
Graduate Program in Electrical Engineering

S A M P L E S I Z E E S T I M AT I O N F O R

P O W E R A N D A C C U R A C Y I N T H E

E X P E R I M E N TA L C O M PA R I S O N O F

M E TA H E U R I S T I C S
�������� � ���������

2018

Universidade Federal de Minas Gerais
Graduate Program in Electrical Engineering

Thesis

Sample size estimation for power and accuracy in the experimental comparison of

metaheuristics

Fernanda C Takahashi

Supervisor: Prof. Dr. Felipe Campelo

Belo Horizonte, Brazil

2018

Fernanda C Takahashi: Sample size estimation for power and accuracy in the experimental compari-

son of metaheuristics, ,©2018

That’s the great secret of creativity. You

treat ideas like cats: you make them

follow you.

Ray Bradbury, Zen in the Art of Writing

��������

Experimental algorithmics encompasses the study of guidelines and methods for compu-

tational evaluation of algorithms. In the optimization field, it is useful for testing the per-

formance of algorithms when solving a certain type of problem. In this work we develop a

methodology for generating adequate experimental designs for comparing the performance

of optimization metaheuristics, with a focus on statistical power and accuracy in parameter

estimation. In particular, we deal with sample size estimation for experiments involving op-

timization algorithms, both in terms of within-instance repeated executions and the number

of instances required. A statistically sound methodology is presented for sample size calcula-

tion, allowing relevant comparisons between the performances of two algorithms for a given

class of problems. The methodology’s effectiveness is validated using simulated models and

exemplified with two case studies. The proposed methodology was implemented in the form

of an open source R package, published in the CRAN repository.

������

Experimentação algoritmica contempla o estudo de diretrizes e métodos para avaliação com-

putacional de algoritmos. No campo da otimização, ela é útil para testar o desempenho de al-

goritmos ao resolver classes específicas de problemas. Nesse trabalho estamos desenvolvendo

uma metodologia para geração planejamentos experimentais adequados para comparação de

desempenho de meta-heurísticas, com um foco em potência estatística e precisão na estimação

de parâmetros. Em particular, lidamos com estimação do tamanho amostral para experimen-

tos que envolvem algoritmos de otimização, tanto em termos do número de execuções em

uma mesma instância quanto do número de instâncias necessárias. Uma metodologia estatis-

ticamente válida é apresentada para o calculo de tamanho amostral, permitindo comparações

relevantes entre as performances de dois algoritmos para uma dada classe de problemas. A

eficácia da metodologia é validada usando modelos simulados e exemplificada com dois es-

tudos de caso. A metodologia proposta foi implementada na forma de pacote em R código

aberto, publicado no repositório CRAN.

C O N T E N T S

� ������������ 6

� ���������� ������ 10

2.1 Optimisation and Heuristics . 10

2.2 Algorithm experimentation . 11

2.2.1 What to compare . 13

2.3 Sample size . 14

2.4 Recent works . 17

2.5 Theoretical background . 18

2.5.1 The Algorithm Comparison Problem . 18

� �������� ������ 21

3.1 Estimating the number of repetitions . 22

3.1.1 Using the Simple Difference of Two Means 23

3.1.2 Using the Percent Difference of Two Means 25

3.2 Estimating the number of instances . 26

3.3 Independence and normality . 29

3.4 Nonparametric alternatives . 30

3.4.1 Nonparametric estimation of sefj and of the number of repetitions 31

3.4.2 Nonparametric tests of hypotheses . 32

3.5 The case of predefined N . 33

3.6 Defining reasonable experimental parameters . 34

� ������ ���������� 36

4.1 Simulation model . 36

4.2 Test settings . 37

4.2.1 Validation of the estimated number of repetitions 38

4.2.2 Validation of the estimated number of replications with fixed sample size 45

4.3 Summary . 48

� ������������ �������� 49

5.1 Comparison of two multi-objective optimization algorithms 49

4

�������� 5

5.1.1 Comparison with bootstrapping . 57

5.2 Parallel machines problem with sequence dependent setup times 63

5.3 Summary . 65

� ���������� 67

6.1 Future works . 69

Appendix

� ����������� �������� 72

a.1 Data samples . 72

a.2 Populational parameters . 72

a.3 Hypothesis testing . 73

a.3.1 Statistical errors and effect size . 74

a.3.2 Parameter estimation and accuracy . 75

a.3.3 Parametric vs. Non parametric methods 76

� ������ : ������� ����� 77

b.1 The package . 77

b.2 Example . 79

References

������������ 84

1 I N T R O D U C T I O N

Science and everyday life cannot and

should not be separated.

Rosalind Franklin, Rosalind Franklin: the

Dark Lady of DNA

In the optimization field, some problems are deemed to difficult for a solution to be found

in practical time using exact methods, such problems are commonly solved using heuristics.

Which are specialized sets of procedures to solve a single given problem, such as vehicle

routing problems (VRP) or travelling salesman problem (TSP) [42]. When a strategy is not

problem-specific, but rather a high-level problem-independent algorithmic framework that

provides a set of guidelines or strategies to develop heuristic optimization algorithms it is

called a metaheuristic [71]

When dealing with metaheuristics for optimization, where repeated executions of the same

algorithm may not produce the same results, statistical methods are important to understand

the intrinsic variability in such algorithms and their behaviour [58]. However, the planning

and analysis of experimental comparison of different metaheuristics are frequently made in

an incomplete, or even wrong, manner. It is possible to conjecture that several works in which

the algorithms are poorly described and the experiments lack reproducibility may have led to

wrongful or invalid conclusions[76].

Although not widely used, guidelines for such experimental design have existed for a while.

Barr et al. [3] clearly define the necessary steps for a proper statistical analysis of experiments:

(i) objective definition; (ii) choice of the performance metrics and factors to be explored; (iii)

design and execution of the experiment; (iv) data analysis and conclusions; (v) publication of

experimental results. A proper disclosure of the data also has its own rules to be followed:

(a) reproducibility, (b) detailed specification of the important factors; (c) precision on reported

run times; (d) disclosure of the configuration parameters; (e) use of statistical techniques

of experimental design and analysis; (f) comparison with other methods; (g) reduction of

variability; and (h) generation of a result report.

6

������������ 7

Some other works propose different ways of doing more rigorous designs and analysis of

computational experiments[2, 58, 41]. However, in many cases, characteristics of experimenta-

tion already known in other fields are completely ignored, such as the importance of defining

the magnitude of effects of practical interest, or sample size calculation.

With a careful examination of the literature, it is noticeable that the experimental analysis in

the field of metaheuristics tends to be lacking when considering the tools available in other ap-

plied fields, such as clinical trials [72]. Currently, there is no standard way of comparing these

algorithms, leaving to the researchers the responsibility of designing their own methodology

for comparing the algorithms.

Nevertheless, there is no controversy regarding the need of clear designs and proper data

analysis, as they are fundamental for generating high-quality research in the field. A helpful

first step, for instance, would be for researchers to provide enough information so that their

work could be properly evaluated and replicated.

In this work, another step is proposed to allow reliable and standardized statistical com-

parisons of the performance of different metaheuristics. The comparison of stochastic opti-

mization algorithms is usually done considering the value of the solution obtained for the

optimization problem 1, which is commonly described as a minimization problem as defined

in (1) and (2).

min f (x) (1)

subject to

8
>>>>><

>>>>>:

gi(x)  0 i = 1, ..., p

hj(x) = 0 j = 1, ..., q

x 2 X

(2)

where f (·) : Rn 7! R is the objective function to be minimized, gi(·) and hj(·) are the inequal-

ity and equality constraints, respectively, and X represents the space where the problem is

defined.

Many metaheuristics used to solve this type of problem are stochastic in nature, and as such

can return different solutions when run multiple times on a given instance. Each independent

execution of an algorithm in a given instance will be called a repetition throughout this work.

A summary statistic of a given set of repetitions, which will be used as a single observation

for the statistical comparisons treated in this work, will be called a replication or replicate.

1 The comparison of heuristic algorithms can be done in terms of the convergence time of the algorithm, or any

other quality indicator.

������������ 8

In this work, we consider the algorithm comparison problem as the question of determining

whether two (or more) algorithms present differences in terms of a given performance param-

eter (e.g., mean or median performance) for a given problem class. We approach this problem

from a statistical inference perspective, performing significance testing on samples composed

of observed values of algorithmic performance for sets of problem instances, to infer their

differences for the problem class represented by those instances. Let the set of algorithms to

be compared, denoted as q1, ..., qm, to be evaluated using a set of instances g1, ..., gn, which are

assumed as being a representative and independent sample of the problem class G. For each

execution of algorithm qi on the instance gj, there is a value of the considered performance

metric for the repetition yijk. Using the repetitions, an estimate can be calculated for the av-

erage performance value of qi on gj, µqi ;gj .
2. By estimating these values for several instances

gj, it is possible to generate an estimate for the overall average performance of algorithm qi

on the whole problem class G, which we will call here µqi ;G. Given these definitions, the algo-

rithm comparison problem can be defined here as the test for differences among the values of

µqi ;G, i = 1, . . . , m and, if differences are detected, the determination of their magnitudes and

practical relevance.

There is a common misconception that this work tries to address, which is related to the

sample size when comparing algorithms. In fact, there are methodologically sound ways to

calculate the required number of repetitions of an algorithm solving an instance, as well as the

minimal number of problem instances (number of replications) needed to perform statistical

inference on the differences of algorithmic performance on a given problem class, so that

the statistical parameters of the test (confidence level and statistical power for a given effect

size) can be controlled at desired levels. Regardless, the standard approach tends to be one

of maximizing the number of instances limited only by the computational budget available;

and of using "standard" values for the number of repeated runs (30, 50, occasionally 100

repetitions or more). With an increased sample size, the probability of detecting a difference

in performance between algorithms does increases, but it does not imply that sample sizes

need to be arbitrarily large to yield high quality solutions.

The main objective of this work is to develop a methodology for sample size and power

estimation in the experimental comparison of algorithms, so that the number of repeated runs

2 This average can be the mean, median, trimmed mean, or any other location parameter. Throughout this text we

focus on comparisons of average performance, but in principle the ideas presented here could be applied to any

other parameter of interest - e.g., best or worst case performance, variance, etc..

������������ 9

and the required amount of test instances can be determined based on the desired statistical

properties of the comparison. This methodology was implemented in the form of an open

source package in R, so that researchers and practitioners in the field of metaheuristics can

immediately employ its concepts in their work. The proposed methodology iteratively sam-

ples the algorithms on each instance, so that, the accuracy of estimates can be improved while

attempting to use the smallest possible total number of runs. The proposed approach to the

design of algorithmic experiments calculates the sample sizes for a given set of algorithms and

problems while considering other specifications such as standard error, test power, confidence

level and magnitude of differences of practical significance (i.e., minimally relevant effect size).

In this way, the comparison of algorithms can be made considering desired statistical param-

eters which leads to stronger conclusions and more accurate information on the behaviour of

the algorithms. Although this work focuses in heuristics and metaheuristics, the methodology

proposed can be used in any algorithmic comparison involving experimental aspects. That be-

ing said, the term metaheuristic will be the one used along this text to emphasize the context

in which the method was conceived.

The second chapter of this work presents a brief review of the literature on experimental

algorithmics, as well as an analysis on how the experiments have been done lately. Also, a

short theoretical background on the statistics used for this work is provided at the end of

this chapter. In the third chapter the proposed method is explained, the equations used to

estimate the sample sizes and the pseudo-codes are presented. The fourth chapter contains

the experimental evaluations of the method, presenting the results of tests that use a synthetic

statistical model to simulate algorithms. Finally, the fifth chapter presents a discussion of the

current state of this work and the conclusions that can be drawn from its current state. The

main ideas for continuity and a proposed schedule for the completion of this research are also

presented. At the end of the thesis two appendices can be found. The first one, Appendix

A, gives an brief introduction of statistical concepts useful to the comprehension of this work.

And the second one presents the usage of the caiseR package, which was developed thorough

this work.

2 L I T E R AT U R E R E V I E W

Research is formalized curiosity. It is

poking and prying with a purpose.

Zora Neale Hurston, Dust Tracks on a

Road

�.� ������������ ��� ����������

Amongst optimisation problems, there are some which cannot be solved to optimality by exact

methods in reasonable time, which are known as hard optimisation problems. Thus, a cate-

gory of algorithms, named heuristics, was introduced as an attempt to provide good solutions

in reasonable time for these problems. One important difference between them lies in the

fact that exact methods are frequently based on optimization methods that calculate a search

direction based on the function gradient, therefore requiring a differentiable problem. On the

other hand heuristics can solve non differentiable problems, using intuitive strategies that are

problem specific, which start from an arbitrary initial solution and then use the knowledge

obtained from the previous solutions to guide the search[50]. Furthermore, heuristics do not

guarantee that an optimal solution is found, but they can often return some solution in viable

time [70].

metaheuristics are framework for building heuristics, which are not problem specific, hence

possessing parameters to be fitted to each problem. Therefore, a metaheuristic is an algorithm

that can solve a wide range of problems, but needs to be tuned to work properly [10]. Since the

1950s[60] they have been increasingly used as an interesting alternative to solve complicated

optimisation problems that would be impossible or impractical to solve to optimality [56, 64,

26, 46, 68, 69, 24, 22].

10

��������� ��������������� 11

A common trait of these algorithms is their stochastic behaviour, mainly arising from their

use of a random component whose variability helps exploring the search space, but which

also results in distinct solutions for different runs of these algorithms.

Since metaheuristics are complex tools that are often difficult to describe in purely ana-

lytical terms, and that can yield results that vary stochastically between runs, it is clear the

necessity of an appropriate experimental analysis. Yet, it is still common to find works in the

literature using incomplete or incorrect experimental setups and analysis techniques for the

evaluation and comparisons of performance. Furthermore, it is also possible to argue that

the low methodological standards may have contributed to the emergence of a great quantity

of "novel" algorithms that claim superiority to existing methods, even though they represent

essentially the same ideas [70, 34].

�.� ��������� ���������������

The use of statistical methods for experimentation with algorithms is not recent. One early

example is the book The Art of Computer Systems Performance Analysis: Techniques for Experi-

mental Design, Measurement, Simulation, and Modelling [38] released back in 1991. This book

presents methods for evaluating algorithms, as well as some experimental designs and anal-

ysis techniques that can be used for testing them. A proper statistical analysis is essential

for the quantification of the conclusions drawn from the data. Done correctly, this analysis

involves experimental design, choosing a model consistent with the experiment, testing the

presence of interesting effects, and the calculation of confidence intervals for the size of the

effects found. Other important aspects of experimental research on algorithms, such as the

reporting of p-values and the validation of assumptions of the statistical models and tests

used, were also highlighted by Coffin and Saltzman [16] as early as 2000.

When experimenting with heuristics, the proper steps of computational experimentation

were described by Barr et al. in 1995 [3]. It is stated that statistical methodology is the proper

approach to conduct the algorithm analysis because it is an objective way to design experi-

ments and analyse the data gathered. Besides, with the correct use of a statistical method-

ology, it is possible to obtain more information from the experiment, without increasing the

test effort. Around the same time, a work by Catherine McGeoch [53] exposed some issues

still common in algorithm experimentation and comparison, such as implementation-specific

��������� ��������������� 12

behaviour and generalization of results. Also, as mentioned by McGeoch, Hooker[35] noticed

the difficulty in extrapolating the results obtained with one class of instances to others.

In 2006, Demšar showed how to perform statistical comparison of multiple classifiers on

multiple datasets [19], a problem analogous to comparing optimisation algorithms on mul-

tiple problem instances. In that work, he concluded that non-parametric tests offer more

suitable results, due to weaker assumptions on the distributional properties of the data, and

should be the ones used. Demšar’s work mentions that the assumptions of parametric tests

are frequently violated in algorithmic experimentation, and that in these cases non-parametric

alternatives frequently present better statistical properties. The work fails to mention, however,

that the non-parametric methods suggested are also based on certain distributional assump-

tions [66] which, albeit less restrictive, are also usually violated and widely ignored in the

field. To compare two classifier he applies the Wilcoxon signed rank test, and the Friedman

test for multiple classifiers. His proposals were used not only in machine learning, to test clas-

sifiers, but in a substantial part of algorithm testing and comparison, and represents possibly

the most influential reference on the statistical testing of algorithms to date.

Still in the field of algorithm experimentation, several papers on the use of statistical analysis

for metaheuristics were published over the past decade by a group based primarily in the

University of Granada in Spain. Under the same motivation as Demšar’s, namely the usual

non-normality of algorithmic data, this group advocates the use of non-parametric tests [29,

28, 30, 21, 20], which were not commonly used at that time. In these works it was proposed

the use of non-parametric tests in different heuristics, such as evolutionary, genetic based

machine learning or swarm intelligence algorithms.

Another non-parametric approach that is widely used in other fields, but has so far attracted

little attention in experimental algorithmics, is bootstrapping. It consists in estimating a dis-

tribution according to random re-sampling of data generated by executions of the algorithm.

This way, the null distributions of the test statistics used to compare the performance of algo-

rithms can be built independently of the actual distribution of the data. Carrano et al. [15] use

bootstrapping to empirically estimate the probability density function (PDF) of the mean of

the comparison criteria for each algorithm, with which the statistical tests are performed. The

test to rank the algorithms is a non-parametric one, and another (parametric) test is used to

verify if the ranking is stable or if more executions are needed.

Still considering ranking algorithms, Krohling et al. [41] proposed a method for compar-

ing multiple algorithms in multiple benchmarks which uses closeness between the obtained

��������� ��������������� 13

solutions to rank the algorithms. The algorithms tested are, usually, stochastic, therefore an

approximation of a Gaussian distribution estimated from the results is used as the solution.

The Hellinger distance is then used to measure the gap between the distributions. With these

measurements, a coefficient of closeness can be computed using the distance from each distri-

bution to the two most extreme ones, on every benchmark.

Some other works have shown more ways for statistically comparing algorithms. del Amo

et al. [2] use a full factorial design to generate the data for comparing multiple algorithms on

multiple problem instances, and then apply rank-based methods for the inferential procedures.

Pais et al. [58], on the other hand, employs a 2k full factorial design and parametric tests to

determine which and how some implementation factors interfere with the results. The data

is adjusted with a logarithmic transformation trying to obtain a distribution that more closely

resembles a Gaussian when testing the assumptions; and by removing the residuals with a

large Cook’s distance, if the removed observations do not influence the results.

�.�.� What to compare

Depending on what is being studied, a wide range of characteristics can be used to compare

the algorithms. Part of them are particular for some types of algorithms such as the conver-

gence performance through evolutionary search[20]; or speed-ups in parallel algorithms [58].

Most works, however, tend to compare some traits already considered important in optimiza-

tion algorithms. Amongst them, two criteria commonly used are average solution quality and

convergence speed [16].

Comparing speed is complex because of its machine/implementation dependence [16, 58].

To deal with this complication, some strategies have been proposed for implementation-

independent evaluations of speed, such as counting the number of function evaluations. When

comparing algorithms using their running time, it is important to be aware that the distribu-

tion of the population of running times will hardly follow a normal distribution. Instead their

sample distribution of means will tend to normality as the sample size increases [58], enabling

analysis assuming normality as a premise [55]. It is a common practice to omit results that

do not converge to an optimal or sub-optimal solution. This however, may lead to inaccurate

conclusions about the heuristic behaviour and its precision is not guaranteed, since the non-

converged runs imply in an error even if it cannot be measured: running an algorithm 100

times, in which it converges in 10, and reach optimal solution in 8 of them, does not mean it

������ ���� 14

has an 80% efficiency rate. Analogously, if only the convergence rates of runs that achieved

optimal solution is used, it does not characterize properly the algorithms convergence speed

behaviour.

Solution quality comparison is relevant only when dealing with algorithms that do not guar-

antee an optimal solution, which is a common trait in heuristics and metaheuristics. There

are many different methods to measure the performance of heuristics, a usual one is to offer

a percent deviation of the optimal solution (or a upper/lower boundary); the success rate can

also be used, or even an offline error, where the error of the best solution achieved is consid-

ered for each pair function/algorithm. It is noteworthy the importance of choosing a quality

measure that represents the quantity of interest1 for the comparison. While comparisons of

expected performance (mean or median) are almost universal in the metaheuristics literature,

there are many cases in which the quantity of interest may be different - best or worst-case per-

formances, consistency of performance, or expected time to convergence are some examples

of comparisons that are mostly absent from works in experimental comparative algorithmics

[23].

Either way, for these measures to have any practical significance an appropriate sample size

is needed. If the experiment is made with a small sample, the desired power for a given

effect size of practical importance might not be reached, thus the conclusions drawn will not

be as strong as they could be. On the other hand, studies performed with overestimated

sample sizes may detect a strong statistical significance even for effects that are completely

irrelevant from a practical point of view [51, 57, 8, 32]. Closely associated with the concept

of an adequate sample size is the idea of a minimally interesting effect size, that is, the min-

imal difference on average (or best, worst, etc.) performance that represents any practical

consequence in terms of algorithm performance.

�.� ������ ����

The chances of detecting an effect, i.e., a difference among the algorithms in terms of a given

parameter of interest, increase as the sample size grows [5]. Hence the analysis obtained with

a large sample size is commonly considered stronger than one with a small one. However,

statistical analysis made with moderate sized data sets, or even small ones, can be as useful

1 quantitative metric of the evaluated characteristic

������ ���� 15

and convincing as the ones made with very large data sets [16]. Seeing that it is important to

detect effect sizes with practical consequences, and not just any effect, it is unnecessary to in-

definitely grow the sample size. It is enough to determine the amount of observations needed

to detect a minimally interesting effect size with a predefined test power. This knowledge

allows for a more efficient use of resources as well as preventing p-hacking 2 by specifying the

desired parameters to the experimental analysis. Running the algorithms only the number of

times necessary to draw correct conclusions saves both time and computational resources, and

simplifies the analysis of the results by providing a threshold of relevance in the differences

of performance among algorithms.

Despite its importance for algorithm comparison, sample size estimation has been generally

poorly addressed in the field of metaheuristics. As a rule, it is a common recommendation

to use the largest possible sample size, to increase the power of the statistical tests [29, 28,

21]. However, such an approach may not be ideal since it is possible to reach an appropriate

power and effect size with smaller sample sizes. Moreover, the question of “how large is

large enough” in terms of sample size for providing statistical power is heavily dependent on

the magnitude of the differences one is interested in detecting - even “large” samples may be

insufficient, resulting in hopelessly underpowered studies [52, 51, 74]. Even with the existence

of works focused on small-samples[78], the use of very large data sets is constantly reinforced

despite the known computational difficulty. In the article An algorithm comparison for dynamic

optimization problems [2], for example, it is alleged that the researcher should gather as much

data as possible in order to guarantee safe practical conclusions and the only limitation to data

gathering would be practical such as time constraints, or computational resources. However,

too large of sample sizes can be used to declare a significance for differences without any

practical effect, which, in many cases, could be easily attributed to subtle tuning differences

instead of differences on the algorithms themselves. Moreover, we argue that the practice

of defining a threshold of practical interest a priori may benefit the development of the field

as a whole, by discouraging the reporting of inconsequential improvements as evidence of

superiority, a practice that is called (in a somewhat tongue-in-cheek manner) “up the wall

gaming” [70].

In this work, the number of replications refers to the number of instances needed to achieve

a certain effect size and power while comparing algorithms. It should not be confused with

2 p-hacking is a type of bias that occurs when the data or statistical analysis is carefully selected until non-significant

results become significant[33]

������ ���� 16

the number of repetitions, which are independent runs of one algorithm on each instance.

These repeated measures cannot be used to define the algorithm behaviour, instead they are

useful to obtain an estimate of the experimental estimation error on the performance of each

algorithm on each problem instance [58], as well as to provide additional information, e.g., on

the performance variability of each algorithms on each instance.

On calculating the appropriate number of repetitions on each instance, Jain [38] shows how

to determinate this number for a desired accuracy and confidence, given the distribution mean

and standard deviation. This method requires not only some knowledge of the tested distri-

bution, but also normality of the sampling distribution of means. Therefore, an alternative is

to generate many solution sets and use their average to estimate the distribution mean and

deviation, which guarantees normality under the relatively mild assumptions of the Central

Limit Theorem (CLT), when the number of samples is large enough. However, there is no

established rule on how to estimate the necessary number of repetitions for testing heuristics

and metaheuristics. Usually, for such non-deterministic algorithms, a large amount of runs

per instance is believed to be needed [15, 58]. The work by Birattari [8], on the contrary, ad-

vocates a greater importance to number of instances than on many repetitions in a single one,

and demonstrates that the optimal trade-off between number of instances and number of runs

is to maximize the quantity of test instances, running each algorithm a single time on each

one.

On the other hand, it is the sample size, or number of instances, that will interfere with

the variance of the expected performance estimate [8]. While it is usually considered that the

more test problems, the more informative the study[3], the sample size calculation often gives place

to benchmarks with predefined sizes or arbitrary numbers of generated instances. In these

cases, when the sample size is fixed, calculating the test power is important to give an idea

of the sensitivity of the experiment, which may provide an indicator of the reliability of the

experimental conclusions [51].

In this scenario, the performance estimation obtained with a particular benchmark provides

information on how the algorithm performs on such instance set (or, at most, on the problem

class for which the benchmark set is representative), and not on how they perform in general.

Although providing a generalizable conclusion is known to be a complex problem [53, 6],

some strategies have been created to enable it. For example, Bartz-Beielstein [6] proposed a

method to generate instances estimating a model from real world data or artificial problem

generators. With this model it would be possible to generate as many random test instances as

������ ����� 17

needed and, also, the results are general in the real-world setting where the studied algorithms

will be applied. Therefore, this method is useful, not only for generalization, but also to

provide the sample size necessary for testing with controlled errors of type I and type II (see

section A.3.1).

�.� ������ �����

Most works published recently on the proposal and comparison of algorithms still appear

to fall into pitfalls of experimental analysis that are widely disseminated in the field. To

provide a short overview of the state of experimental design in the research on metaheuristics,

particularly with regards to statistical power and sample size, a survey of recent papers on

some of the most prestigious journals in the field was performed. This review included all

papers dealing with the experimental comparison of algorithms published in the following

venues: IEEE Transaction on Evolutionary Computation (vol.20) from April 2016, Journal of

Heuristics(2016) and Information Sciences(2016).

Many of these works use an arbitrary number of both instances and repetitions [45, 1, 81,

48, 59, 79, 67, 40]. The chosen values for the former, usually, are not explained: some use

a high number of executions [40], others obey the common 30-run rule-of-thumb [81, 48, 59,

79]. The said rule is a misinterpretation of a CLT statement which suggests that the sampling

distribution of the means of even markedly asymmetric distributions, such as the exponential,

will converge to an approximately normal shape for sample sizes greater than approximately

30, provided that no outliers are present. This rule, however, rests on assumptions on the

behaviour of the data that can be easily violated, so caution is required when using the rule

of 30 [51].

The number of instances, on the other hand, is typically arbitrary, mostly because bench-

mark sets are used and they commonly have a finite size. However, these benchmarks are

often merged in order to increase the instance number and, with such heterogeneous sets [79],

it is difficult to realize the purpose of the experiment or, more importantly, the features of the

class of problems for which the conclusions of a given study could be generalized to. The

common approach is to verify the difference of means for each problem in order the demon-

strate the advantage of a given method, which does not necessarily provide insights into the

general behaviour of the algorithm for any specific problem class.

����������� ���������� 18

The comparison of the algorithms is usually performed with a test of significance, such

as Wilcoxon-Mann-Whitney’s test on paired samples[77, 45, 48, 59, 79]. However, testing the

results obtained with an arbitrary sample might lead to the detection of effects particular to

the benchmark or, depending on the sample size, to the detection of irrelevant effects or the

failure to detect important ones due to lack of appropriate power. Even though the significance

level of the test is often given as an experimental parameter, the power of the test is utterly

ignored, which means that the experiment can be considered valid, but the type II error is not

controlled. Ideally, the desired test power, together with the difference of minimal practical

relevance should determine the number of instances needed, or would be calculated, for a

particular sample size, as a sensitivity measure of the test.

Even with some aspects to be improved, experimental designs used in algorithm compar-

isons and evaluations have developed over time. Recent works have been using statistical

methods more appropriate to compare algorithms and to validate their claims. Such advances

make not only these studies more reliable, but contribute to making the whole field more

scientifically accurate.

�.� ����������� ����������

�.�.� The Algorithm Comparison Problem

Let G = {g1, g2, . . . } represent a problem class consisting of a set of (possibly infinitely many)

problem instances gj which are of interest as a group (e.g., the set of all possible TSP instances

within a given size range); and let A = {a1, a2, . . . } denote a set of algorithms capable of

returning tentative solutions to each instance gj 2 G.3 In this work, we are interested in

comparing the performance of two algorithms a1, a2 2 A as solvers for a given problem class

G.4 We assume that both algorithms of interest can be run on the same subset of instances,

and that any run of the algorithm returns some tentative solution, which can be used to assess

the quality of that result.

3 Throughout this work we refer to an algorithm as the full structure with specific parameter values, i.e., to a

completely defined instantiation of a given algorithmic framework.
4 G can either be explicitly known or implicitly defined as a hypothetical set for which some available test instances

can be considered a representative sample.

����������� ���������� 19

Let fj = f
�
a1, a2, gj

�
: A2 ⇥ G 7! R denote the difference in performance between algo-

rithms a1, a2 on instance gj, measured according to some indicator of choice; and let F =

�
fj : a1, a2 2 A, gj 2 G

denote the set of these paired differences in performance between a1 and

a2 for all instances gj 2 G, with P (F) denoting the probability density function describing the

distribution of values fj 2 F.

Given these definitions, the algorithm comparison problem discussed in this work can be gen-

erally defined, given two algorithms a1, a2 2 A and a problem class G, as the problem of

performing inference about a given parameter q of the underlying distribution P (F), based

on information obtained by running a1 and a2 a certain number of times on a finite sample

of instances GS ⇢ G. The parameter of interest, q, should represent a relevant quantity on

which algorithms are to be compared. Common examples of parameters of interest are the

mean of P (F), in which case the comparison problem presented here would result in the test

of hypotheses on the paired difference of means (performed using, e.g., a paired t-test [54]); or

the median, in which case we could use the Wilcoxon signed-rank test or the binomial sign test

[54].

Finally, assume that the result of a given run of algorithm ai on instance gj, denoted xij, is

subject to random variations – e.g., due to ai being a randomized algorithm, or to randomly

defined initial states in a deterministic method – such that xij ⇠ Xij, where Xij is the un-

derlying random variable associated with the distribution of performance values for the pair
�
ai, gj

�
.

Notice that these assumptions, which represent the usual case for the majority of experi-

mental comparisons of algorithms, mean that there are two sources of uncertainty that must

be considered when trying to address the algorithm comparison problem. First, there is the

uncertainty arising from the fact that we are trying to answer questions about a population

parameter q based on a limited sample, which is the classical problem of statistical inference.

The second source of variability is the uncertainty associated with the estimation of fj from a

finite number of runs.

These two components of the total variability of the results to be used for comparing two

algorithms influence the statistical power of any inferential task to be performed on the value

of q. To control these influences there are two types of sample sizes that need to be considered:

• The number of repeated runs (repetitions), i.e., how many times each algorithm ai needs

to be run on each instance gj. These sample sizes, which will be denoted nij, can be

����������� ���������� 20

used to control the accuracy of estimation of fj and, to a lesser extent, contribute to the

statistical power of the comparison;

• The number of problem instances used in the experiment (replicates), also called here the

effective sample size. This value, which will be denoted N = |GS|, can be used to more

directly set the statistical power of the comparison at a desired level.

In this work we focus on comparisons of mean performance, with simple extensions to the

testing of medians. The specifics of this particular case are discussed next.

Comparison of mean performance

When comparing two algorithms in terms of their mean performance over a given problem

class of interest, we are generally interested in performing inference on the value of q = µD =

E [P (F)]. In this case, the statistical hypotheses to be tested, if we are interested in simply

investigating the existence of differences in mean performance between the two algorithms,

regardless of their direction, are:

H0 : µD = µ0

H1 : µD 6= µ0;
(3)

or, if we are interested in specifically determining whether algorithm a2 (e.g., a proposed

approach) is superior to a1 (e.g., a state-of-the-art approach) in terms of mean performance

over the problem class of interest5,

H0 : µD � µ0

H1 : µD < µ0.
(4)

The value of µ0 in (3) and (4), i.e., the mean of the paired differences of performance under

the null hypothesis H0, is commonly set as µ0 = 0 when comparing algorithms, reflecting

the absence of prior knowledge of differences in performance between the two algorithms

compared.

As mentioned earlier in this section, there are two types of sample sizes that need to be

considered for comparing algorithms: the number of within-sample repetitions for each algo-

rithm, and the number of instances to be employed. In Chapter 3 we present a methodology

for calculating these two sample sizes for the algorithm comparison problem defined in this

section. Prior to describing the method, however, it is important to review some relevant

statistical concepts that provide the basis for the proposed approach provided in chapter A .
5 The direction of the inequalities in (4) will depend on the type of performance measure used, i.e., on whether

larger = better or vice versa.

3 P R O P O S E D M E T H O D

Humans are allergic to change. They

love to say, ’We have always done it this

way’ I try to fight that. That is why I

have a clock on my wall that runs

counter clockwise

Grace Hopper, The Wit and Wisdom of

Grace Hopper

Given the definitions provided in the preceding sections, we present a methodology for es-

timating the relevant sample sizes for the algorithm comparison problem described in Section

2.5.1, that is, the comparison of two algorithms in terms of their mean paired differences of

performance over instances belonging to a given problem class. More specifically, we describe

(i) an algorithmic approach to iteratively sample each algorithm on each problem instance (i.e.,

repetitions) with sample size ratios close to theoretical optimal values, so that a predefined ac-

curacy in the estimation of each fj is obtained; and (ii) specific formulas for determining the

required number of instances (i.e., replicates), so that a desired power level can be achieved for

a predefined MRES - minimally relevant effect size (see section A.3.1).

As mentioned in the Introduction, it is important to highlight here that the two main re-

sults of the proposed methodology, namely the estimation of the number of instances and

number of within-instance replicates, are independent: researchers can employ the two cal-

culations separately if desired or required by the specifics of a particular experiment. For

instance, it is common for certain application domains to have predefined test sets composed

of heterogeneous instances, aimed at testing the behaviour of algorithms on a variety of pos-

sible situations. In these cases the researcher may wish to employ the full set of available

test instances (assuming computational time is not an issue), but he or she can still employ

the proposed methodology to: (i) determine the number of runs for each algorithm on each

instance (see Section 3.1 below), and (ii) determine the statistical properties of the experiment

in terms of the power to detect differences of a given magnitude (see Section 3.5). In any case,

21

���������� ��� ������ �� ����������� 22

the application of the principles discussed in this work can aid the research to design and

perform comparative experiments with increased statistical soundness.

�.� ���������� ��� ������ �� �����������

The proposed strategy to calculate the number of runs of each algorithm ai on a given in-

stance gj, (i.e., the number of repetitions, nij) consists in iteratively increasing the number of

observations of each algorithm until the standard error of bfj (the estimate of the difference in

performance between the two algorithms for instance gj) falls below a given threshold. While

the specifics of standard error estimation depend on which statistic is being used to quantify

the difference in performance, the accuracy of estimation improves as the sample sizes n1j and

n2j are increased. This allows us to define the problem of estimating the number of runs of

algorithms a1, a2 on a given instance gj as that of finding the smallest total sample size, n1j + n2j,

such that the standard error of bfj falls below a desired accuracy threshold se⇤.

Notice that unlike the usual practice in the experimental comparison of algorithms, the

solution for this problem will almost always result in different numbers of runs of a1 and a2

on any given instance. This is a consequence of the fact that distinct algorithms will present

different variances of performance within any instance, which means that their contributions

to the standard error of any estimator used to quantify the paired differences in performance

will be unequal. In general, the larger-variance algorithm will need a larger sample size, as

will be made clear in this section. Notice, however, that the method presented in this section

will work perfectly well if the experimenter forces equal sample sizes (which can be done by

a small, trivial modification of Algorithm 1), although the total number of runs in this case

may be larger than necessary.

In what follows we provide the derivation of the optimal sample sizes for two specific cases

of fj, namely the simple and the percent difference between two means. The derivations are

performed assuming that the conditions for the Central Limit Theorem (CLT) are met [54],

which means that the sampling distributions of the means are approximately normal. An

alternative approach, which does not need to comply with this particular set of assumptions

(at the cost of increased computational costs) involves the use of resampling strategies such

as the Bootstrap [11], which is discussed in Section 3.4.

���������� ��� ������ �� ����������� 23

�.�.� Using the Simple Difference of Two Means

Assume that we are interested in using the simple difference of mean performance between

algorithms a1, a2 on each instance as our values of fj. In this case we define fj = µ2j � µ1j, for

which the sample estimator is given by

bf(1)
j = cDµ = bµ2j � bµ1j = X̄2j � X̄1j, (5)

where X̄ij is the sample mean of algorithm ai on instance gj. Let the distribution of perfor-

mance values of algorithm ai on instance gj be expressed as an (unknown) probability density

function with expected value µij and variance s2
ij, i.e.,

xij ⇠ Xij = P
⇣

µij, s2
ij

⌘
.

Assuming that the conditions of the Central Limit Theorem hold, we expect X̄ij ⇠ N
⇣

µij, s2
ij/nij

⌘

and, consequently,

bf(1)
j ⇠ N

µ2j � µ1j,

s2
1j

n1j
+

s2
2j

n2j

!
. (6)

By definition, the standard error of bf(1)
j is the standard deviation of this sampling distribu-

tion of the estimator,

sebf(1)
j

=

q
s2

1jn
�1
1j + s2

2jn
�1
2j .

Given a desired upper limit for the standard error, se⇤, the optimal sample sizes for the two

algorithms a1, a2 on instance gj can be obtained by solving the optimization problem defined

as

Minimize: f (nj) = n1j + n2j,

Subject to: g(nj) = sebf(1)
j
� se⇤  0.

(7)

This problem can be solved analytically using the Karush-Kuhn-Tucker (KKT) optimality

conditions,
r f (nj) + brg(nj) = 0,

bg(nj) = 0,

b � 0.

(8)

The solution of (8) for the objective and constraint functions in (7) yields the optimal ratio

of sample sizes,

ropt =
n1j

n2j
=

s1j

s2j
, (9)

���������� ��� ������ �� ����������� 24

which means that algorithms a1 and a2 must be sampled on instance gj in direct proportion to

the standard deviations of their performances on that instance. The result in (9) is known in

the statistical literature [51] as the optimal allocation of resources for the estimation of confidence

intervals on the simple difference of two means.

Since the populational variances s2
1j, s2

2j are usually unknown, their values need to be esti-

mated from the data. This results in the sample standard error,

bsebf(1)
j

=

q
s2

1jn
�1
1j + s2

2jn
�1
2j . (10)

A good approximation of the optimal ratio of sample sizes can be similarly obtained by

replacing sij by sij in (9). This requires that an initial sample size n0 be obtained for each

algorithm, to calculate initial estimates of s1j, s2j
1, suggesting the iterative procedure described

in Algorithm 1, where Sample
�
ai, gj, n times

�
means to obtain n observations of algorithm ai

on instance gj. To prevent an explosion of the number of repetitions in the case of poorly

specified threshold values se⇤ or particularly high-variance algorithms, a maximum budget

nmax can also be defined for the sampling on a given problem instance.

Algorithm 1: Sample algorithms on one instance.
Data: Instance gj; Algorithms a1, a2; accuracy threshold se⇤; initial sample size n0;

maximum sample size nmax

Result: x1j, x2j

x1j Sample
�
a1, gj, n0 times

�
x2j Sample

�
a2, gj, n0 times

�
n1j n0; n2j n0;

Calculate bse using (10) or (13) or Algorithm 4; while (bse > se⇤) &
�
n1j + n2j < nmax

�
do

Calculate ropt using (9) or (15); if
�
n1j/n2j < ropt

�
then

x Sample
�
a1, gj, 1 time

�
; x1j [x1j, x];

else
x Sample

�
a2, gj, 1 time

�
; x2j [x2j, x];

Calculate bse using (10) or (13) or Algorithm 4;

After performing the procedure shown in Algorithm 1, the estimate bfj can be calculated

using the vectors of observation x1j and x2j into (5) or (11), depending on the type of difference

used.

1 The definition of an initial value of n0 also helps increasing the probability that the sampling distributions of the

means will be approximately normal.

���������� ��� ������ �� ����������� 25

�.�.� Using the Percent Difference of Two Means

While the approach of defining fj as the simple difference between the means of algorithms

a1, a2 on a given instance gj is certainly useful, it may be subject to some difficulties. In

particular, defining a single precision threshold se⇤ for problem classes containing instances

with vastly different scales can be problematic and lead to wasteful sampling. In these cases,

it is generally more practical and more intuitive to define the differences in performance fj as

the percent mean gains of algorithm a2 over a1. In this case we define2 fj =
�
µ2j � µ1j

�
/µ1j, for

which the sample estimator is

bf(2)
j = cDµ

(%)
=

X̄2j � X̄1j

X̄1j
=

bf(1)
j

X̄1j
(11)

For this definition to be used we need to consider an additional assumption, namely that

P(X̄1j  0)! 0 (which is guaranteed, for instance, when objective function values are always

strictly positive, which is common in several problem classes).3 The distribution of f(1)
j is

given in (6), which means that under our working assumptions bf(2)
j is distributed as the ratio

of two independent normal variables.4

A commonly used estimator of the standard error of bf(2)
j is based on confidence interval

derivations by Fieller [25]. Considering the assumption that P(X̄1j  0) ! 0, a simplified

form of Fieller’s estimator can be used [27], which provides good coverage properties. Under

balanced sampling, i.e., n1j = n2j = nj, the standard error is given as

bsebf(2)
j

=

���bf(2)
j

���

2

64
s2

1j/nj

x̄2
1j

+

⇣
s2

1j/nj + s2
2j/nj

⌘

⇣
bf(1)

j

⌘2 +
2
nj

cov
�
x1j,

�
x2j � x1j

��

bf(1)
j x̄1j

3

75

1/2

, (12)

where xij 2 Rnj represents the vector of observations of algorithm ai on instance gj; and

cov (·, ·) is the sample covariance of two vectors.

Under the assumption of within-instance independence, i.e., that X1j and X2j are indepen-

dent, the expected value of covariance will be close to zero, allowing us to disregard the

covariance term in (12). This offers two advantages: first, it simplifies calculations of the stan-

dard error, particularly for larger sample sizes. Second, and more importantly, it allows us to

consider unbalanced sampling, as we did for the case of simple differences, which can lead

2 Considering a comparison where larger is better.
3 If this assumption cannot be guaranteed, the use of percent differences is not advisable, and the researcher should

instead perform comparisons using the simple differences.

4 The independence between f
(1)
j and X̄1j is guaranteed as long as X1j and X2j are independent.

���������� ��� ������ �� ��������� 26

to gains in efficiency. Removing the covariance term, replacing the nj dividing each sample

standard deviation by the corresponding nij and simplifying (12) results in

bsebf(2)
j

=

���bf(2)
j

���
q

c1n�1
1j + c2n�1

2j , (13)

with

c1 = s2
1j

⇣
bf(1)

j

⌘�2
+
�

x̄1j
��2
�

;

c2 = s2
2j

⇣
bf(1)

j

⌘�2
.

(14)

The problem of calculating the smallest total sample size required to achieve a desired

accuracy is equivalent to the one stated in (7) (substituting bsebf(1)
j

by bsebf(2)
j

in the constraint

function) and can be solved in a similar manner to yield the optimal ratio of sample sizes in

the case of percent differences,

ropt =
n1j

n2j
=

r
c1

c2
=

s1j

s2j

r
1 +

⇣
bf(2)

j

⌘2
(15)

The expressions in (13) and (15) can be used directly into Algorithm 1, so that the ade-

quate sample sizes for obtaining an estimate bf(2)
j with a standard error controlled at a given

threshold se⇤ can be iteratively generated.

�.� ���������� ��� ������ �� ���������

As described in Section 2.5.1, the algorithm comparison problem treated in this work naturally

induces a paired design [54], which allows instance effects to be modeled out. Here we discuss

the definition of the number of instances required for the experiment to obtain the desired

statistical properties, namely a power of at least p⇤ = 1� b⇤ to detect differences equal to or

greater than a minimally relevant effect size d⇤ at a predefined significance level a.

Before we proceed it is important to highlight that, since the hypotheses of interest concern

the expected value of a distribution defined over the set of paired differences in performance,

F, the independent observations to be used in the test of this hypotheses are the individual values

fj (or, more accurately, their estimates bfj), and not the individual runs of the algorithms

on each instance. Failure to realize this point leads to pseudoreplication [37, 43], i.e., the

calculation of test statistics under falsely inflated degrees-of-freedom, with a consequent loss

of control over the statistical error rates of the tests.

���������� ��� ������ �� ��������� 27

Under the assumption that the sampling distributions of means for the paired differences

are approximately normal, i.e., that

1
N Â

gj2GS

bfj = bµD ⇠ N
�
µD, s2

F/N
�

, (16)

where N = |GS| is the number of instances used in the experiment, the uniformly most

powerful unbiased test for hypotheses of the forms (3)–(4) is the paired t-test [54]. The test

statistic for this procedure is calculated as:

t0 =
bµD � µ0

bsF/
p

N
=

bd
bsF

p
N = bd

p
N, (17)

where bsF is the sample estimate of the total standard deviation sF, and bd is the sample

estimate of Cohen’s d coefficient (36). Under H0 this test statistic is distributed according

to Student’s t distribution with N � 1 degrees of freedom [54], leading to the criterion for

rejecting the null hypothesis at the 1� a confidence level being, for hypotheses of form (3)

|t0| � t(N�1)
1�a/2; (18)

or, for (4),

t0 � t(N�1)
1�a , (19)

where t(d f)
q denotes the q-th quantile of Student’s t distribution with d f degrees-of-freedom

[54].

Under the alternative hypothesis H1, t0 is distributed according to a noncentral t distribution

[51] with noncentrality parameter

ncp = (µD � µ0)
p

N/bsF = d
p

N/bsF = d
p

N

Assuming a MRES d⇤ = |d⇤| /sF, the power of the test is given by the integral of the

noncentral t distribution with ncp⇤ = d⇤
p

N over the values of t0 for which H0 is rejected. For

instance, for the case (3) the rejection region is given in (18), and the power can be calculated

as

p⇤ = 1� b⇤ = 1�
Z t(N�1)

1�a/2

t=t(N�1)
a/2

h
t(N�1)
|ncp⇤|

i
dt. (20)

The sample size for this test can then be calculated as the smallest integer such that p⇤ is

equal to or larger than a desired power. This leads to the formulas for the required sample

size for the case of the paired t-test [51] for the two-sided alternative hypothesis (3),

N⇤ = min N
���t(N�1)

1�a/2  t(N�1)
b⇤;|ncp⇤| , (21)

���������� ��� ������ �� ��������� 28

or, for the directional alternative (4),

N⇤ = min N
���t(N�1)

1�a  t(N�1)
b⇤;|ncp⇤| . (22)

While there are no analytical solutions for (21)–(22), the calculation of these sample sizes can

be easily done iteratively [51], and is available in most statistical packages, e.g., R. Algorithm

2 summarizes the full procedure for calculating the relevant sample sizes and running the

experimental comparison of mean performance of two algorithms for a given problem class.

As mentioned earlier, the researcher can either adopt the full procedure or, if desired, opt for

using only part of the methodology (e.g., employ a predefined number of instances, use a

predefined number of repetitions, force balanced runs on each instance, etc.).

Algorithm 2: Full procedure for the comparison of algorithms
Data: Set of available instances GS; algorithms a1, a2; accuracy threshold se⇤; initial

sample size n0; maximum sample size nmax; desired significance level a, type-II

error rate b⇤, and MRES d⇤.

Result: Test results; power profile (if needed)

Calculate N⇤ /* Using (21) or (22) */

if N⇤ > |GS| then

Investigate power, change parameters if needed. /* Sec. 3.5 */

x [] for min (N⇤, |GS|) times do

Sample (without replacement) instance gj 2 GS Sample a1, a2 on gj /* Algorithm 1

*/

Calculate bfj /* Using (5) or (11) */

x
⇥
x, bfj

⇤

Test of hypotheses using x as the test sample Verify test assumptions /* Secs.

3.3-3.4 */

Finally, as mentioned in Section 2.5.1, there are two sources of variability that affect the

total variance s2
F, namely the across-instances variance s2

f, which represents the variance of

the values of paired differences in performance if all fj were precisely known; and the within-

instances variance s2
e = se2

bfj
, which quantifies the “measurement error” on the values of

fj. Considering this, the standardized effect size used in the preceding discussion can be

expressed as

d =
d

sF
=

dq
s2

f + s2
e

. (23)

������������ ��� ��������� 29

While the experimenter can do little to change the across-instances variance, it is possible

to reduce the standard error of estimation, as presented in Section 3.1. This composition of

the total variance can be helpful in defining se⇤ when calculating of the number of repetitions.

Some guidelines are provided in Section 3.6.

�.� ������������ ��� ���������

The techniques presented so far have been based on two explicit assumptions: independence,

i.e., the assumption that observations used for calculating the statistics of interest do not

present any unmodeled dependencies, or that one observation does not influence another [54,

66]; and normality of the sampling distribution of the means.

In the case of this work, the assumption of independence can be guaranteed by design. In

Algorithm 1, the samples generated for the two algorithms on any given instance are produced

without one observation influencing the value of any other – e.g., by the usual (and rather

obvious) practice of using different random seeds for different runs of randomized algorithms;

or of using distinct, preferably randomly distributed initial points for deterministic methods.

As for the paired test and sample size calculations, the assumption of independence can also

be guaranteed by design. By using the values of bfj as the individual observations we avoid

the most common error in this kind of experiment, namely that of pseudoreplication [37, 43],

i.e., the use of repeated measurements xij as if they were independent replicates. Ensuring

independent algorithmic runs, as mentioned previously, also helps guarantee this assumption.

The other assumption, i.e., that of normality of the sampling distribution of the means,

cannot be so easily guaranteed by design. It can, however, be verified a posteriori without

much effort. A first test of this assumption relies on the fact that, if the distribution of the

data is normal, then the sampling distribution of the means will also be normal, regardless

of the sample size. This suggests that a first test of normality can be performed on the data

itself – i.e., on the sets of observations x1jk and x2jk used to estimate fj; and on the set of

estimates bfj used for testing the hypotheses of interest. Common statistical tests of normality

include the Kolmogorov-Smirnov or Shapiro-Wilk tests [66], although in most cases visual

inspection using a normal Q-Q plot is considered sufficient [54]. If the data is found not to

be significantly deviant from normality then the methods presented in this section can be

considered accurate.

������������� ������������ 30

If the data itself deviates significantly from normality, an approximate test can be performed

on the estimated sampling distribution of the means instead, e.g., using bootstrap [18]. A

quick (albeit computationally intensive) procedure for assessing normality of the sampling

distribution of the means is to generate a vector yB of resampling estimates of the mean using

a bootstrap procedure and then visually inspecting this vector using a normal Q-Q plot.5 This

assessment strategy is summarized in Algorithm 3, where SampleWithReplacement(y, n times)

means to build a vector of n observations sampled (with replacement) from y. If this estimated

sampling distribution of the mean does not deviate from normality, then the assumption can

be considered satisfied for the methods presented in this section.

Algorithm 3: Bootstrapping the sampling distribution of the mean
Data: Sample vector y; number of bootstrap resamplings R.

Result: ȳB

ȳB [] /* Initialize empty vector */

; n dim(y) /* Vector length */

; for (R times) do
yT SampleWithReplacement(y, n times); ȳT mean(yT); ȳB [ȳB, ȳT]

/* Append ȳT to ȳB */

Finally, if the assumption of normality is violated (or expected to be, in the design phase

of the experiment), one must employ nonparametric methods instead. A brief discussion of

these techniques is provided next.

�.� ������������� ������������

If the assumption of normality of the sampling distribution of the means cannot be guaran-

teed,6 different procedures should be employed. Some possibilities for estimating fj and for

testing hypotheses regarding the expected performance difference between two algorithms

are presented in this section.

5 Using inferential tests on yB is not good practice, as the number of resamples can be made arbitrarily large, which

would artificially inflate the degrees-of-freedom of any such test.
6 Notice that it is relatively common for the normality assumption to be violated in the original data, but valid

under transformations such as log or square root. The topic of data transformations is, however, outside the scope

of this thesis.

������������� ������������ 31

�.�.� Nonparametric estimation of sefj and of the number of repetitions

When the assumptions regarding the sampling distribution of bfj are not true, the estimates

of the standard error calculated in Section 3.1 may be incorrect (particularly for the case of

percent differences). If that is the case, a bootstrap approach can be used to estimate sebfj
and,

consequently, the required number of repetitions.

To obtain a bootstrap estimation of sebfj
, recall the definition of standard error as the standard

deviation of the sampling distribution of a given estimator. A bootstrap estimator of sebfj
can

be calculated using the routine shown in Algorithm 4, and the value returned can then be

used directly into Algorithm 1.

Algorithm 4: Bootstrap estimation of sebfj

Data: Sample vectors x1j, x2j; number of bootstrap runs R.

Result: sample standard deviation of bfj

bfj [];

n1j dim(x1j);

n2j dim(x2j);

for (R times) do

xb
1 SampleWithReplacement(x1j, n1j times);

xb
2 SampleWithReplacement(x2j, n2j times);

Calculate bfj,r using (5) or (11);

bfj
⇥ bfj, bfj,r

⇤
;

Notice that, unlike in the parametric approach, the optimal ratio ropt used in Algorithm 1

to determine which algorithm should be sampled may not be optimal in the theoretical sense

when using a bootstrap estimate of sebfj
. Nonetheless, there are two arguments that can be

advanced for using it in this case: first, it will always result in more intensive sampling of

the algorithm presenting the greatest variance, which makes sense from the perspective of

reducing the standard error of the estimates of fj. Second, since the sampling distribution

of the means will become progressively closer to a normal distribution as the sample sizes

are increased, the estimation of ropt will become increasingly better as more observations are

collected, and thus the sample sizes yielded by Algorithm 1 should approach optimality as

the sampling progresses.

������������� ������������ 32

Finally, it is important to highlight that the bootstrap procedure tends to be considerably

more computationally intensive than the parametric one, due to the resampling procedures

involved in its calculation. This difference, however, becomes less important when the run

times of a1, a2 are longer, needing, e.g., seconds or minutes to complete.

�.�.� Nonparametric tests of hypotheses

Common alternatives for the paired t-test include Wilcoxon’s signed-ranks test, which assumes

independence and symmetry about the median7 of P (F) [66]; and the binomial sign test, which

requires only the assumption of independence [66], at the cost of reduced power. Both can be

used to test hypotheses regarding the median of P (F) instead of the mean, which is another

way to quantify the expected differences between two algorithms.

The determination of the number of instances for these cases can be done using an argument

based on the asymptotic relative efficiency (ARE) of these tests relative to the paired t-test. The

ARE can be defined [54] as “the limiting ratio of the sample sizes necessary to obtain identical error

probabilities for the two procedures.”. In the specific case of the Wilcoxon test, we have that [54]

“For normal populations, the ARE of the Wilcoxon signed-rank test relative to the t-test is approximately

0.95; For non-normal populations, the ARE is at least 0.86, and in many cases it will exceed unity.". As

for the binomial sign test, the ARE is 0.637 [66], showing its more conservative characteristic.

Under these considerations, a reasonable rule-of-thumb is to calculate the required number

of instances using the formulas for the paired t-test, and then dividing the value of N⇤ by the

ARE of the test under normality:

N⇤wilc = N⇤/0.86 u 1.16N⇤

N⇤sign = N⇤/0.637 u 1.57N⇤
(24)

Notice that i) these are conservative estimates, reflecting (particularly in the case of Wilcoxon’s

test) an expected worst-case scenario, which means that the actual power can be larger than

the one used for the calculations; and ii) the binomial sign test requires over 50% more in-

stances to achieve the same power under this supposed worst-case scenario, which may be

unreasonable in many situations. However, if P (F) is severely skewed, this may be the only

7 Although it is very common in the literature on the experimental comparison of algorithms to ignore the fact that

Wilcoxon’s signed-ranks test works under the assumption of symmetry.

��� ���� �� ���������� N 33

test for which the assumptions can be maintained (i.e., for which nominal error rates can be

reasonably expected to hold), and as such it remains as an interesting last resource.8

�.� ��� ���� �� ���������� N

The second part of the proposed methodology, described in Sections 3.2 and 3.4.2, is con-

cerned with estimating the smallest number of instances required for achieving predefined

statistical properties for a given experiment. This estimation can be very useful in several

distinct situations, e.g., when designing test sets for specific problem classes, or when per-

forming experiments on algorithms for computationally expensive optimization problems [39].

As mentioned earlier, however, there are cases in which it may not be possible to arbitrarily

choose the sample size for a given experiment. Common examples include situations when

only a limited number of instances is available, or when a predefined test set needs to be

employed, as is often the case in standardized comparison experiments [31].

Even if that is the case, however, it is still possible to employ the principles discussed

in the preceding sections to obtain a better perspective of the statistical properties of the

experiment. For instance, even for predefined N, the proposed methodology can still be

used to determine the number of runs of each algorithm on each instance, so as to guarantee

a desired standard error for the paired differences in each instance. Moreover, the sample

size calculations provided in Section 3.2 can be easily adapted to maintain a fixed N and

estimate instead other relevant properties, e.g., on the expected statistical power for a given

MRES. For instance, by keeping a and N fixed in (20), one can iterate over different values

of ncp = d/
p

N and obtain a power curve for a fixed-sample experiment, prior to actually

collecting the data. Figure 3.1 provides an example of this kind of power curve, which can

be quite useful for researchers interested in evaluating which differences between algorithms

could the experiment be reasonably expected to detect. Similar curves can be constructed for

other pairs of power-related variables, e.g., maintaining a fixed power and iterating over N

to obtain a curve of effect sizes d for which that power is expected as a function of sample

size. Power curves can also be useful for evaluating existing test sets, for example, to answer

questions regarding the sensitivity of experiments performed using existing test sets.

8 There are other ways to calculate the sample size for the binomial sign test that are less conservative, but for the

sake of brevity this will not be discussed here.

�������� ���������� ������������ ���������� 34

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

Power curve

d

po
w

er

power = 0.5 for d = 0.56
power = 0.8 for d = 0.85
power = 0.95 for d = 1.1

Figure 3.1: Example of power curve that can be derived in cases with a predefined number of instances.

�.� �������� ���������� ������������ ����������

Finally, it is important to discuss the choice of reasonable values for the experimental pa-

rameters. In terms of the proposed methodology, the required parameters are shown at the

beginning of Algorithm 2. The set of available instances GS and the algorithms to be compared,

a1, a2, are relatively straightforward - GS is usually a list of available instances, which may or

may not be exhausted in the experiment, and a1, a2 are the algorithms to be compared.

The definition of the remaining user-defined parameters for the experimental protocol –

namely se⇤, n0 and nmax for calculating the number of repetitions, and a, b⇤ and d⇤ for the

number of replicates – is a little more subtle. Starting with the statistical error rates, a and

b⇤ should ideally be defined based on the consequences of the errors they control - i.e., the

consequences of falsely detecting a nonexistent difference, or of failing to detect an existing

one. However, defining these consequences can be very challenging even in experiments with

more easily quantifiable consequences, and in practice “standard” values are often used –

0.05 or 0.01 for a, and 0.2 or 0.15 for b⇤. It is important to recall that (i) there is nothing

inherently special about these values, they are simply conventions that can, and often should,

be challenged; and (ii) there is a tradeoff between the error rates and the sample size, so that

the lower these values, the larger the number of instances needed to control both errors at

their nominal values for a given MRES.

Determining a good value for the MRES is also heavily experiment-dependent, since a

small difference in one context could be considered substantial in another. In our discussions

we have been using the standardized effect size d for the power calculations, in which case

the MRES, d⇤, should be selected based on units of standard deviations - e.g., a d⇤ = 0.5

�������� ���������� ������������ ���������� 35

would mean that we are interested in detecting differences equal to or larger than one half

standard deviation. While some fields possess somewhat standard target values for “small”,

“medium” and “large” effects (see, e.g., the discussion by Sawilowsky [63]), researchers should

be aware that specific features of different application areas can and should take precedence

over application-agnostic predefined values.

When fj is defined as the percent differences (Sec. 3.1.2), it may be more intuitive to use

the simple effect size, d, instead of the standardized one. This would allow statements such as

“we are interested in detecting mean performance gains of more than 5%”, which tend to be

more straightforward. In this case, however, a reasonable upper bound for the total standard

deviation – the denominator of the r.h.s. of (23) – must be provided by the user, which may

be obtained using either a pilot study, estimated from published results, or defined using

previous knowledge about the algorithms tested.

Regarding the experimental parameters necessary for estimating the number of runs on

each instance, n0 should ideally be set based on the expected shape of the distribution of

observations of algorithm performance – bell-shaped distributions can use lower n0 (values as

low as 3 or 4 are sufficient for the sampling distribution of means to converge to a Gaussian

shape in these cases), other symmetric distributions can use intermediate values (e.g., 10), and

more strongly skewed distributions should use larger values (n0 = 20 or 30). If the distribution

is severely skewed, it is often more practical to work on log-transformed data, which tends

to bring the distribution to a more well-behaved shape [17]. The value of nmax should be

selected based on the available computational budget for the experiment, but knowing that

lower values will result in sample sizes that may fail to control the within-instances error sebfj

at the predefined level se⇤, which can result in reduced overall power for the experiment.

The definition of the measurement error threshold, se⇤, should be performed in such a way

that this component of the total standard deviation does not dominate the power calculations

– in other words, the value of se⇤ should be much smaller than the expected across-instances

variance – e.g., (se⇤)2  0.1s2
F.

Finally, it is important to remember that even if the number of available instances is much

larger than the calculated N⇤ and the researchers desire (or are required) to employ all in the

comparison, the methodology presented in this section can still provide precious information

- both for the determination of the number of runs on each instance and, critically, for defining

a MRES prior to the experiment, so that the results obtained are interpreted under the light of

practical relevance, and not only statistical significance.

4 M E T H O D E VA L U AT I O N

The way to do research is to attack the

facts at the point of greatest

astonishment.

Celia Green

When testing a methodology to compare algorithms, it is important to use functions whose

behaviour is known. This allows the researcher to compare the results obtained with the

expected behaviour, which enables the validation of the proposed method. In this chapter

we present results using a simulation model in which we can control several aspects of the

algorithm comparison problem: true effect sizes, residual variances, distribution of errors,

etc. This model is used to assess the nominal properties of the proposed method, namely the

estimate of standard error, location parameter and effect size, which are part of the sample

size calculation.

�.� ���������� �����

The model represented by equation (25) simulates executions of a set of algorithms qi, i =

1, . . . , m, on a sample of instances gj 2 G, j = 1, . . . , N, where G represents a (supposed)

problem class of interest:

yijk = µi;G + tij + eijk (25)

where yijk is a (simulated) performance value obtained by a hypothetical algorithm qi on an

equally hypothetical instance gj at a given execution k; µi;G represents the expected value

of the performance of qi in the family of instances G, i.e. the grand mean. The coefficient

tij = µij � µi,G is the deviation between the reference performance of qi on the gj instance (µij)

and the grand mean. And eijk = yijk � µij represents the variation of the kth execution from

the reference value of the algorithm on the instance.

36

���� �������� 37

The value of µi;G can be arbitrarily set, and differences in µi;G can be seen as simulating effect

sizes in an experiment, i.e., differences in the mean performance of algorithms on the problem

class. To simulate the sampling of problem instances from a given problem class, the values

of the coefficients tij and eijk are sampled from a probability distribution, e.g., a Gaussian or

Exponential distribution. In the initial experiments of this work, ti j are sampled using:

tij ⇠ N (0, s2
AI) (26)

where s2
AI represents the across instance variance, which models the variability across instances

of the problem class - indirectly, it can be seen as a way to measure the heterogeneity of

instance “difficulties” in the problem class.

The coefficient eijk is obtained using:

eijk ⇠ N (0, s2
WI) (27)

where s2
WI is the within instance variance, which models the variability of the algorithm perfor-

mance across repeated runs on the same instance.

This model simulates outputs of algorithms whose expected performances and variations

are known because they are defined by the user. For this reason, it is suitable to verify the

consistency of the proposed method, which must present an average performance of the al-

gorithm, or algorithm difference, for each instance within an error. With such average and

variations predefined, it is possible to check if the values obtained by the proposed method

are in agreement with those defined previously.

�.� ���� ��������

While the proposed method is not stochastic, its entries - namely the output of an algorithm

on an instance drawn from a problem class - are. Thus, the first test of the proposed method

consists in validating if the output is compatible with the input, given known parameters used

to generate the random inputs: tij, which is a fixed value for each instance, is sampled from

tij ⇠ N (0, 9); and sWI,j is also predefined for each instance and is sampled from a normal

variable with zero mean and standard deviation sampled as sWI,j ⇠ U (1, 5).

The value for parameter µi,G, which can be arbitrarily chosen, was set as 10, 9.9 and 15

for simulated algorithms 1, 2 and 3 respectively. Notice that the values chosen for these

���� �������� 38

simulation parameters make it possible to have simulated instances for which the paired

difference in mean performance is negative or very close to zero, which would violate the

stated assumptions of the method used to derive standard errors for the percent differences

(Section 3.1.2). This is intentional, so that we can observe what effects can be expected when

such violations are present, and alert future users of this methodology accordingly.

Once the inputs are properly defined, it is possible to execute the method and verify if

its outputs correspond to the values chosen for the inputs. First, it was tested if the mean

performance of the algorithms on each instance, obtained from the estimated quantity of

sampled observations, was appropriate. This was done by running the proposed method

with 100 (simulated) instances, and checking whether the estimate obtained by the proposed

method for the performance of each ”algorithm“ on each ”instance“ did match the nominal

value µi,G + tij. In the case of estimating the differences, it was evaluated if the obtained

differences were consistent with (µ2j � µ1j)/µ1j for the percent differences, or µ2j � µ1j for

the absolute differences, the first considering a threshold for the standard error of 0.1, which

means a difference of 10% between the algorithms, and the second of 0.35, a difference of 35%.

To test if the number of replications estimated by the proposed method is appropriate,

the method was executed 1000 times, every time randomly sampling N simulated instances.

The differences in algorithm performances discovered by the proposed method should be

consistent with the expected value, with an error rate of approximately a.

�.�.� Validation of the estimated number of repetitions

The test to verify whether the estimate of the number of repetitions is appropriate considered

two situations: one where the pair of algorithms had very similar performances, being algo-

rithm 1 with µq1;G = 10 and algorithm 2 with µq2;G = 9.9; and one with a pair of algorithms

with more clearly distinct performances, being algorithm 1 with µq1;G = 10 and algorithm 3 with

µq3;G = 15;

Figure 4.1 shows the confidence intervals for the percent differences between algorithms 1

and 2, generated using the proposed sampling procedure, for 100 simulated instances. The

intervals were centered, so that those that intercept the zero line represent the cases in which

the interval was able to capture the correct parameter value. In the case of algorithms 1 and

2, the real percent difference in performance for each instance was calculated as (9.9 + t2j �

10� t1j)/(10 + t1j), with the values of tij sampled according to the description in Section 4.2.

���� �������� 39

Figure 4.2 shows the result of the same experiment for algorithms 1 and 3, whose real percent

differences were calculated by (15 + t3j � 10� t1j)/(10 + t1j). When testing this experiment

500 times the percentage of errors was in average 4.9% for the algorithms 1 and 2 and 10.7%

for algorithms 1 and 3. This decrease in the effective confidence level of the intervals for larger

percent differences reflects a known problem with intervals derived from the approximation

based on Fieller’s theorem [47], and alternative strategies for a more precise calculation of

standard errors for percent differences [47] are under investigation.

●
●

●

● ●
●

●

● ●

●

●

●

● ●

●

●
●

●

●

●
● ●

●

●
●

●

● ●
●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●
● ●

●

● ●

●

●

●

●
●

●

●
● ●

●
●
●

●
●
●

●
●
●
●

● ●
●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

Real and Estimated performances

M
ea

n
pe

rfo
rm

an
ce

1 4 7 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

● ●

●
●

●

●

Figure 4.1: Mean performances of 100 instances on percent difference between algorithm 1 and algorithm

2. The instances for which the real value of µij falls outside the confidence interval are

marked in red and counted as errors

���� �������� 40

●

●
●

●

●

●

● ●
●

● ●

●

●
●

●

●

●

●

●

●

●
●

●
● ●

●
● ●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

● ●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

● ●

−1.0

−0.5

0.0

0.5

1.0

Real and Estimated performances
M

ea
n

pe
rfo

rm
an

ce

1 4 7 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

●

●

●

●

●

●

●

●

●

●

●

Figure 4.2: Mean performances of 100 instances on percent difference between algorithm 1 and algorithm

3. The instances for which the real value of µij falls outside the confidence interval are

marked in red and counted as errors

Figure 4.3 shows that there are some instances that require a large number of repetitions.

These cases represent situations in which the value of µ1j approached zero, which, as stated

earlier, violates the assumptions of the method used to derive intervals for the percent differ-

ences. In these cases, the most advisable course of action for the user would be to work with

absolute differences instead of percent ones.

���� �������� 41

100

200

300

400

500

Estimate number of repetitions

Instance

N
um

be
r o

f r
ep

et
iti

on
s

1 4 7 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Estimation errors Min 40 Max 508

Figure 4.3: Number of repetitions of 100 instances for percent difference between algorithm 1 and al-

gorithm 2. The x markers represent the instances with wrongly estimated µij (see Figure

4.1).

200

400

600

800

Estimate number of repetitions

Instance

N
um

be
r o

f r
ep

et
iti

on
s

1 4 7 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Estimation errors Min 40 Max 894

Figure 4.4: Number of repetitions of 100 instances for percent difference between algorithm 1 and al-

gorithm 3. The x markers represent the instances with wrongly estimated µij (see Figure

4.2).

���� �������� 42

The same tests were performed with the absolute differences approach, and the results are

shown in Figures 4.5-4.8.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Real and Estimated performances

M
ea

n
pe

rfo
rm

an
ce

1 4 7 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

●

●
●

●

●

●

Figure 4.5: Mean performances of 100 instances on absolute difference between algorithm 1 and algo-

rithm 2. The instances for which the real value of µij falls outside the confidence interval

are marked in red and counted as errors

���� �������� 43

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Real and Estimated performances
M

ea
n

pe
rfo

rm
an

ce

1 4 7 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

●

●

●
●

●

Figure 4.6: Mean performances of 100 instances on absolute difference between algorithm 1 and algo-

rithm 3. The instances for which the real value of µij falls outside the confidence interval

are marked in red and counted as errors

200

400

600

800

Estimate number of repetitions

Instance

N
um

be
r o

f r
ep

et
iti

on
s

1 4 7 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Estimation errors Min 40 Max 785

Figure 4.7: Number of repetitions of 100 instances for absolute difference between algorithm 1 and

algorithm 2. The x markers represent the instances with wrongly estimated µij (see Figure

4.5).

���� �������� 44

200

400

600

800

Estimate number of repetitions

Instance

N
um

be
r o

f r
ep

et
iti

on
s

1 4 7 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Estimation errors Min 40 Max 809

Figure 4.8: Number of repetitions of 100 instances for absolute difference between algorithm 1 and

algorithm 3. The x markers represent the instances with wrongly estimated µij (see Figure

4.6).

With the absolute difference approach, the estimate of the differences of means of algorithms

with a large difference in performance did not present more errors than the comparison of

algorithms similar in performance, the error percentage in the first case was of 4.9% and for

the second one it was only 5.04%. This was also expected, as all assumptions of the confidence

interval used in this case are observed.

The test considering shifted Exponential distributions with zero mean, instead of the Gaus-

sian one, samples tij and eijk according to equations (28) and (29), respectively.

tij ⇠ Exp(l = s�1
AI)� sAI (28)

eijk ⇠ Exp(l = s�1
WI)� sWI (29)

The results obtained from these experiments demonstrated similar behaviour to those with

the normal distribution. The table 4.1 shows that the same characteristic, with a wider differ-

ence between the algorithms performance leading to a wider error for the percent differences

case, also happens in this case, as expected.

���� �������� 45

Percent diff. Absolute diff.

algorithm 1 - algorithm 2 5.29 5.28

algorithm 1 - algorithm 3 11.34 5.31

Table 4.1: Error rates when testing with 100 different instances with simulation parameters distributed

according to Exponential distributions. An error is considered to happen when the real

difference of the means falls outside the confidence interval found for the instance

�.�.� Validation of the estimated number of replications with fixed sample size

The second objective of the proposed method is to estimate the number of instances required

for the comparison of algorithms, so that predefined statistical properties can be maintained.

To test the estimation of the required number of instances, we set the effect size of minimal

practical significance as d = 1 (i.e., it assumes that the user is interested in detecting differences

in paired mean performance greater than 1 standard deviation, which is generally considered

a large effect size). In this case, sample sizes calculated for power levels of 70%, 80% and 90%

yielded 7, 8 and 11 instances, respectively.

To test if these estimated sample sizes can provide the desired power level, the method was

executed 1000 times.After each run a paired-samples t-test was performed, and its ability to

detect the true difference between the algorithms was evaluated, and the rate of false nega-

tives was recorded. With that, the observed power was estimated, as shown in Table 4.2.e

Confidence intervals on the differences between the two algorithms were also derived, and

the observed significance level (i.e., the proportion of cases in which the confidence interval

did not capture the true value of the parameter of interest) was also recorded. These values

are shown in Table 4.3.

In the first case exposed on Table 4.2, the actual effect size was much smaller than the one

used for the calculation of the required sample size (d⇤ = 1), resulting in a much lower ob-

served power - the experiment was simply not designed to detect differences that small, and

the tests generally fail to report significant results. This was exactly as expected - effect sizes

smaller than the difference of minimal practical relevance, which is used for planning the exper-

iment, will result in lower power, but this is harmless since they are, by definition, smaller

than what is considered to have practical relevance.

���� �������� 46

Power for d⇤ = 1

P70 P80 P90

algorithm 1 ⇥ 2
Percent differences 3.7 3.2 4.9

Absolute differences 4.0 5.3 3.7

algorithm 1 ⇥ 3
Percent differences 73.8 83.6 97.5

Absolute differences 85.7 93.6 99.4

Table 4.2: Observed power when using Gaussian sampling.

The design was sufficient, however, to detect the differences between algorithms 1 and 3,

which was also according to what was expected: if the actual effect size is larger than the

minimally relevant one used in the design of the experiment, a larger power will result.

Power for d⇤ = 1

P70 P80 P90

algorithm 1 ⇥ 2
Percent differences 4.1 5.2 4.3

Absolute differences 4.5 4.9 3.8

algorithm 1 ⇥ 3
Percent differences 4.8 4.9 6.8

Absolute differences 5.2 4.7 4.7

Table 4.3: Observed significance levels when using Gaussian sampling.

Table 4.3 shows that the desired significance level was not particularly affected, which is

in accordance with the theory - since all parametric assumptions are guaranteed in this first

experiment, the (strong) control over the confidence level is ensured.

The behaviour of the method using Exponential sampling for (28) and (29) was similar to

the behaviour with the Gaussian sampling. Tables 4.4 and 4.5 show the observed power and

significance levels for this experiment.

The conclusions drawn from Table 4.4 are the same as in the Gaussian sampling case, with

the tests failing to detect the very small differences (below the stated relevance threshold) in

most cases. It is important to notice that the value of the error threshold can also interfere with

these conclusions, since the variation of the estimates calculated for each instance propagate

down to the total variance, which has a strong impact in the power of the test. For instance,

while Table 4.4 reports results calculated with dmax = 0.35, the same experiment for algorithm

���� �������� 47

1 and 2 performed with dmax = 0.1 would yield observed powers of 58.1%, 68.7% and 81.9%,

for nominal powers levels of 70%, 80% and 90%, respectively.

Power for d⇤ = 1

P70 P80 P90

algorithm 1 ⇥ 2
Percent differences 3.4 5.5 11.2

Absolute differences 8.4 8.9 12.4

algorithm 1 ⇥ 3
Percent differences 100 100 100

Absolute differences 100 100 100

Table 4.4: Observed power when using Exponential sampling.

When comparing algorithms 1 and 3 with Exponential sampling, the difference between the

algorithms was also much larger than the effect size for which the tests were designed, leading

to extremely high observed power, according to table 4.4.

Power for d⇤ = 1

P70 P80 P90

algorithm 1 ⇥ 2
Percent differences 2.5 3.2 6.3

Absolute differences 4.9 4.1 4.7

algorithm 1 ⇥ 3
Percent differences 6.9 6.1 8.2

Absolute differences 4.7 5.4 5.3

Table 4.5: Observed significance levels when using Exponential sampling.

It is also interesting to notice that despite using Exponential distributions instead of Gaus-

sian, there were no observable degradations in terms of the statistical properties of the meth-

ods. This can be explained in part by the relative robustness of the estimators used to devi-

ations from normality (as long as the sampling distribution of means remains approximately

normal). This is of course not always guaranteed when testing heuristics - very heavy tailed

and asymmetric distributions can lead to degraded performances, and the use of robust statis-

tics may be necessary to avoid these problems in the general use of the methodology. The

investigation of these methods represents a natural next step in this work.

������� 48

�.� �������

The results reported in this chapter validate the proposed methodology on a simulation model.

This validation is performed by using the sample size estimation approach on a controlled en-

vironment, in which the real variances and effect sizes can be controlled at predefined levels,

which allows the comparison between the observed results and the “ground truth” of these

simulated experiments. By using the simulation model, we were able to assess that the pro-

posed approach is indeed capable of generating designs that maintain the desired statistical

properties stated by the experimenter. An exception that was detected in our simulation exper-

iments was the decrease in the effective confidence level of intervals on the percent differences

as the differences increase, something that can be corrected by employing a more consistent in-

terval equation for this case. Another point of attention, also in the case of percent differences,

is the need to observe the assumptions under which this approach can be used, particularly

with regards to the requirement of strictly positive values for the observations, something that

can be easily guaranteed in some problem classes (e.g., routing or scheduling problems) but

not so much in others.

5 E X P E R I M E N TA L E X A M P L E S

One essential object is to choose that

arrangement which shall tend to reduce

to a minimum the time necessary for

completing the calculation.

Ada Lovelace, Notes upon L. F. Menabrea’s

”Sketch of The Analytical Engine Invented

by Charles Babbage”. 1842.

�.� ���������� �� ��� �����-��������� ������������ ����������

A case study was to use the proposed method for comparing two variations of the MOEA/D,

a decomposition-based multi-objective optimization algorithm, namely the original MOEA/D

[80] and the MOEA/D-DE [44]. In this experiment, the performance of the algorithms was

measured by means of the IGD indicator [82]. The configuration used for both algorithms

is described in the example presented in Appendix B, the implementations used were those

available from R package MOEADr [13].

The set of available instances for this experiment was determined considering the protocol

suggested by Bezerra et al [7]. The instance class used consists of the functions UF1 - UF7

from the the CEC 2009 benchmark with the number of variables ranging from 20 to 60, and

excluding 30, 40 and 50, which are reserved for posterior validation. In this way, the maxi-

mum number of instances available for the experiment is 266. While in this case one would

be justifiably interested in using all available test instances (a total of 217) to obtain a more

complete understanding of the behaviour of these algorithms on the problem class of inter-

est, the resulting computational cost of such an exhaustive experiment may be quite large.1

1 While in this particular example the required computational budget for exhausting all available instances would

not be unattainable, limitations to the number of instances that can be reasonably employed in an experiment can

49

���������� �� ��� �����-��������� ������������ ���������� 50

Consequently, a first step in comparing these two methods may be to investigate whether they

present differences in mean IGD performance that exceed some minimal threshold of practical

relevance, which can be achieved using a subset of the available instances, at a computational

cost much smaller than what would be required for the full investigation.

Initially, the test had the following configurations: Statistic of interest: mean of percent

differences; significance level a = 0.05; minimally relevant effect size, d⇤ = 1.0; Desired power,

p = 0.8; standard error threshold dmax = 0.1. The results of running the proposed method for

this experimental setup are summarized in table 5.1.

Instance est se CIl CIu n.1 n.2

1 UF_7_37 -0.39 0.10 -0.58 -0.19 29 10

2 UF_1_22 -0.41 0.10 -0.61 -0.22 28 18

3 UF_3_60 -0.50 0.10 -0.70 -0.30 27 10

4 UF_4_48 -0.29 0.10 -0.49 -0.09 12 10

5 UF_3_21 -0.48 0.10 -0.68 -0.28 34 10

6 UF_6_33 -0.37 0.10 -0.57 -0.16 13 10

7 UF_5_24 -0.37 0.10 -0.58 -0.16 11 10

8 UF_1_32 -0.39 0.10 -0.60 -0.19 14 10

Table 5.1: Results returned by the proposed method for the first experiment comparing the two

MOEA/D methods. The instances were randomly sampled from the available set. x.est

refers to the d point estimate of the difference of means of the two algorithms for each in-

stance, in this case [“MOEA/D-DE” - “MOEA/D”]. x.se refers to the estimated standard

error, which was controlled exactly at the nominal level for all cases. x.CIl and x.CIu refer

to the lower and upper limits of the 95% confidence interval for each estimate, and x.n.1

and x.n.2 refer to the number of runs required, on each instance, for the MOEA/D and

MOEA/D-DE, respectively.

The results presented in Table 4 deserve some attention. Notice that the number of repeti-

tions performed for the MOEA/D was generally superior to that of MOEA/D-DE, suggesting

that the former algorithm presented generally larger standard deviations. Also, notice that

the standard error was controlled at the nominal threshold in all cases, suggesting that the

proposed method does indeed generate the repetitions needed for obtaining the desired ac-

be much more severe when researching, for instance, heuristics for optimizing numerical models in engineering

applications, or other expensive optimization scenarios [73].

���������� �� ��� �����-��������� ������������ ���������� 51

curacy in the estimation of these values. Figure 5.1 presents the confidence intervals for the

percent differences of means observed in each instance.

To compare the two methods in terms of mean differences in IGD for the problem class, a

paired t test was performed using the paired difference estimators (column x.est in Table z5.1)

as the individual observations. The results of this test were statistically significant at the 95%

confidence level (p = 5.9⇥ 10�7; N = 8; CI.95 = [�0.456,�0.345], providing evidence that the

second algorithm presents IGDs that are systematically lower than those yielded by the first.

Figure 5.1: 95% confidence intervals on the percent differences of means for each instance, for the first

comparative experiment.

A second experiment was performed to illustrate the behaviour of the proposed method

when facing algorithms with an expected smaller real difference in performance. In this ex-

periment, we compared two configurations of the MOEA/D-DE: the standard one, described

in Appendix B, and another MOEA/D-DE in which only the population size was changed, in-

creasing it by 5% (by changing the parameter H in the decomposition strategy from 99 to 104).

Considering an interest in mean percent gains, the effect size of minimal practical relevance

was defined in this experiment as d⇤ = 0.5 (leading to an estimated sample size of N = 32

instances), and the standard error threshold was selected as dmax = 0.1.

���������� �� ��� �����-��������� ������������ ���������� 52

Table 5.2 displays the summary of the resulting experimental design after applying the

proposed method. In this case, a paired t-test performed on the point estimates for the

percent differences in means of each instance returned a non-statistically significant result

(p = 0.2562; N = 32; CI.95 = [�0.0440.0122], suggesting the absence of differences equal to,

or greater than the effect size of minimal practical relevance. Whatever difference in mean

percent differences may exist between these two algorithms, it is probably smaller than the

predefined relevance threshold and, consequently, not interesting from the practical perspec-

tive of the experimenter.

Instance x.est x.se x.CIl x.CIu x.n.1 x.n.2

1 UF_6_59 -0.07 0.07 -0.23 0.09 10 10

2 UF_7_26 -0.03 0.08 -0.20 0.15 10 10

3 UF_7_51 -0.00 0.09 -0.20 0.19 10 10

4 UF_2_43 -0.13 0.07 -0.28 0.01 10 10

5 UF_6_48 0.16 0.10 -0.04 0.35 13 12

6 UF_2_36 -0.02 0.08 -0.19 0.15 10 10

7 UF_5_28 -0.10 0.08 -0.27 0.07 10 10

8 UF_6_24 -0.01 0.09 -0.21 0.19 10 10

9 UF_3_48 -0.07 0.08 -0.23 0.10 10 10

10 UF_4_31 -0.08 0.07 -0.23 0.08 10 10

11 UF_4_35 -0.06 0.10 -0.26 0.15 17 10

12 UF_3_28 -0.00 0.10 -0.20 0.20 10 11

13 UF_4_53 -0.10 0.06 -0.23 0.03 10 10

14 UF_6_33 0.01 0.07 -0.14 0.16 10 10

15 UF_1_52 -0.16 0.08 -0.32 -0.00 10 10

16 UF_6_52 0.08 0.08 -0.10 0.25 10 10

17 UF_4_28 0.04 0.09 -0.14 0.23 10 10

18 UF_3_36 -0.07 0.10 -0.27 0.13 10 11

19 UF_3_26 -0.07 0.08 -0.24 0.10 10 10

20 UF_4_56 0.13 0.07 -0.03 0.28 10 10

21 UF_1_47 -0.07 0.10 -0.27 0.14 10 12

22 UF_1_43 0.06 0.09 -0.13 0.25 10 10

23 UF_2_44 -0.02 0.06 -0.15 0.11 10 10

24 UF_1_59 0.02 0.07 -0.13 0.17 10 10

���������� �� ��� �����-��������� ������������ ���������� 53

25 UF_5_57 0.06 0.10 -0.14 0.26 10 10

26 UF_2_58 0.11 0.10 -0.09 0.31 11 10

27 UF_4_43 0.08 0.07 -0.07 0.23 10 10

28 UF_4_27 -0.09 0.07 -0.23 0.06 10 10

29 UF_6_21 0.05 0.06 -0.07 0.17 10 10

30 UF_4_33 -0.12 0.06 -0.24 0.01 10 10

31 UF_4_34 0.00 0.09 -0.18 0.18 10 10

32 UF_5_22 -0.04 0.07 -0.19 0.11 10 10

Table 5.2: Results returned by the proposed method for the second experiment comparing the two

MOEA/D-DE with different population sizes. The instances were randomly sampled from

the available set. x.est refers to the point estimate of the difference of means of the two

algorithms for each instance, in this case [“MOEA/D-DE” with h = 104 - “MOEA/D-DE”

with h = 99]. x.se refers to the estimated standard error, which was controlled exactly at

the nominal level for all cases. x.CIl and x.CIu refer to the lower and upper limits of the

95% confidence interval for each estimate, and x.n.1 and x.n.2 refer to the number of runs

required, on each instance, for the “MOEA/D-DE” with h = 99 and “MOEA/D-DE” with

h = 104, respectively.

���������� �� ��� �����-��������� ������������ ���������� 54

Figure 5.2: 95% confidence intervals on the percent differences of means for each instance, for the

second comparative experiment.

A third test was done considering the common situation in which a limited number of

instances is available - in our case, only 7 instances (UF1 - UF7, with dimension 25). In this

case, since N is fixed, the experiment exists with a tradeoff between power and effect size, as

illustrated in Figure 5.3.

���������� �� ��� �����-��������� ������������ ���������� 55

Figure 5.3: Power profile for an experiment with a fixed sample size of 7 instances

To perform this experiment, we compared the standard version of the MOEA/D-DE (de-

scribed in Appendix B) against another version of the same algorithm, in which the polyno-

mial mutation operator was removed (i.e., a version in which the only variation operator is

the differential mutation). The standard error tolerance was set as dmax = 0.1 in this case.

Table 5.3 shows the summary of the resulting experiment. As in the first test using the

MOEA/D variants, the number of repetitions was relatively small (in many cases only the

minimum sample, Nstart = 10, was required) due to the less strict requirements regarding the

standard errors. In this experiment, the paired t test yielded a statistically significant result at

the 95% confidence level (p = 2.9⇥ 10�10; N = 7; CI.95 = [�0.891,�0.837], which suggests

that the effect of the removed operator (polynomial mutation) is indeed important in terms of

the algorithm’s ability to yield results with superior performance.

���������� �� ��� �����-��������� ������������ ���������� 56

Instance x.est x.se x.CIl x.CIu x.n.1 x.n.2

1 UF_1_25 -0.82 0.10 -1.03 -0.62 10 13

2 UF_2_25 -0.83 0.10 -1.03 -0.62 25 13

3 UF_3_25 -0.86 0.10 -1.07 -0.66 16 10

4 UF_4_25 -0.90 0.10 -1.10 -0.70 14 10

5 UF_5_25 -0.89 0.09 -1.08 -0.70 10 10

6 UF_6_25 -0.88 0.09 -1.08 -0.69 10 10

7 UF_7_25 -0.87 0.10 -1.07 -0.67 16 10

Table 5.3: Results returned by the proposed method for the third experiment comparing the two

MOEA/D methods. The instances were the 7 UF functions fixed with parameters dimen-

sion of 25. x.est refers to the point estimate of the difference of means of the two algorithms

for each instance, in this case [“MOEA/D-DE” - “MOEA/D”]. x.se refers to the estimated

standard error, which was controlled exactly at the nominal level for all cases. x.CIl and

x.CIu refer to the lower and upper limits of the 95% confidence interval for each estimate,

and x.n.1 and x.n.2 refer to the number of runs required, on each instance, for the MOEA/D

and MOEA/D-DE, respectively.

The individual differences in this experiment, as in the previous one, show a greater dis-

tance to zero than the first one, as illustrated in figure 5.4. As mentioned above, this provides

evidence that the polynomial mutation operator is important as a variation heuristic within

the MOEA/D-DE algorithm, at least for the (hypothetical) class of instances for which func-

tions UF1-UF7 with 25 variables represent a reasonable sample.

���������� �� ��� �����-��������� ������������ ���������� 57

Figure 5.4: 95% confidence intervals on the percent differences of means for each instance, for the third

comparative experiment.

�.�.� Comparison with bootstrapping

These examples, however, are merely illustrative. When inspecting the assumption for execut-

ing such tests it is possible to notice that the data is not normal, for instance the Shapiro-Wilk

test for normality returns a p-value of 1.55⇥ 10�5, for the percent differences of 32 random

instances and other extremely low values for data sampled from the execution of the tested al-

gorithms. Therefore, this experiment would be more correctly handled using a non parametric

approach, as follows.

A more realistic approach is to use bootstrapping due to the characteristics of the data.

Therefore, the proposed methodology was, then, used to investigate the mean percent dif-

ferences of performance between the two algorithms summarized in Table 5.4 on the prob-

lem class of interest. The parameters used for this experiment were defined as follows:

a = 0.05, b⇤ = 0.2, d⇤ = 0.5, n0 = 15, nmax = 200, se⇤ = 0.05. The standard errors

were calculated using the bootstrap approach (Algorithm 3), using R = 999; and the number

of instances was calculated assuming the use of a t test and a bilateral alternative hypothe-

���������� �� ��� �����-��������� ������������ ���������� 58

sis (21).2The specific parameters of these two algorithms are summarized in Table 5.4, and a

detailed explanation can be found in the relevant literature [12, 80, 44].

Table 5.4: Algorithms and parameters. Boldface entries highlight differences. nv denotes the dimen-

sion of the problem instance being solved.

Component Alg. 1: MOEA/D Alg. 2: MOEA/D-DE

Decomposition

strategy
SLD (H = 99) SLD (H = 99)

Neighborhood strategy
By weight vectors

(T = 20, d = 1.0)

By weight vectors

(T = 20, d = 0.9)

Aggregation function Weighted Tchebycheff Weighted Tchebycheff

Variation Operators
SBX (h = 20, pc = 1)

Differential mutation /rand/1

(F = 0.5)

Binomial recombination

(CR = 1.0)

Polynomial mutation

(h = 20, pm = 1/nv)

Polynomial mutation

(h = 20, pm = 1/nv)

Update strategy Standard update Restricted update (nr = 2)

Stop criterion 2000nv function calls 2000nv function calls

Following the procedure outlined in Section 3.2, the proposed methodology indicated that

the required number of instances in this case was N⇤ = 34. This amount of instances was

randomly sampled (without replacement) from the set of available instances, and the two

algorithms were run on each instance according to the procedure defined in Algorithm 2. The

results of this process are summarized in Table 5.5.

Some interesting remarks can be made regarding the results summarized in Table 5.5. First,

we observed negative values of bdj in the majority of instances tested, suggesting an advantage

of the MOEA/D-DE over the original MOEA/D (recall that smaller IGD is better). MOEA/D-

DE also seems to require smaller sample sizes in most instances, which indicates lower vari-

2 The full replication script for this experiment is available in the Vignette “Adapting Algorithms for CAISEr” of the

CAISEr package [14].

���������� �� ��� �����-��������� ������������ ���������� 59

Table 5.5: Summary of results obtained in Experiment 1. Instances marked in boldface were sampled

up to the maximum allowed budget, nmax = 200.

Instance (dim.) bdj bsebdj
n1j n2j Instance (dim.) bdj bsebdj

n1j n2j

UF4 (13) -0.14 0.02 15 15 UF5 (17) 0.46 0.05 83 117

UF2 (29) -0.36 0.05 65 15 UF3 (15) -0.08 0.05 40 53

UF5 (28) 0.69 0.05 80 120 UF4 (16) -0.11 0.03 15 15

UF1 (29) -0.63 0.05 25 15 UF7 (18) -0.89 0.05 41 33

UF2 (36) -0.29 0.05 71 16 UF7 (38) -0.86 0.05 32 16

UF3 (29) 0.05 0.05 99 101 UF4 (14) -0.21 0.02 15 15

UF3 (10) 0.07 0.05 57 58 UF1 (11) -0.82 0.02 15 15

UF7 (16) -0.95 0.00 15 15 UF1 (16) -0.75 0.02 15 15

UF7 (29) -0.90 0.04 15 15 UF2 (32) -0.35 0.05 51 15

UF2 (25) -0.38 0.05 66 15 UF3 (24) -0.19 0.05 42 47

UF4 (30) -0.04 0.02 15 15 UF6 (34) -0.74 0.05 15 15

UF1 (26) -0.65 0.05 15 15 UF4 (32) -0.00 0.03 15 15

UF2 (18) -0.46 0.05 40 15 UF2 (11) -0.47 0.05 46 15

UF7 (36) -0.92 0.02 15 15 UF2 (22) -0.54 0.05 44 15

UF4 (18) -0.17 0.02 15 15 UF1 (17) -0.71 0.03 15 15

UF2 (34) -0.40 0.05 44 15 UF1 (18) -0.69 0.03 15 15

UF2 (39) -0.29 0.05 71 15 UF3 (23) -0.18 0.05 33 58

ance on several instances, a desirable feature since it means that the algorithm tends to return

more consistent performance values across repeated runs.

Another noteworthy point is that in three of the 34 instances sampled – UF3 (29), UF5 (17),

and UF5 (28), boldfaced in the table – the maximum allocated budget (nmax = 200) was not

enough to reduce the standard error bsebdj
below the predefined threshold of se⇤ = 0.05. In these

three cases the second algorithm, MOEA/D-DE, seems to present an unusually high variance

���������� �� ��� �����-��������� ������������ ���������� 60

(evidenced by the large number of runs attributed to it by the proposed sampling methodol-

ogy), resulting in the need for a larger number of repeated runs to reduce the uncertainty on

the estimate of bdj. However, since the resulting standard errors in these three cases were not

particularly high3, their effect on the total residual variance is likely negligible.

Continuing with the experimental procedure, a t-test performed on our sample of esti-

mated paired differences of performance yields statistically significant results (p = 2.90 ⇥

10�6, d f = 33) with an estimated paired mean difference in IGD of bµD = �0.379 (CI0.95 =

[�0.517,�0.242]), which means an expected value of IGD for the MOEA/D-DE that is (37.9 ± 13.7)%

better than that of the original MOEA/D for our problem class of interest.

The normality assumption of the t-test can be easily validated using the normal QQ-plot

shown in Figure 5.5. The plot indicates that no expressive deviations of normality are present,

which gives us confidence in using the t test as our inferential procedure of choice, since the

sampling distribution of the means will be even closer to a Normal variable than the data

distribution, diluting whatever small deviations from normality may be present.

-2 -1 0 1 2
-1.0

-0.5

0.0

0.5

Theoretical quantiles for N (0, 1)

O
bs

er
ve

d
b d j

Figure 5.5: Normal quantile-quantile plot for observations bdj in Experiment 1.

Finally, it is important to reinforce that these results could also be used to motivate further

analyses of the performance of these two algorithms for problems belonging to the problem

class of interest, even before proceeding to the full, exhaustive test on all available instance.

For example, the individual IGD distributions and mean values of each algorithm on each

instance, presented in Figure 5.6, suggest that both algorithms encounter difficulties when

solving UF5 (and, to a lesser extent, UF3) instances, which could motivate a more focused

3 More specifically: bsebdj
= 0.0518 for UF5 (28); bsebdj

= 0.0544 for UF3 (29); and bsebdj
= 0.0536 for UF5 (17)

���������� �� ��� �����-��������� ������������ ���������� 61

0.0

0.2

0.4

0.6

U
F
1
(1
1
)

U
F
1
(1
6
)

U
F
1
(1
7
)

U
F
1
(1
8
)

U
F
1
(2
6
)

U
F
1
(2
9
)

U
F
2
(1
1
)

U
F
2
(1
8
)

U
F
2
(2
2
)

U
F
2
(2
5
)

U
F
2
(2
9
)

U
F
2
(3
2
)

U
F
2
(3
4
)

U
F
2
(3
6
)

U
F
2
(3
9
)

U
F
3
(1
0
)

U
F
3
(1
5
)

U
F
3
(2
3
)

U
F
3
(2
4
)

U
F
3
(2
9
)

U
F
4
(1
3
)

U
F
4
(1
4
)

U
F
4
(1
6
)

U
F
4
(1
8
)

U
F
4
(3
0
)

U
F
4
(3
2
)

U
F
5
(1
7
)

U
F
5
(2
8
)

U
F
6
(3
4
)

U
F
7
(1
6
)

U
F
7
(1
8
)

U
F
7
(2
9
)

U
F
7
(3
6
)

U
F
7
(3
8
)

Instance (dimension)

I
G
D

for each algorithm on each instance

Estimated mean IGD

UF1 (11)

UF1 (16)

UF1 (17)

UF1 (18)

UF1 (26)

UF1 (29)

UF2 (11)

UF2 (18)

UF2 (22)

UF2 (25)

UF2 (29)

UF2 (32)

UF2 (34)

UF2 (36)

UF2 (39)

UF3 (10)

UF3 (15)

UF3 (23)

UF3 (24)

UF3 (29)

UF4 (13)

UF4 (14)

UF4 (16)

UF4 (18)

UF4 (30)

UF4 (32)

UF5 (17)

UF5 (28)

UF6 (34)

UF7 (16)

UF7 (18)

UF7 (29)

UF7 (36)

UF7 (38)

0.00 0.25 0.50 0.75 1.00

IGD

I
n
s
t
a
n
c
e
(
d
im

e
n
s
io
n
)

Algorithm MOEA/D MOEA/D-DE

for each algorithm on each instance

Estimated IGD distribution

Figure 5.6: Top: 95% confidence intervals on the means of individual IGD values of each algorithm on

each sampled instance. Bottom: Density estimates of IGD for MOEA/D and MOEA/D-DE

on each sampled instance. Notice the discrepant performance of MOEA/D-DE on instance

UF5.

���������� �� ��� �����-��������� ������������ ���������� 62

investigation into the reasons for these poor performance profiles, and on possible algorithmic

improvements to remedy this problem. A natural follow-up to the experiment presented in

this first example would be to broaden the investigation to include the full available test set,

in which case the proposed methodology could still be useful in defining the number of

repetitions to be performed for each algorithm on each test instance, as well as the expected

statistical power of whatever subgroup comparisons the researcher could deem interesting.

�������� �������� ������� ���� �������� ��������� ����� ����� 63

�.� �������� �������� ������� ���� �������� ��������� �����

�����

The proposed methodology can also be useful in situations when the researcher uses a prede-

fined set of benchmark instances to compare two algorithms. To illustrate this case, we used

a set of 200 large instances of the unrelated parallel machines problem with sequence depen-

dent setup times, provided by Vallada and Ruiz [75] for calibration experiments.4 Currently

the best results for this problem are those presented by Santos et al. [62] using a simulated an-

nealing algorithm with six neighbourhood structures (Shift, Switch, Task move, Swap, Two-Shift,

and Direct swap), randomly selected at each trial move.5.

Preliminary results by Maravilha et al. [49] suggest that the most influential neighborhood

structure for this case is Task move, which presents the largest expected improvement value

across a wide range of problem sizes. To isolate and quantify the effect of this specific neigh-

bourhood structure to the performance of the method, two versions of the algorithm were

compared: a full version, which is the original algorithm equipped with all six neighbourhood

structures; and a no-task-move version, which uses exactly the same structure but does not

include the Task move neighbourhood. As mentioned above, these two versions were tested on

the calibration test set proposed by Vallada and Ruiz [75], which features 200 large instances

with M 2 {10, 15, 20, 25, 30} machines and N 2 {50, 100, 150, 200, 250} jobs. All algorithmic

aspects were set exactly as in Santos et al.’s work [62], with the stop criteria employed at each

instance being the total run time, calculated as a function of instance size following guidelines

from the original references [75, 62].

Given that the number of instances is predefined, there is no need to calculate it using the

approach presented in Section 3.2. Instead, we used the proposed methodology to estimate

the power curve of the experiment, that is, the expected sensitivity of this comparison to detect

effects of different magnitudes. This is illustrated in Figure 5.7, which was derived assuming

that the desired significance of the experiment is a = 0.05, and that a t-test will be performed

using a one-sided alternative hypothesis, since we have a prior expectation that the full version

algorithm should be better than the no-task-move, and are interested in testing and quantifying

this effect.

4 The instance files can be retrieved from http://soa.iti.es/problem-instances

5 The source codes used for this experiment can be retrieved from http://github.com/andremaravilha/

upmsp-scheduling

http://soa.iti.es/problem-instances
http://github.com/andremaravilha/upmsp-scheduling
http://github.com/andremaravilha/upmsp-scheduling

�������� �������� ������� ���� �������� ��������� ����� ����� 64

0.05 0.10 0.15 0.20 0.25

0.2

0.4

0.6

0.8

1.0

Power curve

d

po
w

er

power = 0.5 for d = 0.12
power = 0.8 for d = 0.18
power =0.95 for d = 0.23

Figure 5.7: Expected sensitivity of experiment 2 to different effect sizes, for a t-test test with a one-sided

alternative hypothesis. With 200 instances we can be fairly confident that the experiment

will be able to identify mean performance gains greater than approximately 0.2 standard

deviations.

As suggested in the figure, this experiment has a reasonable probability of detecting mean

performance gains due to the use of the Task move neighbourhood structure greater than about

0.2 standard deviations. Smaller differences in mean performance, particularly under about

0.1 standard deviations, can go undetected, but in terms of impact on the expected behaviour

of the algorithm these would be really minor effects.

The experiment was performed using the proposed method for iteratively estimating the

required number of repetitions for each algorithm on each of the 200 instances. The experi-

mental parameters were set as se⇤ = 0.05 on the percent differences, n0 = 15 and nmax = 150.

The standard errors were calculated using the parametric formulas provided in Section 3.1.2.

A t test performed on the resulting data suggested significant differences at the 95% confi-

dence level (p < 2⇥ 10�16, d f = 199, against a one-sided, lower H1) with an estimated paired

mean difference of bµD = �0.361 (CI0.95 = [�0.380,�0.342]), which means that the expected

impact of the Task move neighbourhood on the performance of the algorithm, for an instance

belonging to the same problem family defined by the test, set is a reduction of (36.1 ± 1.9)%

in the makespan of the final solution returned.6

6 The graphical analysis of the residuals did not suggest expressive deviations of normality. The results table and

residual analysis are provided in the Supplemental Materials.

������� 65

Notice that further analyses could (and should) be performed on this same data, to refine

the conclusions and, possibly, suggest new lines of inquiry. For instance, while the overall

expected improvement due to the use of Task move in the pool of possible movements is quan-

tified as (36.1 ± 1.9)%, knowledge, e.g., of instance size can improve the estimation accuracy

of performance gains. This is illustrated in Figure 5.8, which suggests that, while the use of

Task move provides relevant improvements across all problem sizes tested, its effect increases

with the number of machines (M) and decreases with the number of jobs (N). A detailed

quantification of these effects and the reasons behind them is, however, outside the scope of

the present work.

N = 50 N = 100 N = 150 N = 200 N = 250

10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30

-60

-40

-20

Number of machines (M)

M
ak

es
pa

n
re

du
ct

io
n

(%
)

(% reduction over configuration without task-move)
Makespan reduction due to task-move

Figure 5.8: Percent gains in performance attributable to using the Task-move neighbourhood. The y-axis

indicates how much lower the average makespan was for the full algorithm in comparison

to the no-task-move version (notice that the y-axis is vertically reversed). Vertical lines rep-

resent the standard errors of each observation. The x-coordinates of the observations were

perturbed slightly around their true values (M = {10, 15, 20, 25, 30}), for visualization pur-

poses.

�.� �������

In this chapter, three case studies were presented, using variations of the MOEA/D as our test

algorithms, and the CEC2009 benchmark set for dimensions between 20 and 60 as our prob-

������� 66

lem class of interest. In these experiments we were able to observe situations which we believe

reflect usual applications for our proposed methodology. The two first experiments consid-

ered different specifications for the calculation of the sample size, and the third considered a

scenario in which the number of instances was fixed, and the method was used only to deter-

mine the number of repetitions. A power curve for this third experiment was also provided,

as an example of the type of reflection that researchers and practitioners should considerate

when designing experiments using fixed benchmark sets. These tests were however, made

with a parametric approach, which should not be used with the experimented data, another

example was made using bootstrap to compare other two variations of the same algorithm.

By the end of the chapter a last experiment is shown. It consists in testing the effect of

a neighbourhood in a scheduling parallel machines problem. Particularly, it was allowed to

quantify the improvement of a Task move neighbourhood structure to the performance of the

method, when large instances of unrelated parallel machines problem with sequence depen-

dent setup times are used.

6 C O N C L U S I O N

One never notices what has been done;

one can only see what remains to be

done.

Marie Curie, letter to her brother (1894)

In this work we presented a methodology for sample size calculation (in terms of number of

instances and of repeated runs on each instance) for the performance comparison of two algo-

rithms on a class of problems. While this may not have been adequately stressed throughout

the text, a critical aspect of such comparisons is the concept of a problem class for which the

conclusions of any inference based on a finite sample can be drawn. Even when the problem

class is not explicit in the available test instances, the experimenter should always be aware

that his or her conclusions are valid for a (possibly hypothetical) population of problems for

which the instances used can be seen as a representative sample.

If the algorithm comparison is made with a representative sample of instances of the con-

sidered family, appropriate statistical procedures can be used the to infer the quality of the

algorithms performances when solving this type of problem. These procedures can tell if a

given pair of algorithms has similar performance, or how much better one is than the other.

One aspect of the proposed methodology is the generation of observations for each algo-

rithm, in order to make the data comparable within a controlled margin of error. Which

is interesting not only from the perspective of statistical inference (e.g., maintaining desired

power levels for a given effect size of practical interest), but also from an accuracy in parameter

estimation perspective, in which precise estimates of the differences within each instance can

also inform the experimenter about different aspects of the algorithms under investigation.

This number of runs of each algorithm on each instance is determined iteratively, approx-

imating optimal sample size ratios for the reduction of the uncertainty associated with the

estimation of paired differences in performance. Experiments performed using a controlled

simulation model show that the number of executions to estimate the average behaviour of an

algorithm for a problem can vary from a minimal of few dozens to thousands of repetitions,

67

���������� 68

depending mainly on the relationship between the stated tolerance for the standard error (or

the confidence interval half-width) and the residual variance within each instance. These re-

sults point to the need of properly determining the number of repetitions, instead of using

a predefined value as a rule. Considering that if an arbitrary number of repetitions is used,

the estimate performance of an algorithm on instances that require much more observations

might be so far off that could lead to flawed conclusions on the algorithms performances.

Besides the generating the observations, the determination of the number of instances was

also done. It is based on considerations of practically relevant differences and on the desired

statistical power to detect them. For this, analytic solution were presented for the parametric

case, for both the one sided and two sided cases. For the non parametric case, approximations

based on the asymptotic relative efficiency of the Wilcoxon signed-ranks and the binomial

sign test were provided.

The proposed method addresses the comparison of algorithms trying to facilitate the use of

correct experimental methodologies for algorithm experimentation, in particular comparison

of optimization metaheuristics. While there is a recognized need of a good experimental de-

sign, not many studies have been made in order to respond to this demand in a simple way,

this lack of scientific production on this theme, helped to consolidate the current experimental

"short-cuts" in the field. It is important to reinforce that the proposed methodology is by no

means an universal way to test algorithms: when the goal of the experiment is to character-

ize an heuristic, how robust it is and its best / worst case performance behaviour, different

methodologies can and should be employed. However, such extensive experimentation is pro-

hibitive in a number of scenarios, such as in several cases of applied engineering optimization

[73] or when comparing heuristics on very large, time-consuming instances.

One of the main aims of this work was to lay the statistical and methodological groundwork

for the calculation of required sample sizes in the experimental comparison of algorithms.

While the developments and results presented do fulfill this particular goal, there are a num-

ber of limitations and possibilities of continuity that can be explored. We finish this work by

examining a few of the most promising ones.

������ ����� 69

�.� ������ �����

Some major limitations of the methodology developed in this work are: (i) the fact that it

is only defined for the comparison of two algorithms; (ii) the fact that the definition of the

number of instances is performed a priori, using a fixed sample size methodology; and (iii)

the fact that only centrality statistics (the mean and, to a certain extent, the median) were

considered.

Regarding the number of algorithms considered in the comparison, a natural next step

of this work is to extend the sample size estimation methodologies for multiple algorithms.

This can be achieved in a relatively straightforward manner for the estimation of the number

of instances, using standard formulas for either omnibus tests (e.g., ANOVA, Friedman) or

planning directly for the eventual post-hoc pairwise comparisons [51]. Estimating the number

of runs, however, will require greater improvements on the method proposed in this work,

probably based on the definition of standard error thresholds for each individual algorithm

on each instance, instead of on the standard error of the differences.

While the a priori definition of the number of instances provides a reasonable expectation

of statistical power for a given MRES, the required sample size may be considerably smaller

if the actual effect size is much larger than the predefined d⇤. Using sequential analysis

methodologies, such as the ones commonly employed in clinical trials or industrial settings [9,

4], may result in a reduced number of instances being necessary to determine the existence of

differences between two (or eventually more) algorithms, and represent another possibility of

continuity for this work.

The possibility of using the methodology defined in this work as a framework for com-

parisons of algorithms according to different statistics – e.g., variances, rates of convergence,

regression coefficients, or best/worst cases – is yet another promising direction. While most

experiments still focus on average (mean/median) cases, the need for methodologically sound

comparisons of other quantities has long been recognized [36, 23], and we believe the method-

ology presented in this paper can be easily adapted for such comparisons. First, the bootstrap

approach for the calculation of the number of runs can be extended to different measures

of paired differences in performance - medians, quantiles, or other statistics - in a relatively

straightforward manner (using balanced samples if needed, or deriving optimal ratios for

these other statistics). Moreover, standard statistical tests for other quantities tend to be read-

ily available, and analytic formulas for power and sample size are in most cases available

������ ����� 70

[51], providing a rich basis upon which better, more comprehensive protocols for algorithmic

comparisons can be built.

Appendix

71

A S TAT I S T I C A L C O N C E P T S

To aid the comprehension of this work, some statistical concepts needed to introduce the

proposed method will be discussed in this appendix.

�.� ���� �������

In statistics a data sample is a set of observations selected from the statistical population being

studied. This population is composed by several entities with similar characteristics used to

explain or describe the studied event or object [61]. For instance, in this work, the samples

are the result from an execution of an algorithm, the population would be all the outcomes

of a possibly infinite number of executions, and the studied object is the performance of this

algorithm when compared against others.

The question of interest addressed in the current work deals with the performance of the

algorithms: ”Which algorithm has the best average performance on a given problem class, among

those under investigation?”. This question is tackled using statistical inference tools, so that

information contained in a given sample can be used to draw conclusions about the general

behaviour of the population.

Frequentist statistical inference involves the test of competing hypotheses and the estimation

of certain populational parameters (both in terms of point estimates and statistical intervals)

from the available data. [61].

�.� ������������ ����������

Point estimates are single values expected to serve as some populational parameter, such as the

mean, or the median. However, given the inherently random nature of inferential procedures,

point estimates are likely not to represent the actual value of the parameter, but instead aim

72

���������� ������� 73

at providing a best estimate conditional on the available information. For a given parameter

q, the usual notation for its point estimator is Q̂, and a specific value of this point estimator is

a point estimate, q̂ [54].

To quantify the uncertainty associated with a given estimation result, statistical intervals

provide a range within which the true value of the parameter being estimated is likely to exist.

They represent the accuracy of the parameter estimates. Two measures of this uncertainty

are of particular interest to this study: standard errors, which represent the square root of

the variance of the sampling distribution of a given test statistic (e.g., the mean); and closed

confidence intervals, which provide a finite range (a, b) that contains the true value of the

parameter of interest with a quantifiable degree of confidence.

For the sample mean, for instance, the standard error is given as seX̄ = s/
p

n, and can

be generally interpreted as analogous to a “measurement error” of the parameter being esti-

mated, in this case the true mean µ. Since in most cases the populational standard deviation

is not known, it must be estimated from the data, which results in the calculation of the sample

standard error,

bseX̄ = s/
p

n,

Differently, the confidence interval is associated with a confidence level used in hypothesis testing.

The calculation of this interval for the mean, for a confidence level of 0.95, for example, can

be done by ✓
X̄� 1.96

sp
n

, X̄ + 1.96
sp
n

◆

�.� ���������� �������

A hypothesis testing consists in deciding between two competing statements, the first one,

called the null hypothesis, sets a value (µ0) representing the best current estimate for the

parameter. Null hypotheses are commonly defined using one of the following formulations:

H0 : µ = µ0 (30)

for the two sided case, or

H0 : µ � µ0, H0 : µ  µ0 or (31)

for the directional case, which are contrasted against a second statement, called the alternative

hypothesis. This hypotheses represents the presence of some deviation from the explanation

���������� ������� 74

proposed in the null hypothesis. It will be denoted H1, and expresses the complementary

explanation to the definition under H0:

H1 : µ 6= µ0 (32)

the two-sided alternative hypothesis, or

H1 : µ < µ0, H1 : µ > µ0 or (33)

in the directional case. If the null hypothesis turns out to be true, it is said that the null

hypothesis was accepted, however if it was not, it is rejected.

�.�.� Statistical errors and effect size

In the context of hypothesis testing, a false positive (also known as a type-I error) occurs when-

ever a true null hypothesis is rejected, and a false negative (or type-II error) when a false null

hypothesis is not rejected. Type-I errors can usually be easily controlled, as they depend only

on the value of the parameter of interest under the null hypothesis, which is known to the

experimenter. The probability of a false positive is usually denoted as a, and referred to as the

significance level of a test. The complement of a, i.e., 1� a, is called the confidence level of the

test. In the context of this work, the control of Type-I errors is more complex when dealing

with multiple comparisons, which occurs in the scope of this thesis. Different error rates have

been used for multiple testing, such as the error rate per family, the error rate per hypothesis, and

the familywise error rate. The later one, used in this work, is defined as the probability of at

least one error happening on the family of tests, making a set of comparisons whose errors

must be jointly controlled [65].

Type-II errors, on the other hand, are dependent not only on the null hypothesis, but also

on the magnitude of the difference between the actual value of the parameter being tested and

the value under H0, which we will call the simple effect size, d, which can be written as:

d = µ� µ0. (34)

The probability of a false negative result in a test of hypotheses is generally denoted b, and

its complement p = 1� b is usually known as the power of the test, which is a measure of its

sensitivity in detecting effects of a certain magnitude.

Since the power of a test is conditional to the (unknown) effect size, its control is generally

harder than the confidence level. To circumvent this limitation it is important, when designing

���������� ������� 75

an experiment, to define what is called a minimally relevant effect size (MRES) or the smallest

practically significant effect size, which is given by:

d⇤ = |d⇤|/s (35)

And is defined as the smallest value the ratio d can achieve that the experimenter is interested

in detecting. Where

d = |d|/s (36)

is the standardized effect size or the Cohen’s d coefficient.

Power calculations, which include the determination of the required sample sizes, can then

be performed with this value in mind. The resulting study will still have its own actual power,

which may be greater than the nominal (if d > d⇤), or smaller (if d < d⇤). In the latter case,

however, there will be no harm in running an underpowered study, given that any effects

smaller than d⇤ will be, by definition, below the threshold of practical relevance.

�.�.� Parameter estimation and accuracy

One of the most common uses of statistics is parameter estimation, i.e., the use of information

contained in a finite sample to estimate, with a certain accuracy, the value of a given parameter.

For any parameter q, the usual notation for its point estimator is bQ, and a specific value of this

point estimator is a point estimate, bq [54]. Two common examples of point estimators, which

have their own specific notations, are the sample mean and the sample standard deviation,

X̄ = bµ =
1
n

n

Â
i=1

xi, (37)

S = bs =

s
1

n� 1

n

Â
i=1

(xi � x̄)2, (38)

where x̄ is a realization of X̄.

While point estimators return the value of greatest likelihood for a parameter given a

sample, their values are also subject to uncertainties due to the randomness of their inputs.

More specifically, a point estimator bQ has a given sampling distribution [54], which is a func-

tion of populational parameters and the sample size used in its calculation. The sample

mean, for instance, has a distribution P (X̄) with mean E [X̄] = E [X] = µ and variance

V [X̄] = V [X] /n = s2/n.

���������� ������� 76

Given these aspects of parameter estimation, an important point to consider is the accuracy

of parameter estimates. A simple way of measuring this accuracy is using the standard error sebq ,

which represents the standard deviation of the sampling distribution of the estimator [54]. For

the sample mean, for instance, the standard error is given as seX̄ = s/
p

n, and can be generally

interpreted as analogous to a “measurement error” of the parameter being estimated, in this

case the true mean µ. Since in most cases the populational standard deviation is not known, it

must be estimated from the data, which results in the calculation of the sample standard error,

bseX̄ = s/
p

n, (39)

Notice that it is straightforward to solve for n in (39), which allows us to predefine a desired

level of accuracy (i.e., a desired upper limit for bseX̄) for the estimation and calculate the

required sample size to obtain it. Since we need some data to estimate s in the first place,

an iterative approach can be used for this calculation, as will be presented in Section 3.1.

�.�.� Parametric vs. Non parametric methods

Amongst the statistical tests, the parametric ones are those people are more familiar with,

such as the t-test or one way ANOVA. They assume the data follows a specific distribution

in order to test the hypothesis, therefore this data need to meet some assumptions regarding

its ability to fit the model distribution. If the data does not meet these assumptions, it means

that the distribution used is not good to draw any conclusion about this data.

When it is not possible to meet the assumptions of the parametric methods with the data,

non parametric alternatives are to be used. Unlike the parametric ones, they do not follow

any specific distribution, however they tend to have a smaller statistical power and have their

own assumptions to meet.

B C A I S E R : PA C K A G E U S A G E

�.� ��� �������

The CAISEr package can be obtained from CRAN, https://CRAN.R-project.org/package=

CAISEr, or using the command install.packages("CAISEr").

It offers functions to perform experimental comparisons of algorithms with adequate sam-

ple sizes for power and accuracy. However, while in this version of the package only fixed

sample(FSS) size experiments can be done, on the “under development” version, it is possible

to perform both the FSS experimentation and the sequential one.

They are calculated by the routines run_experiment and run_sequential_experiment respec-

tively. Both have the same inputs and outputs:

Required inputs

• Instance.list(list) - a list containing the instance functions.

• Algorithm.list(list) - a list containing the algorithm functions.

• power(numeric) - desired power.

• d(numeric) - MRES that detects differences greater d standard deviations.

• se.max(numeric) - desired maximum standard error

• dif(character) (options: "simple", "perc") - choice of within instances difference if it is

either simple or percentage.

Optional inputs

• sig.level(numeric) (default: 0.05) - significance level for the confidence interval.

77

https://CRAN.R-project.org/package=CAISEr
https://CRAN.R-project.org/package=CAISEr

��� ������� 78

• direction(character) (default: "two.sided" options: "one.sided", "two.sided") - type of H1.

(only for the FSS)

• test.type(character) (default: "t.test" options: "t.test", "wilcoxon", "binomial") - type of

test. (only for the FSS)

• method(character) (default: "param" options: "param", "boot") - estimation of parame-

ters using a parametric method or bootstrap.

• nstart(integer) (default: 10) - initial number of samples.

• nmax(integer) (default: 1000) - maximum allowed sample size.

• seed(numeric) (default: NULL) - seed for PRNG.

• boot.R(integer) (default: 999) - number of bootstrap resamples.

• force.balanced(logic) (default: FALSE) - force balanced sampling.

Output

The function returns a list containing:

• $Configuration - the inputed configuration

• $data.raw - a data frame with all observations generated

• $data.summary - a data frame containing the means, standard errors and sample sizes

of each algorithm on each problem instance.

• $N - the number of instances used

• $N.star - the number of instances needed considering a FSS approach

• $instances.sampled - list with instances used

• $Underpowered - logic indicator if the experiment is underpowered.

������� 79

�.� �������

An example of its fixed sample size usage and how to adapt functions to run on this method

can be seen in https://cran.r-project.org/web/packages/CAISEr/vignettes/Adapting_Algorithm_

for_CAISEr.html.

The execution of a sequential experiment is very similar, and is exemplified by the following

code:

1 # ###

2 # ###

3 # ######################## Test ing chase . r with MOEADr ##########################

4 # ###

5 # ###

6 l i b r a r y (MOEADr)

7 l i b r a r y (smoof)

8

9 # Generating I n s t a n c e s

10 ### Build funct ion names (i n s t a n c e s : UF1 � UF7 , dimensions 10 � 40)

11 fname paste0 ("UF_" , 1 : 7)

12 dims c (1 0 : 4 0)

13 a l l f u n s expand . gr id (fname , dims , s t r i n g s A s F a c t o r s = FALSE)

14 # Assemble i n s t a n c e s l i s t

15 Ins t ance . l i s t vector (nrow (a l l f u n s) , mode = " l i s t ")

16 f o r (i in 1 : length (Ins t ance . l i s t)) {

17 Ins ta nce . l i s t [[i]] $FUN paste0 (a l l f u n s [i , 1] , "_" , a l l f u n s [i , 2])

18 }

19 ### Build the f u n c t i o n s l i s t e d in I n s t ance . l i s t

20 # (so t h a t they can be properly used)

21 f o r (i in 1 : nrow (a l l f u n s)) {

22 ass ign (x = Ins tanc e . l i s t [[i]] $FUN,

23 value = MOEADr : : make_ vec tor ized _smoof (prob . name = "UF" ,

24 dimensions = a l l f u n s [i , 2] ,

25 id = as . numeric (s t r s p l i t (a l l f u n s [i , 1] , "_") [[1]] [2])))

26 }

27

28 # Defining algori thms

29 ## 1 . MOEA/D�DE

30 moead . 9 9 func t ion (type , i n s t a n c e) {

31 # Input parameters :

32 # � type (v a r i a n t to use : " o r i g i n a l " or "moead . de")

https://cran.r-project.org/web/packages/CAISEr/vignettes/Adapting_Algorithm_for_CAISEr.html
https://cran.r-project.org/web/packages/CAISEr/vignettes/Adapting_Algorithm_for_CAISEr.html

������� 80

33 # � i n s t a n c e (i n s t a n c e to be solved , e . g . , i n s t a n c e = I ns t ance . l i s t [[i]])

34 # All other parameters are s e t i n t e r n a l l y

35

36 ## E x t r a c t i n s t a n c e information to bui ld the MOEADr problem format

37 f d e f u n l i s t (s t r s p l i t (i n s t a n c e $FUN, s p l i t = "_"))

38 uffun smoof : : makeUFFunction (dimensions = as . numeric (f d e f [3]) ,

39 id = as . numeric (f d e f [2]))

40 f a t t r a t t r (uffun , "par . s e t ")

41 prob . dim f a t t r $ pars x len

42

43 ## Build MOEADr problem l i s t

44 problem l i s t (name = i n s t a n c e $FUN,

45 xmin = f a t t r $ pars xlower ,

46 xmax = f a t t r $ pars xupper ,

47 m = a t t r (uffun , "n . o b j e c t i v e s "))

48

49 ## Load p r e s e t s f o r the algorithm provided in input ’ type ’ and

50 ## modify whatever i s needed f o r t h i s p a r t i c u l a r experiment

51 algo . p r e s e t MOEADr : : p r e s e t _moead (type)

52 algo . p r e s e t $decomp$H 99 # � s e t population s i z e

53 algo . p r e s e t $ s t o p c r i t [[1]] $name "maxeval" # � type of stop c r i t e r i o n

54 algo . p r e s e t $ s t o p c r i t [[1]] $maxeval 2000 * prob . dim # stop c r i t .

55 poly . ind which (sapply (algo . p r e s e t $ v a r i a t i o n , funct ion (x) { x$name == "polymut" }))

56 algo . p r e s e t $ v a r i a t i o n [[poly . ind]] $pm 1 / prob . dim # �� pm = 1/d

57

58 ## Run algorithm on " i n s t a n c e "

59 out MOEADr : : moead (p r e s e t = algo . preset ,

60 problem = problem ,

61 showpars = l i s t (show . i t e r s = "none"))

62

63 ## Read r e f e r e n c e data to c a l c u l a t e the IGD

64 Yref as . matrix (read . t a b l e (paste0 (" . . /data/pf _ data/" , f d e f [1] , f d e f [2] , " . dat")))

65 IGD = MOEADr : : calcIGD (Y = out $Y , Yref = Yref)

66

67 ## Return IGD as f i e l d "value" in the output l i s t

68 re turn (l i s t (value = IGD))

69 }

70 ## 2 . MOEA/D�DE

71 moead . 1 0 4 func t ion (type , i n s t a n c e) {

72 # Input parameters :

73 # � type (v a r i a n t to use : " o r i g i n a l " or "moead . de")

������� 81

74 # � i n s t a n c e (i n s t a n c e to be solved , e . g . , i n s t a n c e = I ns t ance . l i s t [[i]])

75 # All other parameters are s e t i n t e r n a l l y

76

77 ## E x t r a c t i n s t a n c e information to bui ld the MOEADr problem format

78 f d e f u n l i s t (s t r s p l i t (i n s t a n c e $FUN, s p l i t = "_"))

79 uffun smoof : : makeUFFunction (dimensions = as . numeric (f d e f [3]) ,

80 id = as . numeric (f d e f [2]))

81 f a t t r a t t r (uffun , "par . s e t ")

82 prob . dim f a t t r $ pars x len

83

84 ## Build MOEADr problem l i s t

85 problem l i s t (name = i n s t a n c e $FUN,

86 xmin = f a t t r $ pars xlower ,

87 xmax = f a t t r $ pars xupper ,

88 m = a t t r (uffun , "n . o b j e c t i v e s "))

89

90 ## Load p r e s e t s f o r the algorithm provided in input ’ type ’ and

91 ## modify whatever i s needed f o r t h i s p a r t i c u l a r experiment

92 algo . p r e s e t MOEADr : : p r e s e t _moead (type)

93 algo . p r e s e t $decomp$H 104 # � s e t population s i z e

94 algo . p r e s e t $ s t o p c r i t [[1]] $name "maxeval" # � type of stop c r i t e r i o n

95 algo . p r e s e t $ s t o p c r i t [[1]] $maxeval 2000 * prob . dim # stop c r i t .

96 poly . ind which (sapply (algo . p r e s e t $ v a r i a t i o n , funct ion (x) { x$name == "polymut" }))

97 algo . p r e s e t $ v a r i a t i o n [[poly . ind]] $pm 1 / prob . dim # �� pm = 1/d

98

99 ## Run algorithm on " i n s t a n c e "

100 out MOEADr : : moead (p r e s e t = algo . preset ,

101 problem = problem ,

102 showpars = l i s t (show . i t e r s = "none"))

103

104 ## Read r e f e r e n c e data to c a l c u l a t e the IGD

105 Yref as . matrix (read . t a b l e (paste0 (" . . /data/pf _ data/" , f d e f [1] , f d e f [2] , " . dat")))

106 IGD = MOEADr : : calcIGD (Y = out $Y , Yref = Yref)

107

108 ## Return IGD as f i e l d "value" in the output l i s t

109 re turn (l i s t (value = IGD))

110 }

111 algo . d . de l i s t (l i s t (FUN = "moead . 1 0 4 " ,

112 a l i a s = "MOEAD�DE�104" ,

113 type = "moead . de") ,

114 l i s t (FUN = "moead . 9 9 " ,

������� 82

115 a l i a s = "MOEAD�DE�99" ,

116 type = "moead . de"))

117

118 out run_ s e q u e n t i a l _ experiment (I ns t a nce . l i s t = I n s t a n c e . l i s t ,

119 Algorithm . l i s t = algo . d . de ,

120 power = 0 . 9 ,

121 d = 0 . 5 ,

122 se . max = 0 . 1 ,

123 d i f ="perc")

References

83

B I B L I O G R A P H Y

[1] M. Z. Ali et al. “Leveraged Neighborhood Restructuring in Cultural Algorithms for

Solving Real-World Numerical Optimization Problems”. In: IEEE Transactions on Evolu-

tionary Computation 20.2 (Apr. 2016), pp. 218–231. issn: 1089-778X. doi: 10.1109/TEVC.

2015.2450018.

[2] Ignacio G. del Amo et al. “An algorithm comparison for dynamic optimization prob-

lems”. In: Applied Soft Computing 12.10 (Oct. 2012), pp. 3176–3192. doi: 10.1016/j.asoc.

2012.05.021. url: http://dx.doi.org/10.1016/j.asoc.2012.05.021.

[3] Richard S. Barr et al. “Designing and reporting on computational experiments with

heuristic methods”. In: Journal of Heuristics 1.1 (Sept. 1995), pp. 9–32. doi: 10.1007/

bf02430363. url: http://dx.doi.org/10.1007/BF02430363.

[4] Jay Bartroff, Tze Leung Lai, and Mei-Chiung Shih. Sequential Experimentation in Clinical

Trials. Springer New York, 2013. doi: 10.1007/978-1-4614-6114-2. url: https://doi.

org/10.1007/978-1-4614-6114-2.

[5] Thomas Bartz-Beielstein. Experimental Research in Evolutionary Computation. Springer,

2006. 232 Seiten. isbn: 3540320261. url: http://www.ebook.de/de/product/5329328/

thomas_bartz_beielstein_experimental_research_in_evolutionary_computation.

html.

[6] Thomas Bartz-Beielstein. Meaningful Problem Instances and Generalizable Results. Jan. 2015.

[7] Leonardo C. T. Bezerra, Manuel Lopez-Ibanez, and Thomas Stutzle. “Automatic Component-

Wise Design of Multiobjective Evolutionary Algorithms”. In: IEEE Transactions on Evo-

lutionary Computation 20.3 (June 2016), pp. 403–417. doi: 10.1109/tevc.2015.2474158.

url: https://doi.org/10.1109%2Ftevc.2015.2474158.

[8] Mauro Birattari. On the estimation of the expected performance of a metaheuristic on a class of

instances. How many instances, how many runs? Tech. rep. Brussels, Belgium: Université

Libre de Bruxelles, 2004.

84

https://doi.org/10.1109/TEVC.2015.2450018
https://doi.org/10.1109/TEVC.2015.2450018
https://doi.org/10.1016/j.asoc.2012.05.021
https://doi.org/10.1016/j.asoc.2012.05.021
http://dx.doi.org/10.1016/j.asoc.2012.05.021
https://doi.org/10.1007/bf02430363
https://doi.org/10.1007/bf02430363
http://dx.doi.org/10.1007/BF02430363
https://doi.org/10.1007/978-1-4614-6114-2
https://doi.org/10.1007/978-1-4614-6114-2
https://doi.org/10.1007/978-1-4614-6114-2
http://www.ebook.de/de/product/5329328/thomas_bartz_beielstein_experimental_research_in_evolutionary_computation.html
http://www.ebook.de/de/product/5329328/thomas_bartz_beielstein_experimental_research_in_evolutionary_computation.html
http://www.ebook.de/de/product/5329328/thomas_bartz_beielstein_experimental_research_in_evolutionary_computation.html
https://doi.org/10.1109/tevc.2015.2474158
https://doi.org/10.1109%2Ftevc.2015.2474158

������������ 85

[9] Juan Botella et al. “Optimization of sample size in controlled experiments: The CLAST

rule”. In: Behavior Research Methods 38.1 (Feb. 2006), pp. 65–76. doi: 10.3758/bf03192751.

url: https://doi.org/10.3758/bf03192751.

[10] Ilhem Boussaïd, Julien Lepagnot, and Patrick Siarry. “A survey on optimization meta-

heuristics”. In: Information Sciences 237 (July 2013), pp. 82–117. doi: 10.1016/j.ins.2013.

02.041. url: http://dx.doi.org/10.1016/j.ins.2013.02.041.

[11] R.J. Tibshirani Bradley Efron. An Introduction to the Bootstrap. 1st ed. Chapman and Hall,

1994.

[12] F. Campelo, Lucas S. Batista, and Claus Aranha. “The MOEADr Package – A Component-

Based Framework for Multiobjective Evolutionary Algorithms Based on Decomposi-

tion”. In: Submitted: Journal of Statistical Software (2017).

[13] Felipe Campelo and Claus Aranha. MOEADr: Component-Wise MOEA/D Implementation.

R package version 0.2.1. 2017. url: https://CRAN.R-project.org/package=MOEADr.

[14] Felipe Campelo and Fernanda Takahashi. CAISEr: Comparison of Algorithms with Iterative

Sample Size Estimation. 2017. url: https://CRAN.R-project.org/package=CAISEr.

[15] Eduardo G. Carrano, Elizabeth F. Wanner, and Ricardo H. C. Takahashi. “A Multicriteria

Statistical Based Comparison Methodology for Evaluating Evolutionary Algorithms”.

In: IEEE Transactions on Evolutionary Computation 15.6 (Dec. 2011), pp. 848–870. doi: 10.

1109/tevc.2010.2069567. url: http://dx.doi.org/10.1109/TEVC.2010.2069567.

[16] Marie Coffin and Matthew J. Saltzman. “Statistical Analysis of Computational Tests of

Algorithms and Heuristics”. In: INFORMS Journal on Computing 12.1 (Feb. 2000), pp. 24–

44. doi: 10.1287/ijoc.12.1.24.11899. url: http://dx.doi.org/10.1287/ijoc.12.1.

24.11899.

[17] M.J. Crawley. The R Book. 2nd. Wiley, 2013.

[18] A. C. Davison and D. V. Hinkley. Bootstrap methods and their application. Cambridge Uni-

versity Press, 1997.

[19] Janez Demšar. “Statistical Comparisons of Classifiers over Multiple Data Sets”. In: Jour-

nal of Machine Learning Research 7 (Dec. 2006), pp. 1–30. issn: 1532-4435. url: http://dl.

acm.org/citation.cfm?id=1248547.1248548.

https://doi.org/10.3758/bf03192751
https://doi.org/10.3758/bf03192751
https://doi.org/10.1016/j.ins.2013.02.041
https://doi.org/10.1016/j.ins.2013.02.041
http://dx.doi.org/10.1016/j.ins.2013.02.041
https://CRAN.R-project.org/package=MOEADr
https://CRAN.R-project.org/package=CAISEr
https://doi.org/10.1109/tevc.2010.2069567
https://doi.org/10.1109/tevc.2010.2069567
http://dx.doi.org/10.1109/TEVC.2010.2069567
https://doi.org/10.1287/ijoc.12.1.24.11899
http://dx.doi.org/10.1287/ijoc.12.1.24.11899
http://dx.doi.org/10.1287/ijoc.12.1.24.11899
http://dl.acm.org/citation.cfm?id=1248547.1248548
http://dl.acm.org/citation.cfm?id=1248547.1248548

������������ 86

[20] J. Derrac et al. “Statistical analysis of convergence performance throughout the evolu-

tionary search: A case study with SaDE-MMTS and Sa-EPSDE-MMTS”. In: 2013 IEEE

Symposium on Differential Evolution (SDE). Apr. 2013, pp. 151–156. doi: 10.1109/SDE.

2013.6601455.

[21] Joaquín Derrac et al. “A practical tutorial on the use of nonparametric statistical tests

as a methodology for comparing evolutionary and swarm intelligence algorithms”. In:

Swarm and Evolutionary Computation 1.1 (Mar. 2011), pp. 3–18. doi: 10.1016/j.swevo.

2011.02.002. url: http://dx.doi.org/10.1016/j.swevo.2011.02.002.

[22] Bryony DuPont and Jonathan Cagan. “A hybrid extended pattern search/genetic algo-

rithm for multi-stage wind farm optimization”. In: Optimization and Engineering 17.1 (Jan.

2016), pp. 77–103. doi: 10.1007/s11081-016-9308-3. url: http://dx.doi.org/10.1007/

s11081-016-9308-3.

[23] A.E. Eiben and M. Jelasity. “A critical note on experimental research methodology in

EC”. In: Proceedings of the 2002 IEEECongress on Evolutionary Computation. Institute of

Electrical & Electronics Engineers (IEEE), 2002. doi: 10.1109/cec.2002.1006991. url:

http://dx.doi.org/10.1109/CEC.2002.1006991.

[24] José M. Ferrer, M. Teresa Ortuño, and Gregorio Tirado. “A GRASP metaheuristic for

humanitarian aid distribution”. In: Journal of Heuristics 22.1 (Oct. 2015), pp. 55–87. doi:

10.1007/s10732-015-9302-5. url: http://dx.doi.org/10.1007/s10732-015-9302-5.

[25] E. C. Fieller. “Some Problems in Interval Estimation”. In: Journal of the Royal Statistical

Society. Series B (Methodological) 16.2 (1954), pp. 175–185. issn: 00359246. url: http://

www.jstor.org/stable/2984043.

[26] Martina Fischetti and Michele Monaci. “Proximity search heuristics for wind farm opti-

mal layout”. In: Journal of Heuristics 22.4 (Feb. 2015), pp. 459–474. doi: 10.1007/s10732-

015-9283-4. url: http://dx.doi.org/10.1007/s10732-015-9283-4.

[27] Volker Franz. Ratios: A short guide to confidence limits and proper use. 2007.

[28] S. García et al. “A study of statistical techniques and performance measures for genetics-

based machine learning: accuracy and interpretability”. In: Soft Computing 13.10 (Dec.

2009), pp. 959–977. doi: 10.1007/s00500-008-0392-y. url: http://dx.doi.org/10.

1007/s00500-008-0392-y.

https://doi.org/10.1109/SDE.2013.6601455
https://doi.org/10.1109/SDE.2013.6601455
https://doi.org/10.1016/j.swevo.2011.02.002
https://doi.org/10.1016/j.swevo.2011.02.002
http://dx.doi.org/10.1016/j.swevo.2011.02.002
https://doi.org/10.1007/s11081-016-9308-3
http://dx.doi.org/10.1007/s11081-016-9308-3
http://dx.doi.org/10.1007/s11081-016-9308-3
https://doi.org/10.1109/cec.2002.1006991
http://dx.doi.org/10.1109/CEC.2002.1006991
https://doi.org/10.1007/s10732-015-9302-5
http://dx.doi.org/10.1007/s10732-015-9302-5
http://www.jstor.org/stable/2984043
http://www.jstor.org/stable/2984043
https://doi.org/10.1007/s10732-015-9283-4
https://doi.org/10.1007/s10732-015-9283-4
http://dx.doi.org/10.1007/s10732-015-9283-4
https://doi.org/10.1007/s00500-008-0392-y
http://dx.doi.org/10.1007/s00500-008-0392-y
http://dx.doi.org/10.1007/s00500-008-0392-y

������������ 87

[29] Salvador García et al. “A study on the use of non-parametric tests for analyzing the

evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on

Real Parameter Optimization”. In: Journal of Heuristics 15.6 (May 2008), pp. 617–644. doi:

10.1007/s10732-008-9080-4. url: http://dx.doi.org/10.1007/s10732-008-9080-4.

[30] Salvador García et al. “Advanced nonparametric tests for multiple comparisons in the

design of experiments in computational intelligence and data mining: Experimental

analysis of power”. In: Information Sciences 180.10 (May 2010), pp. 2044–2064. doi: 10.

1016/j.ins.2009.12.010. url: http://dx.doi.org/10.1016/j.ins.2009.12.010.

[31] Nikolaus Hansen et al. “COCO: A Platform for Comparing Continuous Optimizers in a

Black-Box Setting”. In: CoRR abs/1603.08785 (2016). url: http://arxiv.org/abs/1603.

08785.

[32] D. A. Harrison and A. R. Brady. “Sample size and power calculations using the non-

central t-distribution”. In: Stata Journal 4.2 (2004), 142–153(12). url: http://www.stata-

journal.com/article.html?article=st0062.

[33] Megan L. Head et al. “The Extent and Consequences of P-Hacking in Science”. In: PLOS

Biology 13.3 (Mar. 2015), pp. 1–15. doi: 10.1371/journal.pbio.1002106. url: https:

//doi.org/10.1371/journal.pbio.1002106.

[34] J. N. Hooker. “Toward unification of exact and heuristic optimization methods”. In:

International Transactions in Operational Research 22.1 (May 2013), pp. 19–48. doi: 10.1111/

itor.12020. url: http://dx.doi.org/10.1111/itor.12020.

[35] John N Hooker. “Needed: An empirical science of algorithms”. In: Operations Research

42.2 (1994), pp. 201–212.

[36] John N Hooker. “Testing heuristics: We have it all wrong.” In: Journal of Heuristics 1.1

(1996), pp. 33–42.

[37] Stuart H. Hurlbert. “Pseudoreplication and the Design of Ecological Field Experiments”.

In: Ecological Monographs 54.2 (Feb. 1984), pp. 187–211. doi: 10 . 2307 / 1942661. url:

https://doi.org/10.2307%2F1942661.

[38] R. K. Jain. The Art of Computer Systems Performance Analysis. John Wiley and Sons Ltd,

1991. 720 Seiten. isbn: 0471503363. url: http://www.ebook.de/de/product/4415910/r_

k_jain_the_art_of_computer_systems_performance_analysis.html.

https://doi.org/10.1007/s10732-008-9080-4
http://dx.doi.org/10.1007/s10732-008-9080-4
https://doi.org/10.1016/j.ins.2009.12.010
https://doi.org/10.1016/j.ins.2009.12.010
http://dx.doi.org/10.1016/j.ins.2009.12.010
http://arxiv.org/abs/1603.08785
http://arxiv.org/abs/1603.08785
http://www.stata-journal.com/article.html?article=st0062
http://www.stata-journal.com/article.html?article=st0062
https://doi.org/10.1371/journal.pbio.1002106
https://doi.org/10.1371/journal.pbio.1002106
https://doi.org/10.1371/journal.pbio.1002106
https://doi.org/10.1111/itor.12020
https://doi.org/10.1111/itor.12020
http://dx.doi.org/10.1111/itor.12020
https://doi.org/10.2307/1942661
https://doi.org/10.2307%2F1942661
http://www.ebook.de/de/product/4415910/r_k_jain_the_art_of_computer_systems_performance_analysis.html
http://www.ebook.de/de/product/4415910/r_k_jain_the_art_of_computer_systems_performance_analysis.html

������������ 88

[39] Donald R. Jones, Matthias Schonlau, and William J. Welch. “Efficient Global Optimiza-

tion of Expensive Black-Box Functions”. In: Journal of Global Optimization 13.4 (1998),

pp. 455–492.

[40] Ahmed Kattan et al. “GP made faster with semantic surrogate modelling”. In: Informa-

tion Sciences 355 (2016), pp. 169–185.

[41] Renato A. Krohling, Rodolfo Lourenzutti, and Mauro Campos. “Ranking and compar-

ing evolutionary algorithms with Hellinger-TOPSIS”. In: Applied Soft Computing 37 (Dec.

2015), pp. 217–226. doi: 10.1016/j.asoc.2015.08.012. url: http://dx.doi.org/10.

1016/j.asoc.2015.08.012.

[42] Manuel Laguna and Rafael Martí. “Heuristics”. In: Encyclopedia of operations research and

management science. Ed. by Saul I. Gass and Michael C. Fu. New York London: Springer,

2013, pp. 695 –703. isbn: 978-1-4419-1154-4.

[43] S. E. Lazic. “The problem of pseudoreplication in neuroscientific studies: is it affecting

your analysis?” In: BMC Neuroscience 11.5 (2010), pp. 397–407. doi: 10.1186/1471-2202-

11-5.

[44] Hui Li and Qingfu Zhang. “Multiobjective Optimization Problems With Complicated

Pareto Sets, MOEA/D and NSGA-II”. In: IEEE Transactions on Evolutionary Computation

13.2 (Apr. 2009), pp. 284–302. doi: 10.1109/tevc.2008.925798. url: https://doi.org/

10.1109%2Ftevc.2008.925798.

[45] Y. C. Lin, M. Clauß, and M. Middendorf. “Simple Probabilistic Population-Based Opti-

mization”. In: IEEE Transactions on Evolutionary Computation 20.2 (Apr. 2016), pp. 245–

262. issn: 1089-778X. doi: 10.1109/TEVC.2015.2451701.

[46] Jiaxiang Luo and Lixin Tang. “A hybrid approach of ordinal optimization and iterated

local search for manufacturing cell formation”. In: The International Journal of Advanced

Manufacturing Technology 40.3-4 (Jan. 2008), pp. 362–372. doi: 10.1007/s00170- 007-

1346-8. url: http://dx.doi.org/10.1007/s00170-007-1346-8.

[47] Ulrike Von Luxburg and Volker H. Franz. “A geometric approach to confidence sets for

ratios: Fieller’s theorem, generalizations, and bootstrap”. In: Statistica Sinica (2009).

[48] X. Ma et al. “A Multiobjective Evolutionary Algorithm Based on Decision Variable Anal-

yses for Multiobjective Optimization Problems With Large-Scale Variables”. In: IEEE

https://doi.org/10.1016/j.asoc.2015.08.012
http://dx.doi.org/10.1016/j.asoc.2015.08.012
http://dx.doi.org/10.1016/j.asoc.2015.08.012
https://doi.org/10.1186/1471-2202-11-5
https://doi.org/10.1186/1471-2202-11-5
https://doi.org/10.1109/tevc.2008.925798
https://doi.org/10.1109%2Ftevc.2008.925798
https://doi.org/10.1109%2Ftevc.2008.925798
https://doi.org/10.1109/TEVC.2015.2451701
https://doi.org/10.1007/s00170-007-1346-8
https://doi.org/10.1007/s00170-007-1346-8
http://dx.doi.org/10.1007/s00170-007-1346-8

������������ 89

Transactions on Evolutionary Computation 20.2 (Apr. 2016), pp. 275–298. issn: 1089-778X.

doi: 10.1109/TEVC.2015.2455812.

[49] André L. Maravilha, Letícia M. Pereira, and Felipe Campelo. Statistical characterization

of neighborhood structures for the unrelated parallel machine problem with sequence-dependent

setup times. In preparation.

[50] Dietmar G. Maringer. Portfolio Management with Heuristic Optimization. Springer US, 2006.

url: http://www.ebook.de/de/product/11430917/dietmar_g_maringer_portfolio_

management_with_heuristic_optimization.html.

[51] Paul Mathews. Sample Size Calculations: Practical Methods for Engineers and Scientists.

Mathews Malnar& Bailey Inc., 2010. 338 Seiten. isbn: 0615324614. url: http://www.

ebook.de/de/product/11350637/paul_mathews_sample_size_calculations_practical_

methods_for_engineers_and_scientists.html.

[52] Scott E. Maxwell, Ken Kelley, and Joseph R. Rausch. “Sample Size Planning for Sta-

tistical Power and Accuracy in Parameter Estimation”. In: Annual Review of Psychology

59.1 (Jan. 2008), pp. 537–563. doi: 10.1146/annurev.psych.59.103006.093735. url:

http://dx.doi.org/10.1146/annurev.psych.59.103006.093735.

[53] Catherine C. McGeoch. “Feature Article—Toward an Experimental Method for Algo-

rithm Simulation”. In: INFORMS Journal on Computing 8.1 (Feb. 1996), pp. 1–15. doi:

10.1287/ijoc.8.1.1. url: http://dx.doi.org/10.1287/ijoc.8.1.1.

[54] Douglas C. Montgomery and George C. Runger. Applied Statistics and Probability for En-

gineers. 6th. Wiley, 2013.

[55] J. Toby Mordkoff. The Assumption(s) of Normality. 2011. url: http://www2.psychology.

uiowa.edu/faculty/mordkoff/GradStats/part%201/I.07%20normal.pdf.

[56] J. Mukund Nilakantan et al. “Bio-inspired search algorithms to solve robotic assembly

line balancing problems”. In: Neural Computing and Applications 26.6 (Jan. 2015), pp. 1379–

1393. doi: 10.1007/s00521-014-1811-x. url: http://dx.doi.org/10.1007/s00521-

014-1811-x.

[57] Gottfried E. Noether. “Sample Size Determination for Some Common Nonparametric

Tests”. In: Journal of the American Statistical Association 82.398 (June 1987), pp. 645–647.

doi: 10.1080/01621459.1987.10478478. url: http://dx.doi.org/10.1080/01621459.

1987.10478478.

https://doi.org/10.1109/TEVC.2015.2455812
http://www.ebook.de/de/product/11430917/dietmar_g_maringer_portfolio_management_with_heuristic_optimization.html
http://www.ebook.de/de/product/11430917/dietmar_g_maringer_portfolio_management_with_heuristic_optimization.html
http://www.ebook.de/de/product/11350637/paul_mathews_sample_size_calculations_practical_methods_for_engineers_and_scientists.html
http://www.ebook.de/de/product/11350637/paul_mathews_sample_size_calculations_practical_methods_for_engineers_and_scientists.html
http://www.ebook.de/de/product/11350637/paul_mathews_sample_size_calculations_practical_methods_for_engineers_and_scientists.html
https://doi.org/10.1146/annurev.psych.59.103006.093735
http://dx.doi.org/10.1146/annurev.psych.59.103006.093735
https://doi.org/10.1287/ijoc.8.1.1
http://dx.doi.org/10.1287/ijoc.8.1.1
http://www2.psychology.uiowa.edu/faculty/mordkoff/GradStats/part%201/I.07%20normal.pdf
http://www2.psychology.uiowa.edu/faculty/mordkoff/GradStats/part%201/I.07%20normal.pdf
https://doi.org/10.1007/s00521-014-1811-x
http://dx.doi.org/10.1007/s00521-014-1811-x
http://dx.doi.org/10.1007/s00521-014-1811-x
https://doi.org/10.1080/01621459.1987.10478478
http://dx.doi.org/10.1080/01621459.1987.10478478
http://dx.doi.org/10.1080/01621459.1987.10478478

������������ 90

[58] Mônica S Pais et al. “Factorial design analysis applied to the performance of parallel

evolutionary algorithms”. In: Journal of the Brazilian Computer Society 20.1 (2014), p. 6.

doi: 10.1186/1678-4804-20-6. url: http://dx.doi.org/10.1186/1678-4804-20-6.

[59] X. Qiu et al. “Adaptive Cross-Generation Differential Evolution Operators for Multiob-

jective Optimization”. In: IEEE Transactions on Evolutionary Computation 20.2 (Apr. 2016),

pp. 232–244. issn: 1089-778X. doi: 10.1109/TEVC.2015.2433672.

[60] Herbert Robbins and Sutton Monro. “A Stochastic Approximation Method”. In: Annals

Mathematical Statistics 22.3 (Sept. 1951), pp. 400–407. doi: 10.1214/aoms/1177729586.

url: http://dx.doi.org/10.1214/aoms/1177729586.

[61] George G. Roussas. An Introduction to Probability and Statistical Inference, Second Edition.

2nd ed. Academic Press, 2014. isbn: 0128001143,9780128001141.

[62] Haroldo G. Santos et al. “Analysis of stochastic local search methods for the unrelated

parallel machine scheduling problem”. In: International Transactions in Operational Re-

search 00 (June 2016). url: https://doi.org/10.1111/itor.12316.

[63] Shlomo S. Sawilowsky. “New Effect Size Rules of Thumb”. In: Journal of Modern Applied

Statistical Methods 8.2 (2009), pp. 597–599.

[64] Marc Sevaux et al. “GRASP with ejection chains for the dynamic memory allocation in

embedded systems”. In: Soft Computing 18.8 (Oct. 2013), pp. 1515–1527. doi: 10.1007/

s00500-013-1157-9. url: http://dx.doi.org/10.1007/s00500-013-1157-9.

[65] Juliet Popper Shaffer. “Multiple Hypothesis Testing”. In: Annual Review of Psychology

46.1 (1995), pp. 561–584. doi: 10.1146/annurev.ps.46.020195.003021. eprint: https:

//doi.org/10.1146/annurev.ps.46.020195.003021. url: https://doi.org/10.1146/

annurev.ps.46.020195.003021.

[66] David J. Sheskin. Handbook of Parametric and Nonparametric Statistical Procedures. Taylor

& Francis Ltd, 2011. 1926 Seiten. isbn: 1439858012. url: http://www.ebook.de/de/

product/19785465/david_j_sheskin_handbook_of_parametric_and_nonparametric_

statistical_procedures.html.

[67] A. Sinha et al. “Solving Bilevel Multicriterion Optimization Problems With Lower Level

Decision Uncertainty”. In: IEEE Transactions on Evolutionary Computation 20.2 (Apr. 2016),

pp. 199–217. issn: 1089-778X. doi: 10.1109/TEVC.2015.2443057.

https://doi.org/10.1186/1678-4804-20-6
http://dx.doi.org/10.1186/1678-4804-20-6
https://doi.org/10.1109/TEVC.2015.2433672
https://doi.org/10.1214/aoms/1177729586
http://dx.doi.org/10.1214/aoms/1177729586
https://doi.org/10.1111/itor.12316
https://doi.org/10.1007/s00500-013-1157-9
https://doi.org/10.1007/s00500-013-1157-9
http://dx.doi.org/10.1007/s00500-013-1157-9
https://doi.org/10.1146/annurev.ps.46.020195.003021
https://doi.org/10.1146/annurev.ps.46.020195.003021
https://doi.org/10.1146/annurev.ps.46.020195.003021
https://doi.org/10.1146/annurev.ps.46.020195.003021
https://doi.org/10.1146/annurev.ps.46.020195.003021
http://www.ebook.de/de/product/19785465/david_j_sheskin_handbook_of_parametric_and_nonparametric_statistical_procedures.html
http://www.ebook.de/de/product/19785465/david_j_sheskin_handbook_of_parametric_and_nonparametric_statistical_procedures.html
http://www.ebook.de/de/product/19785465/david_j_sheskin_handbook_of_parametric_and_nonparametric_statistical_procedures.html
https://doi.org/10.1109/TEVC.2015.2443057

������������ 91

[68] María Soto, André Rossi, and Marc Sevaux. “A multiple neighborhood search for dy-

namic memory allocation in embedded systems”. In: Journal of Heuristics 21.6 (July 2015),

pp. 719–749. doi: 10.1007/s10732-015-9297-y. url: http://dx.doi.org/10.1007/

s10732-015-9297-y.

[69] Nils Egil Søvde et al. “A semi-greedy metaheuristic for the European cableway location

problem”. In: Journal of Heuristics 21.5 (June 2015), pp. 641–662. doi: 10.1007/s10732-

015-9294-1. url: http://dx.doi.org/10.1007/s10732-015-9294-1.

[70] Kenneth Sörensen. “Metaheuristics-the metaphor exposed”. In: International Transactions

in Operational Research 22.1 (Feb. 2015), pp. 3–18. doi: 10.1111/itor.12001. url: http:

//dx.doi.org/10.1111/itor.12001.

[71] Kenneth Sörensen and Fred Glover. “Metaheuristics”. In: Encyclopedia of operations re-

search and management science. Ed. by Saul I. Gass and Michael C. Fu. New York London:

Springer, 2013, pp. 960 –970. isbn: 978-1-4419-1154-4.

[72] KP Suresh and S Chandrashekara. “Sample size estimation and power analysis for clin-

ical research studies”. In: Journal of Human Reproductive Sciences 5.1 (2012), p. 7. doi:

10.4103/0974-1208.97779. url: https://doi.org/10.4103%2F0974-1208.97779.

[73] Y. Tenne and C.-K. Goh. Computational Intelligence in Expensive Optimization Problems.

Springer, 2010.

[74] Patrizio E. Tressoldi et al. “High Impact = High Statistical Standards? Not Necessarily

So”. In: PLoS ONE 8.2 (Feb. 2013). Ed. by Robert K. Hills, e56180. doi: 10.1371/journal.

pone.0056180. url: http://dx.doi.org/10.1371/journal.pone.0056180.

[75] Eva Vallada and Rubén Ruiz. “A genetic algorithm for the unrelated parallel machine

scheduling problem with sequence dependent setup times”. In: European Journal of Op-

erational Research 211.3 (June 2011), pp. 612–622.

[76] Matej Črepinšek, Shih Hsi Liu, and Marjan Mernik. “Replication and comparison of

computational experiments in applied evolutionary computing: Common pitfalls and

guidelines to avoid them”. In: Applied Soft Computing Journal 19 (2014), pp. 161–170.

[77] Frank Wilcoxon. “Individual Comparisons by Ranking Methods”. In: Biometrics Bulletin

1.6 (Dec. 1945), p. 80. doi: 10.2307/3001968. url: http://dx.doi.org/10.2307/3001968.

https://doi.org/10.1007/s10732-015-9297-y
http://dx.doi.org/10.1007/s10732-015-9297-y
http://dx.doi.org/10.1007/s10732-015-9297-y
https://doi.org/10.1007/s10732-015-9294-1
https://doi.org/10.1007/s10732-015-9294-1
http://dx.doi.org/10.1007/s10732-015-9294-1
https://doi.org/10.1111/itor.12001
http://dx.doi.org/10.1111/itor.12001
http://dx.doi.org/10.1111/itor.12001
https://doi.org/10.4103/0974-1208.97779
https://doi.org/10.4103%2F0974-1208.97779
https://doi.org/10.1371/journal.pone.0056180
https://doi.org/10.1371/journal.pone.0056180
http://dx.doi.org/10.1371/journal.pone.0056180
https://doi.org/10.2307/3001968
http://dx.doi.org/10.2307/3001968

������������ 92

[78] Bo Yuan and Marcus Gallagher. “An improved small-sample statistical test for com-

paring the success rates of evolutionary algorithms”. In: Proceedings of the 11th Annual

conference on Genetic and evolutionary computation - GECCO09. Association for Computing

Machinery (ACM), 2009. doi: 10.1145/1569901.1570213. url: http://dx.doi.org/10.

1145/1569901.1570213.

[79] Y. Yuan et al. “Balancing Convergence and Diversity in Decomposition-Based Many-

Objective Optimizers”. In: IEEE Transactions on Evolutionary Computation 20.2 (Apr. 2016),

pp. 180–198. issn: 1089-778X. doi: 10.1109/TEVC.2015.2443001.

[80] Qingfu Zhang and Hui Li. “MOEA/D: A Multiobjective Evolutionary Algorithm Based

on Decomposition”. In: IEEE Transactions on Evolutionary Computation 11.6 (Dec. 2007),

pp. 712–731. doi: 10.1109/tevc.2007.892759. url: https://doi.org/10.1109%2Ftevc.

2007.892759.

[81] C. Zhu, L. Xu, and E. D. Goodman. “Generalization of Pareto-Optimality for Many-

Objective Evolutionary Optimization”. In: IEEE Transactions on Evolutionary Computation

20.2 (Apr. 2016), pp. 299–315. issn: 1089-778X. doi: 10.1109/TEVC.2015.2457245.

[82] Eckart Zitzler et al. “Performance assessment of multiobjective optimizers: An analysis

and review”. In: IEEE Transactions on Evolutionary Computation 7.2 (2003), pp. 117–132.

https://doi.org/10.1145/1569901.1570213
http://dx.doi.org/10.1145/1569901.1570213
http://dx.doi.org/10.1145/1569901.1570213
https://doi.org/10.1109/TEVC.2015.2443001
https://doi.org/10.1109/tevc.2007.892759
https://doi.org/10.1109%2Ftevc.2007.892759
https://doi.org/10.1109%2Ftevc.2007.892759
https://doi.org/10.1109/TEVC.2015.2457245

	1 Introduction
	2 Literature Review
	2.1 Optimisation and Heuristics
	2.2 Algorithm experimentation
	2.2.1 What to compare

	2.3 Sample size
	2.4 Recent works
	2.5 Theoretical background
	2.5.1 The Algorithm Comparison Problem

	3 Proposed Method
	3.1 Estimating the number of repetitions
	3.1.1 Using the Simple Difference of Two Means
	3.1.2 Using the Percent Difference of Two Means

	3.2 Estimating the number of instances
	3.3 Independence and normality
	3.4 Nonparametric alternatives
	3.4.1 Nonparametric estimation of sej and of the number of repetitions
	3.4.2 Nonparametric tests of hypotheses

	3.5 The case of predefined N
	3.6 Defining reasonable experimental parameters

	4 Method evaluation
	4.1 Simulation model
	4.2 Test settings
	4.2.1 Validation of the estimated number of repetitions
	4.2.2 Validation of the estimated number of replications with fixed sample size

	4.3 Summary

	5 Experimental examples
	5.1 Comparison of two multi-objective optimization algorithms
	5.1.1 Comparison with bootstrapping

	5.2 Parallel machines problem with sequence dependent setup times
	5.3 Summary

	6 Conclusion
	6.1 Future works

	Appendix
	A Statistical Concepts
	A.1 Data samples
	A.2 Populational parameters
	A.3 Hypothesis testing
	A.3.1 Statistical errors and effect size
	A.3.2 Parameter estimation and accuracy
	A.3.3 Parametric vs. Non parametric methods

	B CAISEr: Package Usage
	B.1 The package
	B.2 Example

	References
	Bibliography

