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Abstract

A new approach is presented for the detection and inference of irregularly shaped spatial clusters, using a genetic algorithm.
Given a map divided into regions with corresponding populations at risk and cases, the graph-related operations are minimized by
means of a fast offspring generation and efficient evaluation of Kuldorff’s spatial scan statistic. A penalty function based on the
geometric non-compactness concept is employed to avoid excessive irregularity of cluster geometric shape. The algorithm is an
order of magnitude faster and exhibits less variance compared to the simulated annealing scan, and is more flexible than the elliptic
scan. It has about the same power of detection as the simulated annealing scan for mildly irregular clusters and is superior for the
very irregular ones. An application to breast cancer clusters in Brazil is discussed.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Methods for the detection and evaluation of the statistical significance of spatial clusters are important geographic
tools in epidemiology, disease surveillance and crime analysis. Their fundamental role in the elucidation of the etiology
of diseases (Lawson et al., 1999; Heffernan et al., 2004; Andrade et al., 2004), the availability of reliable alarms for
the detection of intentional and non-intentional infectious diseases outbreaks (Duczmal and Buckeridge, 2005, 2006;
Kulldorff et al., 2006, 2007) and the analysis of spatial patterns of criminal activities (Ceccato, 2005) are current topics
of intense research. The spatial scan statistic (Kulldorff, 1997) and the program SatScan (Kulldorff, 1999) are now
widely used by health services to detect disease clusters with circular geometric shape. Contrasting to the naïve statistic
of the relative count of cases, the scan statistic is less prone to the random variations of cases in small populations.
Although the circular scan approach sweeps completely the configuration space of circularly shaped clusters, in many
situations we would like to recognize spatial clusters in a much more general geometric setting. Kulldorff et al. (2006)
extended the SatScan approach to detect elliptic shaped clusters. It is important to note that for both circular and elliptic
scans there is a need to impose size limits for the clusters; this requisite is even more demanding for the other irregularly
shaped cluster detectors.
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Other methods, also using the scan statistic, were proposed recently to detect connected clusters of irregular shape
(Duczmal and Assunção, 2004; Duczmal et al., 2006; Iyengar, 2004; Tango and Takahashi, 2005; Assunção et al., 2006;
Neill et al., 2007). Patil and Taillie (2004) used the relative incidence cases count for the objective function. Conley
et al. (2005) proposed a genetic algorithm to explore a configuration space of multiple agglomerations of ellipses;
Sahajpal et al. (2004) also used a genetic algorithm to find clusters shaped as intersections of circles of different sizes
and centers.

Two kinds of maps could be employed. The point data set approach assigns one point in the map for each case and
for each non-case individual. This approach is interested in finding, among all the allowed geometric shape candidates
defined within a specific strategy, the one that encloses the highest ratio of cases vs. non-cases, thus defining the
most likely cluster. The second approach assumes that a map is divided into M regions, with total population N and
C total cases. Defining the zone z as any set of connected regions, the objective is finding, among all the possible
zones, which one maximizes a certain statistic, thus defining it as the most likely cluster. Although the first approach
has higher precision of population distribution at small scales, the second approach is more appropriate when detailed
addresses are not available. The genetic algorithms proposed by Conley et al. (2005) and Sahajpal et al. (2004), and also
Iyengar (2004) used the point data set methodology.

The ideas discussed in this paper derived from the previous work on the simulated annealing scan (Duczmal and
Assunção, 2004; Duczmal et al., 2006). That algorithm finds a sub-optimal solution trying to analyze only the most
promising connected subsets of regions of the map, thus discarding most configurations that seem to have a low value
for the scan likelihood ratio statistic. The initial explorations start from many and widely separated points in the
configuration space, and concentrates the search more thoroughly around the configurations that show some increase in
the scan statistic (the objective function). Thus we expect that the probability of overlooking a very high valued solution
is small, and that this probability diminishes as the search goes on. Although the simulated annealing approach has
high flexibility, the algorithm may be very computer intensive in certain instances, and the computational effort may
not be predictable a priori for some maps. For example, the Belo Horizonte City homicide map analyzed in Duczmal
and Assunção (2004) presented a very sharply delineated irregular cluster that was relatively easy to detect, with the
relative risk inside the cluster much higher than the adjacent regions. This should be compared with the inconspicuous
irregular breast cancer cluster in the US Northeast map studied in Duczmal et al. (2006), which required more computer
time to be detected, also using the simulated annealing approach. Although statistically significant, that last cluster was
more difficult to detect due to the fact that the relative risk inside the cluster was just slightly above the remainder of the
map. Besides, the intrinsic variance of the value of the scan likelihood ratio statistic for the sub-optimal solutions found
at different runs of the program with the same input may be high, due to the high flexibility of the cluster instances that
are admissible in this methodology. This flexibility leads to a very high dimension of the admissible cluster set to be
searched, which in turn leads the simulated annealing algorithm to find sub-optimal solutions that can be quite different
in different runs. These issues are addressed in this paper. We describe and evaluate a new approach for a novel genetic
algorithm using a map divided into M regions, employing Kulldorff’s spatial scan statistic.

There is another important problem, common to all irregularly shaped cluster detectors: the scan statistic tries to
find the most likely cluster over the collection of all connected zones, irrespectively of shape. Due to the unlimited
geometric freedom of cluster shapes, this could lead to low power of cluster detection (Duczmal et al., 2006). This
happens because the best value of the objective function is likely to be associated with “tree shaped” clusters that merely
link the highest likelihood ratio cells of the map, without contributing to the appearance of geographically meaningful
solutions that delineate correctly the location of the true clusters. The first version of the simulated annealing method
(Duczmal and Assunção, 2004) controlled in part the amount of freedom of shape through a very simple device, limiting
the maximum number of regions that should constitute the cluster. Without limiting appropriately the size of the cluster,
there was an obvious tendency for the simulated annealing algorithm to produce much larger cluster solutions than the
real ones. Tango and Takahashi (2005) pointed out this weakness, when comparing the simulated annealing scan with
their flexible shape scan, which makes the complete enumeration of all sets within a circle that includes the k−1 nearest
neighbors. Nevertheless, the size limit feature mentioned above was not explored in their numerical comparisons, thus
impairing the comparative performance analysis of the algorithms. In Duczmal et al. (2006) a significant improvement
in shape control was developed, through the concept of geometric “non-compactness”, which was used as a penalty
function for the very irregularly shaped clusters, generalizing an idea that was used for the special case of ellipses
(Kulldorff et al., 2006). Finally, the method proposed by Conley et al. (2005) employed a tactic to “clean-up” the best
configuration found in order to simplify geometrically the cluster. It is not clear, though, how these simplifications
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impact the quality of the cluster shape, or how this could improve the precision of the geographic delineation of the
cluster.

Our goal is to develop and implement a novel genetic algorithm cluster detector that incorporates the desirable
features discussed above. It uses the spatial scan statistic in a map divided into a finite number of regions, offering a
strategy to control the irregularity of cluster shape, generalizing the strategy used in the elliptic scan, which controls
the shape in a more limited way. The algorithm provides a geometric representation of the cluster that makes easier
for a practitioner to soundly interpret the geographic meaning for the cluster found, and attains good solutions with
less intrinsic variance, with good power of detection, in less computer time. In Section 2, we review Kulldorff’s spatial
scan statistic and the non-compactness penalty function. The genetic algorithm is discussed in Section 3. The power
evaluations and numerical tests are described in Section 4. We present an application for breast cancer clusters in Brazil
in Section 5. We conclude with the final remarks in Section 6.

2. Scan statistics and the non-compactness penalty function

Given a map divided into M regions, with total population N and C total cases, let the zone Z be any set of connected
regions. Under the null hypothesis (there are no clusters in the map), the number of cases in each region follows a
Poisson distribution. Define L(Z) as the likelihood under the alternative hypothesis that there is a cluster in the zone
Z, and L0 the likelihood under the null-hypothesis. The zone Z with the maximum likelihood is defined as the most
likely cluster. If �Z is the expected number of cases inside the zone Z under the null hypothesis, cZ is the number of
cases inside Z, I (Z) = cZ/�Z is the relative incidence inside Z, O(Z) = (C − cZ)/(C − �Z) is the relative incidence
outside Z, it can be shown that

LR(Z) = L(Z)/L0 = I (Z)cZ O(Z)C−cZ ,

when I (Z) > 1, and 1 otherwise. The zone that constitutes the most likely cluster maximizes the likelihood ratio LR(Z)

(Kulldorff, 1997). LLR(Z) = log(LR(Z)) is used instead of LR(Z).
We will penalize the zones in the map that are highly irregularly shaped. Given a planar geometric object z, define A(z)

as the area of z and H(z) as the perimeter of the convex hull of z. Define the compactness of z is as K(z)=4�A(z)/H(z)2.
Compactness penalizes a shape that has small area compared to the area of its convex hull (Duczmal et al., 2006). The
strength of the compactness measure, employed here as a penalty factor, may be varied through a parameter a�0, using
the formula K(z)a , instead of K(z). The expression LR(z)K(z)a is employed in this general setting as the corrected
likelihood test function replacing LR(z). The penalty function works just because the compactness correction penalizes
very strongly those clusters which are even more irregularly shaped than the legitimate ones that we are looking for.

3. The genetic algorithm approach

We approach the problem of finding the most likely cluster by a genetic algorithm (GA) specifically designed for
dealing with this problem structure.

3.1. The general structure of the genetic algorithm

A GA is defined as any algorithm that is structured with a set of N current candidate-solution points (these points
are called individuals and the set of points is called population) that are evolved via the genetic operators (stochastic
rules that lead a current population in a next population). The basic genetic operators are the mutation operator
(which introduces random perturbations in some individuals), the crossover operator (which combines the features
of two individuals, generating two new ones) and the selection (which applies a probabilistic rule for deciding which
individuals will be selected for composing the new population, with greater chances assigned to the best individuals).
It is known that some GAs are much better than other ones, under the viewpoint of both reliability of solution and
computational cost for finding it (Takahashi et al., 2003). In particular, for problems of combinatorial nature, it has
been established that algorithms employing specific crossover and mutation operators can be much more efficient than
general-purpose GAs (Carrano et al., 2006). This is due to the fact that a “blind” crossover or mutation that would be
performed by a general-purpose operator would have a large probability of generating an unfeasible individual, since
most of combinations of variables are usually unfeasible. Specific operators are tailored in order to preserve feasibility,
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giving rise only to feasible individuals, by incorporating the specific rules that define the valid combinations of variables
in the specific problem under consideration.

3.2. The offspring generation

We shall now discuss the genetic algorithm developed here for cluster detection and inference. The core of the
algorithm is the routine that builds the offspring resultant from the crossing of two given parents. Each parent and each
offspring is thus a set of connected regions in the map, or zone. We should associate a node to each region in the map.
Two nodes are connected by an edge if the corresponding regions are neighbors in the map. In this manner, the whole
map is associated to a non-directed graph, consisting of nodes connected by edges. Given the non-disjoint parents A
and B, let C = A ∩ B, and D ⊆ C a randomly chosen maximal connected set. We shall now assign a level, that is, a
natural number to each of the nodes of the parent A. All the nodes in D are marked as level zero. Define the neighbors of
the set U in the set V as the nodes in V that are neighbors of some node belonging to U. Pick up randomly one neighbor
x1 of A0 = D, x1 ∈ A − A0, and assign the level 1 to it. Then pick up randomly one neighbor x2 of A1 = D ∪ {x1},
x2 ∈ A−A1, and assign the level 2 to it. At the step n, pick up randomly one neighbor xn of An−1 =D∪{x1, . . . , xn−1},
xn ∈ A − An−1, and assign the level n to it. In this fashion, choose the nodes x1, . . . , xm for all the m nodes of the set
A−D and assign levels to them. These m nodes, plus the virtual root node r, along with all the oriented edges (xj , xk),
where xk was chosen as the neighbor of xj in the step k(j < k), and the oriented edges (r, xk), where xk is a neighbor
of D, forms an oriented tree TA, with the following property:

Lemma 1. For each node xi ∈ A − D there is a path from the root node r to xi , consisting only of nodes from the set
{x1, . . . , xi−1}.

Proof. Follow the oriented path contained in the tree TA from r to xi . �
Note that the task of assigning levels to the nodes is not uniquely defined.
Repeat the construction above for the parent B and build the corresponding oriented tree TB , but at this time using

negative values −1, −2, −3, . . . for the levels, instead of 1, 2, 3, . . . (see the example in Fig. 1). If A − D and B − D

are non-disjoint, the nodes y ∈ C − D are assigned with levels from both trees TA and TB (refer to Fig. 1 again).

We now construct the offspring of the parents A and B as follows. Let mA �2 and mB �1 be, respectively, the
number of elements of the sets A−D and B −D, and suppose, without loss of generality, that mA �mB . The offspring
is formed by the mB + (mA − mB − 1) = mA − 1 ordered sets of nodes corresponding to the sequences of levels
(remembering that the level zero corresponds to the nodes of the set D):

mA − 1, . . . , 1, 0, −1,

mA − 2, . . . , 1, 0, −1, −2,

...

mA − mB, . . . , 1, 0, −1, −2, . . . ,−mB ,

mA − mB − 1, . . . , 1, 0, −1, −2, . . . ,−mB ,

...

2, 1, 0, −1, −2, . . . ,−mB ,

1, 0, −1, −2, . . . ,−mB .

If some sequence has two levels corresponding to the same node (it can happen only for the nodes in the set C −D),
then count this node only once. Every set in the offspring has no more than mA + mD nodes, where mD is the number
of nodes in D.

Lemma 2. All the sets in the offspring of the parents A and B are connected.
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Fig. 1. The parents A = {b, c, e, f, g, h, i, j, k, l} and B = {a, b, c, d, e} have a common part C = {b, c, e}. In this example we choose the maximal
connected set D = {b, c}. Observe that the node e, belonging to the set C − D, has both positive (7) and negative (−2) levels. The virtual root node
r is made collapsing the two nodes of D (represented by the ellipse), and forms the root of the trees TA (bottom left) and TB (bottom right).

Proof. Apply Lemma 1 to each node of each set in the offspring to check that there is a path from that node to the
set D. �

In the example of Fig. 1, the set C is non-connected and consequently the node e has double level assignment. The
successive construction of the ordered sets in the offspring requires a minimum of computational effort: from one set
to the next, we need only to add and/or remove a region, simplifying the computation of the total population and cases
for each set. Those totals are used to compute the spatial scan statistic. Besides, there is no need to check that each set
is connected, because of Lemma 2 (this checking alone accounted for 25% of the total computation time). Even more
important is the fact that the offspring is evenly distributed along an imaginary “segment” across the configuration
space, with the parents at the segment’s tips, making easier for the program to stay next to a good solution, which could
be investigated further by the next offspring generation.

3.3. The population evolution

The organization of the genetic algorithm is standard. We start with an initial population of Msets, or seeds, to be
stored in the current generation list. Each seed is built through an aggregation process: starting from each map cell at
a time, adjoin the neighbor cell that maximizes the likelihood ratio of the aggregate of cells adjoined so far, or exclude
an existing one (provided that it does not disconnect the cluster), if the gain in likelihood ratio is greater; continue until
a maximum number of cells is reached, or it is not possible to increase the likelihood of the current aggregate. In this
fashion, the initial population consists of M (not necessarily distinct) zones, in such a way that each one of the M cells
of the map becomes included in at least one zone.
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Fig. 2. A numerical experiment shows how the number of well-succeeded crossings per generation (wscMAX) affects the LLR gain. Each little
square, representing one generation, consists of the average of 5000 runs of the genetic algorithm. A total of 4000 well-succeeded crossings were
simulated for each run, for several values of wscMAX. In a given curve, with a fixed number of crossings per generation, the LLR value increases
rapidly at the beginning, slowing further in the next generations. The optimal value for wscMAX is 400, in this case. Had the total of well-succeeded
crossings been 1000, the optimal value of wscMAX should be 200, as may be seen placing a vertical line at the 1000 position.

We sort the current generation list in decreasing order by the LLR (modified as log(LR(z)K(z)a ) in Section 2),
and pick up randomly pairs of parent candidates. If the conditions for offspring generation are fulfilled, the offspring
is constructed and stored in an offspring list. This list is sorted in decreasing LLR order. The top 10% parents are
maintained in the M-sized new generation list, and the remaining 90% posts of the list are filled with the top offspring
population. At this step, mutation is introduced. We simply remove and add one random region at a small fraction of the
new generation list (checking for connectedness). Numerical experiments show that the effect of mutation is relatively
small (less than 0.1 in LLR gain for mutation rate up to 5%), and we adopt here 1% as the standard mutation rate.
After that, the current generation list is updated with the LLR-ordered new generation list. The process is repeated for
G generations.

We make at most tcMAX tentative crossings in order to produce wscMAX well-succeeded crossings (i.e., when
A ∩ B �= �) at each generation. The graph of Fig. 2 shows the results of numerical experiments. Each curve consists
of the average of 5000 runs of the algorithm, varying wscMAX and G such that wscTOTAL = wscMAX ∗ G, the total
number of well-succeeded crossings, remains equal to 4000. Smaller wscMAX values cause more frequent sorting
of the offspring, and also make the program to remove low LLR configurations faster. As a consequence, high LLR
offspring is quickly produced in the first generations, at the expense of the depletion of the potentially useful population
with lower LLR configurations. That depletion impacts the increase of the LLR on the later generations, because it is
more difficult now to find parents pairs that generate increasingly better offspring. Conversely, greater wscMAX values
causes less frequent sorting of the offspring, lowering the LLR increase a bit in the first generations, but maintains a
varied pool that produces interesting offspring, impacting less the LLR tax in the later generations. So, given the total
number of well-succeeded crossings that we are willing to simulate, wscTOTAL, we need to specify the optimal values
of wscMAX and G that produce the best average LLR increase. From the result of this experiment, we are tempted
to adopt the following strategy: allow smaller values of wscMAX for the first generations and then increase wscMAX
for the last generations. That will produce poor results, because once we remove the low LLR configurations early in
the process, there will not be much room for improvement by increasing wscMAX later, when the pool is relatively
depleted. Therefore, a fixed value of wscMAX is used.

4. Power and performance evaluation

In this section, we build the alternative cluster model for the execution of the power evaluations. We use the same
benchmark data set with real data population for the 245 counties Northeastern US map, with 11 simulated irregularly
shaped clusters, that has been used in Duczmal et al. (2006). Clusters A–E are mildly irregularly shaped, in contrast to
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Table 1
Power comparison between the genetic algorithm (GA) and the simulated annealing algorithm (SA), in parenthesis

Cluster Size Penalty GA (SA) [8] GA (SA) [12] GA (SA) [20] GA (SA) [30]

A 13 a = 0 0.84 (0.87) 0.84 (0.86) 0.79 (0.79) 0.68 (0.66)
a = 1 0.85 (0.86) 0.85 (0.86) 0.84 (0.84) 0.80 (0.79)

B 16 a = 0 0.81 (0.83) 0.82 (0.84) 0.80 (0.81) 0.74 (0.74)
a = 1 0.81 (0.78) 0.84 (0.84) 0.86 (0.86) 0.84 (0.83)

C 7 a = 0 0.87 (0.87) 0.86 (0.84) 0.82 (0.77) 0.72 (0.65)
a = 1 0.80 (0.79) 0.78 (0.79) 0.74 (0.74) 0.68 (0.65)

D 15 a = 0 0.88 (0.89) 0.89 (0.90) 0.87 (0.88) 0.81 (0.81)
a = 1 0.86 (0.85) 0.89 (0.89) 0.90 (0.90) 0.87 (0.87)

E 21 a = 0 0.83 (0.82) 0.86 (0.85) 0.87 (0.87) 0.84 (0.84)
a = 1 0.77 (0.72) 0.82 (0.81) 0.86 (0.86) 0.87 (0.85)

F 23 a = 0 0.54 (0.58) 0.58 (0.61) 0.57 (0.59) 0.50 (0.51)
a = 1 0.45 (0.44) 0.46 (0.45) 0.48 (0.46) 0.44 (0.44)

G 26 a = 0 0.58 (0.61) 0.62 (0.63) 0.66 (0.62) 0.68 (0.59)
a = 1 0.50 (0.49) 0.53 (0.52) 0.55 (0.52) 0.55 (0.50)

H 29 a = 0 0.66 (0.69) 0.67 (0.70) 0.70 (0.69) 0.69 (0.67)
a = 1 0.64 (0.62) 0.66 (0.67) 0.67 (0.67) 0.64 (0.64)

I 23 a = 0 0.66 (0.65) 0.71 (0.67) 0.74 (0.69) 0.71 (0.67)
a = 1 0.62 (0.59) 0.64 (0.64) 0.68 (0.66) 0.70 (0.65)

J 55 a = 0 0.58 (0.60) 0.64 (0.66) 0.69 (0.69) 0.72 (0.70)
a = 1 0.56 (0.54) 0.62 (0.63) 0.68 (0.67) 0.68 (0.67)

K 78 a = 0 0.53 (0.51) 0.61 (0.60) 0.69 (0.68) 0.75 (0.72)
a = 1 0.47 (0.43) 0.56 (0.55) 0.67 (0.66) 0.72 (0.71)

The non-compactness penalty correction parameter a was set to 1 (full correction) or 0 (no correction). The numbers in brackets indicate the maximum
allowed size for the most likely cluster found.

the very irregular clusters F–K . For each simulated data under these 11 artificial alternative hypotheses, 600 cases are
distributed randomly according to a Poisson model using a single cluster; we set a relative risk equal to one for every
cell outside the real cluster, and greater than one and identical in each cell within the cluster. The relative risks were
defined such that if the exact location of the real cluster was known in advance, the power to detect it should be 0.999
(Kulldorff et al., 2003). Table 1 displays the power results for the GA and SA scan statistics. For each upper limit of the
detected cluster size, with (a = 1) and without (a = 0) non-compactness penalty correction, 100,000 runs were done
under null hypothesis, plus 10,000 runs for each entry in the table, under the alternative hypothesis. The upper limit
sizes allowed were 8, 12, 20 and 30 regions, indicated in brackets in Table 1. The higher power values occur generally
when the maximum size allowed matches the true size of the simulated cluster.

The power values for the statistics analyzed here are very similar. The power performance was good, and approxi-
mately the same on both scan statistics for clusters A–E. The performance of the GA was somewhat better compared to
the SA algorithm for the remaining clusters F–K , although the power was reduced on both algorithms for those highly
irregular clusters. The GA performed generally slightly better for the highly irregular clusters I–K . For the clusters G

(size 26) and H (size 29) the GA performance was better when the maximum size was set to 20 and 30, and worse
when the maximum size was set to 8 and 12. For the clusters F and H , the GA performed generally slightly better
using the full compactness correction (a = 1) and worse otherwise (a = 0).

Numerical experiments show that the GA scan is approximately 10 times faster, compared to the SA scan presented
in Duczmal andAssunção (2004). For the GA, the typical running time for the cluster detection and the 999 Monte Carlo
replications in the 72 regions São Paulo State map of Section 5 and the 245 regions Northeast US were, respectively,
5 and 15 min with a Pentium 4 desktop PC. Using exactly the same input for 5000 runs for both the GA and SA scans,
calibrated to achieve the same LLR average solution values in the Northeast US map under null hypothesis, we have
verified that the GA sub-optimal solutions have about five times less LLR variance compared to the SA scan approach.

5. An application for breast cancer clusters

The genetic algorithm is applied for the study of clusters of high incidence of breast cancer in São Paulo State,
Brazil. The population at risk is 8,822,617, formed by the female population over 30-years old, adjusted for age
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Fig. 3. The clusters of high incidence of breast cancer in São Paulo State, Brazil, during the years 2000–2003, found by the genetic algorithm.
The map in Fig. 3A displays the relative incidence of cases in each region. The maps 3B, 3C and 3D show, respectively, the clusters with penalty
parameters a = 1, 0.5, and 0. The primary (right) and secondary (left) circular clusters found by SatScan are indicated by the two circles in Fig. 3D,
for comparison.

Table 2
The three clusters of Fig. 3B–D

Figure A Size Cases Population Incidence LLR p-value

3B 1.0 16 3324 394,294 0.00843 298.9 0.001
3C 0.5 16 3078 361,373 0.00852 343.8 0.001
3D 0.0 18 2924 346,024 0.00845 449.6 0.001

applying indirect standardization with 4 distinct 10 years age groups: 30–39, 40–49, 50–59, and 60+. In the 4 years
period 2000–2003, a total of 14,831 cases were observed. The São Paulo State map was divided into 72 regions. The
breast cancer data was obtained from Brazil’s Ministry of Health DATASUS homepage (www.datasus.gov.br) and
de Souza, 2005. Fig. 3A shows the relative incidence of cases for each region, where the darker shades indicate higher
incidence of cases. The other three maps (Fig. 3B–D) show, respectively, the clusters that were found using values
1.0, 0.5 and 0.0 for the parameter a, which controls the degree of geometric shape penalization. Using 999 Monte
Carlo replications of the null hypothesis, it was verified that all the clusters are statistically significant (p-values 0.001).
The maximum size allowed was 18 regions for all the clusters. Notice that when a = 1.0 the cluster is approximately
round, but with a hole, corresponding to a relatively low count region that was automatically deleted. As the value of
the parameter a decreases we observe the appearance of more irregularly shaped clusters. As more irregularly shaped
cluster candidates are allowed, due to the lower values of the parameter a, the LLR values for the most likely cluster
increase, as can be seen in Table 2. The case incidence is about the same in all the clusters, by Table 2. It is a matter of
the practitioner’s experience to decide which of those clusters is the most appropriate in order to delineate the “true”
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cluster. The cluster in Fig. 3B should be compared with the primary circular cluster that was found by SatScan (the
rightmost circle in Fig. 3D). It is also interesting to compare the cluster in Fig. 3D with the primary and secondary
circular clusters that were found by the circular SatScan algorithm (see the circles in Fig. 3D).

6. Conclusions

We described and evaluated a novel elitist genetic algorithm for the detection of spatial clusters, which uses the
spatial scan statistic in maps divided into finite numbers of regions. The offspring generation is very inexpensive and
the children zones are automatically connected, accounting for the higher speed of the genetic algorithm. Although
random mutations are computationally expensive, due to the necessity of checking the connectivity of zones, they are
executed relatively few times. Selection for the next generation is straightforward. All these factors contribute to a fast
convergence of the solution. The variance between different test runs is small.

The exploration of the configuration space was done without a priori restrictions to the shapes of the clusters,
employing a quantitative strategy to control its geometric irregularity. The power of detection is similar to the simulated
annealing algorithm for mildly irregular clusters and is slightly superior for the very irregular ones. The genetic algorithm
scan admits more flexibility in cluster shape than the elliptic and the circular scans, and its power of detection is only
slightly inferior compared to these scans. The genetic algorithm is more computer-intensive when compared to the
elliptic and the circular scans, but is faster than the simulated annealing scan. The use of penalty functions for the
irregularity of cluster’s shape enhances the flexibility of the algorithm and gives to the practitioner more insight of
the geographic cluster delineation. We believe that our study encourages further investigations for the use of genetic
algorithms for epidemiological studies and syndromic surveillance.
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