% £ 2.84%

0485+ 0035
00250015
49154+ 0075
041540025
031s+001s
002540005
0.155::001s

180

Table A.4: (continued)

spect? (strong hypotheses’ average result graphs for T x p)

Accuracy (%) Good Weak Hyp. (%) Execution Time (s)

spect® (average results for weak hypotheses)

T »p Alpha Error Rate (%)} Support Vectors (%) Norm
1000 04 | 006089 400014 006% +0.00% 766%+006% 1080.5755 4 10.9349
1 04 | 0B629£03372 007% £005% 845% X 114% B47.3306 150 5267
1 011 07756£0.1173 008% +£0.01% 3.21%£0.53% 299.5742 & 1303430
1000 ¢.1 | 0.0078 4 0.0017 009%: 0.00% 3.64% + 0.03% 5284209 £ 10.0255
1000 0.7 | 0.0109 == 0,0020 0.05% = 0.00% 11.36% = 0.08% 1394.5102 -t 21.6647
100 1 00558 & 0.0684 0.04% = 0.00% 1534% £ 024% 1890.9036 & 57.5998
1 07 | 1024702942 0.05% +003% 1193% & 1.79% 1219 8344 & 180.0926
1000 1 0.0080 4 0.0061 005% £ 0.00% 1515% +0.10% 1766.6938 % 30.5167
100 07 | 01081 400134 005% £ 000% 1223%:£031% 15983270 & 57.9457
100 04 | 01205400104 006% +£000% 901%:k 020% 12769132 £ 422702
1 1 1.2159 + 0.2780 004% £ 0.02% 16.04% == 1.04% 1886 5029 x 296.7165
100 01 i 01412400086 0.12%+001% 4.09% £ 0.08% 601 8959 & 25.1444

spect® (weak hypotheses’ average result graphs for T' x p)

Support Vectors

Norm
(%) OFIT

Alpha Error Rate (%)

spect? (experiment histogram for parameter setup that yielded best results)

e e R

Accuracy (%): 77.81% | Good Weak Hyp. (%): | Execution Time (s):
+0.36% 52.77% & 1.74% 3495 +0.04s

181

Table A.4: {continued)

spect” (average results for strong hypotheses)

T p Accuracy (%) Good Weak Hypotheses (%) Execution Time (s)
1000 04 | 83.16% £ 0.24% 99.00% = 0.34% 675520035
1 04 | 7387% £ 11.93% 100 00% £ 0.00% 00450005
1 ¢1 | 50.59% + 23.02% 100.00% + 0.00% 00450005
1000 0.1 82.12% 3+ 0.86% B7.56% + 0.98% 1.9254+002s
1008 0.7 | 83.20% = 0.32% 90.30% & 1.07% 969s+0115%
100 1 §2.38% = 0 83% 85.70% £ 9.28% 1255+ 0105
1 07 | 7903% & 11.75% 100.00% =+ 0.00% 00450003
1000 1 82.83% £ 0.32% 88.58% = 2.26% 124554+ 0275
100 07 | 83.12% £ 0.58% 93 60% =+ 2.76% 103s+002s
100 04 | 82.94% + 0.73% 99.00% + 1.18% 0705+ 001s
1 1 84.31% - 2.88% 100.00% & 0.00% 0.055 1+ 0.005s
100 0.1 83.09% &+ 1.20% 00.10% + 2 30% 022540005

spect’ (strong hypotheses’ average result graphs for T’ x p)

al

- —
PR =y

Accuracy (%)

Good Weak Hyp. (%)

i

‘-{—_1, /;x

Execution Time {s)

spect” (average results for weak hypotheses)

T p

Alpha

Error Rate (%) Support Vectors (%)

Norm

1000 0.4
1 04
i 01
1000 0 1
1000 &7
199 1
1 o7
1000 1
100 07
100 0.4

11390 + 0.0128
0.7832 £ 01375
0.2637 + 02377
0.1679 £ 0.0044
1.7987 + 00296
3.8963 4 1.2713
1.2610 = G 2357
47622 & 0.2828
1.7894 £ 01295
1.0887 + 0.0278

0.06% £ 0.00%
0.05% %= 0.01%
0.11% = 0.03%
£ 13% = 0.00%
0.03% + 0.00%
0.02% = 0.01%
0.02% + 001%
0.02% % 0.00%
0.03% £ 0.00%
0.066% =% 0.00%

11.20% £ 003%
11.08% % 0.59%
3 20% 4+ 0.25%
3.27% £ 000%
1667% £ 0.12%
21.40% &+ 1.08%
17.47% + 1.18%
2151% £+ 0 31%
16.94% % 0.24%
11.19% == 0.10%

426182 & 01957
34,8510 £ 3.8296
7.3649 + 2 4294
11.4738 & 0.1083
56.5504 & 0.4720
71.9562 + 33906
560524 4 6.0733
72.3587 £ 07647
57.7153 + 1.070%
422094 + 0.5682

3.0218 + 3.5500 0.03% =4 0.03%

23.35% == 1.10%

76,3227 4 7.1969

100 01

01841 £ 0.0186

0.12% 4= 0.00%

3.26% & 0.02%

10,9349 & 0.2804

182

Table A.4: (continued)

spect” (weak hypotheses’ average result graphs for T' x p)

B

b L

Alpha

Y

Error Rate (%)

2

(%)

Support Vectors

Norm

spect” (experiment histogram for parameter setup that yielded best results)

]
la A

Accuracy (%): 84.31%

+ 2.88%

|

Good Weak Hyp. (%):
100.00% + 0.00%

Execution Time
0055+ 0.00s

(s}

spiral’ (average results for soong hypotheses)

T »p Accuracy (%) Good Weak Hypotheses (%) Execution Time (s)
100G 04 54.00% = 0.00% 97.70% + 0.00% 495515+ 000s
1 04 50.00%=000% 10{.00% £ 0.00% 05250005
1 01 52.00% = 0.00% 100.00% =+ 0.00% 0.155=0.00s
1000 0.1 | 61.00% £ 0.00% 92.10% - 0.00% 127.825 4 0.00s
1000 0.7 54.00% = 0.00% 94.90% = 0.00% 8564850005
150 1 52.33% - 0.00% 46.00% = 0 00% 112805+ 000s
1 07 30.67% = 0.00% 100.06% 4 0.00% 08750005
1000 1 53.33% = 0.00% 97.10% £ 0.00% 12172254+ 000s
100 07 55.33% £ 0.00% 99.00% & 0.00% 85465+ 0.00s
100 04 53 00% == 0.00% 97 G0% # 0.00% 4983s£ 0005
1 i 55.33% = 0.00% 100.00% = 0. G0% 12350005
100 01 5%.00% = 0.00% 96.00% * 0.00% 12885+ 0005

183

Table A.4: (continued)

spiral’ (strong hypotheses’ average result graphs for T' x p)

[g

Accuracy (%)

Good Weak Hyp. (%)

Execution Time (5)

spiral” (average results for weak hypotheses)

T p Alpha Error Rate (%) Support Vectors (%) Norm
1000 04 | 0.6619 00000 0.67% £0.00% 91.35% £ 0.00% 420.4900 £+ 0.0000
1 04 | 0486500000 064% £000% 91.67% £ 000% 949.6679 £ 0.00C0
1 0.1 | 0.0946 4 0.0000 1.06% £ 0.00% 23.67% £ 0.00% 582032 £ 0.0000
1000 0.1 | 0.1260 =& 0.0000 1,05% -= 0.00% 23.50% £ 0.00% 114.3259 £ 0.0000
1000 67 1 1541400000 033%+000% 15800% £+ 0.00% 6694644 & ¢.0000
100 1 2.3157 4 0.0000 0.01% £ 0.00% 224 44% = 000% 911 8566 4 0.0000
1 D7 | 08729400000 0.35%£000% 15767% % 0.00% 1080.9086 & 0.0000
1008 % 1.3148 £ 0.0000 0.01% £ 0.00% 224 49% = 0.00% 821.5846 + 0.0000
100 0.7 1.4128 2 0.0000 0.34% £+ 000% 158.30% :£ 0.00% 6582381 & 0.0000
100 04 | 06150 £0.0000 ©66% 4 000% 91.78% £ 000% 404.0470 £ 0.0600
1 1 2.9275 4+ 0.0000 001% £ 000% 225.67% 4 0.00% 8035.5492 + 0 0000
100 01 | 0.12854 00000 104% £000% 23.57% £ 000% 653634 % 60000

spiral® (weak hypotheses’ average result graphs for T’ x p)

e

Support Vectors

Alpha (%)

Error Rate (%) Norm

spiral” (experiment histogram for parameter setup that yielded best results)

T
|

Accuracy (%): 61.00%
+ 0.00%

(s}:

E_ﬂxecution Time
127.82540.005s

Good Weak Hyp. {(%):
92.10% - 0.00%

184

Table A.4: (continued)

spiral' (average results for strong hypotheses)

T Accuracy (%) Good Wealk Hypotheses (%) Execution Time (s)
1600 04 | 54.67% = 0.00% 100.00% -+ 0.00% 523165+ 0060s
1 04 | S52.67% £ 000% 100.00% 2= 0.00% 054s+£000s
1 01 | 52.67%£000% 100.00% + 0.00% 01550005
1000 0.1 | 55.00% £ G.00% 95.00% =+ 0.00% 132035+ 0.00s
1000 @7 | 55.00% % 0.00% 100.00% =+ 0.00% 898.54 5 0.00s
100 54 33% £ 0.00% 100.00% £ 0.00% 128355 000s
1 07 1 4933% £ 000% 160.00% + 0.00% 092sx000s
1000 3 56 33% £ 0.00% 100.00% -t 0.00% 12888350005
100 07 | 51.33% % 0.00% 100.009% =+ 0.00% 90265+ 0.005
100 04 | S367% £ 000% 100 00% + (.00% 52305+ 0.00s
1 50.00% + 0.00% 100.00% + 0.00% 1295 0.00s
100 0.1 | 56.67% & 0.00% 92.00% =+ 0.00% 13115+ 0.00s

spiral! (strong hypotheses’ average result graphs for T' x p)

Accuracy (%)

Good Weak Hyp. (%)

==

ls

Execution Time (5)

spiral’ (average results for weak hypotheses)

T »p
1000 0 4
1 04
1 01
1990 0 1
1000 0 7
106 1
1 07
1000 1
100 0.7
100 0.4
1 1

Alpha
0.8139 £ 0 06C0
0.4305 = 4.0000
0.0946 - 0.0000
¢.1333 4= 0.0000
2.2221 4 00000
10.0000 = 0.0000
08507 & 0.0000
99927 & 0.0000
2.0013 £ 0.0000
0.7816 = 0.0000
10.6000 - £.0000

Error Rate (%) Support Vectors (%)

0.70% =% 0.00%
0.69% = 0.00%
1.06% + 0.00%
1.05% + 0 00%
0.34% + 0.00%
0.00% o= 0.00%
0.36% &+ 0.00%
0.00% = 0 00%
0.33% = 0.00%
0.69% = 0.00%
€.00% = 0.00%

93.52% + 0.00%
93.33% &£ 0.00%
23.67% £ 0. C0%
23.64% % 0.00%
163.19% = 0.00%
232.65% = 0.00%
163.33% = 0.00%
232.69% + 0.00%
163.16% £ 0.00%
93.52% + 0.06%
232.33% & 0.00%

Norm
241 4674 & 00000
243.9210 + 0.0000
60.3085 4 06000
61.9354 -+ 0.0000
424 7696 & 0.0000
609.3001 £+ 0.0600
395.3812 4 0.0000
612.3262 4 0.0000
4255225 & 0.0000
240 8535 + 0 GO0G
596.4028 & 0.0000

100 G.1

0.1140 4+ 0.0000

1.05% -+ 0.00%

23,64% = 0.00%

61.5991 :k 0.0000

185

Table A.4: (contnued)

spiral! (weak hypotheses’ average result graphs for T' x p)

Alpha

Error Rate (%)

(%)

Support Vectors

spiral® (experiment histogram for parameter setup that yielded best results)

| i
§ :
i I

Accuracy (%): 56.67%

+ 0.00%

92.00% £ 0.00%

T

Executir:ﬁ Time
13.11s+ 0.00s

spiral® (average results for strong hypotheses)

T »
1000 0.4
104
1 01
1000 0.1
1060 0.7
100 1

Accuracy (%)
52.33% 4 0.00%
0.00% + 0.00%
47.67% £ 0 00%
48 67% =+ 0.00%
46.67% % 0.00%
51.00% = 0.00%
(1,.00% =+ 0.00%

46,70% = 0.00%
0.00% = 0.00%
100.00% + 0.00%
42.10% + 0.00%
54.40% 4 0.00%
60.00% =% 0.00%
0.00% + 0.00%

Good Weak Hypotheses (%) Execution Time (s}

19156595+ 0005
18075 £ Q.00s
610500058

5089.58s 4 0.00s

33968405 £ 0005

49491054 0.005s
34635+ 0.00s

52.67% & 0.00%

57.60% == 0.00%

49156.515 £ 0.00s

50.33% + 0.00%
49 00% =+ 0.60%
0.00% & 0 00%
47 00% = 0.00%

55.00% == 0.00%
51.00% = 0 00%
0.00% = 0.00%
49.00% =+ 0.00%

34591754 0.00s
1946935 £ 0.00s
52355+x000s
5492354 000s

186

Table A.4: (continued)

spiral® (strong hypotheses’ average result graphs for T' x p)

=y

Accuracy (%) Good Weak Hyp. (%) Execution Time (s)

spiral® (average results for weak hypotheses)

T »p Alpha Error Rate {%) Support Vectors (%) Norn
1000 04 | -0.0021 £ 00000 1.17% = 000% 20.76% :: 000% -2.6232e+14 & 0.0000e+00
1 04 i -00229 400000 1.19% 000% 2233% £ 000% -15517e+12 = 0.0000e-+00
1 01 0.0543 &= 0.0000 110% £ 000% 900% £ 000% -4.0265e+08 & 0.0000e+00
1000 01 | -D.0063 £0.0000 1.16% £000% 826% £+ 000% -3.2023e-+09 £ 0.00C0e+00

1000 67 | -00014 & 00000 1.17% + 0.00% 31.42% £ 000% -2931i5e+18 =+ 0.0000e+00
100 % 00014 £ 00000 1.17% % 0.00% 4111% % 000% -1.5436e+21 & 0.0000e+00
1 0.7 | -0.0229 £ 0.0000 1.19% & 0.00% 32.00% £ 0.00% -2.0786e+15 * 0.0000e+00
1000 1 -0.0013 £ 0.0000 1.17% -+ 0.00% 41.32% -+ 0.00% -1.7932e+22 £ 0.0000e+00
100 07 ! -0.0013 00000 1.17% +C00% 31.31%+000% 3.1475e+17 £ 0.000Ce+GO

100 04 200020 £ 00000 1.16% - 0.00% 20.79% £ 000% -2.503%5e+14 3 6.0000e+00
1 1 0.0314 £ 0.0000 120% + 000% 4433% £000% -1.2794e+19 & 0.0000e+G0
100 9.1 -0.0001 4+ 00000 1.17% £ 000% 8.02% £ 0 00% 1.6129e+10 £ 0.00G0e+00

spiral® (weak hypotheses’ average result graphs for 1" x p)

Support Vectors

(%) Norm

Alpha Error Rate (%)

spiral® (experiment histogram for parameter setup that yielded best results)

g .
| i E
L Emi |

Acchracy (%): 52.67% | Good Weak Hyp. (%): | Execution Time (s):
+ 0.00% 57.60% + 0.00% 49156.51 5 4 0.00 s

i
|

] et

]

187

Table A.4: (continued)

twonorm (average results for strong hypotheses)

T p Accuracy (%) Good Weak Hypotheses (%) Execution Time (5)
1000 G4 97 27% 4 0.68% 27.90% £ 5.68% 70395+ 3.08s
1 04 94 57% = 2.08% 100.00% =k 0.00% 014s5:£00%s
1 01 94.27% + 1.62% 100.60% £+ 0.00% 0165+ 0015
1060 0.1 97.17% - 0.64% 40.68% = 6.45% 38035 101s
1000 0.7 97 43% -4 0.76% 25.03% £ 3.95% 91105+ 3.80s
100 1 97.33% = 0 56% 34.40% = 5.78% 1047520425
1 47 94.73% £+ 1.99% 100.00% + 0.00% 0175+ 001s
1600 1 97.33% = 0.61% 22.06% £ 7.06% 106.355+4.72s
100 0.7 | 97.50% &+ 0.70% 39.60% + 6.71% 920540365
100 04 97.17% £ 0.70% 40.80% £ 3.92% 730540335
1 1 96 23% £ 0.56% 100.00% 4 0.00% 0.}9s£001s
100 01 97.17% + 0.67% 55.40% & 5.04% 40054013

twonorm (strong hypotheses’ average result graphs for T x p)

T

Accuracy (%) Good Weak Hyp. (%) Execution Time (s)

twonorm (average results for weak hypotheses)

T p Alpha Error Rate (%) Support Vectors (%) Norm
1000 G.4 -0.1648 4+ 0.0304 0.11% £ 0.91% 2204% £ 1.25% 2.1942e+06 1 2051e+05
1 04 15665 + 031940 0.10% £ 0.04% 1837% = 141% 2.0825e+06 4= 3.2312e+05
i 01 15124 £ 01768 0.11% 4 0.05% 2.00% £ ¢.91% 9.4658e+05 + 1.7060e+05
1000 ¢ 1 200505+ 00303 021% +£002% 1224% = 0.50% 1.4967e-+06 & 4 6813e+04
1000 07 02140 + 0.0263 0.09% £ 001% 2796% £ 158% 2.5974e-+06 = 1.0082e+05
106 1 .0.1044 = 00396 0.08% = 0.01% 31.30% £ 157% 2971%e+06: 7 2526e+04
1 07 15570 £ 0.1985 011% +004% 2533% £ 1.99% 25558e+06 :: 3.1535e+05
10006 1 -0.2382 £+ 0.0356 0.08%::0.01% 32.24% £ 1.89% 28719e+06 & 9.5798e+04
100 0.7 | -0.0872 4 0.0718 0.09% £ 0.01% 27.58% &£ 1.31% 2.7218e+06 = 1.0497e+05
00 04 00560 £ 00385 0.11% + 0.01% 2204% 4 1.27% 2.2651e+06 & 9 6502e+04
i 1 16757 £ 01687 008% + 0.03% 32.13% = 232% 3.06472+06 £ 3 5066e+05
100 01 0.0585 + 00246 0.21% £ 0.02% 12418 £ 0.46% 1.5778e+06 £ 5.3867e+04

188

Table A.4: (continued)

twonorm (weak hypotheses’ average result graphs for T' x p)

Alpha

FError Rate (%)

l“—/—:a_l/

Support Vectors

Norm
(%)

twonorm (experiment histogram for parameter setup that yielded best results)

]

2 el

Accuracy (%): 97.50%

£ 0.70%

W

Good Weak Hyp. (%):

39.60% £ 6.71%

[T
Execution Time (s):
9205+ 0.365

wdbce (average results for strong hypotheses)

T p

Accuracy (%)

Good Weak Hypotheses (%) Execution Time (s)

10006 0.4

93.80% £ 2.01%

21.45% 4+ 2.81%

34995 1415

I 04

1 01
1000 61
1000 07
160 1

1 o7
1000 1
06 a7
100 04

100 0.1

81.52% £ 27.28%
85 96% - 4.86%
92.69% -+ 2.62%
92.87% £ 1.71%
92.11% -+ 3.08%
77.49% + 26 33%
93.10% £ 2.34%
93.39% & 1.53%
93.16% &= 1. 41%
90.41% £ 2.88%
92 22% 2.27%

G0.00% == 30 00%
100 00% &£ 0.00%
49.52% + 2 21%

009s:400Ls
007s+00%s
140450185

14.99% £ 3.53% 463152185
24.20% £ 7 26% 56254+032¢
90.00% =+ 30.00% 011s+001s
10 86% x 4.25% 547552835
27.00% - 4.10% 480s5+£027s
33.80% = 6.85% 366s+016s
100.00% £ 0.00% 01350015
61.70% &= 5.85% 1465+ 0035

189

Table A.4: (continued)

wdbec (strong hypotheses’ average result graphs for T x p)

e H
LQ;;_L/

Accuracy (%)

Good Weak Hyp. (%)

Execution Time (s)

wdbc {average results for weak hypotheses)

T p

Alpha

Error Rate (%)} Support Vectors (%)

Norm

10060 0.4

-0.1255 ++ 0.0374 0.35% £ 0.03%

34.94% £ 1.51%

3.3704e+03 - 5.1865e+02

1 04
1 a1
01
o

1000
1000
160 1

1 07
1000 1
100 0.7
100 04

1 1
100 01

0.9677 £ 0.6312
(1.9433 + 0.2627
-0 0006 + 0.0076
-0.2027 :t 0.0538
-0.1225 £ 0.0545
0.8101 = 04527
-0.3185 & 0.GB63
-0.1504 + 0.0346
-0.0683 £ 0 0457
1.1836 4 01653
0.0572 £+ 00192

0.39% * 0 54%
0.33% £ € 16%
0.70% - 0 04%
0.28% + 0 03%
0.27% & 0.05%
0.45% & 0.40%
0.24% =% 0 03%
0.309% 4 0.02%
0.35% £ 0 05%
0.21% + 0.06%
(.70% = 6.05%

21.99% £ 3.30%
6.32% & 1.61%
1379% £ 0 16%
45.42% + 2 26%
52.90% 4= 3.47%
40.23% = 4.60%
$52.72% & 3.00%
45 48% = 287%
3530% = 157%
58.25% =+ 4 88%
13.65% % 0.20%

1.5114e+403 £ 1.2233e+03
3.5262e+02 £ 3.3601e+02
1.8427e+03 = 2. 7510e+02
452802403 :£ 5.6315e+02
5.3082e+03 £ 6.7575e+02
2,090%e+03 + 1.1377e+03
5.330%e+03 £ 4.2405e-+02
4.4233e+03 % 6 8457e+02
3.4271e+03 £ 6.0186e+02
2.5770e+03 £ 9.2576e+02
1.6725e+03 + 2.2048e+02

wdbe {weak hypotheses’ average result graphs for T x p)

Alpha

Error Rate (%)

Lo

P
[=
N

Support Vectors

(%)

Norm

wdbc (experiment histogram for parameter setup that yielded best results)

Ac&uracy (%): 93.80%

x 2.01%

o

Good Weak Hyp. (%):
21.45% + 2.81%

™

Execution Time
3499s+ 1415

{s):

160

Table A.4: (continued)

wpbc (average results for strong hypotheses)

T »p Accuracy (%0) Good Weak Hypotheses (%) Execution Time (s)
1000 0.4 74.00% == 5.88% 51.02% =+ 237% 7315k 006s
1 04 | 5250% = 27.40% 80.00% £ 40.00% 00354+£000s
1 01 [3983% % 33.73% 60.00% =+ 48.99% 0025+ 0015
1000 01 75.17% % 4.91% 58.40% + 1.53% 1935+ 001s
1000 0.7 | 66.33% £ 8.52% 41.68% =4 2.33% 12245+ 0125
100 % 73.50% &£ 3.69% 42.70% - 8.60% 1.735 £ 0035
1 07 1§ 61.83% + 11.46% 100.00% & 0.00% 0.04s+0.00s
1000 1 71.33% = 795% 28.55% + 6.57% 1673540305
100 07 | 7133% +488% 54.10% + 647% 12654+ 0035
100 04 7317% = 643% 60.40% % 5.14% 07650015
1 1 54.60% = 28.00% 80.00% & 40.00% 00450015
100 0.1 | 75.67% £ 7.54% 64.10% =+ 4.68% 0.21s5 £ 0.01s

wpbe (strong hypotheses’ average result graphs for T' x p)

Ry

Accuracy (%)

Good Weak Hyp. (%)

Execution Time (s)

wpbc (average results for weak hypotheses)

T oop Alpha Error Rate {%) Support Vectors (%) Norm
1000 04 | GO0OB £ 00028 104% £ 002% 61.45% 4 055% 3 8BB4e+02 & 44272e+01
1 04§ 0218002811 092% £ 030% 5517% +£669% 55919e+02 £ 50777e+02
1 01 | 01526+03305 099% £ 036% 12.67% £ 2.49% 3.9726e+02 & 505968+02
1600 0.1 00111 £ 00018 1.11% -4 002% 1567%=0.07% 3,1021e+02 4 3.8120e+01
1000 07 | -D.0151 £ 0.0045 ©.98% + 0.02% 104.49% = 1.13% 4.3775e+02 £+ 4.1915e+01
106 3 -0.0124 £ 0.0264 091% £ 0.04% 144.19% :+ 2 10% 5.3288e+02 £ 5.6168e+01
1 07§ 02513401322 087% £ 014% 95.00% £ 10.11% 5.7140e-+02 £ 3.9682e+02
1000 1 -0.0489 £ 00193 0.93% £ 0.07% 145.00% 4 1.86% 5.3497e+02 = 6.8301e+01
100 0.7 | 00127400123 097% £ 005% 103.72% 4 164% 45995¢+02 & 59258e+01
100 04 | 002334+£00079 1.02% £ 002% 61.04% £ 1.05% 3.5341e+02 & 3.5637e+01
1 1 0.2202 0.2868 0.92% = 0.31% 134.33% £ 10.758% 5.0767e+02 £ 2,3048e+02
100 0.1 | 0.0321 4 0.0081 1.09% <= 0.03% 15.57% 4 0.29% 2.3255e+02 :k 3.556%e-+01

191

Table A.4: {continued)

wpbc (weak hypotheses’ average result graphs for T x p)

e

Support Vectors
(%)
wpbc (experiment histogram for parameter setup that yielded best results)

N i
i m !m.w ‘‘‘‘‘ ul

Accuracy (%): 75.67% | Good Weak Hyp. (%): | Execution Time (s):
+ 7.54% 64.10% = 4.68% 0.2154 0.01s

Alpha Error Rate (%) Norm

A.2.4 Complete Results for SMO-B;

Table A.5 brings the complete results for the hybrid algorithm SMO-B;, as previously
described in Section 5.3.4. The algorithm was experimented with variations of T
and p, its two regularization parameters that influence the behavior of the Boosting
module and its interface with the weak learner. The results presented in this section
are further analyzed in Section 5.4.4, where they are thoroughly discussed.

192

Table A.5: Average and best results for hybrid algorithm SMO-B; after 10 rounds of

experiments with distinct training and testing sets.

T op
1000 04
i 04
1 01

Accuracy (%)
96.14% = 1.45%
92.67% + 4.41%
91.86% + 6.38%

bew (average results for strong hypotheses)

7(1.54% + 1.46%
160.00% £ 0.006%
100.00% == 0.00%

Good Weak Hypotheses (%) Execution Time (5)

68125+ 091s
00354 001ls
00254 0.01s

1400 0.1

96.29% = 1.63%

69.17% 4 1.54%

17.625 1+ 0.165

1000 o7
100 1
1 07
1000 1
100 9.7
100 G4
1 H
100 0.1

Accuracy (%)

96.00% £ 1.21%
96.14% % 1.56%
92 14% + 5.98%
9581% = 124%
96,00% =+ 1.45%
96 19% + 1.52%
94.76% £ 3 47%
96 14% = 1.35%

71.67% + 2.46%
80.40% = 5.02%
100 00% =+ 0.00%
73 61% =+ 1.94%
80.10% & 3.21%
80.20% £+ 2.60%
100.00% = 0.00%
74 50% 4+ 3 50%

bew (strong hypotheses’ average result graphs for T' x p}

Good Weak Hyp. (%)

118285+ 2355
1608540385
00350015

168215 £ 3335
1129540225
6515+ 0.10s
003540005
173s+£005s

Execution Time (s)

193

‘Table A.5: (continued)

bew (average results for weak hypotheses)

T
1000 G4
1 ¢4
1 01

Alpha
0.0646 £ 0.0079
13973 £ 0.3459
1.3876 4 0.3919

Error Rate (%) Support Vectors {%)

0.96% = (0.05%
0.16% % 0.11%
0.18% + $.15%

23.46% = 2.81%
7.71% + 2 86%
5.05% & 1.82%

Norm
825 2713 % 1164942
211.5841 4 34 3790
130.3803 =+ 49.4667

1060 0.1

0.0599 -+ 0.0086 0.97% & 0.03%

11.77% 2 0.58%

489.3496 4 42,2209

1000 0.7
164 1
1 a7
1060 1
100 07
100 G4
1 1
100 01

0.0732 & 0.0151
01546 £ 0.0248
1.3892 4+ 03426
0.0808 £ 0.0158
0.1459 + 0.0226
0.1355 £ 0.0149
1.5918 = 0.2485
01214 £ 00182

0.94% =+ 0.06%
0.83% & 0.11%
0.17% 4+ 0.12%
0.91% + 0 G8%
0.86% £ 0.08%
0.86% = ¢.08%
€.10% = 0.06%
0.92% = 0 05%

27.19% £ 3.75%
39.98% 3 5.36%
10.00% £+ 3 99%
29.69% - 4 23%
34.93% + 4.44%
27.08% + 2.33%
13.24% + 4 63%
11.65% + 0 44%

bew (weak hypotheses’ average result graphs for T' x p)

Ll T

Alpha

Error Rate (%)

e,

RN

Support Vectors

(%)

1253.2555 & 238.3426
20022801 4+ 406 5583
276 8681 4 123.6461
1721 3789 £ 362 4685
1395.4959 £ 207.6325
G00.5703 £ 125.9236
340.5600 = 953159
4471555 =+ 569464

Norm

bew (experiment histogram for parameter setup that yielded best results)

.

Accuracy {%): 96.29%

+ 1.63%

Good Weak Hyp.
69.17% + 1.54%

Execution Time
17.62s £ 0.165

{%):

194

{s):

Table A.5: {continued)

cdges (average results for strong hypotheses)

T »p Accuracy (%) Good Weak Hypotheses {%) Execution Time (s}
1000 04 B3.33% £ G.00% 95.50% £ 0.00% 1612795 = 0.00s
1 0d 70.24% 4 §.00% 100 00% 4 0.00% 1069s: 0005
1 01 51.19% £ 0.00% 100.00% = 0.00% 961540005
1600 0.1 77.38% + 0.00% 82.20% % 0.00% 41214540005
1000 0.7 83 .33% 4 0.00% 97.50% £ 0.060% 2768945+ 00605
100 1 83.33% 4 0.00% 99.00% =+ 0.00% 3889654 0.00s
1 67 48 81% £ 0.00% 100 00% = 0.00% 12585+ 0005
1000 } 83.33% = 0.00% 98 .40% :k 0.00% 38312554 0.00s
100 0.7 | 83.33% =+ 0.00% 97.00% - 0.00% 282.345 4+~ 0.00 s
60 04 82.14% - 0.00% 47.00% £ 0 00% 172015 £ 000s
1 1 58.33% £ 0.00% 100.00% £ 0.00% 128454+ 00053
100 9.1 79.76% + 0.00% 84 D0% & 0.00% 4717s £ 000s

cdges (strong hypotheses’ average result graphs for T' x p)

el
g
e L"” £<;-
-~ e

Accuracy (%) Good Weak Hyp. (%)

]

Execution Time (s)

cdges (average results for weak hypotheses)

T »p Alpha Error Rate (%) Support Vectors (%) Norm
1660 6.4 | 03904200000 094% # 0.00% 6226% 4 000% 22823618 £ 0.0000
1 04 | 04963400000 0.63% £ 0.00% 5952% + 000% 11269927 £ 0.0000
1 01 | 0040800000 1.120% +000% 1667% £ 000% 11310688 £ 00000
1000 01 01451 £ 0.0000 1.08% £000% 19.26% £ 0.00% 709.0286 £ G 000C
1000 0.7 | 0.6571 £ 0.0000 0.80% £ 000% 8772%:£000% 31799887 £ 0.0000
100 1 09321 4 00000 068% £ 0.00% 103.24% £ 000% 3562 6447 -+ 0.0600
1 07 | 02939400000 083%+000% 129.76% +000% 24306873 & 0.0000
1000 1 0.8689 4 0.6000 0.71% £ 0.00% 102.50% £ 0.00% 3664.6736 & 0.0000
100 0.7 | 0.68B00 = 0.0000 0.78% -+ 0.00% 87.57% 4 0.00% 2987.0381 % 0.0000
100 0.4 | 0386700000 092% £ 0.00% 63.90% % 0 00% 23097233 £ 00000
1 1 0.5358 & 0.0000 0.60% £ 0.00% 130.95% £ 000% 2932.7124 & 00000
100 0.1 01758 4 0.0000 1.05% 0,00% 18.20% + 0.00% 5747397 £ 0.C000

195

Table A.5: (contnued)

cdges (weak hypotheses’ average result graphs for T' x p)

Alpha

Error Rate (%)

Support Vectors
(%)

Norm

cdges (experiment histogram for parameter setup that yielded best results)

|

b

Accuracy (%): 83.33%

£ 0.00%

67.00% % 0.00%

Good Weak Hyp. (%):

Execurion Time (s):
282,345+ 0.00s

chess® (average results for strong hypotheses)

T

o

Accuracy (%)

Good Weak Hypotheses (%) Execution Time (s}

1000 6.4

03.20% -+ 1.68%

98.62% =+ 0.29%

35578543485

1
1
1060
1000
100

1000

100

100

100

04
a1
01
07

34

.1

66 67% + 7 23%
58.60% & 7 B4%
91.17% = 2.03%
93.17% &+ 1.65%
93.13% 4 1.53%
7257% £+ 7 55%
93.03% = 1.52%
92.80% £+ 161%
92.53% =+ 2 25%
82.77% 6.54%
87.67% & 5.89%

100.00% ik 0.00%
100.00% % 0.00%
93.78% % 1.04%
§9.63% & 0.25%
100.00% =+ 0.00%
100.00% = 8.00%
99.91% =+ 0.10%
99.80% & 0.40%
98.80% & 0.60%
100 60% % 0.00%
93.60% £ 1.80%

039s5£001s
01154+001s
92325:: 0925
5978054+ 5355
B2485+% 1.10s
0655 +£0025s
82325548625
5998540765
3562540365
08054+003s
916540115

196

Table A.5: (continued)

chess® (strong hypotheses’ average result graphs for T x p)

Accuracy (%) Good Weak Hyp. (%) Execution Time (s)

chess? (average results for weak hypotheses)

T p Alpha Error Rate (%) Support Vectors (%) Norm
1000 0.4 | 0.6899 < 0.0195 0.77% £ 0.01% 61.75% - 0.86% 212.7448 26.6444
1 04 0.6224 £ 01713 0.53% £ 0.14% 84 87% £ 2.25% 2101454 4 B7988
1 0% 0.2858 : 0.1943 0.85% £ 0.20% 23 47% £ 2 69% 65.2067 & 8.6006
1000 0% 02328 £ 00091 1.00% £ 001% 2022% = 021% 79 6498 £ 100989
1000 07 1.0878 £ 0.0350 0.62% £ 001% 81.12% £072% 2763994 & 367599
W00 1 13885 £ 00442 051%=001% 94.18% £ 2.47% 309.2881 2 40 7065
T 07 0.9934 £ 01778 029% 4 011% 130.67% £ 280% 2949164 = 10 1433
1600 1 1.3979 + 0.0345 052% = 0.01% 89.62% +0.76% 310 7329 £ 42.6783
63 07 1.0663 +£ 00391 0.61%:002% B8466%:106% 2737678 £ 342720
10e 04 07072 & 0.0365 0.75% = 002% £348% £ 120% 2070290 23 4217
1 1 15029+ 0.2723 0.12% = 0.06% 161.70% + 4.26% 3414789 :% 124233
100 01 0.2617 £0.0147 0.96% % 0.01% 21.09% 4+ 0.21% 67 5415 & 51252

chess” (weak hypotheses’ average result graphs for I' x p)

N d

JIF:\ B

Support Vectors

(%) Norm

Alpha Error Rate (%)

chess® (experiment histogram for parameter setup that yielded best results)

e PO, [T RS—

1 | |

MLI |y By ey LL,W&
Accuracy (%): 93.20% | Good Weak Hyp. (%): | Execution Time (s):
+ 1.68% 08.62% -+ 0.29% 355,785 4 3.48 5

197

Table A.5: (continued)

chess! (average results for strong hypotheses)

T p Accuracy (%) Good Weak Hypotheses (%) Execution Time (s)
1000 6.4 80.73% £+ 2.39% 96.01% £ 1 30% 3440159285
1 04 60.27% =% 7 46% 100.00% £ 0.00% 039540025
1 01 59 07% =+ 7.87% 100.00% £ 0.00% 011540015

1900 0.1 78.60% % 3.65% 91.69% £ 1.39% 92725+ 090s
1000 07 82.13% £+ 1.54% 97.57% £ 0.79% 567945+ 1951 s
100 1 81.67% X 1.57% 98.90% £ 1 37% 79.755+ 2265
1 07 66.90% + 7.15% 100.G0% -4 ¢.00% 06450025
1006 1 82.00% 1.32% 58.77% £ 0.73% 787465 27985
100 0.7 | 82.40% o 1.54% 97.90% =+ 0.94% 57.81s54 1.61s
100 04 79.47% £ 3.59% 97 40% 4 1.96% 34955+ 088s
1 1 71.63% - 8.43% 100 00% 2 0.00% 0B9s+001s
106 01 76.73% & 3.86% 93 90% % 2 26% 929s+013s

chess! (strong hypotheses’ average result graphs for T x p)

Accuracy (%)

Good Weak Hyp. (%)

Execution Time (s)

chess! (average results for weak hypotheses)

T »
1000 04
1 04
1 01
1000 01
1000 6.7
00 1
1 07
1608 1

Alpha
04027 £ 00718
05428 £ 0.1261
0.2901 & 0.1425
0.1207 4 0.0179
0.6576 £ 0.1103
0.8986 + 0.1533
0.8026 &+ 0.2322
0.8836 £ 0.1445

Error Rate (%) Support Vectors (%)

8.91% 4 0.04%
060% £ 0.11%
0.84% £ 0.15%
1.07% 4 0.01%
0.79% + 0.05%
0.67% + 0.06%
0.41% £+ 0.17%
0.69% + 0.06%

56.05% + 3.27%
83.33% = 3 B4%
23.07% = 2.01%
20.38% % 0.35%
75.73% =+ 4 59%
91.17% 4= 3.65%
128.70% =+ 3 93%
87.26% % 4.23%%

Norm
1690.8302 = 1336 1698
208.9996 + 11 4563
66 6651 & 5.7268
401 0835 £ 292 6840
2253.6274 £ 1766.3481
23499344 + 1783 7175
293 3474 £ 12,4519
2557 6547 + 1985.0651

100 0.7

0.6718 4 0.1020 0.76% = 0.04%

79.12% £ 3.99%

2017.1640 = 1585.2221

100 04
1
100 01

0.4258 + 0.0619
10680 £+ 03051
0.1765 + 0.0082

0.88% =+ ¢ 03%
0.28% = 0 20%
1.01% £ 0.01%

60.31% + 3 06%
160 50% £ 3.49%
21.90% 4 0.26%

1384.1524 £ 11363134
3499349 + 7.3216
89.8401 = 32.0900

198

Table A.5: (continued)

chess! (weak hypotheses’ average result graphs for T" x p)

Alpha

Error Rate (%)

Support Vectors
(%)

Norm

chess! (experiment histogram for parameter setup that yielded best results)

Bl

Accuracy (%o 82.40%

+ 1.54%

s
Good Weak Hyp. (%):
97.90% 4 0.94%

i .J
Execution Time
5781541615

{s):

chess® (average results for strong hypotheses)

T 5
1000 0 4
1 04
101
1000 0.1
1000 0 7
00 1
1 07
1900 1
100 0.7

Accuracy (%)
66.33% k£ 2 47%
57.60% = 4 24%
55.33% £ 3.22%
66.17% + 2. 48%
66.17% £ 2.53%
65.73% % 2.65%
57.00% £ 6.32%
66.60% £ 2.71%
65.53% & 2.25%

Good Weak Hypotheses (20) Execution Time (s)

94.34% + §.72% 3456851 264
100.00% = 0.00% 0395+ 0025
100.00% + 0.00% 01050015

90.70% =+ 0 84%
96.06% £ 0.61%
97.30% 4 1.49%
100.00% = 0 00%
96.80% & 0.54%
96.30% = 1.00%

93385+ 0323
5725354+ 3895
81.285:: 043 s
066s£002s
793495+ 4065
592550285

10C 0.4

66.63% £ 2.40%

94.80% £ 1.72%

35915 0.16s

100 01

58.37% = 2 B3%
61.27% =+ 4 29%

100.00% =+ 6.00%
93.80% £ 2.86%

091s4+002s
626540115

199

Table A.5; {continued)

chess® (strong hypotheses’ average result graphs for T x p)

Accuracy (%)

Good Weak Hyp. (%)

Execution Time (s)

chess? (average results for weak hypotheses)

T p Alpha Error Rate (%) Support Vectors (%4) Norm
1000 04 | 01798 00235 1.03%:£001% 5605% £ 1.01% 397 7287 & 140.2242
1 04 1 04615+ 00552 0.66% £ 005% 8447% £4.21% 2161984 & 18.7969
1 01 0.1952 4 0.0886 094% x 0.10% 2240% = 3.03% 642885 & 10.6255
1000 0.1 00596 4 00037 110% £ 0.00% 2184% £ 011% 826262 & 134838
1006 07 | 03039 +00372 096% £ 002% 7429% 3 158% 6168291 £ 2251406
100 1 04479 £ 00565 0.86% +0.03% 9355% £ 151% 7519453 £ 262 3598
1 87 | 0512602577 054% £0.25% 131.57% % 342% 3101561 & 123148
1000 1 0.4202 £ 00470 (0 86% 4 002% 86.55% + 201% 8050883 4 307 3652
100 07 | 03346 £ 00357 092% £ 0.02% 83.24% = 132% 562.6228 & 206.3076
100 0.4 | 0.2340 4 0.0147 0.97% £ 0.01% 65.66% £ 1.16% 284.4761 £ 68.7978
1 1 0.7822 + 0.1463 0.41% £ 010% 162 10% = 3.98% 372.5934 £ 10.0216
100 0.1 0.1098 £ 0.0031 105% +000% 2244% £ 021% 65.6937 4 3.8760

chess® (weak hypotheses’ average result graphs for T' x p)

Alpha

Error Rate (%)

Rt

Support Vectors

(%)

Norm

chess® (experiment histogram for parameter setup that yielded best results)

Lnd__ﬂmi

Accuracy (%): 66.63%

+ 2.40%

Good Weak Hyp. (%):
94.80% + 1.72%

Execution Time
3591s+0.163

(s):

200

Table A.5: (continued)

gauss® (average results for strong hypotheses)

T p Accuracy {%) Good Weak Hypotheses (%) Execution Time (s)
1600 6.4 | 100.00% = 0.00% 100.00% = ¢.00% 199554 0.00s
1 0.4 | 100.00% £ 0.00% 100.00% == 0.00% 0.025 4 0.00s
1 01 99.33% =+ 8.00% 100.00% == 0.00% 001s+:000s
1000 03 | 100.00% 4 0.00% 100.00% = 0.00% 63650005
1000 07 | 100.00% £ 0.00% 100.00% =+ 0.00% 114050008
00 1 100.00% % 0.00% 100.00% = 0.00% 1865+ 0.00s
1 0.7 | 10000% £ ¢.00% 100.00% = 0 .00% 002s4+000s
1000 1 160.00% £ 0.00% 100.00% % 0.00% 151350005
100 ¢.7 | 100.00% & 0.00% 100.00% =+ 0.00% 16350005
100 04 1 100.00% £ 0.00% 100.00% = 0 00% 113520005
1 1 100 80% - 0 00% 100.060% = 0.00% 0025+ 000s
100 0% | 100.00% &£ 0.00% 100 00% == 0.00% 0895 % 000s

gauss® (strong hypotheses’ average result graphs for T x p)

‘ o
’"‘*-H-L’}/‘/"

Accuracy (%) Good Weak Hyp. (%) Execution Time (s)

gauss® (average results for weak hypotheses)

T p Alpha Error Rate (%) Support Vectors (%) Norm
1000 0.4 9 $706 = 0.0000 0.00% & 0.00% 1.89% £ 0.00% 990.7921 = 0.0000
1 0.4 | 10,0000 2 0.0000 0.00% = 0.00% 2.67% = 0.00% 403.0310 & 0.0000
1 01 2.7241 £ 00000 ©O01% +000% 133%+£000% 2794646 4 0.0000
1000 01 99865 + 0.0000 0.00% £+ 000% 1.20% :000% 1554 3041 = 0.0000
1600 0.7 9.9766 4+ 0.0000 0.00% +0.00% 1.02% £ 0.00% 1543.9565 x 0.0000
160 1 96637 4+ 0.0000 0.01% £ 000% 241%£000% 12149337 + 0.0000
1 07 | 1000004 0.0000 000%+000% 2.67% £000% 403.0310 £ 0.0000
1000 1 90576 4+ 00000 0.00% 4 000% 3.29% £ 0.00% 15442108 = 0.0000
100 07 9.6618 + 0.0000 0.00% 0.00% 3.04% £ 000% 11660681 = 00000
100 04 98547 £ 0.0000 0.00% % 000% 1.85% £ 0.00% 1313 2408 & 0.0000
1 1 100000 4+ 00000 0G0% £ 000% 3.33% +000% 4088045 & 00000
100 0.1 9.8579 £ 0.0000 0.00% % 0.00% 1.61% = 0.00% 1389.9964 £ 0.0000

201

Table A.5: (continued)

gauss® (weak hypotheses’ average result graphs for T' x p)

Alpha

Error Rate (%)

(%)

Support Vectors

Norm

gauss’ (experiment histogram for parameter setup that yielded best results)

ul

Accuracy

100.00% =+ 0.00%

{(%):

Good Weak Hyp. (%):
160.00% + 0.00%

Executﬁ Time (s):
0.0254+0.00s

gauss® (average results for strong hypotheses)

T p Accuracy (%) Good Weak Hypotheses (%) Execution Time (s)
1000 0.4 96.33% + 0 00% 61 30% + 0.00% 110725+ 0005
1 04 96.67% & 0.00% 160.00% -+ 0.00% 001s:£000s
1 a1l 89.33% + 0.00% 160.00% = 0 .00% 0025+ 000s
1000 0.1 §9.33% = 0.00% 62.40% -+ 0.00% 2823540005
1900 0.7 75.33% + 0.00% 58.10% & 0.00% 194 145 = 000s
184 1 9%.33% + 0.00% 59.00% £ 0.00% 256750005
1 a7 87 33% 4 0.00% 100 .00% =+ 0.00% 0325+ 000s
1000 1 $3.33% 4 0.00% 61.40% == 0.G60% 278045+ 000s
100 0.7 98.67% % 0.00% 57.00% + 0.00% 188354 0.00s
100 0.4 | 99.33% 3 0.00% 66.00% == 0.00% 10695 40.005
1 i 90.67% & 0.00% 100.00% =+ 0.00% 003540005
100 0.1 97.67% + 0.00% 72.00% = 0.00% 2.79s+000s

202

Table A.5: (continued)

gauss® (strong hypotheses’ average result graphs for T' x p)

i‘\d/

Accuracy (%) Good Weak Hyp. (%) Execution Time (s)

gauss® (average results for weak hypotheses)

T p Alpha Error Rate {%) Support Vectors (%5) Norm
1000 0 4 002204+ 00000 109% £000% 2102%£000% 291065631 £ 0.0000

1 04 19837 :: 00000 004% £ 0.00% 2.67% & 0.00% 7694516 + 0.0000

1 0t 12212 4 0.0000 0.19% £ 0.00% 2.00% £ 0.00% 1161.4712 & 0.0000
1060 01 0.0252 £ 00000 107% £ 000% 9.28% - 000% 33149 8684 £ 0.0000
mwoen o7 0.0186 £ 00000 1.08% & 0.00% 27.54% + 0.00% -11716.5054 4 0.0000
100 1 0.0804 4 00000 1.13% % 0.00% 5096% % 0.00% -2236.6269 £ 00000

1 07 0.9505 £+ 0.0000 0.30% £ 000% 3.33% £ 0.00% 1777 7134 & 0.0000
1000 i 00262 £ 00000 107% £ 000% 34.09% £ 000% -99956651 £ 00060
100 0.7 0.0728 4 00000 105% £ 0.00% 36.13% £ 000% 20068 2938 £ 0.6000
100 0.4 | 0.0960 = 0.0000 0.99% = 0.00% 25.18% £ 0.00% 10878.2323 == 0.0000

1 1 1.0168 £ 00000 027% £ 0.00% 400% <4 000% 1952.4985 = 0.0000
100 91 0,0969 £+ 0.0000 099% £ 0.00% 9.63% % 0.00% 142478388 -+ 0.0000

gauss! (weak hypotheses’ average result graphs for 1" x p)

i JE

.::"'-:-H_.’_jj/‘:-‘
Support Vectors

Alpha (%)

Error Rate (%) Norm

gauss! (experiment histogram for parameter setup that yielded best results)

Execugg; Time
10.695 4 0.00 s

Accuracy (%): 99.33%
=+ 0.00%

Good Weak Hyp. (%):
66.00% =+ 0.00%

(s):

203

Table A.5: (continued)

gauss® (average results for strong hypotheses)

T p Accuracy (%) Good Weak Hypatheses (%) Execution Time (s}
1000 04 | 91.67% % 0.00% 58.80% 3- 0.00% 11125540005
1 €4 | 6533% +000% 100.00% = 0.00% 0.02s5:£000s
1 01 | 88.67% 4 000% 100.00% = 0.00% 0.025£000s
1000 01 ¢ 92.00% £ 0.00% 55.00% =+ 0.00% 2650540005
1600 0.7 | 91.67% £ 0.00% 56.00% 3+ 0.60% 20212540005
100 1 93.00% + 0.00% 64.00% == 0.00% 2890540008
1 07 | 8067%+000% 100.00% =+ 0.00% 004540005
1000 1 91.33% = 0.00% 56,20% = 0.00% 20419540005
100 0.7 | 92.00% £ 0.00% 66.00% + 0.00% 2021s54+000s
100 0.4 | 93.00% - 0.00% 68.00% £ 0.00% 11225 £ 0.00 35
1 1 292.33% 4 0.00% 140 00% = 0.00% 0.05s5x£000s
100 01 | 8667% + 0.00% 62 00% + 0.00% 26050005

gauss”® (strong hypotheses’ average result graphs for T' x p)

Accuracy (%)

Good Weak Hyp. (%)

Execution Time (s)

gauss® (average results for weak hypotheses)

T op
1063 G 4

1 04

1 01
1000 01
1000 0.7
100 1

1 07
1600 1
100 0.7

Alpha
0.0101 4 0.0000
0.4135 4 0.0000
1.0454 £ 0.0000
0.0079 + 0.0000
0.0084 £ 0.0000
0.0457 = 0.0000
{6887 &£ 0 0GCO
0.0082 &4 0 0000
0.0462 + §.0000

Error Rate (%} Support Vectors (%)

1.11%% = 0.00%
0.71% = 0.00%
0.26% £ 000%
111% = 0.00%
1.10% £ 0.00%
1.02% = 0.00%
0.47% £ 0 00%
1.11% k£ 0.00%
1.09% = 0.00%

39 72% =4 0 00%
4 67% 4 0.00%
133% £ 0 00%
12.25% + 0.00%
38,90% £ 0.00%
73.26% =+ 0.00%
1333% & 0.00%
72.13% £ 0.00%
59.47% + 0.00%

Norm
13408.8051 + 0.0000
1963.6981 £ 0.0000
4930 0229 4 0.0000
1823523117 4+ 0.0000
29430.1928 £ 0.0000
61095 3076 4 0.0000
3188 9209 £ 0.00C0
26480.5652 0.0000

-15635.0998 4 0.0000

100 0.4

0.0459 & 0.0600 1.10% £ 0.00%

37.71% = 0.00%

9439.8938 & 0.0000

11
100 0.1

1.2115 4 00000
0.0526 & 0.0000

019% £ 000%
1.05% & 0.00%

16.33% % 0.00%
11.78% &+ 0.00%

3666 0618 4 0.0000
8300.7815 =k 0.0000

204

Table A.5: (continued)

gauss® (weak hypotheses’ average result graphs for T x p)

Alpha

Error Rate (%)

(%)

Support Vectors

Norm

gauss? (experiment histogram for parameter setup that yielded best results)

Accur-a;cy (%0): 93.00%

+ 0.00%

Good Weak Hyp. (%):
68.00% = 0.00%

Execution Time (s):
11.2254+0.005s

hepatitis (average results for strong hypotheses)

T p

Accuracy (%0)

Good Weak Hypotheses (%) Execution Time (s)

1000 0.4

75.96% = 6.32%

61.96% = 2.25%

331530035

1 04

1 01
1000 9.1
1000 &7
100 1

1 07
1000 1
100 07
100 0.4

100 61

58.51% + 11.31%
20.64% £ 31.56%
42.98% + 25.15%
75.32% = 6.03%
75.11% + 9 23%
53.40% £ 20 26%
75.74% + 7.13%
74.47% £ 5.94%
75.32% = 7.50%
67.23% -+ 11.35%
59.79% : 23.00%

100 00% & 0.00%
30.00% £+ 45.83%
58.39% £ £ 82%
60 75% + 2.03%
65.60% £ 2.91%
90 00% = 30 00%
54.88% & 5 48%
68 50% £ 4.18%
64.30% * 6 56%
100 00% & €.G0%
59 90% £ B.93%

001s+001s
001ls£000s
0805+019s
56850055
08350025
0015+ 000s
825s+£0.11s
0585+ 001s
033540015
002540015
008520025

205

Table A.5: (continued)

hepatitis (strong hypotheses’ average result graphs for T' x p)

22 <

Accuracy (%) Good Weak Hyp. (%) Execution Time (s)

hepatitis (average results for weak hypotheses)

T p Alpha Error Rate (%) Support Vectors (%) Norm
1000 0.4 | 0.0269 & 0.0067 1.16% 4= 0.01% 48.90% - 0.93% 5049477.6735 = 786614.1044
1 04 | 02356401239 0B9% +013% 36.60% £ 1037% 3932915.0312 £ 5070754.9105
1 01| -00919 +£ 03330 1.25% £ 036% 1021% + 474% 1224065 2641 £ 1118489.6903
1000 01 | 06171410785 1.15% £0.11% 12.81% 1+ 4.03% 2094737 8838 4 1094047 2819
1000 07 | 00237 £ 00061 1.14% £ 002% 72.12% £ 206% 4439633.5884 & 1119465.4140
100 1 00501 £ 00076 1.10% £004% 96.88% = 3.48% 46852771892 £ 1197583.2065
1 D7 | D2689 01946 085% % 020% 61.70% £ 8.07% 4740229.7250 % 2919735 2549
1000 1 0.0112 £ 0.0161 1.13% £ 0.01% BBO67% :£312% 1144213497 3 4619108.1358
100 07 | 00526+ 00094 1.12% :004% 7520% F 1.96% 43567269100 £ 1517071.8803
100 04 | 0043300147 116% £ 0.04% 49.15% £+ 1.10°% 3912832.5133 & 714593.3025
1 1 0.4667 4+ 0.1730 066% £ 0.17% 7809% + 639% 2659501.8930 o 8242273 2483
100 91 | 07943 £ 12106 113% +012% 11.50% £ 436% 1445966.5308 X 823693 8130

hepatitis (weak hypotheses’ average result graphs for T' x p)

Alpha

Error Rate (%)

(%0)

Support Vectors

Norm

hepatitis (experiment histogram for parameter setup that yielded best results)

Accuracy (%0): 75.96%
+ 6.32%

L&w,
Good Weak Hyp. (%):
61.96% + 2.25%

Lk,mm,

Execution Time ({s):
331540035

206

Table A.5: (continued)

ionosphere (average resuits for strong hypotheses)

T p Accuracy (%) Good Weak Hypotheses (%) Execution Time (5)
1000 0.4 94.53% £ 2 59% 89 27% 4 0.25% 21615+ 0215
1 04 84.43% = 8.79% 100.00% = 0.00% 00650005
HENO B 70.75% + 8.20% 100.00% + 0.00% 004540015
1609 &1 94.53% £ 2.42% 93.52% £ 1.59% 606540095
1000 07 ¢ 94.72% + 2.54% 99.81% £ 0.10% 347250345
JLEI T 94.72% £ 2.87% 99.70% <& 0.64% 482540065
1 07 | 85.28% £ 1043% 100.00% £ 0.00% 00754000s
1000 1 94.625% £ 2 53% 99.89% £ 0.13% 46905+ 081s
100 0.7 | 94.25% 4 2.91% 99.90% 4 0.30% 358s5£006s
100 0.4 | 94.72% - 2.74% 98.60% - 1.69% 22150025
1 1 88.87% £ 8.78% 100.00% £ 0.00% 0085+ 000s
100 03 | 92.64% & 7 80% 93.20% * 4 8%% 06ls:012s

ionosphere (strong hypotheses’ average result graphs for T x p)

Accuracy (%)

O

Good Weak Hyp. (%)

Execution Time (s)

ionosphere (average results for weak hypotheses)

S
1000 04

1 04

1 01
1000 0.1
100G 0.7
100 1

1 07
1600 1
60 07

Alpha
10671 & 01630
1.1216 £ 03114
0.4958 £ 01591
03264 4 0.0796
1.5799 4+ 0.1750
18900 £ 01794
1.1784 + 0 3786
1.9310 £ 0.1766
1.5795 + 0.1797

Error Rate (%) Support Vectors {%0)

0.54% == 0.05%
0 25% £ 0.14%
0.64% o+ 0.14%
0.89% =+ 0.05%
0.38% o= 0.04%
4.31% + 0.04%
025% + 0.18%
0.31% = 0 03%
0.38% £ 0.04%

44.54% 4= 1.15%
59.62% = 4 97%
18.96% + 4.14%
18.45% + 0 28%
52.22% £ 2.08%
59.85% & 2.32%
8377 £ 4 11%
55.00% =+ 2. 66%
56.15% £ 2.23%

Norm
46,2627 4 5.3174
45.5418 £ 4 5944
17 6444 £ 3.3787
213414 £ 15254
54 4694 £ 72754
597365 + 8 5230
562518 £ 5.9302
58.6703 + B.4915
557310 4 7.3713

100 0.4

1.0533 £ 0.1722 0.53% = 0.05%

46.15% - 1.72%

46.1658 - 5.0677

100 €1

15223 4 0.4575
0.5059 & 0.4605

0.16% =+ 0.20%
0.89% : 0.05%

103 96% + 5.04%
17.66% % 4.0%%

65.7660 x 7 7057
19.3986 & 5.7353

207

Table A.5: (continued)

jonosphere (weak hypotheses’ average result graphs for T’ x p)

Alpha

Error Rate {%)

(%)

Support Vectors

Norm

ionosphere (experiment histogram for parameter setup that yielded best results)

‘Md

Accuracy (%): 94.72%

+ 2.74%

aaad

Good Wealk Hyp. (%):
98.60% + 1.69%

oo B o B
Execution Time (s):
2.21s+0.02s

musk (average results for strong hypotheses)

T p
1000 04
1 04
1 01
1000 0.3
1000 0.7
10 1
I 07

Accuracy (%)
93.01% = 0.00%
81.82% x 0.00%
66.43% % 0.00%
$0.21% = 0.00%
93 .01% -+ 0.00%
89.51% £ 0.00%
64.34% = 0.00%

93.40% =+ 0.00%
100.00% £ 0.00%
100.00% = 0.00%
85.40% + 0.00%
98.00% + 0.06%
99 00% % 0.00%
100.G0% == ¢.00%

Good Weak Hypotheses (%) Execution Time (s)

70995+ 000s
024s+£000s
02154+ 0005
18585+ 0005
119155 000s
166350005
02750005

10600 1

93.71% £ 0.00%

98.60% =+ 0.00%

165835 £ 0.00s

100 07
100 04

160 0.1

91 61% = 4.60%
91.61% & 0.00%
72.73% % 0.00%
83.92% + 0.00%

97.00% =+ 0.00%
95.00% & 0.00%
100.00% = 0.00%
84.00% + 0.00%

11865+ 000s
7105+ 0.00s
03050005
19650005

208

Table A.5: (continued)

musk (strong hypotheses’ average result graphs for T' x g}

Accuracy (%)

Good Weak Hyp. (%)

Execution Time (s)

musk (average results for weak hypotheses)

T p
1000 0.4
1 04
1 01
1000 0.1
1000 07
100 1
1 07

Alpha
0.2789 £ 0.0000
0.7475 £ 0.0000
0.2355 -+ 0.0000
0.0758 £ 0.0080
05213 & 00600
0.7538 :£ 0.6000
0.4966 4 0.0000

Error Rate (%) Support Vectors (%)

0.90% =+ & 00%
0.43% =+ 0.00%
0.90% 4 0.00%
1.08% 4 0.00%
0.75% = 0.00%
0.61% £ 0 00%
0.63% = 0.00%

48.79% # 0.00%
56.64% = 0.00%
24.48% + 0.00%
19.10% + 0.00%
59.71% & 0.00%
71.66% # 0.00%
86.01% & 0.00%

Norm
137.1992 + 0.0G00
1247623 1+ 0.0000
49.8657 & 0.0000
493051 &+ 0.0000
196.4148 + 0.00G0
240.0581 4 0 0000
174.6977 % 0.0000

1000 1

0.7185 - £.0000 0.64% = 0.00%

65.10% = 0.00%

240.7219 + 0.0000

100 97
100 0.4
1 1
100 01

0.5107 :& 0.0000
0.2726 £ 0.0000
04850 = 0.0060
0.1215 £ 00600

0.73% = 0.00%
0.89% = 0.00%
0.64% £ 0 00%
1.01% £ 0 00%

65.64% £ 4 00%
53.38% + 0.00%
108.39% + 0 00%
19.04% :x 0.00%

musk (weak hypotheses” average result graphs for T' x p)

Alpha

Exror Rate (%)

Support Vectors
(%)

190.0569 £ 0.0000
1335983 £ 0.0000
200.8528 £ 6.00C0
48.2714 = 0.0000

Norm

musk (experiment histogram for parameter setup that yielded best results)

Accuracy (%): 93.71%

£ 0.00%

Good Weak Hyp. (%):
98.60% + 0.00%

Execution
165835+ 0.00s

{s):

Time

209

Table A.5: (continued)

pgs (average results for strong hypotheses)

T p Accuracy (%) Good Weak Hypotheses (%) Execution Time (s}
1000 0.4 | 82.50% <4 5.96% 97.38% =+ 0.53% 361510035
1 04 68.44% = B.78% 100.00% =+ 0.00% 003530005
1 01 58.75% + 8.12% 160.00% =+ 0.00% 0035+ 0.00s
1000 01 | 73.75% 4 11.11% 21.31% % 9.69% 02954 0115
1000 0.7 B2 19% 4 5.42% 98 97% =+ 0.48% 587s£007s
00 1 81.25% = 5.76% 99.20% + 0.87% 08350015
1 07 | 6719% £ 13.78% 100 60% + 0.00% 0045+ 0005
1000 1 82 19% + 5.24% 99.62% = 0.21% 7005+010s
60 o7 B81.25% -+ 4 84% 98.90% £ 1.14% 0625 00Ls
100 04 81 88% & 5.90% 96.80% £ 0.75% 0395+ 00053
1 1 70.62% £ 9.50% 100.00% = 0.00% 004540005
00 01 | 7469% £ 12 14% 55.60% & 27.22% 00954£ 0035

pgs (strong hypotheses’ average result graphs for 7' x p)

Accuracy (%)

|

s
b=

Good Weak Hyp. (%)

Execution Time (s)

pgs {average results for weak hypotheses)

T p Alpha Error Rate (%) Support Vectors (%) Norm
1000 0.4 | 0.5830 &= 0,0280 0.76% £ 0.02% 62.97% + 1.13% 157.0038 £ 3.5178
1 04 0.7154 & 02287 047% & 0.16% 79.06% £ 9.06% 1922077 £ 268090
1 ot 0.3441 4 0.1223 0.78% = 013% 2094% & 753% 567272 £ 19.2485
1000 0.1 6.4323 £ 12721 036% = 013% 496% % 2.44% 13.2543 & 67645
1000 Q.7 05571 00376 059% +0.02% 79.51% +£262% 2004554 4 511325
10 1 1.2399 4 0 0B00 048% + 003% 91.80% < 280% 2297050 £ 6.5868
167 0.8077 £ 02815 0.42% + 0.18% 126 88% £ 10.57% 2731393 & 321228
1064 1 12817 4 0.0533 0.48% & 0.02% 87.43% £ 348% 227 6176 X 6.8444
100 07 09604 £ 0.0545 0.58% = 0.02% 82.97% £ 253% 202.8808 X 4.6124
100 04 05856+ 00368 0.75% = 003% 6543% £ 107% 1597154 £ 3.6292
1 1 1.0588 +: 03315 0.29% + 0.17% 155.62% £ 8.00% 318.4731 £ 26,9838
100 0.1 33580 £ 3.2776 0.65% £ 0.32% 13.31% 4 7.59% 37.7040 £ 21.7812

210

Table A.5: (continued)

pgs (weak hypotheses’ average result graphs for T' x p)

Alpha

Error Rate (%)

(%)

Support Vectors

Norm

pes (experiment histogram for parameter setup that yielded best results)

]

Lol o
Good Weak Hyp. (%):

97.38% 4 0.53%

+ 5.96%

T
| |
LM
Execution
3.615+0.03s

Time

{s):

pid (average results for strong hypotheses)

T »
1000 04

1 ¢4

1 01
1000 0.1

Accuracy (%)
75.54% £ 2.96%
68 31% £ 713%
49.91% + 32 85%
75.11% £ 3.91%

56.96% &= 1.66%
100.00% = 0.00%
70.00% £ 45 83%
57.87% = 171%

Good Weak Hypotheses (%) Execution Time (s)

649450845
0.06s £ 0015
0035%£001s
1671s£010s

1000 0.7

76.19% -+ 2.28%

58.64% -+ 1.33%

117755 £ 0.77 s

100 1
1 07
1000 1
100 07
100 04
1 1
100 0.1

76.02% £ 3 29%
54 37% = 27.65%
75.76% + 2.50%
75.50% % 3.40%
75.15% £ 2.79%
65.84% £ 6.47%
75.85% & 2 63%

63.70% £ 5.29%
80.00% =+ 40.00%
58 04% -+ 1.66%
62 00% == 5.48%
65.30% £ 6.25%
100.00% £ 0.00%
65.70% = 6 89%

170554+ 0.13 s
00950025

1739754 1.06s

1161540225
64850105
0135001s
1.74s £ 0.03s

211

Table A.5: {continued)

pid (strong hypotheses’ average result graphs for T x p)

e

g

Accuracy (%)

Good Weak Hyp. (%)

Execution Time (5)

pid (average results for weak hypotheses)

T »p
1000 04
1 04
1 01
1060 6.1

Alpha
0.0063 + 0.0014
04013 :£ 0.1326
0.2544 £ 0.2656
{.0066 £ 0.0012

Error Rate (%) Support Vectors {%)

1.15%0 = 0.01%
0.73% =% 0.14%
0.89% = 0.29%
1.16% + 0.01%

47.30% %= 0.33%
30.78% % 5.31%
10.09% £ 2.40%
13.66% o= 0.06%

Norm
15319.8160 - 611.4799
16836 7296 3= 11858 6247
6158.9744 = 2854 5066
10498.3356 4 488 9582

1000 0.7

0.0071 &£ 0.0012 1.15% == 0.01%

74.81% £ 0.71%

15668.5442 4 901.9672

160 1
1 47
1000 1
100 0.7
190 0.4
1 1
100 01

€.0243 £ 0.0044
0.2366 + 02309
0.6073 & 0.0013
0.0224 = 00079
0.0247 £ 0.0050
0.3544 £ 01755
0.0238 4 0.0068

1.11% «# 0.03%
0.90% =+ 0.26%
1.15% £ 0 01%
113% & 0.03%
1.14% + 0.02%
0.78% = 0.18%
1.15% 4 0.03%

96.93% o 1.20%
53.85% + 8.14%
96.86% + 1.08%
74.73% £ 1.00%
46.93% = 0.55%
72.99% + 8.25%
13.65% = 0.16%

pid (weak hypotheses’ average result graphs for 7' x p)

Alpha

Error Rate (%)

Support Vectors

(%)

16413 2624 + 1544 0768
22051.8993 &k 7432 4476
15837 137¢ £ 980.2540
16160.8262 4 16142331
15355 8154 = 1233 8818
192269023 4 7579.6699
9899.9923 £ 1033.5808

Norm

pid (experiment histogram for parameter setup that vielded best results)

.

Accuracy (%): 76.19%

+ 2.28%

g

Good Weak Hyp. (%):
58.64% + 1.33%

i

M&& _E[

Execution
117.755 4+ 0.77 s

Time

(3):

212

Table A.5: {continued)

ringnorm (average results for strong hypotheses)

T p Accuracy (%) Good Weak Hypotheses (%) Execution Time (s}
1000 04 97.83% 4 0.48% 90.03% = 0.68% 1682554 2,685
1 04 74.73% £ 6 95% 160.00% = 0.00% 01850015
1 01 | 59.87% £ 21.62% 90.00% £ 30.00%: 011s5&£001s
1004 0.1 96.57% =k 1.17% 83.11% = 0.81% 44,155 £ 0.39s
1000 0.7 | 97.90% = 0.56% 93.58% £ 1.11% 283.865 4+ 3.70s
100 1 97.77% £ 0.54% 96.40% = 1.20% 38955+ 039
1 o7 82.63% 4 8.13% 100.00% = 0.60% 02550025
1060 % 97.77% 4 0.45% 95.49% + 0.56% 395.035% 3865
163 07 97.50% £+ 0.56% 93.40% 3 2.94% 27815+ 0225
160 04 97.67% + 0.70% 92.90% = 2.43% 1603540155
1 i 85.70% =+ 3.89% 100 00% 4= 0 G0% 03150025
163 0.1 94.53% 4 1.25% 86.30% £ 5.31% 40750125

ringnorm (strong hypotheses’ average result graphs for T' X p)

LB

Accuracy (%)

Good Weak Hyp. (%)

Execution Time (s)

ringnorm (average results for weak hypotheses)

T p Alpha Error Rate (%} Support Vectors (%) Norm
1000 0.4 0.1650 = 0.0067 0.88% £ 001% 2724% £ 089% 16365402 £ 23 8021
LI X 0574601722 0.57% £ 0.14% 42.30% 4 4.57% 1B09 5296 1641390
1 01 03611 £ 02115 0.78% £ 022% 1447% £ 2.79% 790.3080 = 183.2613
1000 0.1 0.0808 £ 0.0021 1.03% 4 0.00% 16.15% & 0.09% 801.6084 4+ 13.7746
1000 0.7 | 0.2636 = 0.0176 0.74% = 0.02% 26.68% = 0.87% 2950.4370 % 64.8932
00 1 0.4293 £ 0.0401 0.57% = 0.02% 38.13% 4 2.04% 4646 6654 + 157 6675
1 97 | 08352202642 040% £ 01%% 6453% £ 6.31% 2724 1871 £ 2520926
1000 1 0.3640 4: 0.0248 0.63% £ 002% 2615% £+ 1.14% 44420614 & 61.017%
100 0.7 | 03370:£00320 0.67% £ 002% 3895% £ 197% 3140.2346 + 93.106¢
100 0.4 0.2536 £ 0.0182 0.81%::002% 3725%:091% 18827090 + 26 2398
1 i 1.0079 £ 0.1640 0.28% £ 0.08% 78.03% = 5.24% 3483.0452 £ 314.1620
100 0.3 0.1295 4 0.0163 0.96% £ 0.01% 1586% + 0.34% 793.0031 £ 24.3473

213

Table A.5: (continued)

ringnorm (weak hypotheses’ average result graphs for T' x p)

Alpha

Error Rate (%)

(%)

Support Vectors

ringnorm (experiment histogram for parameter setup that yielded best results)

Accura;:y (86): 97.90%

+ 0.56%

LL

Good Weak Hyp. (%):
93.58% + 1.11%

Execution Time
283.86s5 4+ 3.70s

(s):

spect’ (average results for strong hypotheses)

T o Accuracy (%) Good Weak Hypotheses (%) Execution Time (s}
1000 04 77.27% £ 1.10% 23.92% + 4.47% 0BOs4 0115
1 04 | 7471%£872% 100.00% = 0.00% 0025+ 0005
1 @1 | 6754% 4 23.28% 90.00% + 30.00% 0025:£001s
100001 | 76.50% X 239% 9.03% + 6.06% 023540075
1000 07 | 7807% £ 129% 35.35% = 7.74% 148540255
100 1 77.22% 4 1.38% 78.00% =+ 3.44% 048540025
1 07 | 71.18% £ 25.66% ©0.00% + 30.00% 002s£000s
1000 1 77.11% = 1.17% 48.80% + 10.22% 2475+ 0425
100 0.7 | 7754% % 1.82% 79.,40% + 3.04% 039540025
100 04 | 77.59% % 1.73% 80.70% + 4.03% 0.295+000s
i1 77.70% £ 7.76% 140.00% <= 0.00% 0025+ 000s
100 0.1 | 78.50% d: 3.31% 37.10% £ 30.70% 00750045

214

Table A.5: (contnued)

spect? (strong hypotheses’ average result graphs for T' x p)

Accuracy (%)

-

Good Weak Hyp. (%)

Execution Time (s)

spectb (average results for weak hypotheses)

T »p
1000 0.4
1 04
1 01
1006 0.1
1000 07
100 1
T a7
1060 1
100 07
163 04
1 i

Alpha
6.6327 £ 0.7211
0.7284 £ 0.1971
1.6313 % 2.7978
8.6890 £ 0.7570
4.7381 4 1.1878
0.1371 4 0.0060
0.6987 4 0.3602
2.5923 £ 1.6515
0.1463 £ 0.0075
.1580 -4 0.0084
0.9369 + 0.1388

Error Rate (%) Support Vectors (%)

0.06% * 0.02%
0.08% =+ 0.03%
0.08% + 0.04%
0.02% * 0.01%
0.10% £ 0.02%
0.13% £ 0.01%
0.09% + 0.06%
0.14% 4+ 0.63%
0.14% £+ 0.01%
0.14% + 0.01%
0.06% & 0.01%

1.60% == 0.23%
6.79% = 1.55%
267% & 1.37%
0.3%% & 0.24%
2.45% - 0.41%
831% = 0.42%
9.36% £ 1.71%
3.55% £ 0.58%
7.71% = 0.36%
6.91% -+ 0 30%
10.91% £ 1.99%

Nerm

248 6708 4 31,1880
491.3032 £ 1609955
236.7345 £ 134 2792

52,9425 4= 39 0435
397.3476 + 64 8678
1320.3503 £ 139 4509
691.4671 + 239.8080
590.8645 £ 107.3047
1163.3804 - 86.8304
933.5958 & 42.6099
790.1033 £ 166.0420

100 0.3

5.2834 + 3.7111 0.08% - G.06%

1.48% - 1.32%

188.5656 £ 183.4684

spect® (weak hypotheses’ average result graphs for T' x p)

Alpha

Error Rate (%)

Support Vectors
(%)

spect’ (experiment histogram for parameter setup that yielded best results)

[

1
L&LJ

Accuracy (%): 78.50%

* 3.31%

Good Weak Hyp. (%):
37.10% =+ 30.70%

Execution Time
0075 +0.045

215

(s):

Table A.5: (continued)

spect” (average results for strong hypotheses)

T s
1000 04
1 04
1 01
1000 0.1
1000 07
1 1
1 07
1000 1
100 07
100 04
1 1

Accuracy (%)
82 45% -+ 0.59%
71.86% £ 10.26%
55.28% + 14.19%
81.41% £ 2.14%
B2.16% £ 0.47%
81.93% £ 0.48%
74.72% % 8.03%
81 .93% 0.30%
82.68% + 0.91%
82 45% £ 1.23%
80.30% £ 3.89%

97.37% =+ 0 50%
100 00% & 0.00%
100.00% =+ 0.00%
14 52% 4 17 73%
98.72% + 0.40%
98.80% £+ 1.17%
100.00% = 0.00%
95.32% + 021%
98 200 + 1 .04%
98.10% & 1.45%
100.00% = 0.00%

Goad Weak Hypotheses (%) Execution Time (8)

4955+ 0045
0045+ 001s
00450015
039s+0295
727540045
09650015
004s£000s
9.07s+0025
0785 001s
0545+ 001s
0.055 £ 0.00s

100 0.1

82.86% =+ 1.65%

73.530% + 20.48%

0.175+0.03s

spect” (strong hypotheses’ average result graphs for 7" x p)

Accuracy (%)

Good Weak Hyp. (%)

Execution Time (5)

spect” (average results for weak hypotheses)

Error Rate (%) Support Vectors (%)

Norm

0.10% + 0.00%
0.06% £ 0.02%
0.10% + 0.03%
002% + 0.03%
0.08% = 0.00%
0.07% + 0.00%
0 05% £ 0.01%
0.07% + 0.00%
0.08% £ 0.00%
0.10% =+ 0.00%
0.03% £ 0.01%

7.98% x 0.04%
10.04% £ 1.39%
2.68% £ 1.25%
0.46% =+ 0.60%
10.31% £ 0.07%
11.73% + 0.20%
14.68% £ 1 01%
11.34% + 0 04%
10.60% £ 0.10%
820% + 0.12%
17 81% £ 0.90%

254390 & 0.2526
274857 4 3.4553
8.9356 4- 3.8840
1.6392 & 2. 1909
32.6020 4 0.2625
37.1265 4 0.5761
359601 & 63936
370048 + 0.2002
32.7737 £ 0.6784
25,4231 4 0.6332
42.9081 £ 4.9925

T p Alpha
1000 04 0.5585 £ 0 0053

1 64 0.6570 4= £.1527

1 61 0.3565 £ 4.19%4
1000 G.1 8.2835 £+ 2.1615
10600 67 0.9134 & 00124
100 1 1.2124 3 00298

1 67 | 08591401278
6o 1 1.2181 £ 00137
100 oY 0.9026 4 4.0395
160 04 0.5738 £ 0.0258

1 1 1.1201 + 0.1350
160 0.1

1.4782 - 2.4815 0.11% - 0.03%

2.41% £ 0.70%

8.6834 - 2.4882

216

Table A.5: (continued)

spect” (weak hypotheses’ average result graphs for T’ x p)

Alpha

Error Rate (%)

(%)

Support Vectors

P iy =

L

Norm

spect” (experiment histogram for parameter setup that yielded best results)

|
lad

Accuracy (%): 82.86%

+ 1.65%

Good Weak Hyp. (%):
73.50% 4 20.48%

Execudon Time
0.1754+0.035s

(s):

spiral® (average results for strong hypotheses)

T »p Accuracy (%) Good Weak Hypotheses (%) Execution Time (s)
1009 0.4 | 55.67% % 0.00% 76.60% £ 5.00% 1904850005
1 04! 51.67% £ 0.00% 100.00% + 0.00% 037540003
1 01 16 67% + 0.00% 1060.00% + 0.00% 008540005

1000 01 [51.67% + 000% 12 80% =+ 0.00% 49154+ 0005
1000 07 | 57.67% & 0.00% 75.00% =+ 0.00% 2769550005
100 1 57.33% £ 0.00% 81.60% 4 0.00% 5427540005
1 0.7 | 54.33% 4 0.00% 100.00% = 0.00% 0.635+0.00s
10600 1 62.67% 4= 0.00% 74.60% £ 0.00% 353.345 £ 0.00s
100 97 | 56.33% % 0.00% 80.00% £ 5.00% 42.765+ 0005
160 04 § 55.00% £ 0.00% 86.00% -+ 0.00% 30.39s5 £ 0005
1 1 54.00% £ 0.00% 100.00% & 0.00% 09254+ 0005
100 01 | 51.33% 4 0.00% 28.00% =+ 0.06% 14354+ 0005

217

Table A.5: (continued)

spiral® (strong hypotheses’ average result graphs for T x p)

Accuracy (%)

Good Weak Hyp. (%)

Execution Time (s)

spiral’ (average results for weak hypotheses)

T p Alpha Error Rate (%) Support Vectors {96} Norm
1000 9.4 } 0.0397 + 0.0000 1.08% = 0.00% 23.77% £ 0.00% 1362938 4 0.0000
1 €41 03934+00000 0.73% £ 0.00% 79.33% £+ 0.00% 2153430 4 00000
1 01} 04512400000 0.67% 4 0.00% 19.00% 4 0.00% 57.3780 = 0.000¢
1000 0.1 | 8.9019 £ 00000 0.05% = 0.00% 0.68% =% 0.00% 1.8481 & 0.0000
1000 0.7 § 00302400000 1.08%:£000% 2633%£000% 1628743 X 0.0000
100 1 0.1961 4 0.0000 0.93% + 0.00% 65.82% 4 0.00% 3144157 = 0.0000
1 47 0.6370:£ 00000 0.51% + 0.00% 133.33% :: 0.00% 331.0681 & 0.0000
1600 1 0.0269 4 0.0000 1.08% - 0.00% 28.25% == 0.00% 184.7546 4 0.0000
100 6.7} 0.2023 £ 0.0000 0.94% + 0.00% 61.83% =+ 0.00% 3585158 0.0000
100 0.4 ; 02520100000 094% 4 000% 56.99% 4 000% 232.3269 & 00000
1 1 0.8291 £ 0.0000 0.37% £ 0.00% 171.00% £ 0.00% 418.1260 =+ ¢.C000
100 0.1 ; 74077 00000 0.17%::000% 3.01% % 0.00% B.4547 % 0.0600

spiral® (weak hypotheses’ average result graphs for 7' x p)

Alpha

Error Rate (%)

Support Vectors
(%)

Norm

spiral® (experiment histogram for parameter setup that yielded best results)

Accuracy (%): 62.67%

+ 0.00%

Good Weak Hyp. (%):
74.60% =+ 0.00%

Execution Time
353.345+0.00s

(s):

218

Table A.5: (continued)

spiral® (average results for strong hypotheses)

T »p Accuracy (%) Good Weak Hypotheses (%) Execution Time (s)
1000 G4 | 53.33% £ 0.00% 98.70% X 0 80% 36175540005
1 04 | 49.67% £ 0.00% 100 00% x 0.00% 03750005
1 01 | 53.00% +000% 1043.G0% =+ 0.00% 008s5+000s
1000 @1 | 49.33% X 000% 17.40% - 0.00% B.73s+£000s
1000 07 | 54.00% £ 0.00% 99.40% £ 0 00% 643.46 54 0005
0 1 54.00% = 0.00% 100.00% % 0.00% 91.065-+0.005
1 07 | 49.00% £ 0.00% 100.00% £ 0.00% 0.69s£000s
1000 1 54.33% = 0.00% 99.70% = 0.00% 907.12s £ 0005
100 0.7 | 54.67% - 0.00% 100.00% % 0.00% 64.385+0.00s
100 64 | 53.67% & 0.00% 96.00% = 0.00% 35735+ 000s
1 1 52.33% + 0.00% 100 00% £ 0.00% 0.96s5:£000s
100 01 | 48.67% £ 000% 95,00% = 0.00% 811540005

spiral’ (strong hypotheses’ average result graphs for T' x p)

Accuracy {%)

Good Weak Hyp. (%)

Execution Time (5)

spiral! (average results for weak hypotheses)

T p Alpha Error Rate (%) Support Vectors (%) Norm
1000 04 05318 £ 00000 0B83% £ 000% 75.69% 1+ 000% 1844239 + 0.0000
1 04 033164 00000 079% £000% B8267% £000% 2173890 4 0.0000
1 01 01139 4 0.0000 1.04% £ 0.00% 19.33% £ 0.00% 56.9593 & 0.0000
1300 0.1 82328 4+ 0.0000 0.13% £ 0.00% 1.56% < 0.00% 4.1945 + 0.0000
1000 0.7 0.8370 £ 00000 0.71% £ 0.00% 111.65% = 0.00% 248.7970 = 0.0000
100 1 1.1471 £ 0.0000 059% 4 000% 13273% £ 000% 288.9575 4 0.0000
i 07 04034 £ 0.0000 0.72% £+ 0.00% 13733% = 000% 3567749 £ 0.0000
1000 1 11241 £ 0.0000 0.61% £ 0.00% 131.13% 4 0.00% 284.7723 4 0.0600
100G 0.7 | 0.8555 - 0.0000 0.69% - 0.00% 112.66% 4 0.00% 252.2809 - 0.0000
100 G4 0.5099 4 0.0000 0.83% £ 000% 75.77% £ 0.00% 185.6105 = 0.0600
1 1 0.6799 £ 0.0000 048% +0.00% 174.00% £ 0008 446.7588 % 0.0000
100 0.1 0.8152 :£ G.0000 0.88% % 0.00% 18.74% £ 0.00% 50.9288 4- 0.0000

219

Table A.5: {(continued)

spiral! (weak hypotheses’ average result graphs for T x p)

T
k)

S b

Error Rate (%) Norm

Alpha

(%)

spiral' (experiment histogram for parameter setup that yielded best results)

Accuracy (%): 54.67%
+ 0.00%

Good Weak Hyp. (9%):
100.00% =+ 0.00%

Execution Time (s):
64.38s4+000s

spiral® (average results for strong hypotheses)

T p Accuracy (%) Good Weak Hypotheses (%) Execution Time (s}
1600 &4 1533% + 0.60% 0.30% =+ 0.00% 303520005
1 04 4.00% + 0.00% 0.00% <+ 0.00% 00850005
1 a1 3.00% =+ 0.00% 100.60% -+ 0.00% 003540005
1000 @ 1 9.67% - 0.00% 0.20% = 0.00% 226540005
1000 07 48.33% & 0.00% 0.90% == 0.00% 448540005
100 1 11.00% 4 0.00% 4.00% = §.00% 079540005
1 07 48.67% = 0.00% 100.00% + 0.00% 0135+ 0005
1000 1 50.67% £ 0.00% 0.60% £ 0.00% 471540005
100 0.7 | 51.00% =+ 0.00% 8.00% = 0.00% 1.24 5 0.00 s
100 04 13.67% =+ 0.00% 2.00% £ 0.00% 043s£000s
I 1 0.00% 4 0.00% 100.00% £ 0 G0% 0175+ 000s
100 01 16.67% 2 0.00% 2.00% & 0.00% 028s54+000s

220

Table A.5: (continued)

spiral? (strong hypotheses’ average result graphs for T x p)

Accuracy (%)

Good Weak Hyp. (%)

Executon Time {s)

spiral? (average results for weak hypotheses)

T p
1000 0.4
1 D4
1 a1
1000 &1
1000 9.7
100 1
1 a7
1000 1

Alpha
9.9642 & 6.0000
-0.0057 4 6.0000
1.5850 = 0.0000
9.9828 = 0.0060
9.8952 £ 0.0000
9 5658 - 0.0000
0.0029 = 6.0000
9.9379 4 6.0000

Error Rate (%) Support Vectors (96)

0.00% + 0.00%
1.17% =% 0.00%
0.09% = 0.00%
0.00% + 0.00%
0.01% <= 0.00%
0.02% =+ 0.00%
1.16% 0.00%
0.00% 4= 0.00%

0.01% + 0.00%
4.00% + 0.00%
1.33% = 0.00%
0.60% £ 0.00%
0.02% =+ 0.00%
0.11% = 0.00%
6.00% =& 0.00%
0.01% &+ 0.00%

Norm
2013265920 £ 0.0000
0.0000 = 4.0000
67108864.0000 4 0.0000
67108 8640 & 0.0000
BG8220 9280 £ 0.0000
20132659200 £ 0.0000
-536870912 0000 £+ 0.0000
201326.5920 + 0.0000

100 0.7

8.9389 4 0.0000 0.09% - 0.00%

0.31% & 0.00%

-3061841.9200 = 0.0000

100 04
1 1
100 0.3

5.724% £ 0.0000
0.0000 % 0.0000
% 8306 £ 0.0000

0.02% & 0.00%
1.17% £ 3 60%
0.00% + 0.00%

0.07% =+ G 60%
6.67% & 0 00%
0.03% = G.00%

335544.3200 £ 0.0000
-536870912.GC00 + 0.0000
1677721.6000 = 0.0000

spiral® (weak hypotheses’ average result graphs for T’ x p)

Alpha

Error Rate {(9%)

Support Vectors

(%)

Norm

spiral® (experiment histogram for parameter setup that yielded best results)

Accuracy (%); 51.00%

+ 0.00%

Good Weak Hyp. (%):
8.00% 4 0.00%

Execution Time

{5):
1245+ 0005

221

Table A.5: (contnued)

twonorm (average results for strong hypotheses)

T p Accuracy (%) Good Weak Hypotheses (%) Execution Time (s}
1000 0.4 96.57% - 0.88% 72.00% £ 3.90% 163.08s% 1415
1 04 92.63% £ 3.70% 100.00% = 0.00% 01154+ 001s
i 0t 92.13% & 4.73% 100.00% = 0.00% 010540005
1060 0.1 | 96.67% X 0.80% 74.16% = 2.89% 46.225 £ 0.16 5
1000 07 96.63% = 0.67% 67.80% £ 5.38% 269665+ 3295
00 1 96.40% + 0 71% 72.10% £ 4.61% 37155+ 0555
1 07 95.70% & 1.71% 100 £0% £ 0.00% 01250015
000 1 56.40% 4= 0.70% 63.15% = 7.08% 3783355335
100 o7 86.57% = 0.70% 74.70% % 7 40% 26655402053
100 0.4 96.53% == 0.75% 77.90% * 5.19% 15835+ 0.145
1 1 94.03% % 4 50% 100.00% £ 0.60% 013s5+001s
100 61 96.53% =+ 0.83% 81.80% =+ 4.02% 45250005

twonorm (strong hypotheses’ average result graphs for T° x p)

Accuracy (%) Good Weak Hyp. (%) Execution Time (s)

twonorm (average results for weak hypotheses)

T p Alpha Error Rate (%} Support Vectors (%) Norm
1060 0.4 60892 £ 00270 062% & 0.14% 1580% = 1.91% 1445673.0968 £ 305136 4598
1 04 13832 £03075 016% = 0.11% 13.83% =1.92% 1122470.1938 : 141998.1300
1 a1 13248 4 ¢.3210 0.18% £ 0.12% 7.67% = 0.83% 708846.6875 4+ 107073.9679
1000 6.1 | 0.0899 - 0.0139 0.77% £ 0.07% 11.42% - 0.47% 1266186.5258 = 51405.4585
1000 0.7 | 0079400324 057% £ 0.15% 17.20% & 2.25% 724257 8457 £+ 801863.5204
100 1 0.1443 £ 00436 0.44% £ 0.12% 2262% £ 3.30% 962667.9181 + 1259685 71690
107 15974 £ 0.1257 0.09% £ 0.02% 17.87% = 221% 1433305.0500 4 248860.7809
1000 1 00609 £ 00368 052% £ 015% 17.65% = 2.79% -1023976.2484 + 1544557 6291
100 07 | 0.1548 £0.0625 050% £ 0.14% 2045% = 284% 1926126 4553 -+ 924236.0700
100 04 G.1651 00399 049% £ 0.12% 1793% = 1.86% 1773930.9557 + 348593 2286
1 1 1.6129 £ 0.3951 0.12%::0.12% 2057% = 260% 15096744250 & 199655.5714
160 01 0.1676 £ 0.0176 0.64% £ 0.06% 11.59% % 0.31% 1337570.7937 & 75393.9190

222

Table A.5: (continued)

twonorm (weak hypotheses’ average result graphs for T x p)

Alpha

Error Rate (%)

(%)

Support Vectors

Norm

twonorm (experiment histogram for parameter setup that yielded best results)

|

A

Accuracy (%): 96.67%

+ 0.80%

..L.

Execution

Time

Good Weak Hyp. (%):

74.16% + 2.89%

46225+ 0.163

{(s):

wdbce (average results for strong hypotheses)

T p Accuracy (%) Good Weak Hypotheses (%) Execution Time (5)
1000 0.4 02.75% + 3 01% 63.32% £ 1.79% 44885+ 0513
1 04 B4.27% £ 7 92% 100.60% < 0.60% 008s5+00Ls
1 01 | 77.43% 26.06% 20.00% o 30.00% 0.07s4+:00Ls
1000 0.1 90.58% + 4 76% 64.72% + 1.52% 106250105
1000 0.7 | 94.04% - 1.47% 64.82% £ 2.51% 80.045 + 097 s
100 1 93.45% & 1.79% 74.90% + 2.77% 108854 0165
1 07 84.15% * 9.88% 100.00% £ 0.00% 0075+:000s
1000 1 93 68% 3 1.61% 64.03% & 2 14% 1314265+ 1995
100 07 92 92% £+ 2.02% 74.00% + 4.98% 76650195
100 04 92.98% £ 1.46% 76.10% + 5.07% 433540125
1 1 86.78% £ 6.768% 100.00% 4 0.00% 008540015
160 0.1 92.22% £+ 2.04% 72.90% 4 4.95% 1.10s:: 0035

223

Table A.5: (continued)

wdbe (strong hypotheses’ average result graphs for T' x p)

Accuracy (%)

Good Weak Hyp. (%)

Execution Time (g)

wdbce (average results for weak hypotheses)

T »p
1000 04

1 04

1 01
1000 0.1

Alpha
0.0313 £ 0.0058
09276 + 0.2510
0.8442 £ 0.4636
.0295 £ 0.0046

Error Rate (%) Support Vectors (%)

105% £+ 0.03%
0.34% = 0 16%
0.43% £ 0.41%
1.10% + 0.02%

20.78% + 1.67%
11.17% & 3.49%
5.32% = 2.62%
11.89% + 0.20%

Norm
79027766 £ 1434 3142
807.7315 + 450.7589
331 .8B46 £ 457.1778
3873.2360 4 726.3830

1000 0.7

0.0349 4- 0.0078 1.03% - 0.02%

37.95% =+ 3.158%

9670.5489 -+ 2251.5711

100 t
1 07
1000 &
100 07
100 04
1 1
100 @1

wdbce (weak hypotheses’ average result graphs for 7' x p)

Alpha

01059 4 0.0112
0.9618 + 0.2825
0.0350 & 0.0060
0.0996 - 0 0151
0.1058 & 0.0154
0.9783 & 0.2424
0.0869 £ 0.0112

Error Rate (%)

0.92% & 0 05%
0.33% £ 0.1%%
1.02% & 0.03%
0.93% = 0.06%
0.95% : 0.04%
0.31% £ 0.13%
1.04% + 0.05%

53.48% <& 3.01%
17.84% + 7.11%
43.56% + 3.31%
44.04% + 1.95%
32.67% = 1.25%
19.82% £ 8.01%
11.74% £+ 0.26%

Support Vectors

(%)

10031.3235 % 1867.9671
1632 4078 & 1307.2061
116751315 £+ 1895.1237
77428310 = 1146.5808
5690.3505 & 8475184
2322.5590 + 1694.9120
2426.9400 + 256 2254

Norm

wdbe (experiment histogram for parameter setup that yielded best results)

Accuracy (%): 94.04%

+ 1.47%

R e

Good Weak Hyp. (%):
64.82% £ 2.51%

!
E_mmﬁ.mii
Execution Time

80.045+0.97s

(s):

224

Table A.5: (continued)

wpbc (average results for sirong hypotheses)

T » Accuracy (%) Good Weak Hypotheses (%) Execution Time (s)
1600 0.4 | 77.67% =+ 5.39% 61.84% 4 1.12% 501540045
1 04 | 48.67% % 24 9%% 80.00% =+ 40.00% 003s5x£000s
1 01 | 35.00% % 30.06% 60.00% % 48.99% 0025+001s
1060 0.1 76.17% = 5 58% 58 56% =+ 1.83% 13954+ 0025
1000 0.7 76.00% £ 4.36% 62.94% = 1.42% BB5s+007s
160 1 73.00% £ 632% 70.70% = 4 47% 1.31s:£002s
1 07 | 3733% £ 31.97% 60.00% £ 48.99% 0035+ 000s
1060 1 76.67% + 5.63% 63.66% * 1.15% 129854+ 0085
100 67 74.67% + 6,.05% 69.10% =+ 4.68% 080s+002s
100 G4 7317% 4 524% 66.80% £ 510% 0525+ 0.01s
1 1 58 00% &= 29.25% 806.00% = 40.00% 003s:001s
108 61 74.67% £ 6.57% 63.10% % 4.57% 0165+ 001s

wpbc (strong hypotheses’ average result graphs for T' x p)

Accuracy (%)

S [
m—l

Good Weak Hyp. (%)

Execution Time (5)

wpbe (average results for weak hypotheses)

T »p Alpha Error Rate (%) Support Vectors (%) Norm
1000 0.4 | 00177 4 0.0023 1.15% 4 0.02% 47.36% 42 0.38% 869.4542 -+ 124.7982
1 04 0211202214 092% £ 0.24% 37.33% -k 6.72% 282.6220 £ 2127706
1 01 00269 £+ 02295 112% £ 0.25% 10.50% £ 3.95% 125.6832 & 118 4744
1000 0.1 0.0113 4 0.002% 116% £ 0.01% 14.34% =+ 0.22% 301.9640 4 24 5781
1000 0.7 00214 00020 1.14% £ 0.01% 71.75% £ 1.36% 11513634 4+ 157.1380
100 1 0.0466 £ 0.0104 112% 4 002% 94.39% £+ 1 84% 12472487 & 266.5689
107 0.1234 £0.2732 102204+ 029% 6150% £ 1007% 465 3461 & 164 5376
1000 1 0.0229 £ 0.0020 1.13% £0.01% 89.75% % 2.48% 14627027 £ 2261739
100 07 00460 £ 0.0094 111% 4 0.02% 73.82% % 197% 990.8765 X 1566613
100 04 0.0382 £0.0070 1.15% £ 0.02% 47.87% 4 0.80% 667.6229 4 100.2174
1 1 03776 £ 03176 0.76% £+ 0.33% 84.00% £ 883% 9497512 4 7159812
00 01 0.0276 + 0.0070 1.15% 4 0.04% 14.33% = 0.59% 2460793 & 36.4175

225

Table A.5: (continued)

wpbe (weak hypotheses’ average result graphs for T' x p)

Support Vectors
(%)

Alpha Error Rate (%) Norm

wpbc (experiment histogram for parameter setup that yielded best results)

Accuracy (%): 77.67% | Good Weak Hyp. (%): | Execution Time (s):
4 5.39% 61.84% + 1.12% 5015300458

226

Appendix B

Notes on Performance Measures

All experiments conducted in this work were executed in two identical server ma-
chines based on the Intel architecture. These machines were each powered by an
Intel Pentium IV processor running at 2.0 GHz, 1.5 Gb of Double Data Rate (DDR)
SDRAM memory on a bus running at 333 MHz, and a Seagate Barracuda ATA IV 80
Gb hard disk.

Each machine was installed with Linux distribution Red Hat version 7.3,
where we used the Linux kernel version 2.4.18-3 originally shipped during all exper-
iments. Time measurements were based on the kernel’s instrumentation interface
that returns the amount of processing time that user processes get from the ma-
chine’s processor. Accesses to this interface was performed via the GNU bash — the
Bourne Again Shell - utility times, where we used GNU bash version 2.05a.0(1)-
release. Testing frameworks for all experiments were implemented using this ver-
sion of the GNU bash and the GNU perl interpreter version 5.6.1. All algorithms
were compiled with gcc ~ the GNU C Compiler - version 3.2, using dynamically-
linked C library (libc) version 6.2.2.

227

[AAQ2]

[ABBGO]

[ABBO1la)]

[ABBO1b]

[ASS99]

[ASS00]

[AW8E9]

[Bar98]

Bibliography

A. B. M. Shawkat Ali and Ajith Abraham. An empirical comparison of
kernel selection for support vector machines. Technical report, Monash
University, 2002.

M. B. Almeida, A. P Braga, and J. R Braga. SVM-KM: speeding SVMs
learning with a priori cluster selection and k-means. In Proceedings
of the VIth Brazilian Symposium on Neural Networks. IEEE Computer
Society Press, November 2000.

M. B. Almeida, A. R Braga, and J. P Braga. Training SVMs with EDR
Algorithm. International Journal of Neural Systems, 11(3):257-263,
2001,

M. B. Almeida, A. P Braga, and J. P Braga. Uma introducdo a sup-
port vector machines. Technical report, Departamentos de Engenharia
Eletronica e Quimica da Universidade Federal de Minas Gerais, 2001.

S. Abney, R. E. Schapire, and Y. Singer. Boosting applied to tagging and
pp attachment. In Proceedings of the Joint SIGDAT Conference on Em-
pirical Methods in Natural Language Processing and Very Large Corpora,
1999,

E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to
binary: A unifying approach for margin classifiers. Journal of Machine
Learning Research, 1:113-141, 2000.

S. Amari and S. Wu. Improving support vector machine classifiers by
modifying kernel functions. Europhysics Letters, 10:687-692, 1989.

P L. Bartlett. The sample complexity of pattern classification with neu-
ral networks: the size of the weights is more important than the size of
the network. IEEE Transactions on Information Theory, 44(2):525-536,
March 1998.

228

[BGLt99]

{BH89]

[BLCOO]

[BM98]

[BMM99]

[Bre94]

[Bre96]

[BS592]

[Bur98]

[Cac94]

[CBFH*93]

[CDH*00]

M. B 8. Brown, W, N. Grundy, D. Lin, N. Cristianini, C. Sugnet, Jr.
M. Ares, and D. Haussler. Support vector machine classification of mi-
croarray gene expression data. Technical report, University of Califor-
nia, Santa Cruz, 1999,

E. B. Baum and D. Haussler What size net gives valid generalization?
Advances in Neural Information Processing Systems, 1:81~90, 1989.

A. P Braga, T. B. Ludermir, and A. E Carvalho. Redes Neurais Artificiais:
Teoria e Aplicagdes. LTC, 2000.

C. L. Blake and C. J. Merz. UCI repository of machine learning
databases, 1998.

P S. Bradley, O. L. Mangasarian, and D. R. Musicant. Optimization
methods in massive datasets. Technical report, University of Wisconsin
in Madison, 1999.

Leo Breiman. Bagging predictors. Technical report, University of Cali-
fornia at Berkeley, 1994,

Leo Breiman. Bias, variance and arcing classifiers. Technical report,
University of California at Berkeley, April 1996.

M. §. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear Programming:
Theory and Algorithms. John Wiley, second edition, 1992.

Christopher J. C. Burges. A tutorial on support vector machines for
pattern recognition. Data Mining and Knowledge Discovery, 2(2):121~
167, 1998.

Christian Cachin. Pedagogical pattern selection strategies. Neural Net-
works, 7(1):175-181, 1994.

N. Cesa-Bianchi, Y. Freund, D. P Helmbold, D. Haussler, and R. E.
Schapire. How to use expert advice. In Proceedings of the Twenty-Fifth
Annual ACM Symposium on the Theory of Computing, pages 382-391,
May 1993.

J. Cai, A. Dayanik, N, Hasan, T. Terauchi, and H. Yu. Supervised ma-
chine learning algorithms for classification of cancer tissue types using
microarray gene expression data. Technical report, Columbia Univer-
sity, 2000.

229

[Chu94]

[CKB87]

{CS500]

[CSTOO]

{CSTC98]

[DB95]

[DHS01]

[Die00]

[DLLP97]

[DPHS98]

[D5593]

T H. Chung. Approximate methods for sequential decision making us-
ing expert advice. In Proceedings of the Seventh Annual ACM Symposium
on Computational Learning Theory, pages 183-189, 1994.

G. Cestnik, 1. Konenenko, and 1. Bratko. Assistant-86: A knowledge-
elicitation tool for sophisticated users. Progress in Machine Learning,
pages 31-45, 1987.

M. Collins, R. E. Schapire, and Y. Singer. Logistic regression, AdaBoost
and bregman distances. In Proceedings of the Thirteenth Annual Confer-
ence on Computational Learning Theory, 2000.

Nello Cristianini and John Shawe-Taylor. An Introduction to Support
Vector Machines and other kernel-based learning methods. Cambridge
University Press, 2000.

N. Cristianini, J. Shawe-Taylor, and C. Campbell. Dynamically adapting
kernels in support vector machines. Advances in Neural Information
Processing Systems, 11, 1998.

T G. Dietterich and G. Bakiri. Solving multiclass learning problems via
error-correcting output codes. Journal of Artificial Intelligence Research,
2:263~286, January 1995,

Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classifica-
tion. John Wiley & Sons, Inc., 2001.

T. G. Dietterich. An experimental comparison of three methods for
constructing ensembles of decision trees: Bagging, boosting, and ran-
domization. Machine Learning, 40(2):139-158, 2000.

Thomas G. Dietterich, Richard H. Lathrop, and Tomas Lozano-Perez.
Solving the multiple instance problem with axis-parallel rectangles. Ar-
tificial Intelligence, 89(1-2):31-71, 1997.

S. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive learning
algorithms and representations for text categorization. In 7th Interna-
tional Conference on Information and Knowledge Management, 1998.

H. Drucker, R. Schapire, and P Simard. Boosting performance in neurat
networks. [International Journal of Pattern Recognition and Artificial
Intelligence, 7:705 - 719, 1993,

230

[EEQO]

[F1§598]

[FLO1]

[Fle87]

[FMSO01}

[Fre95]

[F595]

[F596a]

[FS96b]

[FS97]

[F§99a]

[FS99b]

Shmuel Etin and Uri Elias. Parallelizing SMO for solving SVMs. Tech-
nical report, Technion - Israel Institute of Technology, 2000.

Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting
algorithm for combining preferences. In Proceedings of the 15th Inter-
national Conference on Machine Learning, 1998.

Gary W. Flake and Steve Lawrence. Efficient SVM regression training
with SMO. Machine Learning, 2001.

R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, Inc.,
second edition, 1987.

Y. Freund, Y. Mansour, and R. E. Schapire. Why averaging classifiers can
protect against overfitting. In Proceedings of the Eighth International
Workshop on Artificial Intelligence and Statistics, 2001.

Y. Freund. Boosting a weak learning algorithm by majority. Information
and Computation, 2(121):256-285, September 1995.

Y. Freund and R, E. Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. In Proceedings of the
Second European Conference on Computational Learning Theory. LNCS,
March 1995.

Y. Freund and R. E. Schapire. Experiments with a new boosting algo-
rithm. In Proceedings of the 13th International Conference on Machine
Learning, pages 148-146. Morgan Kaufmann, 1996.

Y. Freund and R. E. Schapire. Game theory, on-line prediction and
boosting. [n Proceedings of the 9th Annual Conference on Computer
Learning Theory, pages 325-332, ACM Press, New York, NY, 1996.

Y. Freund and R. E. Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of Computer
and System Sciences, 55(1):119-139, August 1997.

Y. Freund and R. E. Schapire. Adaptive game playing using multiplica-
tive weights. Games and Economic Behaviour, 29:79-103, 1999.

Y. Freund and R. E. Schapire. A short introduction to boosting. Journal
of Japanese Society for Artificial Intelligence, 14(5):771-780, September
1999. Appearing in Japanese, translation by Naocki Abe.

231

[FSSW97]

[Han99]

[Hau99]

[Hay94]

[Heb49]
MKIWG1]

[HKW95]

[Hop82]

[HR87]

{ILS*00]

[JH98]

[JH99]

Y. Freund, R. E. Schapire, Y. Singer, and M. K. Warmuth. Using and
combining predictors that specialize. In Proceedings of the Twenty-Ninth
Annual ACM Symposium on Theory of Computing, pages 334343, El
Paso, Texas, 4-6 1997.

Christian Hansen. The l-curve and its use in the numerical treatment of
inverse problems. Technical report, Technical University of Denmark,
1999.

D. Haussler. Convelution kernels on discrete structures. Technical re-
port, University of California in Santa Cruz, July 1999.

Simon Haykin. Neural Networks: A Comprehensive Foundation. Macmil-
lan College Publishing Company, Inc., 866 Third Avenue, New York,
New York 10022, 1994.

D. O. Hebb. The Organization of Behavior. Wiley, 1949.

D. Haussler, M. Kearns, N. Littlestone, and M. K. Warmuth. Equivalence
of models for polynormial learnability. Information and Computation,
95(2):129-161, December 1991.

D. Haussler, J. Kivinen, and M. K. Warmuth. Tight worst-case loss
bounds for predicting with expert advice. In Proceedings of the Second
European Conference on Computational Learning Theory, 1995.

J. J. Hopfield. Neural networks and physical systems with emergent
collective properties. In Proceedings of the National Acaderny of Sciences,
79, pages 2554-2558, 1982.

C. Harley and R. Reynolds. Analysis of e. coli promoter sequences.
Nucleic Acids Research, 15:2343-2361, 1987.

R. D. Iyer, D. D. Lewis, R. E. Schapire, Y. Singer, and A. Singhal. Boost-
ing for document routing. In Proceedings of the Ninth International
Conference on Information and Knowledge Management, 2000,

T. S. Jaalkkola and D. Haussler. Exploiting generative models in discrim-
inative classifiers. Advances in Neural Information Processing Systems,
11, 1998.

T. S. Jaakkola and D. Haussler. Probabilistic kernel regression models.
In Proceedings of the 1999 Conference on Al and Statistics, 1999,

232

[Joa98a}

[Joa98b]

[KA0O]

[KCT+01]

[KKO01]

[Kv94]

[KWo4]

iLee00]

[LWo4]

[MM98]

[MM99]

T. Joachims. Making large-scale SVM learning practicall In
B. Scholkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in
Kernel Methods - Support Vector Learning, chapter 11. MIT Press, 1998.

T. Joachims. Text categorization with support vector machines. In
Proceedings of European Conference on Machine Learning (ECML), 1998.

C. Kaynak and E. Alpaydin. Multistage cascading of multiple classifiers:
One man’s noise is another man’s data. In Proceedings of the Seventeenth
International Conference on Machine Learning, pages 455—462. Morgan
Kaufrann, 2000.

L. A. Kurgan, K. J. Cios, R. Tadeusiewicz, M. Ogiela, and L. S. Gooden-
day. Knowledge discovery approach to automated cardiac spect diag-
nosis. Artificial Intelligence in Medicine, 23(2):149-169, October 2001.

Michihiro Kuramochi and George Karypis. Gene classification using
expression profiles: A feasibility study. In IEEE International Conference
on Bioinformatics and Biomedical Egineering, pages 191200, 2001.

M. Kearns and L. G. Valiant. Cryptographic limitations on learning
boolean formulae and finite automata. Journal of the ACM, 41(1):67~
95, 1994,

J. Kivinen and M. K. Warmuth. Using experts for predicting continuous
outcomes. In Computational Learning Theory: EuroCOLT 93, pages
109-120, 1994.

Yuh-Jye Lee. Smooth support vector machines. Technical report, Uni-
versity of Wisconsin, 2000.

N. Littlestone and M. K. Warmuth. The weighted majority algorithm.
Information and Computation, 108:212-261, 1994.

0. L. Mangasarian and D. R. Musicant, Successive overrelaxation for
support vector machines. Technical report, University of Wisconsin in
Madison, 1998.

O. L. Mangasarian and D. R. Musicant. Successive overrelaxation
for support vector machines. IEEE Transactions on Neural Networks,
10:1032-1037, 1999.

233

[MP43]

[MP69]

[MSW95]

[(Mun92]

[OC89]

[OFG97]

[O'N89]

[ORMOO]

[Pla98a]

[Pla98b]

{Por98]

[PV98]

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent
in nervous activity. Bulletin of Mathematical Biophysics, 5:115-133,
1943.

M. Minsky and S. Papert. Perceptrons: an introduction to computational
geometry. MIT Press, 1969,

O. L. Mangasarian, W. N. Street, and W. H. Wolberg. Breast cancer
diagnosis and prognosis via linear programming. Operations Research,
43(4):570-577, July-August 1995,

B W. Munro. Repeat until bored: A pattern selection strategy. Advances
in neural information processing systems, 4:1001-1008, 1992.

M. C, O'Neill and E Chiafari. Escherichia coli promoters. ii. a spacing-
class dependent promoter search protocol. Journal of Biological Chem-
istry, 264:5531-5534, 1989.

E. Osuna, R. Freund, and F Girosi. An improved training algorithm for
support vector machines. In J. Principe, L. Gile, N. Morgan, and E. Wil-
son, editors, Neural Networks for Signal Processing VII — Proceedings of
the 1997 IEEE Workshop, pages 276-285. IEEE, 1997.

M. O'Neill. Escherichia coli promoters: Consensus as it relates to spac-
ing class specificity, repeat substructure, and threedimensional organi-
zation. Journal of Biological Chemistry, 264:5522-5530, 1989,

Takashi Onoda, Gunnar Ritsch, and Klaus-Robert Muller. Applying
support vector machines and boosting to a non-intrusive monitoring
system for household electric appliances with inverters. In Proceedings
of Neural Computing 2000, 2000.

John C. Platt. Fast Training of Support Vector Machines using Sequential
Minimal Optimization. MIT Press, 1998.

John C. Platt. Sequential minimal optimization: a fast algorithm for
training support vector machines. Technical report, Microsoft Research,
1998.

Noah Porter, editor. Webster’s Revised Unabridged Dictionary. C. &
G. Merriam Co., 1998.

Massimiliano Pontil and Alessandro Verri. Properties of support vector
machines. Neural Computation, 10:955-974, 1998.

234

[Quif2]

[RHW86]

{RMR99]

[RMSMO2]

[RN95]

{Ros58]

[Rdt01]

[RTR*01]

[RZHOZ]

[Sch90]

[Sch92]

[Sch97]

J. Ross Quinlan. C4.5: Programs for Machine Learning. The Morgan
Kaufmann Series in Machine Learning. Morgan Kaufmann, October
1692.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning represen-
tations by back-propagating errors. Nature, 323:533-536, 1986.

Greg Ridgeway, David Madigan, and Thomas Richardson. Boosting
methodology for regression problems. Technical report, University of
Washington, 1999.

Gunnar Rétsch, Sebastian Mika, Bernhard Schélkopf, and Klaus-Robert
Miiller. Constructing boosting algorithms from SVMs: An application
to one-class classification. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24(9), September 2002,

S. Russell and B Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 1995.

E Rosenblatt. The perceptron: A probabilistic model for information
storage and organization in the brain. Psychol. Rev., 65:386-408, 1958.

Gunnar Rétsch. Robust Boosting via Convex Optimization: Theory
and Applications. PhD thesis, Mathematisch-Naturwissenschaftlichen
Fakultdt, 2001.

5. Ramaswamy, P Tamayo, R. Rifkin, S. Mukherjee, C. H. Yeang, M. An-
gelo, C. Ladd, M. Reich, E. Latulippe, J. B Mesirov, T. Poggio, W. Gerald,
M. Loda, E. S. Lander, , and T. R. Golub. Multiclass cancer diagnosis
using tumor gene expression signatures. PNAS, 98(26):15149-15154,
2001,

S. Rosset, J. Zu, and T. Hastie. Boosting as regularized path to a maxi-
mum margin classifier. Technical report, Stanford University, 2002.

R. E. Schapire. The strength of weak learnability. Machine Learning,
5(2):197-227, 1990.

R. E. Schapire. The Design and Analysis of Efficient Learning Algorithms.
MIT Press, 1992,

R. E. Schapire. Using output codes to boost multiclass learning prob-
lems. In Machine Learning: Proceedings of the Fourteenth International
Conference, pages 313-321, 1997,

235

[Sch99a]

[Sch99b]

[Sch99c]

[SchO1]

[Sch02]

[SEDT88]

[SFBLI7]

[SFBL98]

[SMW95]

{S598]

[5599]

R. E. Schapire. A brief introduction to boosting. In Proceedings of the
Sixteenth International Joint Conference on Artificial Intelligence, 1999.

R. E. Schapire. Theoretical views of boosting. In Computational Learn-
ing Theory: Fourth European Conference, EuroCOLT'99, 1999.

R. E. Schapire. Theoretical views of boosting and applications. In Tenth
International Conference on Algorithmic Learning Theory, 1999.

R. E. Schapire. Drifting games. Machine Learning, 2001. to appear.

R. E. Schapire. The boosting approach to machine learning: An
overview. In MSRI Workshop on Nonlinear Estimation and Classifica-
tion, 2002,

J. W. Smith, J. E. Everhart, W, C. Dickson, W. C. Knowler, and R. §.
Johannes. Using the adap learning algorithm to forecast the onset of
diabetes mellitus. In Proceedings of the Symposium on Computer Appli-
cations and Medical Care, pages 261-265. IEEE Computer Society Press,
1988,

R. E. Schapire, Y. Freund, P Bartlett, and W, S. Lee. Boosting the mar-
gin: a new explanation for the effectiveness of voting methods. In
Proceedings of the 14th International Conference on Machine Learning,
pages 322-330. Morgan Kaufmann, 1997.

R. E. Schapire, Y. Freund, P Bartlett, and W. S. Lee. Boosting the mar-
gin: A new explanation for the effectiveness of voting methods. The
Annals of Statistics, 26(5):1651~1686, October 1998,

W.N. Street, O. L. Mangasarian, and W H. Wolberg, An inductive learn-
ing approach to prognostic prediction. In Proceedings of the Twelfth In-
ternational Conference on Machine Learning, pages 522-530. Morgan
Kaufmann, 1995.

R. E. Schapire and Y. Singer. Improved boosting algorithms using
confidence-rated predictions. In Proceedings of the Eleventh Annual Con-
ference on Computational Learning Theory, pages 80-91, 1998.

R. E. Schapire and Y. Singer. Improved boosting algorithms using
confidence-rated predictions. Machine Learning, 37(3):297-336, De-
cember 1999.

236

[§500]

[S5598]

[Ser86]

[SWHB89]

[TBTS00]

[TBTSO1]

[Tei01]

[TSN9O]

[Valg84]

[Vap82]

[Vap95]

R. E. Schapire and Y. Singer. BoosTexter: A boosting-based system for
text categorization. Machine Learning, 39(2/3):135-168, May/June
2000.

R. E. Schapire, Y. Singer, and A. Singhal. Boosting and Rocchio ap-
plied to text filtering. In Proceedings of the 21st Annual International
Conference on Research and Development in Information Retrieval, 1998.

Gilbert Strang. Introduction to Applied Mathematics. Wellesley-
Cambridge Press, 1986.

V. G. Sigillito, S. B Wing, L. V. Hutton, and K. B. Baker. Classification
of radar returns from the ionosphere using neural networks. Johns
Hopkins APL Technical Digest, 10:262~266, 1989.

R. Teixeira, A. B Braga, R. H. C. Takahashi, and R. R. Saldanha. Im-
proving generalization of mlps with multi-objective optimization. Neu-
rocomputing, 35(1-4}, 2000.

R. Teixeira, A. P Braga, R. H. C. Takahashi, and R. R. Saldanha. Recent
advances in the mobj algorithm for training artificial neural networks.
International Journal of Neural Systems, 11(3), 2001.

R. Teixeira. Treinamento de redes neurais artificiais através de otimizagdo
multi-objetivo: uma nova abordagem para o equilibrio entre a polariza-
¢fo a varidncia. PhD thesis, Programa de Pds-Graduagio em Engen-
haria Elétrica, 2001.

G. Towell, J. Shavlik, and M. Noordewier. Refinement of approximate
domain theories by knowledge-based artificial neural networks. In
Proceedings of the Eighth National Conference on Artificial Intelligence
(AAAI-90}, 1990.

L. G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134-1142, November 1984.

V. N. Vapnik. Estimation of Dependencies Based on Empirical Data.
Springer-Verlag, New York, 1982.

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,
New York, 1995.

237

[VC71]

fVovo0]

[Wat99a]

[Wat99b]

[Wat99c]

[WD81]

[WH60]

[WM90]

[Zha92]

V. N. Vapnik and A. J. Chervonenkis. On the uniform convergence of
relative frequencies of events to their probabilities. Theory of Probabil-
ity and its Applications, 16(2):264-280, 1971.

V. G. Vovk. Aggregating strategies. In Proceedings of the Third Annual
Workshop on Computational Learning Theory, pages 371-383, 1990,

C. Watkins. Dynamic alignment kernels. Technical report, University
of London, January 1999,

C. Watkins. Dynamic alignment kernels. In A. J. Smola, P Bartlett,
B. Scholkopf, and C. Schuurmans, editors, Advances in Large Margin
Classifiers. MIT Press, 1999,

C. Watkins. Kemnels from matching operations. Technical report, Uni-
versity of London, July 1999,

R. 5. Wenocur and R. M. Dudley. Some special vapnik-chervonenkis
classes. Discrete Mathematics, 33:313-318, 1981.

B. Widrow and M. E. Hoff. Adaptive switching circuits. In Institute of
Radio Engineers, Western Electronic Show and Convention, 1960.

W. H. Wolberg and O. L. Mangasarian. Multisurface method of pattern
separation for medical diagnosis applied to breast cytology. In Proceed-
ings of the National Academy of Sciences, pages 9193-9196, 1990.

J. Zhang. Selecting typical instances in instance-based learning. In Pro-
ceedings of the Ninth International Machine Learning Conference, pages
470-479. Morgan Kaufmann, 1992.

238

