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Abstract

This thesis contributes to the field of manipulation regarding tasks involving contact with

the environment, focusing on safety. To this end, a control architecture is proposed where

there is an admittance controller in an outer-loop, which changes the reference trajectory

to the robot end-effector to achieve a desired compliant behavior, and a motion controller

in an inner-loop used to track this trajectory.

More specifically, a six-degree-of-freedom task-space admittance controller using dual

quaternion logarithmic mapping is developed in order to impose a desired apparent

impedance to the robot. The controller couples the translation and rotation impedance

in a single mathematical structure, it is designed based on the energy of the system, and

the stiffness matrix is built to be consistent with the task geometry. Furthermore, the

formulation is free of topological obstruction, and a solution for the unwinding phenomenon

based on a switched error function is presented.

Regarding the inner-loop, the choice of the motion controller should take into account

the type of actuation of the robot (velocity/position or torque) and the availability of

the robot model. On the one hand, if the robot is actuated in torque, appropriate pose

controllers for physical interactions are usually based on the robot dynamics as it enables

more accurate analyses and helps in the synthesis of the robot dynamic behavior. In those

controllers, the ill-conditioning of the joint-space inertia matrix plays an important role.

Due to this ill-conditioning, small perturbations in the system can produce large changes in

the numerical solutions, which may lead to poor performance or even instability, resulting in

unsafe interactions. To overcome these problems, this thesis presents a controller in which

the joint-space inertia matrix conditioning is adapted online, consequently enhancing the

closed-loop performance. On the other hand, if the robot is actuated in velocity/position, a

controller based on the robot kinematics is commonly used. Hence, a kinematic controller

based on the dual quaternion logarithmic mapping is also developed.

The algorithms proposed in this thesis are validated in simulation and/or experimentally

on a robot manipulator and an extension of the proposed architecture for the whole-

body case, considering a bimanual mobile manipulator, is also evaluated in simulation.

Furthermore, statistical analyses are used to compare the performance of these controllers

to other ones of the state of the art, and the results show that the developed techniques
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are at least as good as or outperforms the ones from the literature.

Keywords: tasks subject to contacts, interaction forces, admittance control, adaptive

control, whole-body control, dual quaternion.



Resumo

A presente tese contribui para o campo de manipulação de tarefas que envolvem contato

com o ambiente, focando em segurança. Para este fim, uma arquitetura de controle é

proposta onde há um controlador de admitância em um laço externo, que altera a trajetória

de referência do efetuador a fim de atingir o comportamento complacente desejado, e um

controlador de movimento em um laço interno, usado para acompanhar esta trajetória.

Mais especificamente, um controlador de admitância de seis graus de liberdade no

espaço da tarefa usando o mapeamento logaŕıtmico de quatérnios duais é desenvolvido para

impor uma impedância desejada aparente no robô. O controlador acopla a impedância de

translação e de rotação em uma única estrutura matemática, ele é projetado baseado na

energia do sistema, e a matriz de rigidez é constrúıda para ser consistente com o geometria

da tarefa. Além disso, a formulação é livre de obstrução topológica e uma solução para o

fenômeno de unwinding baseado em uma função chaveada do erro é apresentada.

Em relação ao laço interno, a escolha do controlador de movimento deve levar em

conta o tipo de atuação do robô (velocidade/posição ou torque), e a disponibilidade do

modelo do robô. Se o robô é atuado em torque, um controlador de pose apropriado

para interações f́ısicas é geralmente baseado na dinâmica do robô, uma vez que isso

permite uma análise mais precisa e ajuda na śıtese do comportamento dinâmico do mesmo.

Nesses controladores, o mau condicionamento da matriz de inércia no espaço das juntas

tem um papel importante. Devido ao mau condicionamento, pequenas perturbações

no sistema podem levar a grandes mudanças nas soluções numéricas, o que pode gerar

uma performance ruim do controlador, ou até mesmo instabilidade, resultando em uma

interação insegura. Para contornar esses problemas, esta tese apresenta um controlador

no qual o condicionamento da matriz de inércia no espaço das juntas é adaptado online,

consequentemente melhorando a performance do sistema em malha fechada. Se o robô

é atuado em velocidade/posição, um controlador baseado no seu modelo cinemático é

comumente utilizado. Dessa forma, um controlador cinemático baseado no mapeamento

logaŕıtmico de quatérnios duais é desenvolvido.

Os algoritmos propostos nesta tese foram validados em simulação e/ou experimental-

mente em um robô manipulador, e uma extensão da arquitetura proposta para o caso de

corpo completo, considerando um manipulador móvel bimanual, também foi avaliada em

xi



xii

simulação. Além disso, análises estat́ısticas foram utilizadas para comparar a performance

desses controladores com outros do estado da arte, e os resultados mostraram que as

técnicas desenvolvidas são pelo menos tão boas quanto ou melhores do que as da literatura.

Palavras-chave: tarefas sujeitas a contatos, forças de interação, controle de admitân-

cia, controle adaptativo, controle de corpo completo, quatérnios duais.



Résumé

Cette thèse contribue au domaine de la manipulation des tâches impliquant le contact

avec l’environnement, en se concentrant sur la sécurité. À cette fin, une architecture de

commande est proposée où il y a une commande d’admittance dans une boucle externe, qui

modifie la trajectoire de référence vers l’effecteur du robot pour obtenir un comportement

conforme souhaité, et un contrôleur de mouvement dans une boucle interne utilisé pour

suivre cette trajectoire.

Plus spécifiquement, une commande d’admittance d’espace de tâches à six degrés de

liberté utilisant une cartographie logarithmique à double quaternion est développée afin

d’imposer une impédance apparente souhaitée au robot. La commande couple l’impédance

de translation et de rotation dans une structure mathématique unique, il est conçu en

fonction de l’énergie du système et la matrice de rigidité est construite pour être cohérente

avec la géométrie de la tâche. De plus, la formulation est exempte d’obstruction topologique

et une solution pour le phénomène de déroulement basé sur une fonction d’erreur commutée

est présentée.

Concernant la boucle interne, le choix de la commande de mouvement doit prendre en

compte le type d’actionnement du robot (vitesse/position ou couple) et la disponibilité du

modèle du robot. Si le robot est actionné en couple, les commandes de pose appropriées

pour les interactions physiques sont généralement basées sur la dynamique du robot car ils

permettent des analyses plus précises et aident à la synthèse du comportement dynamique

du robot. Dans ces commandes, le mauvais conditionnement de la matrice d’inertie dans

l’espace articulaire joue un rôle important. En raison de ce mauvais conditionnement, de

petites perturbations dans le système peuvent produire de grands changements dans les

solutions numériques, ce qui peut conduire à des performances médiocres ou même à une

instabilité, entrâınant des interactions dangereuses. Pour surmonter ces problèmes, cette

thèse présente une commande dans laquelle le conditionnement de la matrice d’inertie dans

l’espace articulaire est adaptée en ligne, améliorant ainsi les performances en boucle fermée.

Si le robot est actionné en vitesse/position, une commande basée sur la cinématique du

robot est couramment utilisée. Par conséquent, une commande cinématique basée sur la

cartographie logarithmique à double quaternion est également développée.

Les algorithmes proposés dans cette thèse sont validés en simulation et/ou expérimen-
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talement sur un robot manipulateur et une extension de l’architecture proposée pour le

cas du corps entier, considérant un manipulateur mobile bimanuel, est également évaluée

en simulation. De plus, des analyses statistiques permettent de comparer les performances

de ces contrôleurs à d’autres de l’état de l’art, et les résultats montrent que les techniques

développées sont au moins aussi bonnes ou surpassent celles de la littérature.

Mots-clés: interaction homme-robot, forces d’interaction, commande d’admission,

commande adaptatif, commande du corps entier, double quaternion.
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1
Introduction

For years, society has imagined robots helping humans and interacting with them (Adorno

et al., 2011a). This theme has been approached by many science fiction books, films, and

animated movies. In fact, the word “robot” was firstly introduced by the fiction work of

Karel Capek entitled R. U. R. (Rossum’s Universal Robots, in English), written in 1920

(Bainbridge, 2004). Works like this one have inspired many researchers and now we have

the presence of robots interacting with humans in the real world. Service robotics (i.e.,

robots that help workers) is a growing market. Autonomous robots, for instance, may

work together with the military, supply troops with ammunition, do surveillance (Squeo,

2001, apud Hinds et al., 2004), and assist astronauts in the investigation of distant planets

(Ambrose et al., 2001, apud Hinds et al., 2004). Some robots already deliver medicine

from pharmacies to nursing stations in hospitals, avoiding obstacles as they move (Okie,

2002; Siino & Hinds, 2004, apud Hinds et al., 2004). The field of human-robot cooperation

is also growing, where humans and robots work/act together to perform a certain task

(Adorno et al., 2011b). In this sense, supervision and cooperation of complex tasks can

be performed by humans while robots increase human capabilities in terms of strength,

speed, and accuracy.

In some applications that are not fully automated, human-robot cooperation is reward-

ing, since humans can use their experience, knowledge and perception to perform a given

task correctly (Santis, 2007), whereas robots may have skills that complement those of

humans. They can go to toxic or unsafe places, tolerate repetitive tasks, and can store

large amounts of data (Hinds et al., 2004). Some examples of human-robot interaction

1



2 CHAPTER 1. INTRODUCTION

(HRI) are illustrated in Figure 1.1.

Figure 1.1: Examples of robots interacting with humans. 1

Regardless the task the robot needs to perform, an important point is the intrinsic

need for direct interaction between humans and robots in human environments (Santis,

2007). These robots share the same physical space with humans and work closely with

them to perform tasks together as part of their daily life (Hinds et al., 2004). Due to

this close interaction, it is necessary to impose some rules in the closed-loop controller in

order to guarantee safety, which is one of the biggest challenges in the physical interaction

between a human being and a robot.

When a robot interacts with the environment, contact wrenches may appear, and for a

safe interaction it is crucial to ensure a compliant robot behavior, which can be imposed

by controlling its apparent impedance (Caccavale et al., 1999, 2008). Depending on how

the robot is actuated (velocity/position or torque), this behavior can be achieved by using

an admittance or impedance controller.

Not only the nature of the controller must be defined, but also the type of the robot that

is more appropriate to a given task and environment. In order to interact with people and

perform tasks in human environments, it is desired for the robot to have anthropomorphic

structures since “human tools match human dexterity” (Kemp et al., 2008). This means

that human-designed environments are adequate for their physical characteristics, and

robots with structures similar to humans are more efficient at performing tasks in these

environments (Adorno et al., 2011a). However, these robots present some challenges in

1Source: https://www.bbc.com/news/technology-35201183
http://www.about-robots.com/robonaut.html
https://hri.iit.it/research/physical-human-robot-interaction-and-collaboration
https://www.manualdousuario.net/pepper-robo-emotivo/
https://www.ucsf.edu/news/2015/04/125386/higher-tech-and-higher-touch
https://www.nursingtimes.net/archive/experimental-robot-could-help-nurses-of-the-future-lift-

patients-27-02-2015/
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relation to control since in addition to performing the desired task, humanoid robots

must simultaneously perform other tasks such as maintaining balance and controlling gait.

Mobile manipulators, on the other hand, combine robotic arm dexterity with mobile base

mobility (Adorno, 2011), being a versatile and lower-cost option. The mobile base can

take advantage of a large workspace compared to conventional robots arms with fixed

base (Borst et al., 2009) and that kind of robotic systems usually do not need balance

control since in many cases their base is naturally in equilibrium (Silva, 2017). Moreover,

the bimanual manipulators can better perform some manipulation tasks as having two

arms increase the manipulation capability in terms of dexterity and load-carrying capacity

compared to a single manipulator (Erhart & Hirche, 2015).

Due to the large number of degrees of freedom (DOF) the bimanual mobile manipulators

usually have (as they are composed of three smaller robots: two manipulators and a mobile

base), they may be redundant with respect to the task (i.e., they have more actuated DOF

than it is strictly needed to execute the task) which allows the robot to simultaneously

satisfy further tasks (Liegeois, 1977). Furthermore, the use of whole-body control takes

advantage of all DOF available, allowing the robot movements to be more smoothly and

potentially more human-like (Fonseca & Adorno, 2016).

That being said, different controllers are developed for a robot manipulator, aiming

the safety when performing tasks, especially the ones that includes contact, as for example

in physical human-robot interaction (pHRI). Moreover, an extension for some of these

controllers is done considering the whole-body of a bimanual mobile manipulator.

1.1 Objective and Contributions

Motivated by the great growth and importance of appropriate pHRI, the purpose of this

work is to propose control strategies, including a whole-body control for a two-arm mobile

manipulator, aiming at a safe closed-loop system for accomplishment of cooperative and

contact tasks.

The main contributions of this thesis are the following:

� The development of an admittance controller using the logarithmic mapping of a

dual quaternion (DQ), with the following characteristics:

– the stiffness term is designed to be geometrically consistent with the six-DOF

task, which makes the controller have a physical meaning;

– thanks to the coupling between translation and orientation, a single control

law minimizes the error norm as a whole, considering both variables at once,

which is simpler to implement when compared to uncoupled strategies, in which

usually there are two separate control laws (for position and orientation), as for

example the one of Caccavale et al. (1999);
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– it does not have the problem of topological obstruction, as in the work of

Caccavale et al. (2008), and a solution for the unwinding phenomenon is

proposed based on a switching error function that maps the two positive

invariant sets (PIS) of the space of unit DQ into a single PIS in the image of

the logarithmic mapping. Moreover, the trajectories of the closed-loop system

always converge to that single PIS without exhibiting chattering, which would

require a more complex hybrid control strategy (Kussaba et al., 2017);

– the closed-loop system is proven to be passive and thus stable, considering the

inner-loop controller as a double integrator.

� The development of a joint-space and a task-space adaptive controllers that formally

ensures the improvement of the joint-space inertia matrix conditioning, which is

usually ill-conditioned and affects the closed-loop behavior of the system;

� The development of a first-order and second-order kinematic controllers using the

DQ logarithmic mapping that:

– respects the properties of the unit DQ group;

– has a dissipative term that prevents the joint velocities to be different from zero

if the system is in equilibrium, which can happen when using the second-order

controller in redundant robots with respect to the task.

� The combination of the proposed admittance controller and the motion controllers

(the kinematic controller when the robot is actuated in position and the adaptive

controller when the robot is actuated in torque), aiming at a safe interaction by

imposing a desired impedance behavior to the robot while tracking the reference

trajectory, as depicted in Figure 1.2.

� The extension of the proposed architecture for a whole-body control of a bimanual

mobile manipulator, including the control of external and internal wrenches acting

in a manipulated object.

Furthermore, experiments were carried out in a KUKA LWR4+ robot manipulator equipped

with one ATI Mini 45 six axis force/torque sensor at the end-effector. Moreover, some

simulations were executed using the model of the KUKA robot. The extension for the

whole-body control of a bimanual mobile manipulator was also tested in simulation

considering the BAZAR model, which consists of two KUKA LWR4+ robot manipulators

and a mobile base. 2 The proposed controllers were compared with widely used controllers

of the state of art via statistical analyses.

2As the robot is available in the LIRMM in France, and the Ph.D. candidate is located in Brazil, with
just one year of exchange program in France, some controllers were only tested in simulation.
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Motion controller
q

Robot

ς

xc

Admittance

controller

uxd

Human + Environment

Section 4.1

(kinematic or
dynamic)

Sections 4.2 and 4.3

FKM
x

Figure 1.2: Block diagram with the structure and controllers proposed in the thesis. Given
a force/torque ς at the robot end-effector that appear due to its interaction with the
environment, the admittance controller modifies the desired end-effector trajectory xd to
achieve a compliant behavior of the robot. The inner motion control loop controls the
robot end-effector pose x according to this modified trajectory xc.

The developments and results reported in this thesis partially appears in two journal

papers, two conference papers, and one workshop extended abstract, as depicted in

Table 1.1.

Table 1.1: Contributions presented in papers.

Journal Papers
Fonseca et al., 2020 Sections 3.3.3, 4.1.2, 4.2.2, 5.5

Fonseca et al. 2021 Sections 3.3.3, 4.1, 4.3, 5.4

Conference Papers
Fonseca et al. 2018 Sections 4.3, 5.2

Fonseca et al. 2019a Sections 4.3, 5.3

Workshop Ext. Abstract
Fonseca et al. 2019b Sections 4.1

1.2 Organization of the Thesis

This text is divided into six chapters, summarized as follows:

Chapter 1 gives a brief introduction about the HRI and the existing needs behind it.

It also enumerates the contributions and objectives of the thesis.

Chapter 2 presents some developments related to the control of contact forces and

internal forces in the human-robot or robot-robot interaction. Furthermore, this chapter

shows some adaptive techniques to compensate the uncertainties introduced by unknown

kinematic and specially dynamic models.

Chapter 3 introduces the mathematical background needed to understand all the

modeling and controllers used and proposed in this thesis. It also establishes the notation

used throughout the text. Moreover, this chapter also presents the whole-body model of a
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bimanual mobile manipulator.

Chapter 4 shows the strategies used to control the robot imposing a desired impedance

in order to the robot behave compliantly in the presence of contact wrenches. It also

presents a kinematic controller using the DQ logarithmic mapping. Furthermore, a solution

to mitigate the problems related to control due to the ill-conditioning of the inertia matrix

is proposed. All these contributions are summarized in Figure 1.2, where, given a desired

pose for the end-effectors, an outer-loop imposes a desired impedance behavior for the

robot, so it moves compliantly when there are contact wrenches acting on it, and an

inner-loop is responsible to track the reference trajectory of the end-effectors.

Chapter 5 shows the results obtained through simulations and experiments made on

the KUKA robot, related to the theory of Chapter 4. Moreover, it presents simulations of

the whole-body model of the BAZAR, regarding the extension of some of the controllers

described in Chapter 4 for a bimanual mobile manipulator. It also shows an analysis of

a robot manipulator behavior, highlighting the dynamic characteristics intrinsic to open

serial kinematic chains.

Lastly, Chapter 6 presents the final remarks and the perspectives for future works.



2
Related Works

As previously mentioned, the close interaction between human and robots are becoming

more and more frequent each day (Haddadin et al., 2009). In this chapter, some related

works of the state of art, considering pHRI and issues related to the dynamic behavior of

the robot, are shown.

2.1 Human-Robot Interaction

The fast growing demands for robots in home and industrial workspace led to the growth of

the number of activities/tasks involving HRI (Ajoudani et al., 2018). The HRI combines the

dexterity, flexibility, and problem-solving abilities of humans with the strength, endurance,

and precision of robots (Vanderborght, 2018). Thus, combining the characteristics from

humans and robots can bring many advantages, yielding highly effective systems (Badeau

et al., 2018). HRI is a research field on the rise, with a lot of researches taking place,

but still with much development to be done. In order to illustrate the growth of the

area, Figure 2.1 shows the number of publications from year 2000 to 15th June of 2020,

according to Google Scholar.1 The number of articles increased a lot since 2000, going

from around 280 in 2000 to 11500 articles in 2019. Still, there is a lot to do in the HRI

research field, both in cognitive HRI and in physical interaction.

Human-robot collaboration (HRC) is a specific area of HRI. The latter stands for any

1The collected data was the number of articles returned by Google Scholar when searching for the
expression “human robot interaction”, for a specific year.

7
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Figure 2.1: Number of publications along the years from 2000 to 2020 (until 15th June).
The data is the number of articles by Google Scholar when searching for the expression
“human robot interaction”, for a given year.

action that involves a human and a robot, whilst the former means humans working with

robots to reach a common goal (Bauer et al., 2008; Ajoudani et al., 2018). However, for

simplicity, both situations will be denoted here as HRI.

In HRI, two points must be taken into consideration in order to allow a better interaction

(Cherubini et al., 2017):

1. the human intent should be understood by the robot in an easy way;

2. the closed-loop behavior should be safe for both human and robot.

Moreover, according to Goodrich & Schultz (2007), the communication and interaction

between the robot and the human can be separated into two categories: remote interaction

and proximate interaction, in which in the former the human and the robot are spatially

separated, and in the latter they are co-located. In this thesis, the focus is on the controllers

for safe robotic manipulation tasks subject to contacts, that is, human-robot interaction

in which the participants of the interaction are co-located. Therefore, only works related

to the second point are discussed.

2.1.1 Physical Human-Robot Interaction

In many scenarios, as for example robots helping workers in industries or people in domestic

environments, or assistance robots making advantage of its payload to carry elderly or

people with reduced mobility, the pHRI is evident, either directly (i.e., the robot is in

contact with the human) or indirectly (i.e., the robot is in contact with an object that

is also in contact with the human partner) and thus safety must be taken into account.

According to De Santis et al. (2008), safety is one of the keys to a “successful introduction

of robots into human environments”.
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Safety may include many topics, as for example collision (and self-collision) avoidance,

joint limits avoidance, velocity limits, interaction force limit, balance, and physical com-

pliance. However, this thesis focuses on the interaction itself, in which two aspects draw

attention: the contact forces and the compliant behavior. Different control approaches

can be used to treat these topics, such as force controllers, impedance, and admittance

controllers.

2.1.1.1 Force Controllers

Pure motion control is usually insufficient to handle the physical contacts between the

robot and the environment, specially if the environment is rigid, because of the large

contact wrenches arising from the interactions (Villani & de Schutter, 2008). Therefore,

some works have largely relied on the use of force controllers to minimize the interaction

forces (Cherubini et al., 2017).

For instance, Uchiyama & Dauchez (1988) propose a hybrid position/force controller

for coordination of a dual-arm system. To do that, the authors propose to use a “virtual

stick,” which is a hypothetical rigid bar fixed between the end-effector of each manipulator

and the center of the manipulated object, as illustrated in Figure 2.2 by o1 and o2. This

concept helps to define the external and internal wrenches acting on the object, in which

the former induce motion and the later do not (Erhart & Hirche, 2015). More specifically,

the force F 0
tip,i ∈ R3 and moment N 0

tip,i ∈ R3 at the tip of the virtual stick with reference

to the inertial frame F0, with i = 1, 2, is given by

F 0
tip,i = F 0

i ,

N 0
tip,i = N 0

i + F 0
i × oi,

with F 0
i ∈ R3 and N 0

i ∈ R3 being, respectively, the force and moment acting on each

robot end-effector i. The externalW0
a ∈ R6 and internalW0

r ∈ R6 wrenches are obtained

by

W0
a =W0

tip,1 +W0
tip,2,

W0
r = 1

2
(
W0

tip,1 −W0
tip,2

)
,

whereW0
tip,i =

[
F 0T

tip,i N 0T
tip,i

]T
is the wrench at the tip of the virtual stick (Uchiyama &

Dauchez, 1988). Then, the authors derive the absolute and the relative velocities dual to

these wrenches. In their proposed architecture, the authors use a selection matrix to select

the force or the position control mode.

Chiaverini & Sciavicco (1993) also propose a position/force controller but, differently

from Uchiyama & Dauchez (1988), they do not use a selection matrix. Instead, their
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Figure 2.2: Forces F and moments N acting in two robots holding a common object.2

approach consists of a parallel architecture where the force controller has a higher priority

than the position controller. This priority is set by using a PD for the position and a PI for

the force. Simulations considering only translation and linear force were done to analyze

the performance of the proposed controller in a rigid, frictionless and elastic environment.

More recently, Alban & Adorno (2017) have used a hybrid force/pose controller using

a cascade scheme in order to regulate the interaction forces. The outer-loop is composed

of a force controller with the aim of regulating the force applied by the manipulator’s

end-effector, and an inner-loop that controls the end-effector pose according to the desired

pose and the perturbation given by the outer-loop. Alban & Adorno also do not need a

selection matrix in their architecture. However, in their work, the authors consider that

the force and desired position are always orthogonal, so the proposed controller is not

adequate to tasks in which this assumption is not satisfied.

To modulate the interaction forces in HRI, Mitsantisuk et al. (2010) propose a force

controller based on an impedance scheme. Moreover, the authors develop a twin direct-

drive motor with a wire rope to hand over a “precise force sensation” in HRI. Also aiming

at a safe physical interaction, Magrini et al. (2015) extend typical impedance and force

controllers to handle generic contact points on the robot, using for this purpose the

estimation of contact forces proposed by Magrini et al. (2014).

2.1.1.2 Impedance and Admittance Controllers

Despite the many works regarding force controllers, traditional force controllers tend to

increase the robot stiffness to obtain high bandwidth and position accuracy, which may

result in poor compliance and even instability (Colgate & Hogan, 1989). Therefore, force

2Figure adapted from (Uchiyama & Dauchez, 1988).



2.1. HUMAN-ROBOT INTERACTION 11

controllers are not the best choice for a good and safe interaction (Pratt et al., 2005; Ju

et al., 2014). Impedance and admittance controllers, on the other hand, have shown to

be more appropriate to handle interactions (Kimmel & Hirche, 2015), ensuring a suitable

compliant behavior by controlling the apparent robot impedance. Corroborating this,

Ajoudani et al. (2018) present an overview of many works related to HRI and, concerning

physical interaction, most of the works used an approach with impedance control.

Differently from the force controllers, the impedance controller does not control the

forces acting on the robot, but regulates the relation between the velocity and the force

(mechanical impedance). More specific, the Laplace transformation of the mechanical

impedance is given by

Z (s) = Fe (s)
V (s) ,

where Fe (s) is the external force acting on the robot end-effector, and V (s) is its velocity

(Spong et al., 2006).

Hogan (1985) propose the first impedance controller to control dynamic interactions

between a manipulator and the environment in cases involving interaction forces that are

not orthogonal to motions, in which pure force controllers are not adequate. By changing

the robot impedance to match a desired interaction impedance, safety is improved, which

has motivated many researchers to use impedance controllers when physical interactions

are required.

For instance, Erhart et al. (2013) extend an impedance-based controller to dual-arm

mobile manipulators to limit undesired internal forces caused by kinematic errors due

to uncertainties in the object geometry and manipulators. In order to accomplish that,

the motion of the arms are separated from the motion of the mobile base to decrease the

computational cost and also to, using a potential function, minimize the propagation of the

base disturbances to the manipulators. Experiments were performed only in the horizontal

plane. Lee et al. (2014) also present an impedance controller that considers a dual-arm

system as a single manipulator, whose end-effector motion is defined by the relative motion

between the two end-effectors. Thus, using a relative Jacobian, the impedance controller

is reduced to a single controller for both arms. Two different arms are used to perform a

writing task, in which one arm holds a plate while the other writes on it.

Pedro et al. (2013) use an impedance controller, together with a smooth trajectory,

to perform the task of unscrewing a bottle cap using an industrial robot. The authors

have used a third-order polynomial curve to modify the impedance parameters according

to the manipulation phases: when the robot is subject to contact and when it is not.

Higa et al. (2019) study the influence of the joint configuration on the passivity of robotic

legs controlled using impedance. The authors use an impedance controller because it is

appropriate to handle interactions with unknown environments.
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In the context of HRI, Sieber et al. (2015) propose the use of an impedance controller

in a manipulation task performed by a team composed of a human and multiple robots. In

their architecture, the human coordinates the robots formation and the desired trajectory

is designed according to the manipulated object geometry. However, small deviations in

the trajectory result in internal forces, and thus impedance controllers are used in each

manipulator to prevent damages either to the robots or to the object. A major drawback

of that work is that only the end-effectors positions are considered, therefore the internal

torques due to orientation uncertainties are not explicitly taken into account.

More concerned with multiple tasks, Hoffman et al. (2018) propose a multi-priority

impedance controller that considers task priorities inside a Quadratic Programming (QP)

optimization framework that allows equality and inequality constraints. This architecture

is useful when more than one task must be dealt with simultaneously, such as controlling

the end-effectors of a humanoid robot while keeping the balance. Moreover, equality and

inequality constrains enables the definition of joint limits, collision avoidance, etc., directly

in the control law.

Admittance controllers, which are dual to impedance controllers, have also been used in

applications where the manipulator physically interacts with the environment. Throughout

the literature, admittance controllers have been called position-based impedance controllers,

velocity-based impedance controllers, or, ambiguously, impedance controllers (Keemink

et al., 2018). Currently, a more widely accepted definition is that impedance controllers

are the ones in which the robot velocity is measured, yielding a wrench as a control signal.

Conversely, in admittance controllers, a contact wrench is measured and mapped to a

velocity that must be imposed to the robot (Keemink et al., 2018).

The admittance controller is usually used when a high positioning accuracy is desirable

since it can achieve smaller steady-state error in the end-effector pose than the impedance

controller. It is also more directly applied to robots actuated in velocity or position.

However, it does not exclude the use of admittance controllers with torque actuated

robots. A drawback of admittance controllers is that it is a challenge to render low inertia,

differently from the impedance controller. On the other hand, the impedance controller is

more appropriate to handle contacts (Dietrich, 2015; Keemink et al., 2018) and it presents

difficulty in dynamically interacting with low inertia (i.e., free motion).

To admittance controlled devices to be able to render low inertia, Keemink et al.

(2018) propose a set of design guidelines to ensure coupled stability in this situation.

Notwithstanding, the authors consider only a single-DOF system, which is not usually the

case in real applications. In the multi-DOF system, the coupling between nonlinear DOF

could result in instability because of the effects absent in single-DOF systems.

Instability can also emerge when an admittance-controlled robot interacts with stiff

environments. To prevent this, Ferraguti et al. (2019) propose a method for detecting

instability and restore a stable behavior using a passivity-base adaptation of the admittance
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parameters.

According to Roveda et al. (2016), pure force control works better when there is a

compliance in the force/torque sensor (Lange et al., 2012) or in the robot’s joints. On the

other hand, the impedance controller is easier to tune when the robot performs assembly

tasks, for example. Nonetheless, impedance controllers, as well as admittance controllers,

do not allow a fine control of the interaction forces, introducing the problem of force

peaks during the task execution, specially when the contact starts. Therefore, Roveda

et al. (2016) treat the problem with two control structures: an internal, which consists

of a pure impedance controller with constants parameters, and an external, which is

an admittance controller with adaptive gains calculated online, based on the estimation

of the environment stiffness. The admittance gains are calculated as the solution of a

linear-quadratic regulator (LQR) problem, and the environment stiffness is estimated

through an Extended Kalman Filter.

Thanks to the ability of handling stiff impedances in addition to enabling non-back

drivable and heavy robots to have a compliant behavior, admittance controllers are often

used in wearable and industrial robots (Keemink et al., 2018; Ferraguti et al., 2019). For

instance, Navarro et al. (2016) propose an adaptive damping controller (a special type of

admittance controller) that fulfills the ISO10218, a standard that has some requirements to

guarantee safety in HRI with industrial robots. Moreover, the authors also limit the tool

speed and contact force online. The controller was validated on a manipulator equipped

with a robotic hand in a collaborative screwing application. As an improvement of their

previous work, Navarro et al. (2018) develop an open-source software to satisfy the safety

level imposed by ISO 10218:2011 and ISO/TS 15066, called OpenPHRI, which is also

based on a damping control. To guarantee safety, a set of constraints are build to limit the

velocities in both task and joint space, because both can lead to undesired behaviors. Force

control is also considered in the framework, mapped to a velocity command. Cherubini

et al. (2016) develop a collaborative human-robot manufacturing cell for homokinetic joint

assembly, in which pre-taught trajectories are deformed to comply with external wrenches

using an admittance controller. As a result, the human workload is reduced, and a risk

analysis indicates that their approach is compatible with safety standards.

Tarbouriech et al. (2020) propose an admittance controller for a collaborative dual-arm

manipulation of bulky objects. Computer vision is used to detect where the human is in

contact with the object and an admittance controller makes the bimanual manipulator move

according to this information. As the gravity effects are canceled during the manipulation,

the human makes an effort only to move the object, without needing to sustain it. Agravante

et al. (2014) combine a visual servoing controller to an admittance controller to achieve a

human-robot collaborative task of carrying a flat surface while preventing an object on

top of it from falling. The authors ensure the human safety by imposing the human’s

intention through the haptic channel and making the robot more compliant. Since they
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used Euler angles to represent orientations, the controller is restricted to small rotations

due to representational singularities (Siciliano et al., 2009).

To avoid the representational singularity problem when performing six-DOF impedance

and admittance control, Caccavale et al. (1999) propose to use the imaginary part of a

unit quaternion to represent rotations, expressing the mutual orientation between the

compliant and the desired frames. Moreover, the authors formulate an energy-based

impedance equation with a geometrically consistent stiffness for infinitesimal displacements.

Notwithstanding, they use two distinct control laws for the position and orientation and

their approach presents the topological obstruction problem (Bhat & Bernstein, 1998),

which may trap the closed-loop system within an unstable equilibrium set. That work

is later extended (Caccavale et al., 2008) to propose a controller in which the stiffness

is proved to be geometrically consistent for finite displacements. Caccavale et al. (2008)

applied that controller into a dual-arm manipulation, considering internal and external

wrenches. Nonetheless, the new controller still carries the topological obstruction issue.

The literature still lacks a formulation based on DQ algebra, which has some advantages

as, for instance, it has a compact representation, the coefficients of a DQ can be used

directly in the control law, and has it has strong algebraic properties. Therefore, this topic

is addressed in this thesis.

Some of the aforementioned works do not consider a human in the task, but treat the

case of multi-robot for manipulation of a common object. Those works are also important

since one of those robots could be substituted by a human partner. In this case, the

problem is even more challenging, since the human behavior is usually not controlled as

the robot is, and thus the robot must adapt to the human’s motion.

When dealing with HRI, mainly the pHRI, another point related to the safety is the

control accuracy and also the avoidance of instability. If the control of the end-effector

pose is not precise, large interaction wrenches can appear when the robot interacts with

highly rigid environments, which may damage the robot or the environment, especially

when an impedance or admittance controller is not used. Also, if the system becomes

unstable, the robot can also perform movements that would harm the human and cause

damage to the environment, which is undesirable. Considering this, it is important to treat

an intrinsic problem of serial robot manipulators that can lead to a not precise control

and also instability.

2.1.2 Safety Issue: Ill-Conditioning of Open Serial Chains

The joint space inertia matrix (JSIM) of a robot manipulator plays an important role in

control and in the analysis of its dynamic behavior. More specifically, the JSIM is specially

important in forward dynamics, which is essential for simulation (Featherstone, 2004; Shah

et al., 2018), and when designing motion controllers based on Euler-Lagrange equations.
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Figure 2.3: The links of a serial manipulator are connected in a way that each link in
the kinematic chain is carried by its predecessors while carrying all successive links in the
chain, which leads to the ill-conditioning of the inertia matrix.

Although it is well known that the JSIM is positive definite independently of the robot

configuration, this property does not guarantee the good conditioning of the matrix (Shen

& Featherstone, 2003).

In a multi-link open serial chain, the links are connected to each other in a way that

the penultimate link carries the last one, the antepenultimate link carries the last two and

so on, and the base link carries all the others, as illustrated in Figure 2.3. As a result, the

equivalent inertia of the links are extremely disparate, and this difference increases with

the number of links, even if the links are identical to each other (Agarwal et al., 2014),

which leads to the ill-conditioning of the JSIM. Moreover, if the links are not all the same

size, the condition number can be higher (Featherstone, 2004).

When the JSIM becomes ill-conditioned (i.e., it has a large condition number), small

perturbations in the system can produce large changes in the numerical solutions (Agarwal

et al., 2014), affecting both the accuracy of simulation results and the control performance

(Shen & Featherstone, 2003), which in turn may affect safety. For instance, imprecise

end-effector motion control can result in large interaction wrenches when the robot interacts

with highly rigid environments, which may result in damage to either the robot or the

environment. Also, depending on the control design, especially the ones that rely on the

inversion of the JSIM, an ill-conditioned inertia matrix may lead to closed-loop instability,

which may yield dangerous movements that would harm the human or cause damage

to the environment. Even when there is no inversion, the ill-conditioning can cause

some problems. For instance, the controller based on inverse dynamics with feedback

linearization (Spong et al., 2006) behaves poorly whenever the JSIM is ill-conditioned.

Due to the difference in the singular values of the JSIM, the torque of each joint calculated

from the inverse dynamics control law can be very different, even if the joints accelerations

are the same. This way, if the inertia along a specific joint is very small, no matter how

large the position/velocity error or PD-coefficients are, the correction torque applied on

that joint will be still small compared to the dominant torque, which may result in some

undesired stationary error in that joint (Shen & Featherstone, 2003).
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Despite the fact that this ill-conditioning is intrinsic to serial kinematic chains (Feath-

erstone, 2004), its effects can be mitigated and therefore the control performance can be

enhanced. However, this problem is mostly neglected by researchers and just a few have

worked on a solution for it (Shen & Featherstone, 2003).

In order to circumvent the ill-conditioning problem, Shen & Featherstone (2003) propose

to use a PD controller with gravity compensation, which yields an asymptotically stable

closed-loop system if the PD gains are properly chosen. This controller does not use the

JSIM directly in the control law, and thus it is not affected by the ill-conditioning of this

matrix since it directly converts the joint position/velocity error to the driven torque. Yet,

according to the authors, other controllers that have complete knowledge about the robot

dynamics should achieve better accuracy.

To benefit from the complete dynamic model in the control law whilst alleviating the

effects of the JSIM’s ill-conditioning, an alternative is to add a well-conditioned constant

positive definite matrix to it in the Euler-Lagrange equation. However, this addition could

lead to steady-state error in the closed-loop system due to the introduction of disturbances

in the robot model that are not compensated by the control law. Such matrix could

be related to the inertia of the actuators, instead of just adding an arbitrary matrix, in

order to prevent the introduction of unnecessary inaccuracies to the model (Fonseca et al.,

2018). However, if the added actuator’s inertia does not correspond to the actual one, the

closed-loop system may still present steady-state error.

Many control methods are sensitive to the uncertainties in some parameters in the

dynamic model (Ding et al., 2015), as for example, again, the inverse dynamic control

with feedback linearization. One could try to use an integrator to remove the steady-state

error (Shen & Featherstone, 2003). However, the added disturbance must be constant in

order to the integrator to work, which is not always true. Even though the actuator’s

inertia matrix is usually constant, the disturbance depends on the robot acceleration and

therefore is time-varying. More specifically, if the actual robot’s inertia matrix is given by

M̄ = M (q) +Mm, where M (q) is the nominal robot’s inertia matrix and Mm is the

actuators’ inertia matrix, the actual dynamic model is given by

τ = M̄q̈ +C (q, q̇) q̇ + g (q)

= M (q) q̈ +C (q, q̇) q̇ + g (q) +w,

where w = Mmq̈ is the time-varying disturbance.

An alternative solution to improve the JSIM’s conditioning is to use an adaptive

controller to compensate for the unknown inertia of the actuators. The basic idea in

adaptive control is to estimate the uncertain parameters online based on the measured

system signals, and use those estimates in the control input computation (Siciliano &

Slotine, 1991).
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Another option is to add a positive definite variable matrix that varies according to

the JSIM conditioning, without adding excessive inaccuracy to the nominal model. This

matrix should be adapted during the robot motion, also motivating the use of an adaptive

controller.

2.1.2.1 Adaptive Control

Adaptive controllers can be used to compensate for the unknown parameters of the system

model. For instance, Slotine & Li (1987) propose an adaptive control law for robots with

dynamics uncertainties and show that although the estimated parameters do not converge

to the real parameters, the trajectories of the colsed-loop system converge to the invariant(
q̃, ˙̃q

)
= (0,0), where q̃ is the joint-space error (or to

(
x̃, ˙̃x

)
= (0,0), where x̃ is the

task-space error, if the controller is in the Cartesian space). The controller consists of a PD

feedback together with a full dynamics feed-forward compensation, in which the authors

restrict the residual tracking errors to lie on a sliding surface, guaranteeing asymptotic

convergence of not only the velocity but also the tracking position while estimating the

parameters online. According to the authors, differently from most of the algorithms in

the literature, in their architecture there is no need to measure the joint accelerations or

to invert the estimated inertia matrix. The paper of Slotine & Li (1987) first addresses

the problem in joint space, and then extends the solution to the Cartesian space.

Cheah et al. (2006b,a) extend the work of Slotine & Li (1987) to treat not only dynamics

but also kinematics uncertainties. They show that the robot end-effector is able to converge

to the desired trajectory despite the uncertain dynamic and kinematic parameters, which

are updated online by adaptive laws. Moreover, according to the authors, the proposed

controller can be extended to adaptive visual tracking control with uncertain camera

parameters. Liu et al. (2006) propose a task-space adaptive Jacobian controller that

is asymptotically stable in the Lyapunov sense and consider, besides the dynamics and

kinematics, also the actuator dynamics, which was not considered by any of the previous

works.

Adaptive controllers as the ones proposed by Slotine & Li (1987); Cheah et al. (2006a,b)

are considered passivity-based controllers, which adopt approximate transpose-Jacobian

feedback to track the manipulator end-effector (Wang & Xie, 2009). Although these

controllers achieve asymptotic stability, their performance is not good over the entire

robot configuration space. Since the closed-loop response varies with the manipulator

configuration (Wang & Xie, 2009), it is not possible to define fixed gains that results in fixed

closed-loop poles. Moreover, this type of controller leads to nonlinear and coupled error

dynamics, and thus it is hard to quantify the system performance. Controllers based on

the inverse dynamics, on the other hand, yield linear and decoupled error dynamics when

the robot parameters are perfectly known. Thus, Wang & Xie (2009) propose an adaptive

inverse dynamics controller for robots with unknown dynamic and kinematic parameters.
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Notwithstanding, the controller requires the measurement of the joints accelerations, which

is not necessary in the passivity-based controllers. As a result, the adaptive inverse

dynamics controller is more sensitive to noises.

Both passivity-based and inverse dynamics based adaptive controller use the fact that

both kinematic and dynamic models are linear parameterizable and utilize a regressor in

the parameter update laws. However, computing the regressor matrix is expensive for

manipulators with a high number of DOF. Thus, Hanlei (2010) proposes a computationally

efficient adaptive control law based on the Newton-Euler recursive algorithm.

Table 2.1 summarizes the characteristics of passivity-based, recursive passivity-based,

and inverse dynamics controllers.

Table 2.1: Characteristics of different types of adaptive controllers.

Adaptive Controller
Passivity-

based

Recursive
passivity-

based

Inverse
dynamics

Do not require inversion of inertia
matrix

Do not require measurement of
joint accelerations

Good performance over the entire
robot configuration space

Linear error dynamics

Computationally efficient

Achieve convergence of the
position and velocity

Passivity-based controllers have some advantages when compared to inverse dynamics

controllers. For example, they do not require the inversion of the estimated inertia matrix.

However, those laws usually do not guarantee that the estimated inertia matrix is positive

definite, which results in physically inconsistent results, or even well-conditioned (Wang &

Xie, 2011). To overcome the lack of positiveness guarantee, one strategy is to ensure that

the estimated parameters are positive to obtain a positive definite estimated inertia matrix.

This can be done by defining an appropriate convex region, whose interior defines the set

of admissible positive parameters, and then using a projection algorithm to ensure that

the parameters remain inside that region (Cheah et al., 2006b). Nevertheless, in discrete

implementations, the estimated parameters may escape from that region, thus Wang & Xie

(2011) propose an approach that guarantees the positiveness of the estimated parameters

while retaining stability of the closed-loop system. Still, they observed that when the
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parameter update is too fast, the algorithm cannot project the estimated parameters into

the region of admissible parameters.

Despite the vast literature on adaptive control, it still lacks works that focus on the

improvement of the JSIM conditioning.

2.2 Conclusion

This chapter shows the intrinsic problem of robot manipulators. Although the inertia

matrix of a manipulator is positive definite, it can be ill-conditioned, which can lead to

bad performance of controllers. To circumvent this problem, an adaptive controller can be

used since we can enforce the inertia matrix to be well-conditioned and compensate the

added uncertainties in order to have a stable response, as shown in section 4.3. Therefore,

the adaptive controller of the literature has been reviewed.

Besides the need to have a stable response, another issue concerning safety is the

wrenches acting on the robot and the manipulated object. To limit these wrenches or to

enable a compliant robot behavior, force, impedance, and admittance controllers can be

used. That being said, a revision of the state of the art concerning these three controllers

has also been done.
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3
Kinematic and Dynamic Modeling Using

Dual Quaternions

This chapter presents the mathematical background and notation used in the whole thesis.

Here are the most important concepts needed as well as quaternion and DQ properties

and operations. Moreover, the kinematic and dynamic model of robot manipulators are

described, including a revision of the cooperative dual task-space and its relation with

external and internal wrenches when considering bimanual manipulations. Furthermore,

the whole-body kinematic model of a bimanual mobile manipulator is described. The

mechanical impedance model is also revised.

3.1 Mathematical Background

When designing task-space controllers, the mathematical representation of rigid motions

plays an important role, since a poor choice may lead, for instance, to representational

singularities (Siciliano et al., 2009). In the last decades, several works have shown that the

DQ algebra presents several advantages over other mathematical tools for robot modeling

and control, most notably when the task-space is considered (Adorno & Marinho, 2020).

For instance, the unit DQ has a compact representation, requiring only eight parameters,

whereas the homogeneous transformation matrix (HTM) needs twelve if the fourth constant

row is discarded, presenting thus a smaller computational cost concerning multiplications

and additions. Moreover, the unit DQ does not have representational singularities, as

21
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well as the HTM, and the coefficients of a DQ can be used directly in the control law.

This is a great convenience since the use of other traditional methods based on HTM may

require the extraction of geometrical parameters, which in turn can lead to representational

singularities (Adorno et al., 2010). Another advantage of DQ is the fact that it has strong

algebraic properties and can be used to represent, in addition to rigid motions, wrenches,

twists, and geometric primitives such as Plücker lines and planes (Adorno, 2017). Also,

the extraction of geometric parameters of a given DQ, like translation, rotation axis, and

rotation angles is very simple.

Thanks to the aforementioned advantages, the DQ algebra is used throughout this

thesis.

3.1.1 Quaternions

Introduced by Hamilton in the XIX century, quaternions can be understood as an extension

of imaginary numbers, where the three imaginary components obey the following properties

(Hamilton, 1844, apud Adorno, 2011):

ı̂2 = ̂2 = k̂2 = ı̂̂k̂ = −1. (3.1)

The set H of quaternions is defined as

H ,
{
h1 + ı̂h2 + ̂h3 + k̂h4 : h1, h2, h3, h4 ∈ R

}
.

Given H 3 h = h1 + ı̂h2 + ̂h3 + k̂h4, the real part of h is Re (h) , h1 and Im (h) ,ı̂h2 +
̂h3 + k̂h4 is the imaginary part, such that h = Re (h) + Im (h), whereas the quaternion

conjugate is given by h∗ , Re (h)− Im (h), and its norm is defined as

‖h‖ ,
√
hh∗ =

√
h∗h. (3.2)

The subset of pure quaternions is defined as

Hp , {h ∈ H : Re (h) = 0} ,

and the subset of unit quaternions is defined as

S3 , {h ∈ H : ‖h‖ = 1} .

Unit quaternions whose group composition is the standard multiplication form the group

Spin (3) (Selig, 2005).

The multiplication between real matrices and quaternions is sometimes necessary, and

thus appropriate operators are needed. Given H 3 h = h1 + ı̂h2 + ̂h3 + k̂h4, the operator
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vec4 : H→ R4 is defined as

vec4 h ,
[
h1 h2 h3 h4

]T
,

such that, given a, b ∈ H, the Hamilton operators
−
H4,

+
H4 : H→ R4×4 satisfy (Adorno,

2011)

vec4 (ab) =
+
H4 (a) vec4 b (3.3)

=
−
H4 (b) vec4 a. (3.4)

The inverse operation is performed by the operator vec4 : R4 → H. Thus, given

u =
[
u1 u2 u3 u4

]T
,

vec4u = u1 + ı̂u2 + ̂u3 + k̂u4.

Moreover, given Hp 3 h = ı̂h1 + ̂h2 + k̂h3, the operator vec3 : Hp → R3 is defined as

(Adorno, 2011)

vec3 h ,
[
h1 h2 h3

]T
,

and the operator vec3 : R3 → Hp is defined as

vec3u = ı̂u1 + ̂u2 + k̂u3,

where u =
[
u1 u2 u3

]T
.

Given u,v ∈ Hp, the cross product can be defined using only quaternion operations

(Adorno, 2011), and is given by

u× v ,
uv − vu

2 .

Furthermore, it is related to the skew-symmetric matrix S (·) by

vec3 (u× v) = S (vec3 u) vec3 v. (3.5)

3.1.2 Dual Quaternions

Analogously to quaternions, the DQ set is defined as (Adorno, 2011)

H ,
{
h1 + εh2 : h1,h2 ∈ H, ε 6= 0, ε2 = 0

}
,
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where ε is the nilpotent dual unit (Clifford, 1873). Given H 3 h = h1 + εh2, the primary

part is defined as P (h) , h1 and the dual part is D (h) = h2. Moreover, the real part of

h is Re (h) , Re (h1) + εRe (h2), and Im (h) , Im (h1) + ε Im (h2) is the imaginary part.

Its conjugate is given by h∗ , Re (h)− Im (h), and its norm is defined as

‖h‖ ,
√
hh∗ =

√
h∗h.

The subset of pure DQ is defined as

Hp , {h ∈ H : Re (h) = 0}

whereas the set of unit DQ is defined as

S , {h ∈ H : ‖h‖ = 1} .

Unit DQ whose group composition is the standard multiplication form the group Spin (3)n
R3 of rigid motions (Selig, 2005).

Similar to quaternions, given H 3 a = P (a) + εD (a) and Hp 3 b = P (b) + εD (b),
the operators vec8 : H → R8 and vec6 : Hp → R6 are defined as (Adorno, 2011)

vec8 a =
[
(vec4P (a))T (vec4D (a))T

]T
,

vec6 b =
[
(vec3P (b))T (vec3D (b))T

]T
.

Given u =
[
u1 u2 u3 u4 u5 u6 u7 u8

]T
and v =

[
v1 v2 v3 v4 v5 v6

]T
,

the inverse mappings vec8 : R8 → H and vec6 : R6 → Hp are given by

vec8u = u1 + ı̂u2 + ̂u3 + k̂u4 + ε
(
u5 + ı̂u6 + ̂u7 + k̂u8

)
, (3.6)

vec6u = ı̂u1 + ̂u2 + k̂u3 + ε
(
ı̂u4 + ̂u5 + k̂u6

)
. (3.7)

Given a, b ∈ H, the Hamilton operators
−
H8,

+
H8 : H → R8×8 are defined such that

(Adorno, 2011)

vec8 (ab) =
+
H8 (a) vec8 b

=
−
H8 (b) vec8 a.

Moreover, the constant matrix C8 = diag (1,−1,−1,−1, 1,−1,−1,−1) satisfies

C8 vec8 a = vec8 a
∗.
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3.2 Representation of Rigid Movements

Points and translations given by
[
px py pz

]T
∈ R3 can be represented also by a pure

quaternion p ∈ Hp

p = ı̂px + ̂py + k̂pz.

An unit quaternion r ∈ Spin (3) given by

r = cos
(
φ

2

)
+ n sin

(
φ

2

)

represents the rotation in three-dimensional Euclidean space (Adorno, 2011), where φ is

the angle of rotation around the unit axis n = ı̂ni + ̂ny + k̂nk, with nx, ny, nz ∈ R. If

φ = 0 rad, then r = 1 and no rotation is performed.

When rotating a coordinate system F0, we can reference a point p0 of the original

system in the rotated frame F1. In this case, (Adorno, 2011)

p1 = Ad
(
r1

0

)
p0 , r1

0p
0r1∗

0 , (3.8)

where the superscript of p denotes the reference frame, and Ad (·) is the adjoint transfor-

mation.

Considering a translation p ∈ Hp and a rotation r ∈ Spin(3), the unit DQ that

represents the rigid movement from frame F0 to frame F1 is given by (Adorno, 2011)

x0
1 , r

0
1 + ε

1
2p

0
01r

0
1, (3.9)

where x0
1 ∈ Spin(3)nR3 corresponds to the translation p0

01 followed by the rotation r0
1,

as illustrated in Figure 3.1. Moreover, the composition of rigid motion is given by the

multiplication of unit DQ. For instance, the transformation from frame F0 to frame F4 is

given by (Adorno, 2011)

x0
4 = x0

1x
1
2x

2
3x

3
4.

The next propositions and definitions regarding DQ are also important.

Proposition 3.1. Given x = r + ε (1/2)pr a unit DQ with r = cos (φ/2) + n sin (φ/2),
n = ı̂nx + ̂ny + k̂nz, and p = ı̂px + ̂py + k̂pz, the logarithm of x is (Adorno, 2011)

logx = φn

2 + ε
p

2 ,

and logx ∈ Hp.
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y1

x0

y0

z0

n
φ

z1

x1

F0

F1

p0
01

r0
1

Figure 3.1: Rigid movement from the coordinate system F0 to F1.

Proposition 3.2. Given g ∈ Hp, the exponential of g is (Adorno, 2011)

exp g = P
(
exp g

)
+ εD

(
g
)
P
(
exp g

)
(3.10)

P
(
exp g

)
=


cos

∥∥∥P (g)∥∥∥+ sin‖P(g)‖
‖P(g)‖ P

(
g
)
, if

∥∥∥P (g) 6= 0
∥∥∥

1, otherwise,
(3.11)

and exp g ∈ S.

Definition 3.1. Given the Propositions 3.1 and 3.2, the geometrical exponential of x ∈ S
is (Adorno, 2011)

x{λ} , exp (λ logx)

= r{λ} + ε
1
2λpr

{λ},

where r{λ} = cos (λφ/2) + n sin (λφ/2).

3.3 Derivative of (Dual) Quaternions

This section covers the derivative of DQ, showing the relationship between the derivative

of a unit DQ with its correspondent twist, as well as the derivative of its logarithm.
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3.3.1 Relationship Between the Derivative of Unit Dual Quater-

nions and Twists

The relationship between the time derivative of an unit quaternion r ∈ S3 and the angular

velocity ω = ı̂ωx + ̂ωy + k̂ωz is given by (Adorno, 2011)

ṙ = 1
2ωr. (3.12)

Now, considering the unit DQ x , r + ε (1/2)pr, it is related to its twist ξ =
ω + ε (ṗ+ p× ω) by (Adorno, 2017)

ẋ = 1
2ξx. (3.13)

3.3.2 Relationship Between the Time Derivatives of an Unit

Dual Quaternion and its Logarithm

Consider y , logx, with x = r + ε (1/2)pr. The relationship between the time derivatives

of x and y is given by (Savino et al., 2020)

vec8 ẋ = Q8 (x) vec6 ẏ, (3.14)

where

Q8 (x) =
 Q4 (r) 04×3

1
2

+
H4 (p)Q4 (r)

−
H4 (r) ĪT

 ,

with 0m×n ∈ Rm×n being a matrix of zeros,
+
H4 (·) being the Hamilton operator as in

Equation (3.3), and Ī is the reducing matrix as in Equation (2). In addition,

Q4 (r) =


−r2 −r3 −r4

Γn2
x + Θ Γnxny Γnxnz

Γnynx Γn2
y + Θ Γnynz

Γnznx Γnzny Γn2
z + Θ

 ,

where ri is the i-th component of the quaternion r, and

Γ = r1 −Θ, (3.15)

Θ =

1, if φ = 0
sin(φ/2)
φ/2

, otherwise,
(3.16)
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in which φ is the angle of rotation. For the proof, see (Savino et al., 2020).

Moreover, the following relation is also true (Savino et al., 2020):

vec4 ṙ = Q4 (r) d
dt

vec3

(
n
φ

2

)
. (3.17)

3.3.2.1 Second Derivative

The relationship between the second derivatives of an unit DQ and its logarithm is found

deriving Equation (3.14). Hence,

vec8 ẍ = Q̇8 (x) vec6 ẏ +Q8 (x) vec6 ÿ, (3.18)

where

Q̇8 (x) =
 Q̇4 (r) 04×3

1
2Q (x, ẋ)

−
H4 (ṙ) ĪT

 ,

with Q (x, ẋ) ,
+
H4 (ṗ)Q4 (r) +

+
H4 (p) Q̇4 (r) and

Q̇4 (r) =


−ṙ2 −ṙ3 −ṙ4

Γ̇ n2
x + Γ2nxṅx + Θ̇ Γ̇ nxny + Γ ṅxny + Γnxṅy Γ̇ nxnz + Γ ṅxnz + Γnxṅz

Γ̇ nynx + Γ ṅynx + Γnyṅx Γ̇ n2
y + Γ2nyṅy + Θ̇ Γ̇ nynz + Γ ṅynz + Γnyṅz

Γ̇ nznx + Γ ṅznx + Γnzṅx Γ̇ nzny + Γ ṅzny + Γnzṅy Γ̇ n2
z + Γ2nzṅz + Θ̇

 ,

with

Γ̇ = ṙ1 − Θ̇

and

Θ̇ =


0, if φ = 0
cos(φ/2)(φ̇/2)(φ/2)−sin(φ/2)(φ̇/2)

(φ/2)2 , otherwise.
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3.3.3 Relationship Between the Twist and the Derivative of Log-

arithm

Considering the variable Hp 3 ζ = ω + εṗ,1 with ω ∈ Hp being the angular velocity, there

exists E (x) ∈ R6×6 such that

vec6 ζ = E (x) vec6 ẏ. (3.19)

More specifically, using the Equations (3.17) and (3.12), E (x) is found by inspection:

E (x) ,
ĪW (r) 03×3

03×3 2I3×3

 , (3.20)

with R4×3 3W (r) , 2
−
H4 (r∗)Q4 (r) and Ī being defined as in Equation (2).

Theorem 3.1. The matrix of Equation (3.20) is invertible and its inverse is given by

E−1 (x) ,
1

2Q
+
4 (r)

−
H4 (r) ĪT 03×3

03×3
1
2I3×3

 , (3.21)

where Q+
4 (·) is the left pseudo-inverse of Q4 (·).

Proof. By direct calculation of 2
−
H4 (r∗)Q4 (r) (see Lemma C.3),

W (r) =
 01×3

W (r)



for all r ∈ S3, where W (r) ∈ R3×3. Also, since rank
−
H4 (r∗) = 4 and rankQ4 (r) = 3 for

all r ∈ S3 (Savino et al., 2020), from Corollary 2.5.10 of (Bernstein, 2009) the following

inequation is true:

rank
−
H4 (r∗) + rankQ4 (r)− 4 ≤ rank

−
H4 (r∗)Q4 (r) ≤ min

{
rank

−
H4 (r∗) , rankQ4 (r)

}
.

Hence, rankW (r) = 3 for all r ∈ S3 and thus rankW (r) = 3. Therefore, ĪW (r) = W (r)
is full rank, which implies that for all r ∈ S3 the inverse of W (r) exists and is given by

W−1 (r) = 1
2Q

+
4 (r)

−
H4 (r) ĪT . (3.22)

1This is not the twist that satisfies the relation ξa = Ad (xab ) ξb as in (Adorno, 2017), and sometimes
it is called dual velocity (Adorno, 2011).
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Indeed, since Ī
T
ĪW (r) = W (r) then

W−1 (r)W (r) = 1
2Q

+
4 (r)

−
H4 (r) ĪT ĪW (r) = I3×3

because
−
H4 (r) =

−
H
−1

4 (r∗) and Q+
4 (r)Q4 (r) = I3×3 (Savino et al., 2020). More-

over, as W (r) is square and full rank, the left inverse equals the right inverse (i.e.,

W−1 (r)W (r) = W (r)W−1 (r) = I3×3). Consequently, E (x) is also full rank and thus

invertible.

By inspection, using Equation (3.5), the DQ twist ξ is related to ζ by A (x) ∈ R6×6 as

vec6 ξ = A (x) vec6 ζ, (3.23)

with

A (x) ,
 I3×3 03×3

S (vec3 p) I3×3

 , (3.24)

where S (·) ∈ SO (3).

Lemma 3.1. The inverse of Equation (3.24) exists and is given by

A−1 (x) ,
 I3×3 03×3

−S (vec3 p) I3×3

 .
Proof. Since I3×3 is invertible, by inspection of Equation (3.24), the matrix A (x) is

invertible, which concludes the proof.

Therefore, substituting Equation (3.19) in Equation (3.23) yields

vec6 ξ = A (x)E (x)︸ ︷︷ ︸
Glog(x)

vec6 ẏ, (3.25)

and thus Glog (x) ∈ R6×6 is given by

Glog (x) ,
 W (r) 03×3

S (vec3 p)W (r) 2I3×3

 . (3.26)

Theorem 3.2. The matrix of Equation (3.26) is invertible and its inverse is given by

G−1
log (x) ,

 W−1(r) 03×3

−1
2S (vec3 p) 1

2I3×3

 . (3.27)
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Proof. By Theorem 3.1, the matrix E (x) is proven to be invertible. Moreover, by

Lemma 3.1, the matrix A (x) is also invertible. Since Glog (x) = A (x)E (x), then

G−1
log (x) = E−1 (x)A−1 (x). Hence, by direct calculation G−1

log (x) is given by Equation

(3.27).

3.3.3.1 Second Derivative

The relationship between the time derivative of ζ and the second time derivative of the

logarithm is given by the derivative of Equation (3.19):

vec6 ζ̇ = Ė (x) vec6 ẏ +E (x) vec6 ÿ, (3.28)

where the time derivative of Equation (3.20) is given by

Ė (x) ,
2ĪE (r, ṙ) 03×3

03×3 03×3

 , (3.29)

where

E (r, ṙ) =
−
H4 (ṙ∗)Q4 (r) +

−
H4 (r∗) Q̇4 (r, ṙ) . (3.30)

Moreover, from Equation (3.23), the relationship between the time derivatives of ζ and

the twist is

vec6 ξ̇ = Ȧ (x) vec6 ζ +A (x) vec6 ζ̇,

with

Ȧ (x) ,
 03×3 03×3

S (vec3 ṗ) 03×3

 .
Furthermore, from Equation (3.25),

vec6 ξ̇ = Ġlog (x) vec6 ẏ +Glog (x) vec6 ÿ,

where

Ġlog (x) ,
2ĪE (r, ṙ) 03×3

G (x, ẋ) 03×3

 ,
with G (x, ẋ) , S (vec3 ṗ)W (r) + 2S (vec3 p) ĪE (r, ṙ), where E (r, ṙ) is given by Equa-

tion (3.30).
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3.4 Representation of Wrench

Considering the force and moment acting on a point p, they are respectively represented

by Hp 3 f = ı̂fx + ̂fy + k̂fz and Hp 3m = ı̂mx + ̂my + k̂mz. Hence, the wrench at point

p given with respect to frame Fa is represented by (Adorno, 2011)2

ςaa,a = faa + εma
a.

In order to change only the point of observation of the wrench from frame Fa to frame

Fb, the adjoint transformation is used as

ςba,a = Ad
(
rba
)
ςaa,a (3.31)

= f ba + εmb
a.

However, if the point of observation is changed, as well as the point of actuation of the

wrench, from frame Fa to frame Fb, the adjoint transformation is used as

ςbb,a = Ad
(
xba
)
ςaa,a (3.32)

= f ba + ε
(
mb

a + pbba × f ba
)
,

as shown in Figure 3.2.

Remark 3.1. When the point of actuation is changed, that is, when Ad (x) is used, the

resultant wrench takes into consideration the lever arm regarding this new point, which is

not true when changing only the point of observation through Ad (r). In the latter case, if

there is a lever arm in the original wrench, it is kept the same. For reasons of readability,

when a new lever arm is taken into consideration, the variable ψ is used, otherwise, the

variable is ς used.

3.4.1 Static Analysis

Using the principle of virtual work,

δ
(
vec6 y

)T
vec6 ς log = δ

(
I#

[
(vec4 r)T (vec4 p)T

]T)T
vec6 ς

lim
δt→0

δ
(
vec6 y

)T
δt

vec6 ς log = lim
δt→0

δ
(
I#

[
(vec4 r)T (vec4 p)T

]T)T
δt

vec6 ς(
vec6 ẏ

)T
vec6 ς log =

(
I# vec6 ζ

)T
vec6 ς,

2The notation used here is the following: the wrench is acting in (first subscript) due to (second
subscript) and it is observed by (superscript).
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Figure 3.2: Wrench at point p, with respect to frame Fa and frame Fb.

where Hp 3 ζ = ω + εṗ is the dual velocity, Hp 3 ς = f + εm is the wrench, y = logx,

where x ∈ Spin(3)nR3, ς log is the wrench related to the logarithm of a unit DQ, and I#

is the flipper matrix given by Equation (1).

Using Equation (3.19) yields to

(
vec6 ẏ

)T
vec6 ς log =

(
I#E (x) vec6 ẏ

)T
vec6 ς, ∀ẏ ∈ Hp,

=⇒ vec6 ς log =
(
I#E (x)

)T
vec6 ς. (3.33)

3.5 Dual Quaternion Error

The DQ invariant error x̃ can be defined as the spacial difference in Spin(3)nR3 (Figueredo

et al., 2013), that is,

x̃ , x∗xd,

where xd is the desired pose and x is the current one. Hence, if x = xd, then x̃ = 1. In

order to have the DQ error translated to the origin, the error x̃e can be defined as

x̃e , x̃− 1. (3.34)

This way, when a motion controller is designed to asymptotically stabilize the system,

x̃→ 1 ⇐⇒ x̃e → 0.

The logarithm ỹ , log x̃ can also be used to translate the error to the origin as

x̃→ 1 =⇒ ỹ → 0.
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3.5.1 Solution to Homogeneous Differential Equations Using Dual

Quaternions

Some control laws, as for example the impedance/admittance controllers, are written as

differential equations. When using DQ, the solution of these differential equations needs

to respect the properties of the unit DQ group, so the result x ∈ H can still represent a

rigid motion. Hence, the choice of the error definition should respect these properties.

For simplicity, consider a first-order homogeneous equation:

˙̃xe (t) + λx̃e (t) = 0, (3.35)

with λ ∈ (0,∞) constant. The solution to Equation (3.35) is

x̃e (t) = e−λtx̃e (0) .

Using Equation (3.34) yields

x̃ (t) = e−λt [x̃ (0)− 1] + 1,

which has unit norm only when t = 0.

To circumvent this problem, the logarithm of unit DQ can be used, since it is isomorphic

to R6 under addition operations. The first order differential equation, now using the

logarithm, is given by

˙̃y (t) + λỹ (t) = 0, (3.36)

whose solution is ỹ (t) = e−λtỹ (0). Therefore,

log x̃ (t) = e−λt log x̃ (0) =⇒ x̃ (t) = exp
{
e−λt log x̃ (0)

}
= x̃ (0){e

−λt} ,

which preserves the DQ unit norm (Adorno, 2011).

3.6 Kinematic and Dynamic Model

This section reviews the kinematic and dynamic modeling of a two-arm robot. First, the

forward kinematics of a serial manipulator, using DQ, is presented, followed by the forward

kinematics of a two-arm robotic system, and, finally, of a two-arm mobile manipulator.

Moreover, the cooperative dual task-space (CDTS) variables are reviewed, which is a way

to describe the coordination of a two-arm system using DQ. Then, these variables are

related to the internal and external wrenches of a bimanual manipulation task. Finally,

the dynamic model of a robot manipulator using the Euler-Lagrange equation, used in
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Figure 3.3: Kinematic chain of a robotic arm. The image shows the coordinate system of
each joint as well as the transformation of the frame of a joint in relation to the previous
one, resulting in the forward kinematics that relates each joint to the effector xeff .

many controllers, is presented.

3.6.1 Forward Kinematics

Forward kinematics describes the relationship between each individual joint of the robot

and the pose (position and orientation) of the end-effector (Spong et al., 2006). To facilitate

this relationship, some conventions can be adopted, such as the standard and modified

Denavit-Hartenberg (DH). Once the coordinate system of each joint is defined, the forward

kinematics that relates each joint to the end-effector of the kinematic chain can be found.

Given a serial kinematic chain composed of n links, the forward kinematic model (FKM)

relates the configuration of the joints to the end-effector pose xeff through the mapping

f : Rn → Spin(3)nR3 such that

xeff = f (q) , (3.37)

where q =
[
q1 · · · qn

]T
is the vector with the joints’ configurations (Adorno, 2011).

Definition 3.2. Considering xi−1
i as the unit DQ representing the pose of the frame in the

i-th joint related to the one in the (i− 1)-th joint, the end-effector pose xeff of a robotic

arm of n joints is given by (Adorno, 2011)

xeff = x0
eff = x0

1x
1
2 . . .x

n−2
n−1x

n−1
n , (3.38)

where F0 is the base of the kinematic chain, as illustrated in Figure 3.3.
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3.6.2 Differential Kinematics

Considering a serial kinematic chain of n links, its differential forward kinematic model

(DFKM) is given by

vec8 ẋeff = J (q) q̇, (3.39)

where R8×n 3 J (q) ,
∂ vec8 f(q)

∂q
is the analytical Jacobian matrix algebraically derived

(Adorno, 2011). Equation (3.39) relates the generalized velocity of the end-effector ẋeff

with the velocity of the joints q̇.

Moreover, the second order differential kinematics is given by

vec8 ẍeff = J̇ (q) q̇ + J (q) q̈, (3.40)

where R8×n 3 J̇ (q) , dJ(q)
dt

is the first order time derivative of the Jacobian matrix.

3.6.3 Cooperative Dual Task-Space

The CDTS was proposed by Adorno et al. (2010) in order to facilitate the bimanual

manipulation of robots, being based on the work of Chiacchio et al. (1996). Adorno et al.

(2010) propose two variables for this cooperative space, denominated cooperative relative

variable and cooperative absolute variable.

Consider two kinematic chains such that xright and xleft are the end-effector poses of

the right and left chains, respectively, with respect to a common reference. The relative

variable xrel is the pose of the left end-effector with respect to the right one, and the

absolute variable xabs is the pose represented by a frame located in the middle of the two

end-effectors, corresponding to half of the transformation from one to the other. Both

variables are formally described by

xrel , x
∗
rightxleft, (3.41)

xabs , xrightx
{1/2}
rel (3.42)

where x
{1/2}
rel is the transformation corresponding to half of the rotation of the angle θrel

around the nrel axis of the quaternion P (xrel) = cos (θrel/2) + nrel sin (θrel/2) and half of

the translation from the right to the left end-effector pright
right,left. Figure 3.4 illustrates both

cooperative variables xrel and xabs.

Similarly to Equation (3.39), the derivative of the relative variable is given by (Adorno
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F0

xrel

xabs
xleft xright

Figure 3.4: Representation of the cooperative dual task-space. The variables xrel and xabs

represent the relative and absolute poses, respectively.

et al., 2010)

vec8 ẋrel = J rel (qarms) q̇arms, (3.43)

where R8×(dim(qright)+dim(qleft)) 3 J rel (qarms) ,
∂ vec8 xrel
∂qarms

is the Jacobian matrix related to

the relative variable, and qarms =
[
qTright qTleft

]T
, with qright and qleft being the right and

left arm joints, respectively.

Analogously, the DFKM for xabs is

vec8 ẋabs = Jabs (qarms) q̇arms,

where R8×(dim(qright)+dim(qleft)) 3 Jabs (qarms) ,
∂ vec8 xabs
∂qarms

is the Jacobian matrix related to

the absolute variable (Adorno et al., 2010).

The main advantage of using the CDTS is that the motion of two kinematic chains

working cooperatively can be described by only two variables (Adorno et al., 2010).

Furthermore, the control laws using the CDTS take in consideration the whole robot

kinematic chain, and the two cooperative variables offer an abstraction whose focus is the

bimanual manipulation.

3.6.4 Mobile Base Kinematic Model

A holonomic mobile base can be parameterized as qbase =
[
x y φ

]T
(see Figure 3.5),

which means that its pose can be represented as a function of the Cartesian coordinates

(x, y) and the angle φ of the base as (Adorno, 2011)

xbase = rbase + 1
2εpbaserbase, (3.44)
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y

x

φ

Figure 3.5: Holonomic mobile base, which can be represented as a function of the Cartesian
coordinates (x, y) and the angle φ of the base.

with pbase = ı̂x+ ̂y and rbase = cos (φ/2) + k̂ sin (φ/2). Thus, the FKM of the mobile base

is given by

vec8 ẋbase = Jbase (qbase) q̇base, (3.45)

where

Jbase (qbase) =



0 0 −1
2 sin φ

2

0 0 0
0 0 0
0 0 1

2 cos φ
2

0 0 0
1
2 cos φ

2
1
2 sin φ

2
1
4

(
−x sin φ

2 + y cos φ
2

)
−1

2 sin φ
2

1
2 cos φ

2
1
4

(
x cos φ

2 − y sin φ
2

)
0 0 0


is the Jacobian matrix of the base (Adorno, 2011).

3.6.5 Whole-Body Kinematic Model of Bimanual Mobile Robots

Bimanual mobile manipulators consist of a two-arm robot manipulator attached to a

mobile base. One example of bimanual mobile robot is BAZAR, which is the robot

used in the simulations performed for this thesis. The BAZAR (Bimanual Agile Zany

Anthorpomorphic Robot) platform shown in Figure 3.6 was designed at LIRMM,3 in France,

and is composed of two Kuka LWR4+ arms, a Neobotix MPO700 mobile base, Shadow

3Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM)
http://www.lirmm.fr/
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Figure 3.6: BAZAR robot.4

Hands, and cameras (Navarro et al., 2017). This robot has been used in the European

Project H2020 VERSATILE (2017- 2020) to address the industrial case studies proposed

by PSA Peugeot Citroën, Airbus, and BIC, and is provided with the last generation of

sensors and actuators.

Since BAZAR does not have an articulated torso, the whole-body model is presented

here without considering it. Moreover, although BAZAR is equipped with a Neobotix

MPO 700, which is an omni-directional non-holonomic mobile base with four steerable

wheels, its internal controller can receive a control signal of type q̇base =
[
ẋ ẏ φ̇

]T
, which

allows us to control it in a high level, considering it as a holonomic base.

Considering the robot as a holonomic mobile base with two robot manipulators attached

to it, three limbs need to be modeled. Each limb can be considered as an independent

kinematic chain (Adorno, 2011). Thus, the FKM and the DFKM of each arm is given by

Equations (3.38) and (3.39), respectively, and for the base is given by Equations (3.44)

and (3.45). With the FKM and the DFKM of each limb, two or more limbs can be

serialized with the objective of unify them as a single body, using all DOF available in the

combination of the multiple kinematic chains.

Considering the whole-body, that is, the base and the two arms, the serialization is

done with the absolute variable, as shown in Figure 3.7, which yields (Adorno, 2011)

xba = xbasex
base
abs , (3.46)

4Source: (Navarro et al., 2017)
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Fleft

xbase
abs

xbase
left

xba

F0

Fabs

Fright

Fbase

xbase

xbase
right

Figure 3.7: Serialization of the mobile base and both arms of the robot, using for this the
absolute variable.

and

vec8 ẋba =
[
−
H8

(
xbase

abs

)
Jbase (qbase) |

+
H8 (xbase)Jbase

abs (qabs)
]

︸ ︷︷ ︸
Jba(qwb)

q̇wb (3.47)

with Jba (qwb) ∈ R8×(dim(qbase)+dim(qright)+dim(qleft)) being the whole-body Jacobian matrix

and qwb =
[
qTbase qTarms

]T
is the joint vector of the whole-body.

3.6.6 Wrenches in the Cooperative Dual Task-Space

In bimanual manipulation of objects, the uncertainties in the object and/or the robot

geometries can lead to undesirable forces and moments that do not contribute to the

movement of the object, and therefore are called internal forces (Uchiyama & Dauchez,

1988). Suppose, for example, a bimanual manipulator holding a rigid object. In this

situation there is a constraint imposed by the object that is given by

d (xeff1 − xeff2) = const., (3.48)

where xeff1 and xeff2 are the poses of the end-effector 1 and 2, respectively, and d (xeff1 − xeff2)
is a distance function between them. If this constraint is not obeyed, internal forces appear
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(Erhart et al., 2013). The constraint of Equation (3.48) also arises when the object is

firmly grasped by humans and robots, as illustrated by Figure 3.8.

Figure 3.8: Human and robotic arm manipulating a common object. If f 1 = −f 2, there is
no motion but the object will suffer an internal stress.

Therefore, when considering bimanual manipulation of an object it is necessary to treat

not only external forces and moments but also internal ones. In this context, consider

ςeffi
effi,effi the wrench applied on the i-th end-effector with respect to the same frame Feffi .

The wrench ψabs
abs,effi

, ςabs
abs,effi acting on the absolute reference frame Fabs due to the i-th

end-effector is given by

ψabs
abs,effi

= Ad
(
xabs

effi

)
ςeffi

effi,effi . (3.49)

This transformation is equivalent to the idea of the “virtual stick” proposed by Uchiyama

& Dauchez (1988), and discussed in section 2.1.1.1.

Transformations like Equation (3.49) can be also used to transform the measured

wrench to any other reference frame. For instance, following Equation (3.32), the wrench

acting on the inertia reference frame F0 and with respect to this frame F0 is given by

ψ0
0,effi

= Ad
(
x0

abs

)
ψabs

abs,effi
.

Thus, the external wrench with respect to the inertia reference frame is given by

(Adorno, 2011)

ψ0
ext = ψ0

0,eff1
+ψ0

0,eff2
, (3.50)

and the internal wrench is given by

ψ0
int = 1

2
(
ψ0

0,eff1
−ψ0

0,eff2

)
. (3.51)
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3.6.7 Dynamic Model

The derivation of the dynamic model has a key role in simulation of robot motion, as

well as in the design of control laws that take into account the inertial parameters of the

system (Siciliano et al., 2009). Both Euler-Lagrange equations and the Newton-Euler

formulation (Spong et al., 2006) are methods that model the dynamic of a robot and lead

to the same final torque applied in the robot’s joints. Although the second one has a

recursive algorithm, most of the control laws are designed based on the Euler-Lagrange

equation. Therefore, the Euler-Lagrange equation is used in the present text.

The dynamic model of a n-link serial manipulator using the Euler-Lagrange equation

is given by (Spong et al., 2006)

M (q) q̈ +C (q, q̇) q̇ + g (q) = τ , (3.52)

in which M (q) ∈ Rn×n is the inertia matrix, C (q, q̇) ∈ Rn×n contains the Coriolis and

centrifugal terms, g (q) ∈ Rn is the gravity vector, q =
[
q1 · · · qn

]T
is the vector of joints

configuration, and τ ∈ Rn is the torque applied to the joints.

3.6.7.1 Euler-Lagrange Equation with Actuators’ Dynamics

Usually the actuators’ dynamics are negligible compared to the dynamics of the rigid

multi-link robot (Shen & Featherstone, 2003), hence the inertia matrix usually takes into

consideration only the inertia of the links. However, sometimes it is useful to explicitly

consider the inertia of the actuators, as they can help in improving the condition number

of the resultant inertia matrix.

Considering a robot whose links are connected through revolute joints, and assuming

that the motion of each link is transmitted via a set of gears, its kinetic energy is the sum

of the kinetic energies of the links and those of the rotors (Kelly et al., 2005; Siciliano

et al., 2009); that is,5

K
(
q, q̇, θ̇

)
= 1

2 q̇
TM (q) q̇ + 1

2 θ̇
T
Nθ̇,

where N = diag (η1, . . . , ηn) is a diagonal positive definite matrix, whose elements are

the rotors’ moments of inertia. When considering just the “spinning” rotor velocity, the

angular velocity of the axes after the set of gears is given by θ̇ =
[
ϑ1q̇1 · · · ϑnq̇n

]
, with

ϑi being the gear ratio of the i-th actuator. Therefore, the dynamic model that explicitly

5In this model, coupling effects between rotors and links are neglected. According to Siciliano et al.
(2009), some couplings in joints’ dynamics may be reduced or eliminated when designing the structure in
order to simplify the control problem. One way of doing that is to choose the motor axis collinear with
the joint axis.
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Inertial

Z (s) = Ms

Resistive

Z (s) = Ms+B

Capacitive

Z (s) = K/s

Figure 3.9: Mechanical impedance model of each type of environment.

takes into consideration the actuators’ inertia is given by

[M (q) +Mm] q̈ +C (q, q̇) q̇ + g (q) = τ , (3.53)

where Mm = diag (η1ϑ
2
1, . . . , ηnϑ

2
n).

3.7 Mechanical Impedance Model

Impedance is the relationship between the effort and the flow variables (Spong et al., 2006).

Thus, considering the effort as the force F and the flow as the velocity V , the impedance

in the Laplace domain is given by

Z (s) = F (s)
V (s) .

Different environments have different impedances. Figure 3.9 shows three types of

environments with different impedance.

The impedance equation, in the time domain, of a system considering mass, damper,

and spring behavior is given by

Mẍ+Bẋ+Kx = −f , (3.54)

where M , B, K ∈ R6×6 are the inertia, damping, and stiffness matrices, respectively, and

f ∈ R6 is an external wrench. The variable x is the vector with the pose of the object in

question, that can be the end-effector of a robot manipulator or the pose of an object, for

example. This model will be useful when controlling the interaction forces (both external

as internal).
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3.8 Conclusion

This chapter presented the basic concepts related to quaternions and DQ, as well as the

use of unit DQ to represent rigid motions; and pure DQ to represent twists and wrenches.

The use of DQ brings several advantages, and thanks to those advantages, the DQ algebra

is used throughout the development of this work, both in the modeling part and in the

proposed controllers.

The forward and differential kinematics using DQ were also reviewed in this chapter,

including the whole-body kinematic model and a revision of the CDTS, used to facilitate

the coordination of two parallel kinematic chains. Moreover, the internal and external

wrenches that appears in bimanual manipulation were also related to the cooperative dual

task-space. Furthermore, the joint space dynamic model was also described here.

Both kinematic and dynamic models are used to design control laws in order to control

manipulators and bimanual mobile manipulators in manipulation tasks, with or without

physical human interaction. Regarding this last topic, controlling the impedance of the

system is important to avoid harm to any agent involved in the interaction task, which

reveals the necessity of revising the mechanical impedance model.



4
Control Strategies

Considering the physical interaction between robots and the environment, the closed-loop

behavior should be safe for all involved (Cherubini et al., 2017), whether objects, humans,

or even the robot itself, which means that it is crucial to control 1) how the robot responds

to the interaction and also 2) its dynamic behavior when moving itself to accomplish a

given task.

As seen in Chapter 2, an impedance/admittance controller (Hogan, 1985) is appropriate

for a safe interaction (Kimmel & Hirche, 2015), since by controlling the robot apparent

impedance we are able to impose a suitable compliant behavior to it (Caccavale et al., 1999,

2008). Moreover, in industrial robot manipulators, admittance controllers are frequently

used since those robots are usually characterized by a stiff and non-backdrivable mechanical

structure (Landi et al., 2017), in which an admittance controller ensures better performance

than impedance controllers (Keemink et al., 2018). Therefore, in order to have a closed-

loop control that guarantees a compliant behavior while achieving good end-effector pose

accuracy, we propose a control architecture that consists of an admittance controller in

the outer-loop that modifies the desired end-effector pose xd ∈ Spin(3)nR3 according to

the external wrench, which is measured at the robot end-effector, and outputs a compliant

pose xc that satisfies the desired apparent impedance; and a motion controller in the

inner-loop, to track this modified trajectory, as illustrated in Figure 4.1. The design of

the proposed admittance controller, which uses the DQ algebra thanks to the advantages

mentioned in Chapter 3, as for example the direct use of coefficients of DQ in the proposed

control law, is described in this chapter.

45
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xd, ẋd, ẍd xc, ẋc, ẍc

x

ς

Motion

ControllerAdmittance

Robot Environment

Controller

Figure 4.1: Scheme illustrating the control law composed of an outer-loop with an
impedance behavior and an-inner loop with a motion controller. The wrench ς measured
by the force/torque sensor at the robot end-effector is a result of the interaction with the
environment.

Depending on how the robot is actuated (position, velocity, or torque) different con-

trollers can be used. For instance, a controller based on its kinematic model or one based

on its dynamic model. Considering the first case, a kinematic controller based on the DQ

logarithmic mapping is proposed, in which the error definition respects the properties of

the unit DQ group. In the second case, the ill-conditioning of the JSIM plays an important

role, being related to the robot dynamic behavior, which is also important for safety. Thus,

this chapter also shows some motion controllers based on the robot dynamic model, and

an adaptive controller to control the end-effector pose while improving the conditioning

of the robot inertia matrix is proposed, improving the safety in the manipulation tasks

subject to contacts.

4.1 Admittance Controller

An admittance controller regulates the apparent inertia, as well as the damping and stiffness

of the robot through the feedback of the interaction wrenches with the environment. Since

the idea here is to design an admittance controller using DQ, the definition of an error that

obeys the properties of the unit DQ group is important. Since the use of the DQ logarithmic

mapping in differential equations allows their solutions to respect those properties (see

section 3.5.1), the DQ logarithm is used in the designed controller, namely ACLogOnly.

Given a desired pose xd ∈ Spin(3)nR3 of a robot end-effector that interacts with

the environment, another (compliant) reference frame specified by xc ∈ Spin(3)nR3 is

considered such that a desired apparent impedance can be imposed on the pose displacement

between xd and xc (Caccavale et al., 1999). Thus, the desired apparent impedance is

achieved by imposing the closed-loop dynamics given by

M d vec6 ÿ
c
d

+Bd vec6 ẏ
c
d

+Kd vec6 y
c
d

= − vec6 ς
c
log, (4.1)
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where M d,Bd,Kd ∈ R6×6 are the apparent desired inertia, damping, and stiffness

positive definite matrices, vec6 y
c
d
, vec6 (logxcd), with xcd , x∗cxd, and vec6 ς

c
log ,(

I#E (xcd)
)T

vec6 ς
c
eff,eff is the external generalized wrench, with respect to frame Fc, trans-

formed to be consistent with the logarithmic mapping according to Equation (3.33). Since

the wrench ςeff
eff,eff ∈ Hp measured by the force/torque sensor at the robot end-effector is

given with respect to the end-effector frame, the coordinate transformation to express it in

the compliant frame Fc is given by Equation (3.31). Hence,

ςceff,eff = Ad (rceff) ςeff
eff,eff ,

where rceff = r∗creff , with reff ∈ S3 being the orientation of the end-effector with respect to

a fixed reference frame.

The admittance controller is dual to the impedance controller. As in the former the

contact wrench is measured and the controller output is the acceleration, the admittance

control law is given by

vec6 ÿ
c
d

= M−1
d

(
−Bd vec6 ẏ

c
d
−Kd vec6 y

c
d
− vec6 ς

c
log

)
. (4.2)

4.1.1 Trajectory Generation

In order to use the admittance control signal vec6 ÿ
c
d

in the inner motion control loop, we

first generate the trajectory ÿc
d
7→ (xc (t) , ẋc (t) , ẍc (t)) as follows. The displacement xcd

and its first and second time derivatives are found by integrating vec6 ÿ
c
d

twice and using

the Equations (3.14) and (3.18), and the exponential of a pure DQ given by Equation

(3.10). More specifically,

xcd = expyc
d
,

ẋcd = vec8

(
Q8 (xcd) vec6 ẏ

c
d

)
,

ẍcd = vec8

(
Q̇8 (xcd) vec6 ẏ

c
d

+Q8 (xcd) vec6 ÿ
c
d

)
.

Hence, the compliant pose xc (t) and its time derivatives ẋc (t) and ẍc (t) are given by

xc = xdx
c∗
d , (4.3)

ẋc = ẋdx
c∗
d + xdẋc∗d , (4.4)

ẍc = ẍdx
c∗
d + 2ẋdẋc∗d + xdẍc∗d . (4.5)

Remark 4.1. In the absence of interaction forces, the compliant pose xc is equal to the

desired pose xd. However, when in contact with the environment, interaction forces appear

as a consequence. Hence, in order to keep the desired (apparent) mass, damping, and

stiffness matrices of the robot, the pose xc may differ from xd.
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4.1.2 Physically Meaningful Admittance Controller (ACLog)

Although simple and satisfying the properties of the DQ group, the controller of Equa-

tion (4.2) is not the most appropriate, since it presents two known problems:

1. it presents the unwinding phenomenon;

2. its impedance matrices are not proven to have a physical meaning.

Notwithstanding, another controller also using the DQ logarithmic mapping, namely

ACLog, is designed with the objective of circumventing these problems. In this case, in

order to impose the desired apparent impedance behavior to the robot, an admittance

control law that is physically meaningful and a stiffness matrix that is consistent with the

task geometry are defined. Similarly to what Caccavale et al. (1999, 2008) have proposed,

here we also derive the impedance equation based on the energy of the system, but using

elements of the DQ algebra.

Consider a desired constant positive definite inertia matrix M d = diag
(
Ic3×3,mI

c
3×3

)
,

where m is the mass and Ic3×3 ∈ R3×3 is the inertia tensor. Let us assume that the kinetic

energy of the desired closed-loop system is given by

K = 1
2
(
vec6 ζ

c

cd

)T
M d vec6 ζ

c

cd
, (4.6)

where ζc
cd

= ωccd + εvccd is the DQ containing the angular and linear velocities from frame

Fc to Fd, with respect to frame Fc.
To obtain the power, one can take the time derivative of Equation (4.6), which is given

by

K̇ =
(
vec6 ζ

c
cd

)T
I# vec6 ς

c
I , (4.7)

where

vec6 ς
c
I , I

#M d vec6 ζ̇
c

cd
(4.8)

is the inertial wrench with respect to the frame Fc.
A dissipative damping wrench is also considered, given by

vec6 ς
c
D , I#Bd vec6 ζ

c

cd
, (4.9)

with R6×6 3 Bd > 0.

Now a special attention is given to the stiffness matrix regarding geometric consis-

tency. Considering a positive definite stiffness matrix K ∈ R6×6, it can be decomposed

as K = UΓUT (Chen, 1999), with Γ = diag (γ1, · · · , γ6) in which γi, with i ∈ {1, . . . , 6}
represent the stiffnesses along the principal axes ui, which are the column vectors of the

orthogonal matrix U ∈ O (6). Therefore, the stiffness matrix can be specified with respect
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to a frame with the origin at the center of stiffness (i.e., the equilibrium point when there

is no deformation), in terms of the stiffness parameters γi and principal axes ui (Caccavale

et al., 2008).

Furthermore, the potential energy function of an ideal stiffness depends only on the

relative pose of the two attached bodies and is port symmetric (Caccavale et al., 2008),

which means that the potential energy is the same whether seen from either Fc or Fd.
Considering the positive definite matrices Kφ ∈ R3×3 and Kp ∈ R3×3 that represent the

rotational and translational stiffness matrices, respectively, and that there is no coupling

between translation and rotation, the elastic potential energy is given by

U =
(
vec6 y

c
d

)T
Kd vec6 y

c
d
, (4.10)

with Kd = 2blk diag
(
Kφ,K

′
p

)
, where1

K ′p ,
1
2Kp + 1

2R
c
dKpR

cT
d , (4.11)

with Rc
d = Ī

+
H4 (rcd)

−
H4 (rc∗d ) ĪT (Lemma C.2) being the rotation matrix from frame Fc

to Fd, which guarantees that the potential energy is port symmetric (see Lemma C.4).

Deriving Equation (4.10), the power is given by2

U̇ = 2
(
vec6 ẏ

c
d

)T
Kd vec6 y

c
d

+ 2
(
vec6 y

c
d

)T K̇d

2 vec6 y
c
d
, (4.12)

where

K̇d

2 =
03×3 03×3

03×3 Ṙ
c

dKpR
cT
d

 .
Using Equation (3.19) in Equation (4.12) yields

U̇ = 2
(
E−1(xcd) vec6 ζ

c
cd

)T
Kd vec6 y

c
d

+ 2
(
vec6 y

c
d

)T K̇d

2 vec6 y
c
d

= 2
{(

vec6 ζ
c

cd

)T
E−T (xcd)Kd +

(
vec6 y

c
d

)T K̇d

2

}
vec6 y

c
d
.

Since vec6 y
c
d

=
[(

vec3
nccdφ

2

)T (
vec3

pccd
2

)T ]T
and using the fact that Ṙ

c

d = S (vec3ω
c
cd)Rc

d

1This transformation is only needed for translation because log rcd = − log rdc , but logxcd 6= − logxdc .
2It can be verified by direct calculation that Ṙ

c

dKpR
cT
d is a symmetric matrix.
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(Spong et al., 2006), we obtain

U̇ = 2
{(

vec6 ζ
c
cd

)T
E−T (xcd)Kd +

[
01×3

(
vec3

pccd
2

)T
S (vec3ω

c
cd)Rc

dKpR
cT
d

]}
vec6 y

c
d
.

As

(
vec3

pccd
2

)T
S (ωccd) = −

(
vec3

ωccd
2

)T
S (vec3 p

c
cd) =

(
vec3

ωccd
2

)T
ST (vec3 p

c
cd) ,

thus

U̇ = 2
{(

vec6 ζ
c

cd

)T
E−T (xcd)Kd +

[
01×3 (vec3ω

c
cd/2)T ST (vec3 p

c
cd)Rc

dKpR
cT
d

]}
vec6 y

c
d

= 2

(vec6 ζ
c
cd

)T
E−T (xcd)Kd +

(
vec6 ζ

c
cd

)T 03×3
1
2K

′′
p

03×3 03×3

 vec6 y
c
d
,

with

K ′′p = ST (vec3 p
c
cd)Rc

dKpR
cT
d , (4.13)

and therefore

U̇ =
(
vec6 ζ

c
cd

)T E−T (xcd) 2Kd +
03×3 K ′′p

03×3 03×3

 vec6 y
c
d
. (4.14)

Substituting Equation (3.21) in Equation (4.14) yields

U̇ =
(
vec6 ζ

c
cd

)T
I# vec6 ς

c
E, (4.15)

where

vec6 ς
c
E , I#K ′d vec6 y

c
d

(4.16)

is the elastic wrench with respect to Fc, with

K ′d =
K ′φ K ′′p

03×3 2K ′p

 , (4.17)

where

K ′φ = 2Ī
−
H4 (rc∗d )Q+T

4 (rcd)Kφ. (4.18)

Hence, using Equations (4.8), (4.9), and (4.16), the impedance equation is given by
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vec6 ς
c
I + vec6 ς

c
D + vec6 ς

c
E = − vec6 ς

c
eff,eff , which leads to

M d vec6 ζ̇
c

cd
+Bd vec6 ζ

c

cd
+K ′d vec6 y

c
d

= −I# vec6 ς
c
eff,eff , (4.19)

where ςceff,eff = Ad (r∗c) ςeff,eff is the external wrench acting on the robot end-effector ex-

pressed with reference to Fc.
The dual of the impedance equation is the admittance equation (Hogan, 1985), which

is given by

vec6 ζ̇
c

cd
= M−1

d

(
−I# vec6 ς

c
eff,eff −Bd vec6 ζ

c

cd
−K ′d vec6 y

c
d

)
. (4.20)

Lemma 4.1. The matrix K ′d in Equation (4.17) is invertible.

Proof. To prove that K ′d is invertible, it is sufficient to prove that K ′φ (Equation (4.18))

and K ′p (Equation (4.11)) are full rank. Since Kp is positive definite, then Rc
dKpR

cT
d is

also positive definite. Also, the sum of two positive-definite matrices is also positive-definite,

therefore K ′p is positive definite and thus has full rank (Chen, 1999). By Equations (4.18)

and (3.22), K ′φ = 4W−T (rcd)Kφ and since W (rcd) and Kφ are full rank, so it is K ′φ

(Bernstein, 2009). Hence, the matrix in Equation (4.17) is full rank and thus invertible.

Theorem 4.1. Assuming that the inner-loop dynamics is not taken into account (i.e.,

the inner motion controller accurately tracks the trajectory generated by the admittance

controller in the outer-loop) the closed-loop system given by Equation (4.19) is passive

mapping from −I# vec6 ς
c
eff,eff to vec6 ζ

c

cd
, hence stable. Moreover, when in free-motion,

the only equilibrium point is given by yc
d

= 0, which implies that xc = xd.

Proof. Given the Hamiltonian E = K+U ≥ 0, Equations (4.7), (4.15), and (4.19) are used

to obtain

Ė = K̇ + U̇

= −
(
vec6 ζ

c

cd

)T
I# vec6 ς

c
eff,eff −

(
vec6 ζ

c

cd

)T
Bd vec6 ζ

c

cd
,

where E is the stored energy, −I# vec6 ς
c
eff,eff is the system input, vec6 ζ

c

cd
is the output,

and
(
vec6 ζ

c
cd

)T
Bd vec6 ζ

c
cd
≥ 0. Therefore, the system represents a passive mapping from

−I# vec6 ς
c
eff,eff to vec6 ζ

c
cd

and is, hence, stable (Slotine & Li, 1991). Moreover, it is

dissipative, with the dissipative power given by
(
vec6 ζ

c

cd

)T
Bd vec6 ζ

c

cd
.

Furthermore, in the case of free motion (i.e., vec6 ς
c
eff,eff = 0), Ė = 0 if and only if

vec6 ζ
c
cd

= 0. Also, because the system is dissipative, if vec6 ς
c
eff,eff = 0 and vec6 ζ

c
cd

= 0,

then vec6 ζ̇
c

cd
= 0. Therefore, from Equation (4.19) ,

K ′d vec6 y
c
d

= 0, (4.21)
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which implies that yc
d

= 0 is the only equilibrium point since, by Lemma 4.1, K ′d is

invertible. Moreover, yc
d

= 0 =⇒ xcd = 1 =⇒ xc = xd.

Remark 4.2. The restriction that Kp and Kφ are positive-definite matrices can be relaxed

so they can be positive semi-definite. In this case, K ′d is not invertible and thus there is a

set of infinite stable points that satisfies Equation (4.21). In this case, for some equilibrium

points, xd 6= xc. For instance, see Example 4.1.

Example 4.1. Consider Kφ = 80I3×3 and

Kp =


0 0 0
0 80 0
0 0 80

 ,

so Kp is a positive semi-definite matrix. Moreover, consider the situation where rcd = 1,

and pccd = 0.1ı̂, which gives

yc
d

= log
(
rcd + ε

1
2p

c
cdr

c
d

)
= log (1 + ε0.1ı̂) = ε0.05ı̂

and thus

vec6 y
c
d

=
[
0 0 0 0.05 0 0

]T
. (4.22)

In this case, K ′φ = 2Kφ, K ′p = Kp, and K ′′p = ST (vec3 p
c
cd)Kp. Hence,

K ′d =
2Kφ ST (vec3 p

c
cd)Kp

03×3 2Kp



=



160 0 0 0 0 0
0 160 0 0 0 8
0 0 160 0 −8 0
0 0 0 0 0 0
0 0 0 0 160 0
0 0 0 0 0 160


, (4.23)

which has rankK ′d = 5 and thus is not invertible. The multiplication of Equation (4.23)

by Equation (4.22) satisfies Equation (4.21), which ensures that the trajectory of the

closed-loop system converges to the invariant
{
yc
d
∈ Hp : ζ̇c

cd
= 0

}
even though yc

d
6= 0.

4.1.2.1 Unwinding Problem

Although the only equilibrium point is yc
d

= 0 =⇒ xcd = 1, both xcd = 1 and xcd = −1
represent the same pose (Kussaba et al., 2017). Considering the closed-loop of Equation
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(4.19), if xcd = −1 the robot will move to reach xcd = 1, which is undesirable (this unnec-

essary motion is called unwinding). To prevent this situation, a new definition of yc
d

is

proposed to be used in the impedance equation; that is,

yc
d
,

logxcd, if ‖xcd − 1‖2 ≤ ‖xcd + 1‖2 ,

log (−xcd) , otherwise.
(4.24)

Therefore, yc
d

is zero when xcd = 1 and xcd = −1, and the closed-loop system trajectories

will always follow the smallest spatial distance to the stable points 1 and -1, thus preventing

the unwinding problem.

Theorem 4.2. The closed-loop system given by Equation (4.19), with yc
d

defined as in

Equation (4.24), is stable. Furthermore, it has two stable equilibrium points: xcd and −xcd.

Proof. Considering yc
d

= loga, by Theorem 4.1 the system is in equilibrium when a = 1.
Since according to Equation (4.24) a ∈ S can be xcd or −xcd, this means that there are

two equilibrium points, xcd and −xcd, both stable:

Case 1: If ‖xcd − 1‖2 ≤ ‖xcd + 1‖2, then yc
d

= logxcd. Therefore, the equilibrium point

is given by yc
d

= 0 =⇒ xcd = 1.

Case 2: If ‖xcd − 1‖2 > ‖xcd + 1‖2, then yc
d

= log (−xcd). Thus, the equilibrium is

achieve when yc
d

= 0 =⇒ −xcd = 1.

Remark 4.3. The admittance controller requires the use of force/torque sensors at the

robot, whether at the end-effector or at the joints. Usually there is a force/torque sensor at

the end-effector, and thus the robot only reacts to wrenches applied at it. Notwithstanding,

if the robot is equipped with torque sensors at the joints, the joint torques τ may be

projected onto the end-effector by using the well-known relationship τ = JTG (q) vec6 ς,
3

where JG (q) is the geometric Jacobian, and ς is the wrench applied at the end-effector.

Hence, the admittance controller can be used to encompass compliant motions with

distributed contacts (Navarro, 2017).

4.1.2.2 Topological Obstruction Problem

A similar problem that exists in some controllers, as for example the one described in

Appendix D, is the topological obstruction (Bhat & Bernstein, 1998). In this case, when

the initial state of the closed-loop system is within an unstable equilibrium set, the

control signal is zero, trapping the system in that set (see Appendix D). Although a

small perturbation around the unstable equilibrium set may remove the system from it

(Caccavale et al., 1999), it would be still near to an unstable equilibrium point, and thus

3Notice that in this case those torques are added to the normal wrenches at the impedance control law,
therefore gravity is already compensated in the original control law.
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Figure 4.2: Cooperative tasks in which the robot has to pour beverage into the person’s
cup. Since the cup may be tilted, it is likely that the hand holding the bottle will have to
be rotated by angles near to π rad.

the closed-loop error would decay much slower than when the system is far from this set.

Such situations may occurs, for instance:

� in cooperative tasks, in which the robot needs to perform a large rotation (sometimes

even very close to π rad) in relation to its partner, such as when the robot must pour

a beverage into the person’s cup (Figure 4.2);

� in bimanual manipulations of an object, in which the end-effectors may be symmetric

to the manipulated object, with an initial rotation angle of π rad, and have to align

themselves, such as the tasks of folding a sheet of paper, closing or opening a bottle,

hence being also near the unstable equilibrium set (Figure 4.3);

� and even when rotating a crank by π rad or using a screwdriver (Figure 4.4).

An advantage of our proposed controller, given by Equation (4.20), over the one proposed

by (Caccavale et al., 2008), given by Equation (D.1), is the absence of this problem.

4.1.2.3 Trajectory Generation

Similarly to Equation (4.2), the reference vec6 ζ̇
c

cd
from Equation (4.20) is numerically

integrated (Euler approximation) once and transformed into the reference trajectory given

by (xc(t), ẋc(t), ẍc(t)) using the Equations (3.19), (3.14), and their derivatives given by

Equations (3.28) and (3.18), and the exponential operation described in Equation (3.10).

More specifically,

vec6 ẏ
c
d

= E−1 (xcd) vec6 ζ
c

cd
,

vec6 ÿ
c
d

= E−1 (xcd)
(
vec6 ζ̇

c

cd
− Ė (xcd) vec6 ẏ

c
d

)
,
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(a)

(b)

Figure 4.3: Bimanual tasks of a robot (a) folding a sheet of paper and (b) closing or
opening a bottle. In those bimanual manipulations, the end-effectors may be symmetric
to the manipulated object with an initial rotation angle close to π rad, and have to align
themselves to perform the manipulation, being thus also near the unstable equilibrium set.

(a) (b)

Figure 4.4: Tasks involving arbitrarily large initial rotations: (a) using a screwdriver and
(b) turning a crank.
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then vec6 ẏ
c
d

is integrated to obtain vec6 y
c
d
, and knowing that yc

d
= vec6

(
vec6 y

c
d

)
yields

xcd = expyc
d
,

ẋcd = vec8

(
Q8 (xcd) vec6 ẏ

c
d

)
,

ẍcd = vec8

(
Q̇8 (xcd) vec6 ẏ

c
d

+Q8 (xcd) vec6 ÿ
c
d

)
.

Therefore, the trajectory (xc(t), ẋc(t), ẍc(t)) is retrieved using the Equations (4.3)–(4.5).

4.1.3 Admittance Controller Using Dual Quaternion Twist

The previous controller has a physical meaning and a stiffness term that is consistent with

the six-DOF task geometry. However, it does not tackle the effects of the existent lever

arms in the system. Using the DQ twist ξc
cd

= ωccd + ε (ṗccd + pccd × ωccd), instead of the

the variable ζc
cd

= ωccd + εṗccd, contemplates all characteristics of the previous controller

and also the effects of the lever arms.

From Equation (4.7) and using Equation (3.23),

K̇ =
(
A−1 (xcd) vec6 ξ

c

cd

)T
M d vec6 ζ̇

c

cd
.

Using

vec6 ζ
c
cd

= A−1 (xcd) vec6 ξ
c
cd

=⇒ vec6 ζ̇
c

cd
= d

dt

(
A−1 (xcd)

)
vec6 ξ

c
cd

+A−1 (xcd) vec6 ξ̇
c

cd

yields

K̇ =
(
A−1 (xcd) vec6 ξ

c
cd

)T
M d

(
d

dt

(
A−1 (xcd)

)
vec6 ξ

c
cd

+A−1 (xcd) vec6 ξ̇
c

cd

)

=
(
vec6 ξ

c
cd

)T
A−T (xcd)M d

(
d

dt

(
A−1 (xcd)

)
vec6 ξ

c
cd

+A−1 (xcd) vec6 ξ̇
c

cd

)

=
(
vec6 ξ

c

cd

)T (
A−T (xcd)M d

d

dt

(
A−1 (xcd)

)
vec6 ξ

c

cd
+A−T (xcd)M dA

−1 (xcd) vec6 ξ̇
c

cd

)

=
(
vec6 ξ

c
cd

)T (
A−T (xcd)M d

d

dt

(
A−1 (xcd)

)
vec6 ξ

c
cd

+A−T (xcd)M dA
−1 (xcd) vec6 ξ̇

c

cd

)
.

Therefore,

K̇ =
(
vec6 ξ

c

cd

)T
I# vec6ψ

c

I
,
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where

vec6ψ
c
I
, I#

(
A−T (xcd)M d

d

dt

(
A−1 (xcd)

)
vec6 ξ

c
cd

+A−T (xcd)M dA
−1 (xcd) vec6 ξ̇

c

cd

)
(4.25)

is the inertial DQ wrench with respect to the frame Fc, where

d

dt

(
A−1 (xcd)

)
=
 03×3 03×3

−S (vec3 ṗ) I3×3

 .
Following the same approach and using Equation (3.23) and the fact that the damping

power is given by
(
vec6 ζ

c
cd

)T
I# vec6 ς

c
I , where vec6 ς

c
I is given by Equation (4.9), the

dissipative damping wrench is given by

vec6ψ
c
D
, I#A−T (xcd)BdA

−1 (xcd) vec6 ξ
c
cd
, (4.26)

with R6×6 3 Bd > 0.

Regarding the stiffness term, using Equation (4.15) gives

U̇ =
(
A−1 (xcd) vec6 ξ

c

cd

)T
K ′d vec6 y

c
d

=
(
vec6 ξ

c
cd

)T
A−T (xcd)K ′d vec6 y

c
d

=
(
vec6 ξ

c

cd

)T
I# vec6ψ

c

E

where

vec6ψ
c

E
, I#A−T (xcd)K ′d vec6 y

c
d

(4.27)

is the elastic wrench with respect to Fc.
Hence, the impedance equation is given by vec6ψ

c
I

+ vec6ψ
c
D

+ vec6ψ
c
E

= − vec6ψ
c
c,eff ,

which, using Equations (4.25), (4.26), and (4.27), leads to

M dξ vec6 ξ̇
c

cd
+Bdξ vec6 ξ

c

cd
+Kdξ vec6 y

c
d

= −I# vec6ψ
c

c,eff ,

where

M dξ , A
−T (xcd)M dA

−1 (xcd) , (4.28)

Bdξ , A
−T (xcd)M d

d

dt

(
A−1 (xcd)

)
+A−T (xcd)BdA

−1 (xcd) , (4.29)

Kdξ , A
−T (xcd)K ′d, (4.30)

and ψc

c,eff = Ad (xceff) ςeff
eff,eff is the external wrench acting on the robot end-effector with
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reference to Fc, and ςeff
eff,eff is the wrench measured by the force/torque sensor at the

end-effector.

Thus, the admittance equation is given by

vec6 ξ̇
c

cd
= M−1

dξ

(
−I# vec6ψ

c
c,eff −Bdξ vec6 ξ

c
cd
−Kdξ vec6 y

c
d

)
. (4.31)

The unwinding solution of Equation (4.24) is also applied in the control law of Equation

(4.31).

4.1.3.1 Trajectory Generation

Similarly to Equations (4.2) and (4.20), the reference vec6 ξ̇
c

cd
from Equation (4.31)

is numerically integrated once and transformed into the reference trajectory given by

(xc(t), ẋc(t), ẍc(t)) using the Equations (3.19) and (3.14) and their derivatives given by

Equations (3.28) and (3.18), and the exponential operation given by Equation (3.10). More

specifically,

vec6 ẏ
c
d

= G−1
log (xcd) vec6 ξ

c
cd
,

vec6 ÿ
c
d

= G−1
log (xcd)

(
vec6 ξ̇

c

cd
− Ġlog (xcd) vec6 ẏ

c
d

)
,

then vec6 ẏ
c
d

is integrated to obtain vec6 y
c
d
, and knowing that yc

d
= vec6

(
vec6 y

c
d

)
yields

xcd = expyc
d
,

ẋcd = vec8

(
Q8 (xcd) vec6 ẏ

c
d

)
,

ẍcd = vec8

(
Q̇8 (xcd) vec6 ẏ

c
d

+Q8 (xcd) vec6 ÿ
c
d

)
.

Therefore, the trajectory (xc(t), ẋc(t), ẍc(t)) is retrieved using the Equations (4.3)–(4.5).

Remark 4.4. The controller of Equation (4.31) can also be used when considering the

whole-body robot. The whole-body control takes advantage of all available degrees of

freedom for a better interaction with the environment during the execution of the tasks. For

instance, consider a bimanual mobile manipulator, with the base and both arms serialized.

In this case, the compliant and desired frames are the ones related to the absolute variable,

that is, xba, as in Equation (3.46). Therefore, xcd becomes xbac
bad , x

∗
bacxbad . The wrench

related to the absolute frame is the external one, given by Equation (3.50). Thus, ψc
c,eff

becomes Ad
(
x∗bac

)
ψ0

ext. Moreover, one could use the relative variables and the internal

wrenches as well, given by Equations (3.41) and (3.51), respectively. In this case, xcd would

be xrelc
reld , x

∗
relcxreld and the wrench would be Ad

(
x∗relc

)
ψ0

int.
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4.1.4 Extension for bimanual mobile manipulator

Considering the bimanual manipulation of an object, both external and internal wrenches

must be taken into account in the admittance controller described by Equation (4.31),

and, consequently, the cooperative variables must be used. In order for both wrenches to

be tackled with the same priority, a vector concatenating both variables is used. More

specifically, the wrench vector used in the whole-body situation is given by4

ψc
wb =

[(
I# vec6

(
Ad

(
x∗absc

)
ψ0

ext

))T (
I# vec6

(
Ad

(
x∗relc

)
ψ0

int

))T ]T
,

where ψ0
ext, ψ

0
int ∈ Hp are the external and internal wrenches, respectively, with respect to

the inertial frame F0, as defined in Equations (3.50)-(3.51). Similarly, the vectors with the

DQ twist and the logarithm are given by

ξccdwb
=
[(

vec6 ξ
absc
absc,absd

)T (
vec6 ξ

relc
relc,reld

)T ]T
and

ycdwb
=
[(

vec6 y
absc
absd

)T (
vec6 y

relc
reld

)T ]
,

respectively, where yabsc
absd

, logxabsc
absd , y

relc
reld

, logxrelc
reld , with xabsc

absd , x∗abscxabsdand xrelc
reld ,

x∗relcxreld , and vec6 ξ
absc
absc,absd

, Glog
(
xabsc

absd

)
vec6 ẏ

absc
absd

and vec6 ξ
relc
relc,reld

, Glog
(
xrelc

reld

)
vec6 ẏ

relc
reld

.

The impedance matrices are redefined as

M dwb =
M dabs 06×6

06×6 M drel

 ,
Bdwb =

Bdabs 06×6

06×6 Bdrel

 ,
Kdwb =

Kdabs 06×6

06×6 Kdrel

 ,
where M dabs ,M drel ,Bdabs ,Bdrel ,Kdabs ,Kdrel ∈ R12×12 are defined according to Equa-

tions (4.28), (4.29), and (4.30), where xcd in those equations are changed to xabsc
absd and xrelc

reld
accordingly.

Therefore, the whole-body admittance controller is given by

ξ̇
c

cdwb
= M−1

dwb

(
−I#ψc

wb −Bdwbξ
c
cdwb
−Kdwby

c
dwb

)
.

4Although the acronym abs is used here, since we are considering the whole-body, the abs stands for
the absolute cooperative variable considering the serialization of the mobile base and both arms of the
BAZAR, which is the same as the xba defined in Equation (3.46).
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4.2 Kinematic Controllers

As the proposed architecture includes a motion control law in the inner-loop, it is

necessary to define a motion controller that accurately tracks the reference trajectory

(xc(t), ẋc(t), ẍc(t)) to ensure the apparent admittance in the outer-loop and, as conse-

quence, guarantee safety. Since a large class of robots is actuated in velocity, two kinematic

controllers are proposed to track a desired end-effector trajectory. Both controllers are

design using the DQ logarithmic mapping, but the first one is a first order kinematic

controller, and the second one is a second order kinematic controller.

Remark 4.5. The designed kinematic controllers can be used in the inner-loop of the

proposed architecture to track the compliant trajectory (xc(t), ẋc(t), ẍc(t)) or, alternatively,

it can be the only controller, as for example in cases where there is no interaction. The

following developments consider the desired trajectory as (xd(t), ẋd(t), ẍd(t)). If the

controllers are used in the architecture as in Figure 4.1, xd and its derivatives should be

replaced by xc and its derivatives.

4.2.1 First Order Kinematic Controller

Considering the error x̃ = x∗xd, with x,xd ∈ Spin(3)nR3 being the current and desired

poses, respectively, its time derivative is given by

vec8 ˙̃x =
−
H8 (xd)C8 vec8 ẋ+

+
H8 (x∗) vec8 ẋd. (4.32)

Substituting Equation (3.14) in the left side of Equation (4.32), and Equation (3.39) in

the right side of Equation (4.32), imposing an exponential decay to the error ỹ , log x̃ by

defining the desired closed-loop task error dynamics as

vy , vec6 ˙̃y = −KP vec6 ỹ, (4.33)

where KP ∈ R6×6 is a positive definite gain matrix. We solve for q̇ to obtain the control

law

u , q̇ = N+ (Q8 (x̃)vy + z1) , (4.34)

where, N ,
−
H8 (xd)C8J (q) (Figueredo et al., 2013), z1 , −

+
H8 (x∗) vec8 ẋd.
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4.2.2 Second Order Kinematic Controller

Similarly to the first order controller, considering Equation (3.14), the time derivative of

Equation (4.32), and defining the desired closed-loop task error dynamics as

ay , vec8 ¨̃y = −KD vec8 ˙̃y −KP vec8 ỹ, (4.35)

with R6×6 3KD,KP > 0, the second order kinematic control law is given by

unom , q̈ = N+ (Q8 (x̃)ay + z2) , (4.36)

where z2 , Q̇8 (x̃) vec6 ˙̃y − Ż vec8 x−ZJ (q) q̇ − Ṅ q̇, and Z ,
−
H8 (ẋd)C8.

Remark 4.6. In case of redundant robots, the joint velocities can be different from zero

even if the end-effector is in the desired pose. To prevent that situation, a dissipative term

is added as udis = kdis
(
1n
∥∥∥vec6 ˙̃y

∥∥∥− q̇), where 1n is an n-dimensional column vector of

ones and kdis ∈ (0,∞) (Quiroz-Omana & Adorno, 2019). Thus, the control law becomes

u = unom + udis. (4.37)

Remark 4.7. The solution given by Equation (4.24) to the unwinding problem can also be

applied to the kinematic controller given by Equation (4.37) by using ỹ and x̃ instead of

yc
d

and xcd, respectively.

4.2.3 Extension for bimanual mobile manipulator

Similarly to the admittance controller, the kinematic controller of Equation (4.37) also

suffers modifications when considering the whole-body of a bimanual mobile manipulator.

More specifically, the whole-body kinematic control law, considering the absolute and

relative poses are given by

unomwb , q̈wb = N+
wb

(
Q8wb

aywb + z2wb

)
,

where qwb =
[
qTbase qTright qTleft

]T
is the vector of joints,

Nwb ,

 N abs[
08×dim(qbase) N rel

] 

is the whole-body modified Jacobian matrix, where R8×(dim(qbase)+dim(qright)+dim(qleft)) 3
N abs ,

−
H8 (xabsc)C8Jabs and R8×(dim(qright)+dim(qleft)) 3N rel ,

−
H8 (xrelc)C8J rel are the

absolute and relative modified Jacobian matrices, respectively. The matrix Q8wb
∈ R16×12
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is given by

Q8wb
,

Q8 (x̃abs) 08×6

08×6 Q8 (x̃rel)

 ,
and the vector representing the desired dynamics is given by

aywb , −KDwb
˙̃ywb −KPwb

˙̃ywb,

with

KDwb ,

KDabs 06×6

06×6 KDrel


an

KPwb ,

KPabs 06×6

06×6 KPrel


being the whole-body derivative and proportional gain matrices, whereKDabs ,KDrel ,KPabs ,

KPrel ∈ R6×6 are the derivative and proportional gains related to the absolute and relative

variables, respectively. The vector with the logarithm is defined as

ỹwb ,
[(

vec6 ỹabs

)T (
vec6 ỹrel

)T ]T
,

with ỹabs , log x̃abs and ỹrel , log x̃rel, wherex̃abs , x∗absxabsc and x̃rel , x∗relxrelc . The

additional terms are given byz2wb , Q̇8wb
˙̃ywb − Żwbxwb −ZwbJwbq̇wb − Ṅwbq̇wb, where

Zwb ,


−
H8 (ẋabsc)C8 08×8

08×8
−
H8 (ẋrelc)C8

 ,

xwb ,
[
(vec8 xabs)T (vec8 xrel)T

]T
, and the Jacobian matrix is given by

Jwb ,

 Jabs[
08×3 J rel

] ,
where Jabs ∈ R8×(dim(qbase)+dim(qright)+dim(qleft)) and J rel ∈ R8×(dim(qright)+dim(qleft)) are the

absolute and relative Jacobian matrices, defined as in Equations (3.47) and (3.43). Finally,

the dissipative function is given by

udiswb = kdis
(
1n
∥∥∥ ˙̃ywb

∥∥∥− q̇wb

)
.
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4.3 Dynamic Controllers

Many robots have joints actuators whose drivers have an implemented velocity control

loop. When this velocity control loop has very good performance, we can consider that

the control inputs of the manipulator are the joints velocities. In this case, we say that

the robot is “velocity-actuated” or “actuated in velocity”. However, other robots have

joints actuated in torque (Siciliano et al., 2009). In the latter case, the most appropriate

controller is the one based on the robot dynamics, as it enables more accurate analyses

and helps in the synthesis of the robot dynamic behavior (Yang et al., 2016). Assuming

complete knowledge of the robot dynamic model, the motion control laws proposed in

this section are based on it. In this case, the inertia matrix plays an important role, as it

influences the control of the robot’s dynamic behavior. Despite the fact that the inertia

matrix is positive definite independently of the robot configuration, its good conditioning

is not guaranteed (Shen & Featherstone, 2003).

This section first presents some well-known controllers and discusses their behaviors

regarding the error dynamics and also the steady-state error with respect to the conditioning

of the JSIM. Then, it presents two adaptive controllers, based on the ones proposed by

Slotine & Li (1987) and Cheah et al. (2006b,a), in order to control a serial robot manipulator

while solving the problem introduced by the ill-conditioning of the inertia matrix. Moreover,

the choice of the appropriate parameter vector to be estimated by the adaptive controller

is presented in order to guarantee a resultant matrix with a condition number smaller than

the original one. The controllers are presented first considering the joint-space, and then

the task-space.

Remark 4.8. As for the kinematic controllers (see Remark 4.5), the dynamic controllers

can also be used purely or together with the admittance controller, in the proposed

architecture illustrated in 4.1. The following developments consider the desired trajectory

as (xd(t), ẋd(t), ẍd(t)), which should be replaced by (xc(t), ẋc(t), ẍc(t)) if the objective is

to follow the compliant trajectory returned by the admittance controller.

4.3.1 Joint-Space Controllers

4.3.1.1 Inverse Dynamics with Feedback Linearization (IDFL)

A common technique to control a robot manipulator modeled by Equation (3.52) is to

design a control law based on the inverse dynamics with feedback linearization (Spong

et al., 2006). This type of control law is divided into two loops, where the inner-loop is

composed of the linearized system and the outer-loop receives the desired trajectory, as

shown in Figure 4.5.
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Inner-loop

Robot

qaq uqd

Linearized system

Outer-loop

controler controler

Inner-loop

Figure 4.5: Inner-loop/outer-loop control architecture. Adapted from (Spong et al., 2006).

Thus, the control law is given by

u = M (q)aq +C (q, q̇) q̇ + g (q) , (4.38)

where the control input u , τ ∈ Rn is applied to the joints and aq , q̈ ∈ Rn is the control

input designed to stabilize the linearized closed-loop system.

One can define an additional control law as (Kelly et al., 2005)

aq = q̈d −KD
˙̃q −KP q̃ −KI

∫ t

0
q̃ (t) dt, (4.39)

where KD,KP ,KI ∈ Rn×n are positive definite design matrices and q̃ , q − qd denotes

the joints error, with qd ∈ Rn being the desired joint configuration. This control law leads

to the following dynamics in closed-loop:

¨̃q +KD
˙̃q +KI q̃ +KI

∫ t

0
q̃ (t) dt = 0. (4.40)

Shen & Featherstone (2003) show that the control law in Equation (4.38) may behave

poorly whenever the matrix M (q) is ill-conditioned. Due to the difference in the singular

values of M (q), the torque of each joint calculated from Equation (4.38) can be very

disparate, even if the joints accelerations are the same. To see that, let us consider the

control law of Equation (4.38), and decompose it in the singular values:
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u = M (q)aq +
f(q,q̇)︷ ︸︸ ︷

C (q, q̇) q̇ + g (q)

= U


σ1

. . .

σn

V Taq + f (q, q̇)

=
n

Σ
i=1
uiσiv

T
i aq + f (q, q̇) ,

where σi is the i-th singular value, and
[
u1 · · · un

]
= U ∈ O (n) and

[
v1 · · · vn

]
=

V ∈ O (n) are orthogonal matrices. Therefore, if the configuration-dependent inertia

along a specific joint is very small, no matter how large the position/velocity error or

PID-coefficients are, the correction torque applied on that joint will be still small compared

to the dominant torque, which may result in some undesired stationary error.

4.3.1.2 PID-Controller with Gravity Compensation (PID)

To circumvent the ill-conditioning of the JSIM, Shen & Featherstone (2003) proposed to

use a PD controller with gravity compensation, which is yields an asymptotically stable

closed-loop system if the PD gains are properly chosen (Kelly et al., 2005), as it directly

converts the joint-space error to the joint torques, without using the JSIM, and therefore it

is not affected by its ill-conditioning. If an integral term is used, as well as a feed-forward

term, the control law is given by

u = aq + g (q) , (4.41)

with aq given by Equation (4.39).

Shen & Featherstone (2003) emphasizes that, although controllers such as in Equa-

tion (4.41) do not use the JSIM, which mitigates the problem caused by the JSIM

ill-conditioning, a controller that takes into consideration the whole robot dynamic model

should achieve better accuracy.

4.3.1.3 Adaptive Controller (AC)

Targeting a control law that is able to achieve a good accuracy by using torque inputs, and

assuming knowledge of the robot kinematic and dynamic model, an adequate alternative

to the previously widely used control structures is to use an adaptive controller in which

a positive definite matrix A is added to the JSIM, in the Euler-Lagrange equation

(Equation (3.52)), and compensating the uncertainties introduced by this matrix in order

to improve its conditioning without adding excessive inaccuracy to the nominal model.

Since the inertia matrix depends on the robot configuration, it is difficult to choose A
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beforehand and thus it should be adapted during the robot motion, which motivates the

use of an adaptive controller.

Two solutions are proposed in this section. The first one considers the sum of the

matrix corresponding to motors’ inertia Mm, which is positive definite, an thus it has

a physical meaning. However, since the estimated parameters by the adaptation law

do not always converge to the real ones, and the controller is able to compensate the

added uncertainties, there is no necessity of considering an added matrix with physical

meaning. Thus, a second solution is proposed by carefully choosing a positive definite

matrix D̄ ∈ Rn×n to the JSIM, which is designed to improve its conditioning without

adding excessive inaccuracy to the model. Therefore, the Euler-Lagrange equation given

by Equation (3.52) becomes

[M (q) +A] q̈ +C (q, q̇) q̇ + g (q) = τ , (4.42)

where A ∈
{
Mm, D̄

}
is the added positive definite matrix.

A typical adaptive controller is composed of a control law and an adaptation law.

Regarding the control law, a sliding vector is defined to restrict the error to a sliding

surface, which is required to eliminate the steady-state position error (Slotine & Li, 1987).

In the joint space, the adaptive sliding vector is defined as

s , q̇ − q̇r, (4.43)

where q̇r = q̇d−α (q − qd), with α being a positive constant and qd is the vector of desired

joints configurations.

Substituting Equation (4.43) and its derivative in Equation (4.42) yields

[M (q) +A] ṡ+C (q, q̇) s+ g (q) + [M (q) +A] q̈r +C (q, q̇) q̇r = τ . (4.44)

To ensure the JSIM’s positiveness, a control law based on the one proposed by Cheah

et al. (2006a) is proposed for the purpose of finding a suitable matrix A.

Assuming that the dynamic parameters of the links are known with sufficient accuracy,

only the matrix A needs to be estimated. In addition, as the robot dynamic model is

linear in a set of physical parameters and its linear combinations (Cheah et al., 2006a), it

is possible to rewrite the last three terms of Equation (4.44) as

[M (q) +A] q̈r +C (q, q̇) q̇r + g (q) = Y a+ v (q, q̇, q̇r, q̈r) , (4.45)

where v (q, q̇, q̇r, q̈r) ∈ Rn is a vector containing the known dynamic model (i.e., v (q, q̇, q̇r, q̈r) =
M (q) q̈r +C (q, q̇) q̇r + g (q)), the matrix Y ∈ Rn×n is the regressor that depends on

the choice of A and on the parameter vector â ∈ Rn to be estimated.
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Therefore, the adaptive control law is given by

u , τ = aq + v (q, q̇, q̇r, q̈r) + Y â, (4.46)

with aq defined as in Equation (4.39).

The estimated parameter â is adapted by the adaptation law given by

˙̂a = −LY Ts, (4.47)

where diag (γ1, . . . , γn) = L ∈ Rn×n is a diagonal positive-definite matrix that determines

the convergence rate of the adaptive parameters.

Remark 4.9. Considering only the proportional and derivative terms (i.e., KI = 0),

and the nominal adaptation law as described by Equation (4.47), the trajectory of the

closed-loop system when using the control law Equation (4.46) converges to the invariant

(q, q̇) = (0,0), as proved by Fonseca et al. (2018). We can also use an argument based on

passivity theory to prove this convergence, as done by Leite & Lizarralde (2016).

Considering the Motors’ Inertia (ACM) When considering the motor’s inertia,

that is, A , Mm, the regressor is given by Y , Y m (q̈r) = diag (q̈r) and a , am =[
η1ϑ

2
1 · · · ηnϑ

2
n

]T
is the (constant) parameter vector. 5

Assuming u , τ , the closed-loop dynamics is obtained by combining Equations (4.44)

and (4.45) and making it equal to Equation (4.46), which results in

[M (q) +Mm] ṡ+C (q, q̇) s− aq + Y m (q̈r) ∆am = 0 (4.48)

where ∆am = am − âm.

Although the adaptive controller proposed by Cheah et al. ensures asymptotic stability

of
[
q̃T ˙̃qT

]T
= 0, there is no guarantee that the estimated parameters are positive.

However, in order to have a physical meaning, the inertia matrix must be positive definite.

To guarantee that, the matrix Mm added to the JSIM must also be positive definite, since

the sum of two positive definite matrices is also positive definite, which is not always true

when the added matrix is not positive definite, as shown in Example 4.2. Therefore, an

algorithm based on the one proposed by Wang & Xie (2011) is developed in the next

paragraph to ensure that all estimated parameters remain positive.

Example 4.2. Consider a positive definite matrix A ∈ GL (2), and a negative definite

5Since Y m (q̈r) is a diagonal matrix, each element ˙̂ai of ˙̂am in Equation (4.47) is given by ˙̂ai = −γiq̈risi,
where q̈r =

[
q̈r1 · · · q̈rn

]T
and s =

[
s1 · · · sn

]
.
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matrix B ∈ GL (2), such that

A =
 3 0

0 1

 , B =
 −1 0

0 −1

 .
Therefore,

C = A+B =
 3 0

0 1

+
 −1 0

0 −1


=
 2 0

0 0

 /∈ GL (2)

Besides, the condition numbers6 of each matrix are cond (A) = 3, cond (B) = 1 and

cond (C) =∞, which indicates that the even adding a better conditioned matrix (B) to a

positive definite one (A) can worsen the matrix conditioning.

Estimation of Positive Parameters In order to guarantee the positive definiteness

of the estimated matrixMm in Equation (3.53), a convex region is defined for the parameter

space that correspond to the admissible parameter set (Wang & Xie, 2011), and ensure

that the estimated parameters are always projected onto this set. Since the goal here is to

compensate for uncertainties in the inertia of the joints, the parameter vector is given by

am ,
[
a1 · · · an

]T
, where ai = ηiϑ

2
i and the convex region for each joint i is defined as

Ωi , {âi ≥ β, β ∈ (0,∞)} , (4.49)

where β is the lower bound for all the estimated parameters â1, . . . , ân. If each estimated

parameter ai is positive, then the matrix Mm in Equation (3.53) is positive definite.

Therefore, if âi ∈ Ωi, ∀i then Mm > 0.

Once the convex region is defined, a function fi (âi) can be designed such that fi (âi) ≤ 0
and

fi (âi) = −âi + β, (4.50)

where i corresponds to the i-th joint. When fi (âi) ≤ 0, the estimated parameter is inside

the convex region (or on its boundary), and hence positive. If fi (âi) > 0 the parameter âi

is outside the admissible parameter set, and then it is necessary to project it onto the set

Ωi. Figure 4.6 illustrates those situations.

In order to ensure the estimation of positive parameters, Equation (4.47) is redefined

6Condition number is defined as σ1/σn, where σ1 is the largest singular value and σn is the smallest
one. The best conditioning occurs when σ1/σn = 1.
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β

fi < 0

âi

β

fi = 0
âi

β

fi > 0
âi

Figure 4.6: The convex region is illustrated by the circles. When the parameters âi are
inside the region, âi > β, and thus âi > 0. When they are on the border, âi = β, and
thus âi > 0. When the parameters are outside the convex region, âi < β and âi may be
negative, which is undesired. In this situation, all parameters outside the region must be
projected onto the region.

β

fi > 0

âi

˙̂ai

fj = 0

âj

˙̂aj

Figure 4.7: If the parameter âi is on the border of the region Ωi, fi = 0 (or outside
it, fi > 0), and the update ˙̂ai makes it leave the region (or remain outside), then the
parameter will be projected onto the border of the region.

as (Wang & Xie, 2011)

˙̂ai =

−γiλ∇fi,âi , if fi ≥ 0 and νi∇fi,âi ≥ 0

νi, otherwise,
(4.51)

where νi , −γiq̈risi is the i-th element of the nominal adaptation vector ˙̂am in Equa-

tion (4.47), γi is the i-th element of the diagonal of L, q̈ri is the i-th element of q̈r, si is

the i-th element of s, the scalar λ is a positive value and ∇fi,âi = dfi/dâi = −1.

Equation (4.51) guarantees that, if the parameter âi is on the border of the region Ωi

(or outside it), and the update ˙̂ai makes it leave the region (or remain outside), then the

parameter will be projected onto the border of the region, as illustrated in Figure 4.7.
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Adding an Arbitrary Positive Definite Matrix (ACD) The solution proposed in

section 4.3.1.3 guarantees that the estimated parameters remain positive, and thus the

added matrix is positive definite, as well as the result of the sum. nitializing the parameters

with values such that the resultant matrix starts better conditioned than the original JSIM,

according to Theorem 4.3 below, and considering that the condition number does not

change significantly along the simulation, the resultant matrix will be better conditioned

than the pure JSIM. However, there is no guarantee that the better conditioning will

persist at all time. Therefore, it is proposed here another solution where the positive

definite matrix D̄ ∈ GL (n) is carefully chosen to be added to the JSIM in order to ensure

the improvement of its conditioning. To accomplish that, it is necessary to find the desired

characteristics of D̄ in order to the sum
(
M + D̄

)
be, besides positive definite, also better

conditioned than M ,M (q).

Theorem 4.3. For the condition number of the sum
(
M + D̄

)
, where M is the joint-

space inertia matrix and D̄ is a positive definite matrix with the same left singular vectors

of M , be smaller than the one of M , the matrix D̄ must be better conditioned than M .

Proof. Since the condition number of M is given by

cond (M) = σ1M
σnM

,

where σ1M and σnM are the maximum and minimum singular values of M , respectively,

we can decrease the condition number by chosen an appropriate matrix D̄ such that

cond
(
M + D̄

)
< cond (M ). Since M can be decomposed into M = USUT , where each

column ui, with i ∈ {1, . . . , n}, of U ∈ O (n) contains the left singular vectors of M and

S ∈ Rn×n contains the singular values of M (Chen, 1999), D̄ = UDUT is defined as

a positive definite matrix, where Rn×n 3D = diag
(
σ1D̄ , . . . , σnD̄

)
is a suitable diagonal

matrix. Then,

M + D̄ = U (S +D)UT

= U



σ1M + σ1D̄

. . .

σnM + σnD̄


UT . (4.52)

Therefore,

cond
(
M + D̄

)
=
σ1M+D̄

σnM+D̄

=
σ1M + σ1D̄
σnM + σnD̄

.

In order to cond
(
M + D̄

)
< cond (M),

σ1M + σ1D̄
σnM + σnD̄

<
σ1M
σnM

=⇒
σ1D̄
σnD̄

<
σ1M
σnM

=⇒ cond
(
D̄
)
< cond (M) . (4.53)
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Therefore, for cond
(
M + D̄

)
< cond (M), it is necessary that cond

(
D̄
)
< cond (M).

As the condition number of D̄ is directly linked to D, it is easier to choose a diagonal

matrix D to meet the property showed in Equation (4.53). Using Equation (4.45) and

A , D̄ yields

[
M (q) + D̄

]
q̈r +C (q, q̇) q̇r + g (q) = Y σ (q, q̈r)aσ + v (q, q̇, q̇r, q̈r) , (4.54)

which yields Y , Y σ (q, q̈r)aσ = D̄q̈r, where aσ =
[
σ1

D
· · · σn

D

]T
is the vector with

the singular values of D̄. Since

D̄q̈r = UDUT q̈r

= U


σ1D̄

. . .

σnD̄

UT q̈r

=
n∑
i=1
uiu

T
i q̈r︸ ︷︷ ︸

yσi

σi
D

=
[
yσ1 · · · yσn

] 
σ1

D
...

σn
D


= Y σ (q, q̈r)aσ,

the regressor is given by Y σ (q, q̈r) =
[
y1 · · · yn

]
, where yi = uiu

T
i q̈r . In Equa-

tion (4.46), the vector â , âσ contains the estimated values of aσ, and thus the goal is to

enforce Y σ (q, q̈r) âσ = D̄q̈r.

Assuming u , τ , the closed-loop dynamics is analogous to Equation (4.48) and is

given by

[
M (q) + D̄

]
ṡ+C (q, q̇) s− aq + Y σ (q, q̈r) ∆aσ = 0 (4.55)

where ∆aσ = aσ − âσ.

Estimation of Positive Parameters In order to enforce the estimated parameters

in âσ to be positive and also to have a matrix D̄ that fulfills condition Equation (4.53),

a convex region corresponding to the admissible parameter set is defined (Wang & Xie,

2011). Thus, variable lower (βmin) and upper (βmax) bounds are defined as a function

of the singular values of the JSIM such that σnM < βmin 6= βmax < σ1M . Therefore, the
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Figure 4.8: Region Ω with its lower and upper bounds βmin and βmax. The estimated
singular values are decreasingly ordered inside the subregions of size δ.

convex region of admissible parameters is defined as

Ω , {ηmin ≤ â ≤ ηmax} ,

where

ηmax , 1nβmax − diag (0, . . . , n− 1) 1nδ,

ηmin , 1nβmax − diag (1, . . . , n) 1nδ,

with 1n being an n-dimensional vector of ones, and δ , (βmax − βmin)/n; therefore, the

estimated singular values are decreasingly ordered and between the upper and lower bounds.

The region with the estimated parameters are illustrated in Figure 4.8.

The adaptation law is defined as

˙̂aσ , Pυ + (In×n − P )LΛρ, (4.56)

where υ is the nominal adaptive law Equation (4.47) and In×n ∈ Rn×n is the identity

matrix. The matrix P = diag (p1, . . . , pn), where

pi =

0, if (âi<ηmin,i ∧ υi≤0) ∨ (âi>ηmax,i ∧ υi≥0) ,

1, otherwise,

is used to determine if a given parameter shall be projected onto the border of the region,

Λ = diag (λ1, . . . , λn) with λi ∈ (0,∞) is used to accelerate the convergence of each

parameter to the boundary of Ω, and ρ = [ρ1, . . . , ρn]T with ρi = sgn(ηmin,i − âi) is used

to choose the direction of convergence, as illustrated in Figure 4.9.

4.3.2 Task-Space Controllers

A given task is typically described in terms of the desired pose of the end-effector, in

which the use of a task-space controller is thus more appropriate since it does not need
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Figure 4.9: Projection of the parameter into the region. If the estimated parameter âi
is outside the region and the update υi makes it to remain outside, then pi = 0 and the
parameter will be projected onto the border of the region. The direction of the projection
is defined by ρi, which is changed whenever âi is smaller or larger than ηmin,i. If pi = 1,
then the nominal adaptation law is used.

the inverse kinematics in order to find the joint trajectory. Therefore, the same dynamic

controllers are described here but now in task-space. The two classic task-space motion

controllers, namely the task-space inverse dynamics with feedback linearization (TIDFL)

and task-space PID controller with gravity compensation (TPID), are adapted to use the

unit DQ to represent the end-effector pose, which offers some advantages, as discussed in

section 3.1.

4.3.2.1 Task-Space Inverse Dynamics with Feedback Linearization (TIDFL)

As previously discussed, one common controller for torque-actuated robots is based on the

inverse dynamics with feedback linearization (Spong et al., 2006); that is,

u = M (q)aq +C (q, q̇) q̇ + g (q) , (4.57)

where the control input u , τ ∈ Rn is applied to the joints and aq , q̈ ∈ Rn is the control

law designed to stabilize the linearized closed-loop system.

Seeking a task-space controller, the control law for the linearized closed-loop system is

defined as

aq = J+
(
ax − J̇ q̇

)
, (4.58)

where J+ is the Moore–Penrose pseudoinverse of the Jacobian matrix J ∈ R8×n and

ax , vec8 ẍ is given by

ax = vec8 ẍd −KD vec8 ẋe −KP vec8 xe −KI

∫ t

0
vec8 xedt, (4.59)

where KD,KP ,KI ∈ R8×8 are positive definite gain matrices and xe , x− xd denotes



74 CHAPTER 4. CONTROL STRATEGIES

the end-effector error, with xd ∈ S being the desired end-effector pose.

4.3.3 Task-Space PID Controller with Gravity Compensation

(TPID)

The PID controller with gravity compensation in task-space and using the DQ to represent

the end-effector pose is given by

u = J+ax + g (q) , (4.60)

with ax given by Equation (4.59).

4.3.4 Task-Space Adaptive Controller (TAC)

The adaptive control law in task-space is given by

u = JTax + v (q, q̇, q̇r, q̈r) + Y σ (q, q̈r) âσ, (4.61)

where ax is given by Equation (4.59), v (q, q̇, q̇r, q̈r) ∈ Rn is the vector containing the

known dynamic model (i.e., v (q, q̇, q̇r, q̈r) = M (q) q̈r +C (q, q̇) q̇r + g (q)), where

q̇r = J+ vec8 ẋr,

q̈r = J+
(
vec8 ẍr − J̇ q̇r

)
,

in which

vec8 ẋr = vec8 ẋd − α vec8 xe,

vec8 ẍr = vec8 ẍd − α vec8 ẋe,

with α ∈ (0,∞).
The adaptation law is equal to the ones used in the joint-space, that is, Equation (4.51)

and Equation (4.56).

4.4 Conclusion

The admittance controllers are appropriate when dealing with interaction wrenches since

they allow the control of the robot apparent impedance. When performing human-robot

cooperation tasks, specially manipulation tasks, one has to control not only the impedance

but also the robot end-effector pose. For this purpose, we use an admittance controller

together with a motion controller, which can be a kinematic or a dynamic controller,
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depending if the robot joints are actuated in position/velocity or torque. Therefore, this

chapter covered the design of an admittance controller using DQ, as well as the design

of kinematics controllers, in addition to a discussion about some known dynamic motion

control laws and a proposed solution to improve the conditioning of manipulators’ JSIM

using an adaptive controller.

Using the structure proposed by Caccavale & Villani (2000); Caccavale et al. (2008)

and de Gea & Kirchner (2008), the whole controller consists of an admittance controller

that, given a desired pose xd and an interaction wrench ς, returns a compliant reference

pose xc. This reference pose is the one passed to the motion controller, which drives the

end-effector pose to the compliant one.
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5
Simulation and Experimental Results

This chapter presents some simulation and experimental results related to both admittance

and motion controllers, which were discussed in Chapter 4. In order to evaluate the

proposed techniques, simulations were executed on MATLAB R2015a1 using the DQ

Robotics library (Adorno & Marinho, 2020) in a machine running Windows 7 Home

Premium 64 bits, 6Gb of RAM, and an Intel(R) Core(TM) i5-2410M CPU @ 2.30GHz

processor. The model used for the first simulations is the one of the KUKA LBR4+ robot

(see Appendix A), available in V-REP (Rohmer et al., 2013), and for the other simulations,

the model of the KUKA LWR4+ is used (see Appendix B).2Moreover, experiments were

run on a KUKA LWR4+ robot manipulator, equipped with a computer with two Intel

Xeon 2.4 GHz hexacore processors with 32 Gb of RAM each, and a 64-bit Anarchy Linux

version 1.4 (Linux 4.19.50-rt22-2-rt-lts) using the C++ version of DQ Robotics and the

pid framework.3 The KUKA LWR4+ used in the experiments is part of the BAZAR robot

and is equipped with one ATI Mini 45 force/torque sensor at its end-effector (Cherubini

et al., 2019). Hence, it only reacts to wrenches applied at the end-effector.

First, some simulations were run in order to corroborate the discussion done in sec-

tion 2.1.2. For this, the KUKA LBR4+ robot model was used to analyze its behavior

under zero torque on its joints. Furthermore, to see the effect of the number of links in

the JSIM’s conditioning, two other robot models were created by locking the last robot’s

11http://www.mathworks.com/products/matlab/
2By the time these simulations were run, the dynamic model of the real robot KUKA LWR4+ was not

available for us. Due to this fact, some simulations were run with the V-REP model.
3http://pid.lirmm.net/pid-framework/

77
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joints, resulting in a robot with fewer links.

Still using the KUKA LBR4+ model, simulations were run to compare the values of

the estimated parameters of the adaptive controller and the adaptive controller with the

projection to the convex region, as described in section 4.3.1.3. The goal is to see the effect

of the sampling time on the estimated parameters, and to compare the performance of

the three dynamic controllers described in Chapter 4, that is, the IDFL, the PID, and the

ACM, all in joint-space.

Still considering the joint-space controllers, we performed experiments to compare the

three controllers, but the adaptive controller is run with the algorithm that guarantees the

improvement of the JSIM conditioning (ACD). Lastly, we show the dynamic controllers in

task-space, together with the admittance controller using the DQ logarithmic mapping

given by Equation (4.2).

Also, experiments were performed using the controller of Equation (4.20), which im-

proves upon the controller of Equation (4.2) by providing a physical meaning to the

parameters. Moreover, a comparison was done with one of the state-of-art controllers.

All these experiments were executed using the second order kinematic controller of Equa-

tion (4.37) in the inner-loop, and the admittance controller in the outer-loop.

In order to show the unwinding phenomenon present when using the controller in

Equation (4.20), we performed a simulation using a free-flying rigid body. Furthermore,

the same simulation was done with Equation (4.20) plus the solution in Equation (4.24),

to show that the problem disappears.

Lastly, simulations with the admittance controller considering the lever-arm effect were

done considering the whole-body of BAZAR.

5.1 Dynamic Analysis of a Robot Manipulator

To guarantee safety in manipulation tasks subject to contacts, besides regulating the

contact forces, it is important to design a motion controller that ensures stability, or

better, asymptotic stability of the closed-loop system. Considering a manipulator, some

unexpected behaviors may arise owing to the ill-conditioning of the inertia matrix, when

using the dynamic model of the robot, as shown in section 2.1.2. Thus, in order to better

understand the influence of this ill-conditioning, some simulations were performed to

analyze the dynamic behavior of the KUKA LBR4+.

First, no torque was applied to the complete model of KUKA LBR4+, with 7 DOF.

After, some modifications were made to the robot model to observe its behavior with less

links.

The simulations were run with a sample time of T = 25 ms.
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5.1.1 Behavior of KUKA LBR4+ In the Absence of Torque

Using the dynamic model of the KUKA LBR4+ (see Appendix A), Equation (3.52) was

used to obtain the joints’ acceleration and then to obtain the joints’ velocities and positions

by integration:

q̈ [k + 1] = M−1 (q [k]) [τ −C (q [k] , q̇ [k]) q̇ [k]− g (q [k])− τ friction [k]] , (5.1)

q̇ [k + 1] = q̇ [k] + T q̈ [k + 1] ,

q [k + 1] = q [k] + T q̇ [k + 1] ,

where the torque τ is always zero and τ friction [k] = 0.01q̇ [k] is an added friction to make

the robot dissipate energy. The initial configuration was

q [0] =
[

0.3207 −2.2062 0.3014 0 0 0 0
]T

and both initial velocity and acceleration were zero.

When some friction is considered during the simulation, it is expected that the robot

moves until all the energy is dissipated. However, the manipulator moved while increasing

its velocity, until a very high velocity be obtained, as showed in Figure 5.1, which leads to

unstable behavior.

As shown in Chapter 2, there is an intrinsic problem to open kinematic serial chains,

which is the ill-conditioning of their inertia matrices. Indeed, as presented in Fig-

ure 5.3, the condition number of the robot’s inertia matrix M (q) is very high, reach-

ing values close to 15 × 103. This ill-conditioning explains the observed behavior. Al-

though the matrix M (q) is invertible, the Frobenius norm of M (q)−1 may be high(
e.g.

∥∥∥M (q [0])−1
∥∥∥
F

= 3.8901× 103
)
, which means that, when using Equation (5.1) to

simulate the robot, the joints’ accelerations are also very high, and thus its velocity, which

leads to an unstable behavior due to numerical ill-conditioning caused by the high condition

number of the inertia matrix, as observed.

5.1.2 Behavior of a Modified KUKA LBR4+ Under Zero Torque

In order to verify that the ill-conditioning of the inertia matrix was due to the difference

between the size and number of links (Featherstone, 2004), other two simulations were

run. The last joints of KUKA LBR4+ were locked in such a manner that the modified

robot would have less links than the original one, as shown in Figure 5.2.

For both simulations, Equation (5.1) was also used, with τ = 0 and τ friction = 0.01q̇.

The initial configuration for the 3-link robot was q3 [0] =
[

0.3207 −2.2062 0.3014
]T

,

while q5 [0] =
[

0.3207 −2.2062 0.3014 0 0
]T

was used for the 5-link robot. Both

initial velocity and acceleration were zero.
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Figure 5.1: Velocity of the robot’s joints. After 5 s, the velocity increases rapidly due
to numerical ill-conditioning caused by the high condition number of the inertia matrix.
Thus, the robot becomes unstable.
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(a) (b) (c)

Figure 5.2: Original KUKA LBR4+ and its modifications. (a) Original KUKA with 7
DOF. (b) KUKA with the last three joints locked, resulting in 5 DOF. (c) KUKA with
the last five joints locked, resulting in 3 DOF. The coupled links are highlighted by the
dashed rectangles.
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Figure 5.3: Condition number of the inertia matrix of KUKA LBR4+ (original and
modified) in logarithm scale. The condition number is very high, depending on the robot
configuration, which shows its ill-conditioning.
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Comparing the results of the robot with five and three links, the inertia matrix for

both cases were better conditioned than the KUKA LBR4+ (Figure 5.3), and that the

condition number of the robot with three links was even better than the one with five.

5.2 Simulation Results of Dynamic Joint-Space Con-

trollers

Since serial manipulators have an intrinsic problem that leads to the ill-conditioning of

the JSIM, it is important to choose a motion control law that mitigates the effects of this

problem. To evaluate the proposed technique and also to compare the motion control

laws described in section 4.3, three simulations were run with a seven-link KUKA LBR4+

robot (see Appendix A):

1. In the first simulation, a comparison between the behavior of the AC (Equations (4.46)

and (4.47)) and the ACM (Equations (4.46) and (4.51)) was made, concerning the

values of the estimated parameters;

2. in the second simulation, the effect of the sampling time was evaluated on the

parameter estimation in ACM;

3. last, the third simulation was performed in order to compare the ACM to both PID

and IDFL.

For the sake of simulation, two models were considered. The first one, given by Equa-

tion (3.52), does not consider the actuators’ model and was used as the nominal model.

The second one, given by Equation (3.53), explicitly takes into account the actuators’

model and was used as the “real” robot.

The simulation sampling time was 25 ms for simulations 1 and 3, whereas simulation

2 used different sampling times. The gain values for all control laws were KP = 9I7×7,

KD = 6I7×7, and KI = 0I7×7. For the adaptive controller, α = 1.5, L = 0.15I7×7,

β = 0.015, and âm (0) =
[
0.1 0.05 0.04 0.03 0.02 0.02 0.02

]T
was the initial esti-

mated parameters vector. The values of the gains, as well as the lower bound β, were

chosen empirically. The initial values for the estimated parameters were also chosen

empirically; however, it was taken into account the fact that the motors at the base of a

serial manipulator are usually larger and heavier than the ones closer to the end-effector,

and hence have larger inertia. Therefore, the first values of âm (0) are larger than the last

ones.

The robot’s initial and desired configurations were q (0) =
[
0 π/6 0 −5π/9 0 0 0

]T
and qd =

[
0 π/2 −π/2 −5π/9 0 0 0

]T
, respectively, as shown in Figure 5.4 and were

used in all simulations. In addition, the simulations were executed in 2000 iterations,
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Figure 5.4: Initial and desired configuration of KUKA LBR4+.

which was sufficient for all controllers, except for the IDFL, to achieve steady-state (i.e.,∥∥∥ ˙̃q
∥∥∥ ≤ 10−6).

5.2.1 Comparison of Estimated Parameters

The first comparison was done to asses the behavior of the AC (Equations (4.46) and (4.47))

and of the ACM (Equations (4.46) and (4.51)) concerning the values of the estimated

parameters.

Figure 5.5a shows that two estimated parameters in the AC have negative values, which

is undesirable because the estimated parameters should represent the joints’ inertia and

gear ratio; consequently they must have positive values. On the other hand, Figure 5.5b

shows that all estimated parameters in ACM have positive values, as the theory predicts,

which is consistent with the physical meaning of the estimated vector âm.

5.2.2 Discretization Effect in Parameters Updating

The discrete form of the algorithm (Equations (4.46) and (4.51)) is necessary when

implementing it in a digital computer. Therefore, the Euler integration was used to update

the parameters âi in Equation (4.51) according to

âm [k + 1] = âm [k] + ˙̂am [k]T,

where T is the sampling period. The value of λ is determined by the solution to the

equation

fi (âi [k + 1]) = fi (âi [k]− γiλ∇fi,âiT ) = 0, (5.2)
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eters are the diagonal elements of the matrix Mm.

Figure 5.5: Estimated parameters for the (a) AC, and for the (b) ACM.
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and indicates the value necessary to project the parameter onto the boundary of Ωi in one

step. From Equation (4.50) and (5.2), it is possible to find a expression for λ:

− (âi [k]− γiλ∇fi,âiT ) + β = 0,

which implies

λ = −âi [k] + β

γiT

since ∇fi,âi = −1.

Remark 5.1. If the sampling period T is not small enough, some estimated parameters may

become temporarily negative until the projection Equation (4.51) is applied in the next

step. However, in those situations the resultant matrix (M +Mm) can be temporarily

not positive definite, which can be overcome by increasing the value of β or decreasing the

sampling period.

Thus, a second simulation was performed using Equations (4.46) and (4.51) to evaluate

the effect of the sampling time on the parameter estimation in ACM. Figure 5.6 shows that

all estimated parameters are positive in steady-state, although for some values of β and

T the parameters can become negative in the transient state. For instance, if β = 10−3

and âm [0] =
[

0.05 0.05 0.05 0.05 0.05 0.05 0.05
]T

, some parameters can become

negative if the sampling time T is not small enough. However, there is a value T for which

all parameters are always positive, as shown in Figure 5.6.

5.2.3 Comparison Between Different Motion Controllers

Last, a third simulation was performed in order to compare the ACM to both PID and

IDFL. Figure 5.7 shows the error norm of all control laws. Although the error norm

decreases for all controllers, the IDFL presents an oscillatory behavior, takes longer to

reach the stability point, and exhibits a steady-state error. The PID controller presents a

smaller oscillation than the IDFL and reaches the equilibrium point faster and without

steady-state error, but the oscillation at the beginning is substantial. The ACM is smoother

than both the PID and the IDFL, and the equilibrium point is reached even before the

PID controller, also without steady-state error.

Figure 5.8 shows that, for the IDFL, the first four joints reached the desired config-

urations, but the fifth one took a long time to reach the desired set-point and the last

two did not even reach it. This is explained by the difference in the singular values of

the inertia matrix, as shown in Figure 5.9. Since the smallest values are almost zero, the

correction torques applied to the corresponding joints are much smaller than the dominant

one (i.e., the one corresponding to the largest singular value), hence the stationary error is
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Figure 5.6: Estimated parameters in ACM for four different sampling periods. For
T = 0.05 s there are two negative parameters, for T = 0.025 s there is one negative
parameter, and for T = 0.01 s and T=0.005 s all parameters are positive.
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Figure 5.7: Norm of the vector of joints error. The adaptive controller with positive
parameters (ACM) presents the smoothest decay among all compared controllers.

observed in those joints, as predicted by Shen & Featherstone (2003). Furthermore, the

first and fourth joints have slower time response and larger overshoot for the ACM when

compared to the PID controller, although the ACM has smoother overall error dynamics,

as previously discussed, and they both achieve steady state at approximately the same

time.

Besides the problem due to the difference in the singular values, the IDFL control

law has another problem. A perfect feedback linearization only occurs when the model

is identical to the real robot, which is not the case. In the simulated case, the model is

given by Equation (3.52) whilst the “real” robot is given by Equation (3.53). Although the

model is as close as possible to the real robot, uncertainties exist and lead to stationary

error in a steady-state.

Figure 5.10 shows that the condition number of the resultant inertia matrix (i.e.,

M (q) +Mm ) in the ACM is much smaller than the condition number of the inertia

matrix of the nominal model (i.e., M (q)), which implies that M (q) + Mm is better

conditioned than M (q). Without considering the estimated parameters, the condition

number of the JSIM is close to 8 × 103, whereas the condition number of the resultant

inertia matrix is close to 100. Although there is only a formal guarantee that the estimated

inertia matrix is always positive definite, Figure 5.10 indicates that the ACM is capable of

improving the conditioning of the robot inertia matrix.
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JSIM had a large condition number near the desired configuration).

Time [s]
0 10 20 30 40 50

S
in

g
u

la
r

v
a
lu

es

0

0.5

1

1.5

2

2.5

1
2
3
4

5
6
7

Figure 5.9: Singular values related to each robot’s joint during the simulation of the IDFL.

0 10 20 30 40 50

0

2000

4000

6000

8000

X: 1000

Y: 7677

X: 1000

Y: 100.5

C
o
n

d
it

io
n

n
u

m
b

er

Time [s]

M (q)

M (q) +Mm

Figure 5.10: Condition number of the nominal JSIM (M ) and of the resultant JSIM
(M (q) +Mm).



5.3. EXPERIMENTAL RESULTS OF DYNAMIC JOINT-SPACE CONTROLLERS 89

5.3 Experimental Results of Dynamic Joint-Space Con-

trollers

Despite good results obtained in simulation, the ACM has no formal guarantee that the

estimation of the inertia of the actuators improves the JSIM’s conditioning, differently from

the ACD. Therefore, we run experiments in a KUKA LWR4+ (BAZAR’s right arm) robot

manipulator using the ACD instead of the ACM to compare it with the other controllers.

Although the KUKA LWR4+ has no “torque control” mode available, it can be achieved

by using its joint impedance control mode, which is given by

τ ∗ = Kjq̃ + b (dj) + τ dynamics (q, q̇, q̈, g) + τFRI,

in which τ ∗ ∈ R7 are the command torques sent to the actuators, Kj ∈ R7×7 is a

diagonal matrix of stiffness parameters, b (dj) ∈ R7 is a vector relative to damping torques

parametrized by dj ∈ [0, 1]7, q̃ = qd − q ∈ R7 is the tracking error, τ dynamics ∈ R7 is the

embedded dynamic model, and τFRI ∈ R7 is the additional input torque sent to the robot

by the Fast Research Interface (FRI)4(Navarro, 2017). Making Kj = 0 and b (dj) = 0,

and choosing τ dynamics (q, q̇, q̈, g) to compensate for the gravity, the final torque sent to

the joints is τ ∗ = g (q) + τFRI, in which τFRI is the input control (Equations (4.57),(4.41),

or (4.46)) minus the gravity vector, that is, τFRI = u− g (q).
Since the KUKA LWR4+ provides measurements only of current joint angles, the joint

velocity and acceleration vectors were calculated by numerical differentiation (backward

differencing). Furthermore, to prevent chattering in the control signal due to noise increased

by the differentiation, a discrete first-order low-pass filter is implemented as

q̂[k] = αfilterq[k] + (1− αfilter)q̂[k − 1],

where q̂ ∈ R7 is the vector of filtered joints angles and αfilter ∈ [0, 1]. The value αfilter = 0.3
was used in the experiments and it was chosen empirically. In addition, to prevent the

wind-up effect, a saturation was imposed on the integral term in Equation (4.39), limiting

its value into the interval [−1, 1].
The experiments were run with a sampling time of 2 ms, and the gain matrices were

chosen empirically as KP = 100I7×7, KD = 20I7×7, and KI = 50I7×7, for all controllers

(IDFL, PID, ACD). For the adaptive controller, given by Equations (4.46) and (4.56), α =
0.5, βmin = σnM+∆σ and βmax = σ1M−∆σ, with ∆σ = (σnM + σ1M ) /10, and L = 0.1I7×7.

The initial estimated parameters were â (0) =
[

0.1 0.05 0.04 0.03 0.02 0.02 0.02
]T

,

and the robot dynamic model was obtained from (Katsumata et al., 2019) (see Appendix B).

As a way to verify if there is a significant difference between the performance of the

4available at http://cs.stanford.edu/people/tkr/fri/html/



90 CHAPTER 5. SIMULATION AND EXPERIMENTAL RESULTS

three controllers (Equations (4.57),(4.41), and (4.46)-(4.56)), statistical analyses were

performed, which consisted of:

1. analysis of the error in steady-state;

2. analysis of the control signal;

3. analysis of the difference between the desired error’s dynamics and the experimental

one.

5.3.1 Statistical Methodology

In the statistical analyses presented in the next sections, the following definitions are used:

� p-value, which is the lowest significance level that would lead to the rejection of the

null-hypothesis H0. This means that the null-hypothesis is rejected if and only if

the p-value is smaller than the significance level αanalysis, which is the probability of

occurrence of a false positive;

� power of the test, which is given by (1− βanalysis) , where βanalysis is the probability

of occurrence of a false negative;

� minimally interesting effect, which is the smallest difference between the controllers

we are interested in detecting, regarding each one of the analyses 1, 2 and 3.

The null-hypothesis we want to verify is if the controllers are statistically equivalent (by

comparing their population distribution means) concerning the control signal effort and

especially the error decay. A false negative is a result that indicates the controllers are

statistically equivalent when they are not. A false positive occurs when the null-hypothesis

is rejected even if it is true. All statistical analyses are made in R (Peng, 2016).

To perform statistical analysis, we used two types of tests. The first one, the Kruskal-

Wallis test (Hollander et al., 1999), is a nonparametric statistical test that assesses the

differences among three or more independently sampled groups on a single, non-normally

distributed variable. In this test, the null hypothesis and the alternative one are defined as

H0 : κ1 = · · · = κk,

H1 : κ1, . . . , κk not all equal,

where κi are the effects, that is, a unique parameter to the population distribution, such

as the average, maximum value, etc. If this test shows a difference among the groups,

which means that the null hypothesis is rejected, the Pairwise Wilcoxon Rank Sum Test

(Hollander et al., 1999) is run, which calculates pairwise comparisons between the different
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Table 5.1: Minimally interesting effect for each analysis.

Error in steady-state Control signal Error discrepancy
δ‖q̃‖ = 0.05 δµ‖u‖ = 5 δµ‖e−q̃‖ = 0.05

δmax(‖u‖) = 50 δmax(‖e−q̃‖) = 0.9

Figure 5.11: Initial configurations for the KUKA LWR4+ (right arm).

types of controllers, with corrections for multiple testing (necessary to keep the overall

false positive rate controlled at a given level), to see which pairs of groups are different.

The desired characteristics for the analyses were chosen as:

� significance level of αanalysis = 0.01;

� power of 0.85;

� and the minimally interesting effect as shown in Table table 5.1, where δ‖q̃‖,δµ‖.‖ ,

and δmax(‖.‖) are, respectively, the norm of the steady-state error, the mean and the

maximum values of the control signal and the difference between the desired error’s

dynamics and the experimental one.

Because the number of samples necessary to run the statistical analysis is based on

the variance of the data, which was unknown a priori, each of the three controllers was

initially run 30 times. In order to generate these 30 pairs of initial/final configurations,

three different initial configurations (Figure 5.11) were arbitrarily chosen and, for each

initial configuration q0, ten desired joint positions were generated by a normal distribution

N (q0, 0.5). We calculated the variance of the runs for each type of analysis described in

Table 5.1. For each analysis, the number of samples were calculated using the Power Anova

Test, available in R, considering the calculated variance, the desired chosen parameters,

the number of controllers to be compared (three), and the between group variance, that is

calculated as

σ2
between = Var

([
δ
3

δ
3 −

2δ
3

])
,

where δ is the minimally interesting effect of Table 5.1. The results were values lower than

30, so the analyses were made with the 30 samples already collected.
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Figure 5.12: Error norm for each controller (a) for one execution and (b) boxplot for all
executions, but considering only the steady-state.

Table 5.2: Pairwise comparisons for the error norm, using the Wilcoxon rank sum test.

IDFL PID
PID 4.5× 10−11 -
ACD 4.5× 10−11 0.70

5.3.2 Statistical Analysis of the Steady-State Error

Figure 5.12a shows the error norm for one execution of each controller. The IDFL has a

much larger steady-state error norm than the other controllers, whereas the PID and the

ACD have similar behavior. This is corroborated by the boxplot in Figure 5.12b, which

shows that the IDFL presented the worst performance since all values are larger than the

ones for the other controllers. On the other hand, the results for the PID and the ACD

were quite the same and there was no significant difference in the box plot. To further

analyze if there was any relevant difference between the controllers, we first performed the

Kruskal-Wallis test, as the data turned out to be not normally distributed, which resulted

in p-value = 1.256 × 10−13 < αanalysis, indicating that the null hypothesis was rejected,

confirming that at least one controller had different performance than the others. To see

which pair of controllers are different, the Wilcoxon test was performed and the result is

shown in Table 5.2. When compared to all other controllers, the values for the IDFL are

the only ones smaller than αanalysis, indicating that it is the only controller with different

performance among the three controllers. Therefore, the PID and the ACD are equivalent

with respect to the error norm.

5.3.3 Statistical Analysis of the Control Signal

We first analyze the control effort of each controller, which is given by
√∫ tend

0 ‖u (t)‖2 dt,

with tend = 14 s. According to Figure 5.13a, the IDFL presented the largest effort, but the

difference to the other controllers was not so large as in the error norm. The resultant



5.3. EXPERIMENTAL RESULTS OF DYNAMIC JOINT-SPACE CONTROLLERS 93

IDFL PID ACD

4
0
0

8
0
0

√ ∫ t
en

d
0

‖u
‖2
d
t

(a)

IDFL PID ACD

8
0

1
0
0

1
2
0

m
ax
t

(‖
u

(t
)‖

)

(b)

IDFL PID ACD

2
.5

3
.5

4
.5

µ
t

(‖
u

(t
)‖

)

(c)

Figure 5.13: Boxplot of the (a) control effort, (b) maximum control signal, and (c) mean
control signal for each controller.

Table 5.3: Pairwise comparisons for the control effort and maximum control signal using
the Wilcoxon rank sum test.

Control effort Maximum control signal
IDFL PID IDFL PID

PID 3.90× 10−3 - 2.40× 10−4 -
ACD 3.90× 10−3 7.17× 10−1 5.48× 10−3 3.50× 10−2

p-value from the Kruskal-Wallis test was 0.001887, which is smaller than αanalysis, indicating

the rejection of the null hypothesis at a significant level of 0.01. Table 5.3 shows that,

again, the IDFL was the only one to present a significant difference with respect to all

other controllers, regarding the control effort, when compared two-by-two by using the

Wilcoxon rank sum test.

Regarding the maximum value of the norm of the control signal (maxt (‖u(t)‖)), Figure

5.13b shows that the IDFL had the largest median, followed by the ACD, and then

the PID. Since the Kruskal-Wallis test indicated the rejection of the null hypothesis

(p-value = 9.504 × 10−5) we performed the Wilcoxon rank sum test to compare all

controllers pairwise, which is summarized in Table 5.3. The only controller that has a

different performance from the others is, again, the IDFL.

A similar analysis was done for the mean value of the norm of the control signal

(µt (‖u(t)‖)). Figure 5.13c shows that the IDFL has the largest median value, followed

by the PID, and then the ACD. Notwithstanding, the values are statistically equivalent,

which is confirmed by the Kruskal-Wallis test (p-value = 0.397 > αanalysis).

5.3.4 Statistical Analysis of the Error Dynamics

Lastly, in order to see how different is the experimental result from the theoretical

design regarding the error dynamics, we compared the integral of the difference be-

tween the theoretical error5 e(t) and the measured error q̃(t), during the motion, namely

5The variable e (t) is the solution to the differential equation ¨̃q +KD ˙̃q +KP q̃ +KI

∫ t
0 q̃(t)dt = 0.
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Figure 5.14: Boxplot of the (a) integral of the difference between the theoretical error and
the experimental one along the motion, (b) maximum value of this difference, and (c) its
mean for each controller, where ē = e(t)− q̃(t).

√∫ tend
0 ‖e(t)− q̃(t)‖2 dt. We also analyzed the maximum difference, maxt (‖e(t)− q̃(t)‖),

and the mean value, µt (‖e(t)− q̃(t)‖). Figure 5.14 shows the boxplots for each one of the

aforementioned metrics. For the maximum value, all controllers are statistically equivalent

(p-value = 0.9605 obtained with the Kruskal-Wallis test). However, regarding the integral

of the difference between the desired and actual error dynamics and its mean value, the

Kruskal-Wallis test pointed differences between the controllers (p-value was 2.44× 10−13

and 1.22× 10−13 for the integration and mean value, respectively). The IDFL presented

again the worst result and the performances of the other controllers were very similar

between them, as corroborated by Table 5.4, which shows the results of the Wilcoxon test.

5.3.5 Improvement of JSIM Conditioning

In order to show that the adaptation law of the ACD always improves the condition

number of the inertia matrix, Figure 5.15 presents the condition number of the JSIM

(cond (M )) for the IDFL, and the condition of the resultant matrix (cond
(
M + D̄

)
) for

the ACD, for one of the 30 executions. Since the worse the conditioning is, the larger is the
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Table 5.4: Pairwise comparisons for the integral of the difference between the theoretical
error and the experimental one along the whole motion and its mean value using the
Wilcoxon rank sum test.

Integration Mean
IDFL PID IDFL PID

PID 7.5× 10−11 - 4.5× 10−11 -
ACD 7.5× 10−11 0.73 4.5× 10−11 0.59
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Figure 5.15: Condition number of the nominal M for the IDFL and the ACD, and of the
resultant matrix M + D̄, for one execution.

condition number, it is possible to see, from Figure 5.15, that the conditioning of M + D̄
was always better than the conditioning of the nominal inertia matrix M . Furthermore,

since the trajectories generated by the ACD may be different from the ones generated

by the IDFL, Figure 5.15 also shows the condition number of the nominal M , where the

nominal inertia matrix was calculated by using the actual joints configurations for the

trajectories generated by the ACD. The result shown in Figure 5.15 was also observed in

all the 30 executions for each controller.

5.4 Experimental Results of Dynamic Task-Space Con-

trollers

The previous sections showed the results of the dynamic controllers in joint-space. However,

most of the tasks are defined in the task-space. Moreover, considering manipulation tasks

subject to contacts, and considering the aim to guarantee safety, it is important to put

together the admittance controller and the dynamic controllers. With this aim, we compare

here the behavior of the three task-space dynamic controllers shown in section 4.3.2 together

with the admittance controller of Equation (4.2). This situation is depicted in Figure

4.1, where the motion controller is each of the three task-space dynamic controllers of

section 4.3.2.

Similar to the last experiments, since the KUKA LWR4+ API used provides only the

current joint angle, the velocity was calculated by numerical differentiation (backward
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differencing). In addition, to prevent the wind-up effect, saturation was imposed on the

integral term in Equation (4.59), limiting the value for the first four coefficients into the

interval [−1, 1] while the last four coefficients were limited into the interval [−0.06, 0.06].
These intervals were chosen empirically.

The experiments were run with a sampling time of 5 ms. The parameters of the

adaptive controller, given by Equations (4.46) and (4.56), were α = 0.5, βmin = σnM + ∆σ
and βmax = σ1M − ∆σ, with ∆σ = (σnM + σ1M ) /10, and L = 0.1I7×7. The initial

estimated parameters were â (0) =
[

0.1 0.05 0.04 0.03 0.02 0.02 0.02
]T

, and the

robot dynamic model was obtained from Katsumata et al. (2019) (See Appendix B). For

the outer-loop, the matrices in Equation (4.2) were chosen empirically as M d = 1.5I6×6,

Bd = 300I6×6, and Kd = 100I6×6. The Equation (4.2) was chosen over the Equation

(4.20) because the former is simpler and, for the tasks executed, presents similar results as

the latter, as seen in section 5.4.4.

5.4.1 Choice of Gain Matrices

Since manipulation tasks are typically described in the task-space, that is, in terms of

physical entities related to the end-effector (e.g., pose, wrench, twist), task-space motion

controllers are more appropriate than joint-space motion controllers because no explicit

inverse kinematics is required. However, the choice of gains for a task-space motion

controller, when based on the transpose of the Jacobian matrix, as in Equation (4.61), is

not straightforward, because the closed-loop response tends to be very abrupt for large

errors and extremely slow for small errors (Pham et al., 2018). Therefore, a variable gain

matrix is desirable to ensure a more uniform behavior.

Since there is a relationship between the task-space and the joint-space closed-loop gains

(Pham et al., 2018), one strategy is to define the desired dynamic behavior in joint-space

(e.g., exponential decay) and use that relationship to ensure a similar performance in the

task-space, regardless if the transpose of the Jacobian matrix is used, as in Equation (4.61),

or if the pseudoinverse of the Jacobian matrix is used, as in Equations (4.58) and (4.60).

When using the latter, this transformation is given by

K = J+KqJ , (5.3)

whereas when using the former, the relation is given by

K = J+TKqJ
+, (5.4)

where K and Kq are the task-space and joint-space gain matrices, respectively (Pham
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et al., 2018).

Suppose we consider the desired equivalent joint-space error dynamics as

¨̃q +KDq
˙̃q +KPq q̃ = 0, (5.5)

where q̃ is the joint-space error andKDq = diag
(
kDq1 , . . . , kDqn

)
andKPq = diag

(
kPq1 , . . . , kPqn

)
are the derivative and proportional positive-definite joint-space gain matrices, respectively.

Since the gain matrices are diagonal, the desired equivalent closed-loop system is uncoupled

with n independent characteristic equations such as

ri
2 + kDqiri + kPqi = 0,

for all i ∈ {1, . . . , n}, with two roots given by

ri1,2 =
−kDqi ±

√
k2
Dqi
− 4kPqi

2 .

If k2
Dqi

= 4kPqi , then ri1 = ri2 = −kDqi/2 and thus the solution to Equation (5.5) is given

by

q̃i (t) = ci1e
rit + ci2te

rit,

with ci1 , ci2 ∈ R. Hence, the error decreases exponentially.

Thus, we have chosen the equivalent joint-space gains as KDq = 10I7×7 and KPq =
25I7×7, for all torque controllers, which satisfy the relation k2

Dqi
= 4kPqi , for all i ∈

{1, . . . , n} and the integral gain has been chosen empirically as KIq = 10I7×7. Conse-

quently, as we wish a dynamic behavior equivalent to Equation (5.5), the gains KP ,

KI , and KD for the controllers of Equations (4.57)-(4.59) and (4.60) are found by using

the transformation of Equation (5.3). Similarly, the equivalent task-space gains for the

controller given by Equations (4.46)- and (4.56) are found according to the transformation

given by Equation (5.4).

5.4.2 Experiments with an External Wrench

We performed experiments with an external wrench acting at the robot end-effector

to show that the robot behaves compliantly, and also to compare its behavior when

different inner motion controllers are used, namely the TIDFL (Equation (4.57)), the

TPID (Equation (4.60)), and the TAC (Equation (4.61)). Consider xc (0) = xd (0) = x (0),
where x (0) is the initial robot end-effector pose and the robot initial configuration

q(0) =
[
0 0.5 π/2 −π/2 0 0 0

]T
is shown in Figure 5.16a. At the beginning, an
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(a) t = 0 s (b) t = 2 s (c) t = 14 s

(d) t = 18 s (e) t = 20 s (f) t = 32 s

Figure 5.16: Snapshots of the experiment with an object exerting a wrench at the end-
effector. In the first row, the object is on the end-effector, which moves complacently due
to the gravitational force. In the second row, the object is removed and the end-effector
returns to the desired pose.

object with mass of 0.44kg was placed onto the end-effector, which moved complacently

due to the gravitational force exerted on the object. To ensure the desired apparent

impedance, the compliant reference pose xc deviated from xd but the inner-loop controller

ensured the end-effector tracking of the trajectory given by xc (t). After 35 s the object was

removed and because there was no external wrench acting at the end-effector, it returned

to the desired pose, as shown in the snapshots of Figure 5.16.

The external wrench for all three controllers are shown in Figure 5.17. The larger force

in the z-axis, close to −4.5 N, corresponds to the force exerted by the object due to gravity.

Because the end-effector moves slightly differently depending on the controller used in the

inner-loop, the measured wrenches are different for each one of them.

Given the DQ of the current end-effector pose x, the compliant pose xc, and the

desired pose xd, the corresponding axis-angle and translation components (e.g., φn =
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Figure 5.17: External wrench acting at the end-effector.

φnxı̂+φny ̂+φnzk̂ and p = pxı̂+py ̂+pzk̂) are shown in Figure 5.18, for all three controllers.

(Given x, the axis-angle and translation information are obtained as 2 logx = nφ+εp—the

same is done for xc and xd.) As predicted by the theory, the compliant trajectory is

different from the desired one when a wrench acts at the end-effector.

By inspection, the TIDFL controller performed worst as the current end-effector pose,

and especially the translational component, did not track xc as well as the other two

controllers. The error norm for all controllers is shown in Figure 5.19 and indicates that

the TIDFL had a larger error norm during the whole experiment, which corroborates the

worst behavior in Figure 5.18.

Similar to Figure 5.15 at section 5.3.5, Figure 5.20 shows that the conditioning of

M + D̄ is always better than the conditioning of M , but in this case for the task-space

controller.

5.4.3 Experiments in Free-Motion

The analysis of the movement under an external wrench is limited since it requires the

same applied wrench for all compared controllers, which is difficult to achieve, as illustrated

in Figure 5.17. Therefore, deeper analyses were made in free-motion, with the outer-loop

controller being the same in all experiments, given by Equation (4.20).

As a way to see if there is a significant difference between the performance of the

three controllers in the inner-loop—namely, Equations (4.57), (4.60), and (4.46)-(4.56)—,

statistical analyses were performed, which consisted of:

1. analysis of the error;
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Figure 5.18: Coefficients of 2 logx, 2 logxc, and 2 logxd, indicating the rotation around
the axes x, y, and z (first row), and the translation along each axis (second row).
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Table 5.5: Minimally interesting effect for each analysis.

Error discrepancy Control signal of inner-loop
δ∫ d = 15 δ∫ ‖u‖ = 50
δµ(d) = 0.03 δµ(‖u‖) = 1
δmax(d) = 0.04 δmax(‖u‖) = 20

2. analysis of the control signal.

5.4.3.1 Statistical Methodology

In order to compare each controller and identify which one presents the best performance,

we performed three t-tests, all against all, for each analyses 1 and 2. The desired power

for the analyses were chosen equal to the analyses shown in section 5.3.1. However,

since the previous experiments resulted in p-values much bigger or much smaller than

αanalysis, we decided to relax the tests and increase the value of the significance level

to αanalysis = 0.05, which would not change the results of the statistical analyses. The

minimally interesting effect were chosen as described in Table 5.5, where δ∫ ,δµ,δmax are,

respectively, the minimally interesting effect for the total, the mean, and the maximum

values of the error discrepancy and the control signal.

Similarly to the previous analyses, each of the three controllers was initially run 30

times. Given an initial pose x (0) = xc (0) 6= xd, different desired poses were generated

randomly, but being the same for each controller to allow a fair comparison. Thus, to

generate these 30 pairs of initial/final poses, first, three different initial configurations q0

were arbitrarily chosen and, for each one, ten desired joint configurations were generated

according to a normal distribution N (q0, 0.5), and the initial and desired end-effector

poses were found using the robot forward kinematics.

After using the Fligner-Killeen Test of homogeneity of variances (Crawley, 2007) in the

collected data, we concluded that the variances for all the controllers were not the same,
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Table 5.6: Fligner-Killeen test of homogeneity of variances.

p-values for the error discrepancy p-values for the control signal∫
d 5.15×10−13 ∫

‖u‖ 0.88
µ (d) 1.32×10−13 µ (‖u‖) 0.58
max (d) 5.73×10−11 max (‖u‖) 2.67×10−12

since the p-values for each analysis are very small, as shown in Table 5.6, except for the

control effort and the mean value of the control signal. Therefore, the null-hypothesis that

the variances are equal is false and thus Student’s t-test is not adequate.

Hence, we used the Welch Two Sample t-test, which is a modification of the Student’s

t-test used when the variance is not equal among all the populations. In this test, the null

hypothesis and the alternative one are defined as (Montgomery, 2001)

H0 : µ1 = µ2,

H1 : µ1 6= µ2.

where µ1 and µ2 are the population distribution means.

Considering the comparison for each pair of controllers, resulting in three Welch Two

Sample t-tests, the computation of the number of samples was done using the mean value

of the standard deviation of all three controllers results and the significance level adjusted

for three comparisons, according to the Bonferroni correction for the value of αanalysis, that

is, (Montgomery, 2001)

αadj = αanalysis

K
= 0.0167,

where K = a (a− 1) /2, with a being the number of controllers, which in our case is 3.

Finally, the number of samples was calculated using the two-sample t-test power calculation

available in R, resulting in a value lower than 30. Hence, the analyses were made with the

30 samples already collected.

5.4.3.2 Statistical Analyses of the Error

Given a discrepancy function defined as d (t) , ‖vec8 xe (t)‖, with xe (t) , x (t)− xc (t),
the first analysis concerns the total discrepancy, given by

√∫ tend
0 d (t)2 dt, for tend = 75 s.

Figure 5.21a shows the boxplot of the total discrepancy, in which the TIDFL presents the

largest value compared to the other controllers. The TPID and the TAC present similar

values, although the error for the TAC is slightly larger. The same is observed for the

mean value (Figure 5.21b) and maximum discrepancy values (Figure 5.21c).

The p-values for all the comparisons are described in Table 5.7, in which bold values

mean that the p-values were smaller than the adjusted significance level αadj = 0.0167,
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Figure 5.21: Error discrepancy: (a) integral of the discrepancy function along the motion,
(b) mean value of the function, and (c) its maximum.

Table 5.7: p-values for the Welch t-test all against all, regarding the error discrepancy.

Total discrepancy Mean value Max. value
TIDFL TPID TIDFL TPID TIDFL TPID

TIDFL - 1.80×10−9 - 1.41×10−9 - 9.60×10−10

TAC 2.05×10−9 0.15 1.50×10−9 0.28 2.13×10−9 0.07

indicating that the null-hypothesis is rejected; that is, the difference in performance is

statistically significant in these cases. Therefore, both TPID and TAC had different

performances when compared to TIDFL. However, when comparing the TPID to the TAC,

the p-values were larger than αadj for all criteria, which means that there is no statistically

significant difference between TPID and TAC with respect to trajectory tracking.

We conclude that the TPID and the TAC are statistically equivalent since the null-

hypotheses are not rejected when those two controllers are compared, as shown in Table 5.7.

Moreover, both controllers presented a better performance than the TIDFL, which is

indicated by the large discrepancy values for the later, as shown in Figure 5.21, and by the

rejection of the null-hypotheses when comparing all controllers versus the TIDFL. These

results corroborate the work of Shen and Featherstone (Shen & Featherstone, 2003) and

our previous experiments, in which the controller that uses the nominal JSIM has a poor

behavior regarding the error dynamics.

In the TIDFL, the control input for the linearized task-space dynamics, ax (Equa-

tion (4.59)), is mapped to the joint-space through Equation (4.39) and then multiplied by

the JSIM. Therefore, the torque applied to some joints may be attenuated if the inertia

along these joints is very small, which may explain the poor closed-loop response when

using the TIDFL. For the TPID and TAC, ax is mapped to the joint space without being

multiplied by the JSIM, and therefore the control signal is not weakened, enhancing the

closed-loop error dynamics.
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Figure 5.22: Inner-loop control signal: (a) control effort throughout the motion, (b) mean,
and (c) its maximum value.

5.4.3.3 Statistical Analyses of the Control Signal

Similar analyses were done for the control signal u (t) of the inner-loop controllers, where

we evaluated the control effort given by
√∫ tend

0 ‖u (t)‖2 dt , for tend = 75 s.
Figure 5.22a shows that the TAC presented the largest value, followed by the TPID

and then the TIDFL. However, the TIDFL presented an outlier that is the largest value of

all controllers. Figure 5.22b indicates similar values for the mean value of ‖u (t)‖ for both

TPID and TAC, but smaller values for the TIDFL, although the difference was not so

significant as for the error discrepancy. Regarding the maximum value of ‖u (t)‖, shown

in Figure 5.22c, the TPID presented the smallest median, although the largest variation,

followed by the TAC and then the TIDFL.

Again, since the TIDFL generates a low-level control input that is multiplied by the

JSIM, the control signal may be attenuated for some joints, which does not happen for the

TPID and the TAC. This may explain the larger control signals generated by both TPID

and TAC than the ones generated by the TIDFL, as observed in Figures 5.22a-5.22b.

Regarding Figure 5.22c, the largest variation of the maximum value of the control

signal for the TPID may be related to the absence of the JSIM in the control law. More

specifically, the controller generates the control signal by using only partial information

about the robot’s dynamic behavior, which may explain a larger variance of the maximum

value for the control input throughout the configuration space.

Table 5.8 shows the comparisons regarding the control signal of the inner motion

controllers, in which bold values indicate that the p-values were smaller than the adjusted

significance level αadj = 0.0167. When the maximum control signal is considered, all

null-hypotheses were rejected, which means that there is a statistical difference between all

controllers. On the other hand, in terms of the mean value, there is no significant difference

between the TPID and the TAC. Lastly, when the total discrepancy is considered, there is

a statistical difference only between the TIDFL and the TAC. These results indicate that,

although the error discrepancy is the worst for the TIDFL, the same cannot be said about

the control signal. Indeed, Figures 5.22a and 5.22b suggest that, in general, the TIDFL
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Table 5.8: p-values for the Welch t-test all against all, regarding the control signal.

Control effort Mean value Max. value
TIDFL TPID TIDFL TPID TIDFL TPID

TIDFL - 0.06 - 7.19×10−4 - 2.53×10−8

TAC 6.20×10−4 0.05 5.56×10−5 0.30 5.19×10−5 4.65×10−5
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Figure 5.23: Error discrepancy: (a) total discrepancy, (b) maximum value, and (c) mean.

generates smaller control signals. This can be related to the use of the JSIM in the control

law, which attenuates the control signal along joints that have smaller equivalent inertia.

5.4.4 Comparison Between Admittance Controllers

In the previous experiment, the proposed admittance controller using only the logarithmic

mapping of the DQ displacement xcd (ACLogOnly), given by Equation (4.2), was used.

We also performed experiments with the proposed task-space adaptive controller with the

ACLog. The impedance matrices used for these experiments were the same of the previous

one, that is, M d = 1.5I6×6, Bd = 300I6×6, and Kp = Kφ = 100I3×3.

We compared the two proposed admittance controllers, and the results are shown

in Figures 5.23-5.25. The values of all boxplots show that both admittance controllers’

behaviors were very similar, since the error discrepancy was very similar for both controllers,

as well as the control signal. This result was corroborated by the Pairwise Wilcoxon Rank

Sum Test, in which the p-values were all larger than the significance level αanalysis = 0.05,

as described in Table 5.9.

Although the ACLogOnly does not have a physical meaning, for the experiments done,

its behavior is satisfactory and equivalent to the ACLog.

Table 5.9: p-values of the Wilcoxon Rank Sum Test, for comparison between the ACLogOnly
and ACLog.

Total Max. value Mean value
Error Discrepancy 0.9824 1 0.9824
Outer-Loop Control signal 0.9474 0.9474 0.8776
Inner-Loop Control signal 0.328 0.5096 0.4492
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ẍ
c

(t
)‖

)

(b)

ACLog ACLogOnly

0
.0

0
2

0
.0

0
6

µ
t

(‖
ẍ
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Figure 5.24: Outer-loop control signal: (a) control effort, (b) maximum value, and (c)
mean.
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Figure 5.25: Inner-loop control signal: (a) control effort, (b) maximum value, and (c)
mean.

5.5 Simulation and Experiments with Physically Mean-

ingful Admittance Controller

An improvement of the controller of Equation (4.2) is the Equation (4.20), which have a

physical meaning. Thus, more elaborated simulations and experiments were performed

with this improved controller. First, a simulation to show the unwinding phenomenon;

then, experiments with and without an external wrench acting on the robot end-effector.

Moreover, statistical analyses were performed to compare this controller with one of the

state-of-art controllers given by Equation (D.1).

For the following simulations and experiments, the architecture illustrated in Figure

4.1 is used, which consists of the admittance controller given by Equation (4.20) in the

outer-loop and the kinematic controller Equation (4.37) in the inner-loop. The experiments

were run on the KUKA LWR4+ (see Appendix B) robot manipulator with a force/torque

sensor located at its end-effector. Since the KUKA LWR4+ is actuated in position, the

control input of Equation (4.37) is numerically integrated twice, using Newton’s first-order

approximation, to obtain velocity and position signals. Moreover, to prevent reaching

the joints maximum velocities, they were saturated in 0.2 rad/s. For all simulations and

experiments, unless explicitly said otherwise, the matrices in Equation (4.20) were chosen

as M d = 1.5I6×6, Bd = 300I6×6, Kp = 80I3×3, and Kφ = 80I3×3, whereas in Equation

(4.37) they were chosen as KP = 25I6×6, KD = 10I6×6, and kdis = 1.
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Figure 5.26: Simulation of a free-flying rigid body under the unwinding phenomenon (a
and c), and path using solution Equation (4.24) (b and d).

5.5.1 Simulation of Unwinding

We performed a simulation of a free-flying rigid body to show that, when using Equa-

tion (4.20) together with Equation (4.24), the end-effector follows the smallest spatial

distance towards the desired pose, whereas without considering Equation (4.24), the

end-effector performs an unnecessary rotation. Figure 5.26 shows the simulation for two

different initial displacements between xc and xd, namely xcd1 and xcd2 . In the first case,

(Figures 5.26a-5.26b), xcd1 = cos (π + 0.1) + k̂ sin (π + 0.1) is closer to −1 than to 1. Thus,

without using Equation (4.24), the body executes a rotation of almost 2π to reach the

desired pose (Figure 5.26a) whereas when considering Equation (4.24), the rotation is much

smaller (Figure 5.26b). In the second case (Figures 5.26c-5.26d), xcd2 = −1− ε (1/2) 0.3ı̂ is

closer to −1 than to 1 and consists of a pure translation. In this case, without the solution

for the unwinding problem, the body executes a rotation of 2π, whereas with the solution

it only translates, while keeping its orientation.

5.5.2 Experimental Setup

Similar to the previous experiment, consider xc(0) = xd(0) , x (0). When an external

contact wrench acts on the end-effector, the reference pose xc becomes different from xd to

ensure the desired apparent impedance, and the end-effector follows the trajectory given

by xc(t) . This situation is illustrated in the movement from 1 to 2 in Figure 5.27. When

the contact is released, xc (and consequently x) returns to the desired pose xd, thanks to

the dynamics determined by the admittance controller, as illustrated by movement from 2

to 3 in Figure 5.27.

Two different experiments were performed: first, an external wrench acts on the end-

effector (first part of Figure 5.27); second, the robot performs a free motion (second part

of Figure 5.27).

The following analyses were made to compare our proposed controller (Equation (4.19)),

named ACLog, with one of the main admittance controllers in the state of art, given by

Equation (D.1), named here as ACIm (see Appendix D). The inner-loop controller was the

same for both cases and both admittance controllers, being the second-order kinematic

controller Equation (4.37).
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Figure 5.27: The experiments are divided in two parts: from 1 to 2, where a wrench is
applied to the end-effector, which makes xc be different from a constant xd; and from 2 to
3, where the controllers are applied in free-motion, such that xc returns to xd.

5.5.3 Experiments with an External Wrench

To apply a wrench at the end-effector, a person pushed the manipulator, which moved

complacently, as shown in the snapshots of Figure 5.28. The translation and orientation

of the current end-effector pose x, the reference pose xc, and the desired pose xd are

shown in Figure 5.29a, for both controllers. Since the force is exerted by a human, it is

not exactly the same for the two controllers, as shown in Figure 5.29b. However, both

controllers generated a reference trajectory xc different from xd, as expected, to ensure a

compliant behavior according to the desired impedance, and this trajectory was followed

by the end-effector, thanks to the inner-loop controller. Moreover, the results showed a

control signal u with similar magnitude for both controllers, as depicted in Figure 5.29c.

Another experiment was executed in which an object with mass of 0.74kg was placed

onto the end-effector, and removed after some seconds. For this experiment, the impedance

matrices were chosen empirically as M d = 1.5I6×6, Bd = 200I6×6, Kp = 20I3×3, and

Kφ = 20I3×3, and the kinematic controller gains were KP = 25I6×6, KD = 10I6×6, and

kdis = 1. The results are shown in Figure 5.30. Although in this case the wrench is due

to an object, it was placed onto and removed from the end-effector by a human, which

also inserts uncertainties to the contact wrench, as observed in Figure 5.30b, in which

the wrenches of each execution are not exactly the same. Despite this difference, both

controllers produced a compliant trajectory xc different from the desired one xd when the

end-effector is under a contact wrench. After about 30 s the object is removed and thus the

trajectory xc tends to the desired one xd for both controllers. The current end-effector pose

follows the compliant one in all situations, thanks to the inner-loop kinematic controller.
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Figure 5.28: The person pushes the robot, exerting a wrench at the end-effector, and the
robot moves complacently according to the wrench measured by the force/torque sensor.

5.5.4 Experiments in Free-Motion

Since the experiment of pHRI with a contact wrench is limited for comparison, as it is

more susceptible to variations in the interaction wrench, deeper analyses were made in the

second part of the movement, that is, when there is no wrench acting on the end-effector.

As a way to see if there is a significant difference between the performance of the two

controllers (Equation (4.19) and Equation (D.1)), statistical analyses were performed

considering

1. the difference between the desired error dynamics and the experimental one;

2. the control signal regarding the admittance controller;

3. the control signal regarding the kinematic controller.

Given an initial pose, different desired poses are generated randomly and each generated

pose is the same for each controller to allow for a fair comparison.

5.5.4.1 Statistical Methodology

For this case, we used the Wilcoxon Rank Sum Test (Hollander et al., 1999). The power

and the significance level were the same as section 5.4.3.1, and the minimally interesting

effects as shown in Table 5.10. Similarly to the previous analyses, each controller was run

30 times. With the variance of the collected data for each analyses 1, 2, and 3, for each

controller, the the desired parameters chosen, the number of samples was calculated using
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Figure 5.29: Results for the experiment in which a contact wrench acts on the robot
end-effector. (a) Position and orientation of current, reference, and desired poses, (b)
exerted wrench at the end-effector, and (c) control signal u, for each controller.
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Figure 5.30: Results for the experiment in which a contact wrench acts on the robot
end-effector as a result of the interaction with an object. (a) Position and orientation of
current, reference, and desired poses and (b) exerted wrench at the end-effector.
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Table 5.10: Minimally interesting effect, for each comparison.

Error discrepancy Control signal of outer-loop Control signal of inner-loop
δ∫ ẽ = 20 δ∫ ‖ẍc‖ = 10 δ∫ ‖u‖ = 25
δµẽ = 0.01 δµ‖ẍc‖ = 0.01 δµ‖u‖ = 0.1
δmax(ẽ) = 0.02 δmax(‖ẍc‖) = 10 δmax(‖u‖) = 25

Table 5.11: p-values for the Wilcoxon Rank Sum Test.

Discrepancy Outer control signal Inner control signal∫
ẽ 1.67× 10−12 ∫

ẍc 0.328
∫
u 0.7412

µ (ẽ) 5.99× 10e−13 µ (ẍc) 0.3817 µ (u) 0.8776
max (ẽ) 2.75× 10−9 max (ẍc) 0.328 max (u) 0.7191

the two-sample t-test power calculation available in R6, resulting in a value lower than 30

for all cases. Hence, the analyses were made with the 30 samples already collected.

5.5.4.2 Statistical Analyses of the Error Dynamics

We first analyzed the difference between the desired and the actual error norm decay. More

specifically, the error is given by e , 2 vec6 (logxcd) =
[
(vec3 (nccdφcd))

T (vec3 p
c
cd)

T
]T

, and

the desired error dynamics ed(t) is given by the solution of the equation M dë +Bdė +
Kde = 0, with Kd = diag(Kφ,Kp). Therefore, given a discrepancy function defined

as ẽ (t) ,
∥∥∥‖ed (t)‖ − ‖e (t)‖

∥∥∥,7 the first analysis concerns the total discrepancy, given

by
√∫ tend

0 ẽ (t)2 dt, for tend = 35 s, along the trajectory. Figure 5.31 shows that the total

discrepancy is very small for the ACLog, but this difference presents larger values for the

ACIm. The same is observed for the maximum value maxt (‖ẽ (t)‖) of the discrepancy

function (Figure 5.31a) and its mean value µt (‖ẽ (t)‖) (Figure 5.31a). Moreover, the

ACIm presents outliers in all three cases, indicating an even larger discrepancy for some

cases. The p-values for the Wilcoxon Rank Sum Test are described in Table 5.11, and are

all smaller than the significance level αanalysis = 0.05, therefore the null hypothesis that

the populations are of the same type is rejected. By the boxplot and the Wilcoxon Rank

Sum Test, we conclude that the ACLog obtained a better performance. The larger error

discrepancy of the ACIm over the ACLog may be partially explained by the non-linearity

of the former, as described in section 5.5.4.8. Nonetheless, this difference may not be

critical for general applications.

6https://www.r-project.org/
7Since we use a coupled controller with positive definite gain matrices, the norm of the error has an

exponential decay, but the same is not always true for each individually coefficient of the error. Therefore,
the discrepancy function is defined as the difference between the error norms instead of the norm of the
difference between the errors.
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Figure 5.31: Error dynamics: (a) integral of the discrepancy function along the motion,
(b) maximum value of the discrepancy function, and (c) its mean for each controller.
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Figure 5.32: Outer-loop control signal: (a) control effort, (b) maximum value, and (c)
mean.

5.5.4.3 Statistical Analyses of the Outer-Loop Control Signal

A similar analysis was done for the control signal of the admittance controller. We

considered the control signal as the DQ acceleration ẍc, since it represents the trajectory

passed to the inner-loop, and is directly related to the ζ̇
c

cd through the Equations (3.19),

(3.14), xcd = x∗cxd, and their derivatives. Figures 5.32a-5.32c show the control effort√∫ tend
0 ‖ẍc (t)‖2 dt, the maximum value of the control signal maxt (‖ẍc (t)‖), and its mean

value µt (‖ẍr (t)‖), respectively. The hypothesis tests resulted in the p-values depicted in

Table 5.11, which are all greater than the significance level αanalysis = 0.05. Therefore, the

null-hypothesis cannot be rejected and there is no significant statistical difference between

the control signals of the two controllers.

5.5.4.4 Statistical Analyses of the Inner-Loop Control Signal

The same analyses were made for the control signal of the kinematic controller, that

is, control effort
√∫ tend

0 ‖u (t)‖2 dt, maximum value of the control signal maxt (‖u (t)‖),
and its mean value µt (‖u (t)‖). Figures 5.33a-5.33c show that the control signals for the

kinematic controller were very similar for both ACLog and ACIm. The p-values for the

Wilcoxon Rank Sum Test are the ones in Table 5.11. Again, all the values were larger than

αanalysis, indicating that there is no significant statistical difference between the control
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Figure 5.33: Inner-loop control signal: (a) control effort, (b) maximum value, and (c)
mean.

signal of both controllers. This is expected because the reference signal for the inner-loop

is generated by the outer-loop, and the outer-loop generates statistically equivalent control

signals for both ACLog and ACIm, as shown in section 5.5.4.3.

5.5.4.5 Analyses of Special Cases

Besides the statistical analyses with 30 different samples, we also analyzed four special

cases:

1. the closed-loop system under the admittance controller ACIm starts in the unstable

equilibrium set (i.e., when φ(0) = π);

2. the closed-loop system starts near this unstable equilibrium point;

3. a situation where the unwinding phenomenon appears (xcd = −1);

4. a situation where xcd is closer to −1 than to 1.

For case 1, we considered an initial displacement of xcd = cos (π/2) + k̂ sin (π/2), which

consists of a pure rotation of π around the z axis. Figure 5.34a shows that, whereas the

error norm decays when using the ACLog, it remains unchanged for the ACIm, which

is undesirable as the current pose is different from the desired one. This is due to the

topological obstruction (Bhat & Bernstein, 1998), as discussed in section 4.1.2.2.

For case 2, we initialize the displacement near the unstable equilibrium point (i.e.,

xcd = cos (π/2− 0.002) + k̂ sin (π/2− 0.002)). In that case, the closed-loop error decays

when using the ACIm, but much slower than when the ACLog is used, as shown in

Figure 5.34b, because the control signals near the unstable equilibrium point tend to be

very small.

In case 3, the initial pose already equals the desired one, but the closed-loop system

under the control law ACLog is in the PIS −1. Figure 5.34c shows that the error is always

zero, indicating that the end-effector does not move for any controller. More specifically,
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Figure 5.34: Closed-loop system during free-motion: time-evolution of the error norms in
the four special cases.

the ACLog does not drive the system towards the PIS 1, which would make the end-effector

move. Therefore, there is no unwinding.

Lastly, we considered xcd = cos (π + 0.5) + k̂ sin (π + 0.5) to represent case 4. In this

case the error norm for both controllers decay at the same rate, which indicates that the

end-effector is converging to −1 instead of 1, performing the smallest path, as desired.

5.5.4.6 Simulation with an External Wrench

As observed by previously discussed results, experiments with a contact wrench is suscep-

tible to variations, which does not allow a fair comparison. Nonetheless, a comparison

between the two controllers, under the influence of external wrenches with very large rota-

tions, may be interesting. Therefore, simulations were performed under these conditions

and the results were exactly the same as predicted by the theory:

� when the initial error xcd has an angle of rotation equal to π rad around a rotation axis

parallel to any eigenvector of Kφ, the topological obstruction occurs if ζccd = 0 and

(1/2)K ′′

p vec3 p
c
cd = − vec3m

c
eff,eff , and K ′p vec3 p

c
cd = − vec3 f

c
eff,eff , where vec3 f

c
eff,eff

and vec3m
c
eff,eff are the force and the torque at the end-effector with respect to the

frame Fc (see Appendix D);

� when the system starts near the unstable equilibrium set, the error starts to decay

very slowly for the ACIm, similar to the behavior depicted in Figure 5.34b.

In the first simulation, which represents the case 1, the following parameters were used:

� a constant wrench ςeff
eff,eff =

[
4 0.8 0.8 0 0 0

]T
is applied at the end-effector;

� the initial error is xcd = rcd + ε(1/2)pccdrd, with rcd = cos (π/2) + k̂ sin (π/2) and

pcd = 0.05ı̂+ 0.01̂+ 0.01k̂;

� the initial velocities are zero;
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Figure 5.35: Two times the norm of the error yc
d
. The error for the ACLog decays until a

small expected stationary error is perceived due to the presence of an external wrench,
which makes xc 6= xd to enforce the desired impedance. For the ACIm, however, the error
decay is negligible due to the topological obstruction. Even though it slightly changes
due to the variation of pc, the greatest contribution to the norm value comes from the
rotational part, and therefore the error is almost constant.

� and M d = 1.5I6×6, Bd = 300I6×6, Kp = Kφ = 80I3×3 are the inertial, damping,

and stiffness matrices, respectively.

Figures 5.35-5.36 show that the rotational term of xc remained the same during all the

simulation for the ACIm, characterizing the topological obstruction, whereas it approached

to the rotational term of xd when the ACLog was used.

The second simulation shows a situation where the initial state of the closed-loop system

starts near the topological obstruction, which represents case 2. Again, the closed-loop

system response when using the ACIm is much slower than the one when using the ACLog,

as shown in Figures 5.37-5.38. The following parameters were used:

� a constant wrench ςeff
eff,eff =

[
4 0.8 0.8 0 0 0

]T
is applied at the end-effector;

� the initial error is xcd = rcd+ε(1/2)pccdrd, with rcd = cos (π/2− 0.002)+k̂ sin (π/2− 0.002)
and pccd = −0.05ı̂− 0.01̂− 0.01k̂;

� the initial velocities are zero;

� and M d = 1.5I6×6, Bd = 300I6×6, Kp = Kφ = 80I3×3 are the inertial, damping,

and stiffness matrices, respectively.
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Figure 5.36: Orientation and position of the current x, compliant xc, and desired xd
poses. The kinematic controller follows the trajectories generated by both admittance
controllers. However, due to the topological obstruction that affects the ACIm, the
trajectory’s rotational components remain constant throughout the robot’s movement,
which does not happen when ACLog is used.
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Figure 5.37: Two times the norm of the error yc
d
, when starting close to the topological

obstruction. The error for the ACLog decays until a small expected stationary error is
perceived due to the presence of an external wrench, which makes xc 6= xd to enforce the
desired impedance. For the ACIm, the error also decays until that small stationary error,
but this decay is much slower than for the ACLog.
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Figure 5.38: Orientation and position of the current x, compliant xc, and desired xd poses.
The kinematic controller follows the trajectories generated by both admittance controllers,
achieving the same values for each coefficient of the logarithm in the end. However, the
convergence of the ACIm is much slower than the one of the ACLog.

As a conclusion, the simulation results show that when there is an external wrench

applied at the end-effector under special cases 1–2, both controllers behave analogously to

when they are in free-motion. More specifically, the ACIm suffers from the problem of

topological obstruction and loses performance near the unstable equilibrium set, whereas

the ACLog do not suffers from topological obstruction.

5.5.4.7 Experiments in Free-Motion with Non-Isotropic Stiffness

The previous experiments and simulations were executed with isotropic stiffness matrices.

However, it is also interesting to analyze the behavior of the admittance controllers

using non-isotropic stiffness matrices. Therefore, the experiments were re-done with the

same 30 pairs of initial/final end-effector poses, but now with M d = 1.5I6×6, Bd =
diag (300, 300, 300, 200, 200, 200), Kp = diag (95, 95, 100), and Kφ = diag (92, 92, 90) as

the desired apparent impedance matrices.

Statistical Analyses of the Error Dynamics As in the previous experiment,

we first analyzed the difference between the desired and the actual error norm decay.

Figure 5.39 shows that the total discrepancy, the maximum value of the discrepancy

function, and its mean are, overall, similar for both admittance controllers. All three

boxplots present outliers, which values are larger for the ACLog in the maximum and



5.5. EXPERIMENTSWITH PHYSICALLYMEANINGFUL ADMITTANCE CONTROLLER119

1
2

3
4

√ ∫ t
en

d
0

‖ẽ
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Figure 5.39: Error dynamics: (a) integral of the discrepancy function along the motion,
(b) maximum value of the discrepancy function, and (c) its mean for each controller, using
non-isotropic stiffness matrices.
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Figure 5.40: Outer-loop control signal when using non-isotropic stiffness matrices: (a)
control effort, (b) maximum value, and (c) mean.

mean values, and for ACIm in the total discrepancy.

The p-values for the Wilcoxon Rank Sum Test are described in Table 5.12, begin all

greater than the significance level αanalysis = 0.05. Hence, the null hypothesis that the

population are of the same type cannot be rejected.

Statistical Analyses of the Outer-loop Control Signal Again, a similar analysis

was done for the control signal of the admittance controller. The hypothesis tests resulted

in the p-values of Table 5.12, which are all greater than the significance level αanalysis = 0.05.

Therefore, the null-hypothesis cannot be rejected and there is no significant statistical

difference between the control signals of the two controllers, which is corroborated by the

boxplots of Figure 5.40.

Statistical Analyses of the Inner-Loop Control Signal Also, the p-values for

the Wilcoxon Rank Sum Test for the control signal of the kinematic controller are depicted

in Table 5.12. Again, all the values were larger than αanalysis, indicating that there is no

significant statistical difference between the control signal of both controllers, as shown in

Figure 5.41.

The p-values given by the Wilcoxon Rank Sum Test and also the boxplots of Figures 5.31-
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Figure 5.41: Inner-loop control signal when using non-isotropic stiffness matrices: (a)
control effort, (b) maximum value, and (c) mean.

Table 5.12: p-values for the Wilcoxon Rank Sum Test for non-isotropic matrices.

Discrepancy Outer control signal Inner control signal∫
ẽ 0.1058 ∫

ẍc 0.3208 ∫
u 0.6022

µ (ẽ) 0.4853 µ (ẍc) 0.5133 µ (u) 0.5422
max (ẽ) 0.2928 max (ẍc) 0.3354 max (u) 0.6973

5.33 and Figures 5.39-5.41 show that the difference between the results of the experiments

with the isotropic stiffness matrices and the non-isotropic is the error discrepancy, which

is not statistically different for the non-isotropic matrices, but presents some disparity

when using isotropic matrices. To try to explain this difference, a deeper analysis is

made in the next section. Concerning the control signal, in both situations (isotropic and

non-isotropic matrices) the statistical tests do not reject the null-hypothesis. However, the

boxplots show a larger value of the control signal when using the non-isotropic matrices

(Figures 5.40a-5.41c) over the isotropic case (Figures 5.32a-5.33c), which can be explained

by the larger values of gains in the stiffness matrices, not necessarily being related to the

nature of the matrix (i.e., isotropic or non-isotropic).

5.5.4.8 Qualitative Comparison Between ACLog and ACIm

Besides the problem of topological obstruction in the ACIm (Equation (D.1)), which is

not present in the ACLog (Equation (4.19)), the main difference in both formulations is

the stiffness term. More specifically, the stiffness term in the ACLog is given by

K ′dy
c
d = K ′d

[(
vec3

(
nccd

φ
2

))T (
vec3

(
pccd

φ
2

))T ]T
=
4W−T (rcd)Kφ vec3n

c
cd
φ
2 + 1

2S
T (vec3 p

c
cd)Rc

dKpR
cT
d vec3 p

c
cd

1
2

(
Kp +Rc

dKpR
cT
d

)
vec3 p

c
cd

 , (5.6)
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whereas the stiffness term in the ACIm is given by

K ′′dh
c
d = K ′′d

[(
vec3

(
nccd sin

(
φ
2

)))T
(vec3 p

c
cd)

T
]T

=
2E′T (rcd)Kφ vec3n

c
cd sin φ

2 + 1
2S

T (vec3 p
c
cd)Rc

dKpR
cT
d vec3 p

c
cd

1
2

(
Kp +Rc

dKpR
cT
d

)
vec3 p

c
cd

 , (5.7)

with K ′d and K ′′d defined as Equation (4.17) and Equation (D.2), respectively. Comparing

Equation (5.6) and Equation (5.7), the only term that differs between the two equations is

the term in the left of the addition symbol, in the first row, that is,

4W−T (rcd)Kφ vec3n
c
cd︸ ︷︷ ︸

KLog

φ

2

for the ACLog and

2E′T (rcd)Kφ vec3n
c
cd︸ ︷︷ ︸

KIm

sin φ2

for the ACIm. The term related to the orientation in the ACIm is nonlinear due to the sine

function, differently from the stiffness term in the ACLog, which is linear in the orientation

angle φ. Moreover, the stiffness matrices for both controllers vary according to rcd. To

verify if these matrices influence the decay of the error, we analyzed the norm of KLog

and KIm with and without an eigenvector parallel to the rotation axis, for different values

of Kφ, φ, and nccd. One example of the result is shown in Figure 5.42, where the norm

of KLog and KIm are shown for a specific Kφ and nccd, for 100000 different values of φ,

varying from 0 to π. If Kφ has an eigenvector parallel to the rotation axis vec3n
c
cd, then

Kφ vec3n
c
cd = λφ vec3n

c
cd, with λφ being one eigenvalue of Kφ. To have an eigenvector

parallel to the rotation axis, we choose an isotropic matrix, that is, Kφ = λφI3×3. The

results for other values ofKφ and nccd presented the same type of curve, differing only in the

magnitude. For instance, the norm of KLog for the isotropic Kφ have shown to be constant,

with value equal to 2λφ, so it depends on the eigenvalue of Kφ. The isotropic matrix used

to generate Figure 5.42 was Kφ = 100I3×3, the non-isotropic was Kφ = diag (250, 92, 0),
and the rotation axis nccd was generated randomly by a normal function N (0, 1), and then

normalized to have an unit norm.

Figure 5.42 shows that for an isotropic matrix, the norm of KLog is constant, differently

from KIm. This gives a clue why the error discrepancy is smaller for ACLog than for

the ACIm when an isotropic Kφ is used, as depicted in Figure 5.31a. Since we evaluate

the norm of the error, and the norm of KLog has shown to be constant in all simulations

done, the dynamics of the system approaches to the situation in which we have the error

multiplied by a constant gain, and thus it decays exponentially. For the KIm this does not

occur, and thus the error discrepancy is larger. Moreover, in case 2 of section 5.5.4.5, the
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error decay is slower for the ACIm than the ACLog due to the small values of the control

signal close to the unstable equilibrium point, which is influenced by the value of the angle

φ but also of the norm of KIm.

Notwithstanding, in the case we do not have an eigenvalue of Kφ parallel to the

rotation axis, as in the case of the non-isotropic matrix, the norm of KLog varies, and thus

the error decay may not be exponential, which may explain the larger discrepancy of the

ACLog in Figure 5.39a in relation to Figure 5.31a, and a similar one when compared to

the ACIm, in Figure 5.39a.

5.6 Simulation Results for Whole-Body Admittance

Controller

All the previous experiments have taken in consideration only one arm of the BAZAR

robot. The proposed admittance controller can also be used considering the whole-body of

the robot. For this, a small adaptation is done, as described in sections 4.1.4 and 4.2.3.

A simulation is therefore performed in MATLAB considering the whole-body of the

BAZAR model (see Appendix B) for a task of cooperative manipulation of an object.

The two arms of the robot are rigidly holding an object in a parallelepiped format,

with negligible mass, so no gravity effect due to the object affects the movement of

the arms. The initial configuration of the robot was qbase (0) =
[
0 0 0

]T
, qright (0) =

qleft (0) =
[
0 0.8726 0 −2 0 0 0

]T
, and the desired pose for the absolute and relative

variables were equal to the initial ones, that is, xabsc (0) = xabsd (0) , xabs (0), and

xrelc (0) = xreld (0) , xrel (0). Moreover, a constant wrench ψ0
0,right = ψ0

0,left = 10ı̂ is

applied to both arms until half of the simulation (25 s), and thereafter the wrench is

zero. The initial configuration was chosen so the robot could grasp the object. Moreover,

since we wanted to prevent internal wrenches so the object is not damaged, the desired

relative pose was chosen equal to the initial one. The desired absolute pose and the applied

wrenches was chosen so the robot would remain at its initial pose until a wrench is applied.

The applied wrench would pull the robot forward, and then, when the robot is released, it

would return to its original pose.

The simulated wrenches measured by the sensor at both end-effectors are depicted in

Figure 5.46, as well as the external and internal wrenches with reference to the inertial

frame F0. Although the applied wrenches only have the linear component, they are shown

with reference to the inertial frame, and there is a transformation between the inertial frame

F0 and the frames of the end-effectors, as illustrated in Figure 5.43. Therefore, torques

appear in the wrenches measured at the end-effectors, with respect to the end-effectors.

The norm of the error of the whole-body admittance controller is shown in Figure 5.47.

When the wrench is applied to the robot end-effectors, the norm increases, indicating
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F0

Fabs

Fright

Fleft

Figure 5.43: Inertia, absolute, right, and left end-effector frames.
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that the reference compliant pose for the absolute and/or relative variables becomes

different from the desired one. When the wrenches become zero, the norm of the error

starts to decrease until the robot return to the original and desired pose. The position

and orientation of the absolute and the relative desired, compliant, and current poses

are presented in Figure 5.48. Again, the curves show the absolute compliant pose yabsc
diverging from the desired one yabsd

until 25 s, and then approaching to yabsd
again. In

both cases, the current absolute pose yabs follows the compliant one. During all the

simulation the relative variables remain practically the same, since the internal wrench

is equal to zero. Figure 5.44 show some snapshots of the simulation. The robot moves

forward until 25 s, when the wrench becomes zero, and then the robot moves backward

to its original pose. Figure 5.45 shows both end-effector poses during the first half of the

simulation, illustrating the forward movement of the robot.

The results show the efficiency of the whole-body controller, presenting a behavior

equal to the previous experiments using just one arm.

Remark 5.2. Since the simulation was performed in MATLAB, the wrenches measured

at the end-effector were calculated according to Equation (3.32), and therefore only the

imposed wrench of ψ0
0,right = ψ0

0,left = 10ı̂ was considered. Any wrench originated by

inaccuracy of the robot and/or the object model, or by modifications of the relative pose

during the movement were not taken into account. This is the reason why the internal

wrench in 5.46 is always zero, as

ψ0
int = 1

2
(
ψ0

0,right −ψ
0
0,left

)
= 1

2 (10ı̂− 10ı̂) = 0.

This is a limitation of this simulation, and a more realistic simulation or experiment

must be done in the future.

5.7 Conclusion

In this chapter, different simulations and experiments were presented to highlight the

performance of the proposed controllers and also to compare them to controllers from the

literature.

Since some robots are actuated in torque, a control law based on its dynamic model

is more suitable, and in this case, the JSIM has an important role, which is depicted in

section 5.1. Considering the robot manipulator KUKA LBR4+, simulations were run in

order to study its behavior under zero torque, based on its dynamic model. The simulated

robot did not perform well, presenting an unstable behavior due to high velocities in the

joints, which were caused by the ill-conditioning of the inertia matrix. Since the condition
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Figure 5.44: Snapshots of the BAZAR.
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number of the matrix is very high, the inversion of the matrix has a very large Frobenius

norm, resulting in large joint accelerations, and thus the joints velocities obtained by

integrating the acceleration will be also large. Other simulations with a robot with the

last links locked together corroborated the results showed by Featherstone (2004), since

robots with fewer links had a smaller condition number during all the simulation when

compared to the original robot.

The problem of ill-conditioning of the inertia matrix is intrinsic to multi-link open

kinematic chains. This phenomenon is reflected not only in simulations but also when

controlling the robot. Furthermore, since it makes the control and simulation of the robot

difficult, it is important to find solutions to mitigate the effects of the ill-conditioning of

M (q). In the previous chapter we proposed some controllers to mitigate this problem,

and in this chapter we presented a comparison of the proposed adaptive controllers

(Equation (4.46)) with the IDFL (Equation (4.38)), which is a classic controller that

present problems due to the ill-conditioning of the JSIM, and with the PID (Equation and

(4.41)). First, we showed the comparison of the controllers in joint-space, and then in

task-space (Equations (4.61), (4.57), and (4.60)). This last comparison involved not only

the motion controller in the inner-loop but also the admittance controller (Equation (4.2))

in the outer-loop. Statistical analyses showed that, in all cases, the IDFL presented the

worst behavior, whereas the PID with gravity compensation and the proposed adaptive

controller showed similar performance.

We also run experiments with the ACLogOnly (Equation (4.2)) in the outer loop,

with the same inner-loop controllers. We compared the performance of the controllers

concerning the error discrepancy, the outer and the inner loop control signals, and we

conclude that both are statistically equivalent, regarding the experiments done. Since

the ACLogOnly is simpler and presented the same performance than the ACLog, the

former can be used in simple tasks, especially the ones including only translations of the

end-effector. However, since the ACLogOnly does not have the stiffness matrix consistent

with the task geometry, and the ACLog does, the latter may perform better concerning

tasks involving rotations.

For those robots actuated in position or velocity, a kinematic controller is more

appropriate. In addition, as kinematic controllers tend to be simpler than the ones based

on the robot dynamics, and also do not suffer from the JSIM ill-conditioning problem,

they were used as the inner motion controller to evaluate the proposed admittance

controllers. First, simulations and experiments were performed to show the performance of

the admittance controllers designed using the DQ logarithmic mapping. Both controllers

(Equation (4.2) and Equation (4.20)) were run in the KUKA LWR4+ robot, together with

the second order kinematic controller (Equation (4.36)) that also uses the logarithmic

mapping. Again, the controllers presented satisfactory performance: the robot’s end-

effector followed the desired pose in the absence of a wrench acting on it, and followed the
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compliant pose returned by the admittance controller otherwise. Moreover, the solution

for the unwinding problem, used in the ACLog, showed a good behavior. The end-effector

did not perform unnecessary rotations to achieve the desired pose.

The ACLog (Equation (4.20)) was also statistically compared with the ACIm (Equation

(D.1)), emphasizing the good performance of the proposed controller. When using non-

isotropic stiffness matrices, the results are statistically equivalent concerning the error

discrepancy and the control signal, but the ACLog presented a better behavior concerning

the error discrepancy when using isotropic stiffness matrices. This difference in the error

is not so significant for general tasks. However, when the tasks require big rotations, the

ACLog performs better than the ACIm, since the latter presents the problem of topological

obstruction.

The controller of Equation (4.31) was used in a simulation considering the whole-body

of the BAZAR robot in a bimanual manipulation task. The control laws described by

Equations (4.31) and (4.36) were extended to consider the absolute and relative variables,

taking into consideration the external and internal wrenches acting on the manipulated

object. No statistical comparison was done for this controller, but since it considers the

changes in the lever arms in the twist and the wrench, it may lead a better behavior of the

robot when performing tasks, especially when considering external and internal wrenches,

as in the case of a bimanual manipulation.
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6
Conclusions and Future Works

“A painting is never finished, it simply stops in an interesting place.”

- Paul Gardner

This chapter presents the final discussion concerning the proposed Ph.D. work and

what has already been done, together with some conclusions according to the theoretical,

simulation, and experimental results. In addition, a proposal for future works and the

corresponding methodologies is presented.

6.1 Conclusions

The use of robots in human environments has been increasing in the last years. With

robots working together with humans, it is important to keep the safety for the humans,

the environment, and also the robot.

This thesis has focused on control strategies for safe manipulation tasks subject to

contacts. We have proposed different control laws for this purpose and we also compared

it with other classic controllers. As seen in Chapter 2, the admittance controller is

appropriate to enforce the desired interaction impedance, especially for velocity-actuated

robots, allowing to change the way the human partner feels the robot. Usually, admittance

controllers are used in a control architecture together with a motion controller, in which

the admittance controller is in the outer-loop and changes the desired robot end-effector

131
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trajectory to ensure the desired apparent impedance, and the motion controller is in the

inner-loop to control the robot end-effector, so it can follow this new reference (compliant)

trajectory, as illustrated in Figure 4.1.

With respect to the outer admittance loop, we firstly have designed an admittance

controller using the DQ logarithmic mapping, which assures that the unit DQ group

properties are satisfied. This controller is simple, does not have the problem of topological

obstruction, and is efficient since it has responded compliantly when a wrench is applied

to the robot’s end-effector. However, it has the problem of unwinding and its stiffness

term is not geometrically consistent with the six-DOF tasks. Thus, we have improved by

using the energy of the system to design a second control law that has a physical meaning

and its stiffness term is geometrically consistent with six-DOF tasks. Moreover, we also

proposed a solution for the unwinding problem based on a switching error function in

which the two PIS of the space of unit DQ are mapped into a single PIS in the image of

the logarithmic mapping.

Although this controller presents the previously cited characteristics and showed to

have a performance at least as good as one of the main admittance controllers of the state

of art, namely ACIm, and outperforms it near the unstable equilibrium set of the ACIm, it

does not use all information available regarding wrenches and twists. The controller does

not take into account the effects of the lever arms (see discussion in section 4.1.3), that

is, ignore the term ε (p× f) in the wrenches and the ε (p× ω) in the twist. Therefore,

we improved it once more, so the new controller uses the DQ twist and the DQ wrench,

considering the lever arm when performing transformations regarding wrenches and twists.

This controller has the same characteristics as the previous one but also contemplates

the effects of the lever arm in the system. The control law is later extended to cover the

whole-body case of a bimanual mobile manipulator, considering not only the external

wrenches but also the internal ones that arise in bimanual manipulation.

Concerning the inner motion loop, two types of controllers can be used: a controller

that generates velocity inputs, based on the robot kinematic model; and a controller that

generates torque inputs, based on the robot dynamic model. Regarding the former, first and

second order kinematic controllers were proposed, both using the DQ logarithmic mapping.

Concerning the latter, the JSIM plays an important role, since it can be ill-conditioned in

some regions of the configuration space, and this property can lead to undesired stationary

error and even instability, as discussed in sections 2.1.2 and 5.1. To mitigate this problem,

we proposed an adaptive controller that adapts the JSIM conditioning online so the

performance of the closed-loop system is improved. For this, a positive definite matrix is

added to the nominal JSIM, in the Euler-Lagrange equation, and this matrix is adapted

according to the proposed adaptation law. We have firstly presented a joint-space controller

with an adaptation law that guarantees that the added matrix is always positive definite,

and tends to improve the final JSIM conditioning. However, this improvement is not
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guaranteed. Secondly, we improved this algorithm so the added matrix always decreases

the JSIM condition number. Lastly, we designed a task-space adaptive controller, using

DQ, which has the same adaptation law as in the joint-space controller.

Thanks to the advantages described in section 3.1, the DQ algebra has been used in

all modeling and task-space controllers, resulting in compact formulations. Moreover, the

simulations, experiments, and statistical analyses made have shown that the proposed

controllers present a performance equal or better than other classic approaches of the

literature. For instance, the adaptive controller showed better results concerning the error

decay and stationary error when compared to controllers based on the inverse dynamics

with feedback-linearization, and similar performance when compared to a PID with gravity

compensation. Furthermore, the proposed admittance controller ACLog has shown to

have analogous performance concerning the error decay when compared to the ACIm, for

general cases. For some specific cases the ACLog outperforms the ACIm, especially when

the system is close to an unstable equilibrium set.

6.2 Future Works

Despite the good results of the proposed architecture, a lot of improvements can be done.

The admittance controller, for example, modifies the desired trajectory so the desired

apparent impedance can be imposed on the robot. However, no constraints are added to

this new trajectory, so it can reach, for instance, the maximum joint velocities and joint

limits. Furthermore, self-collisions can occur, collision with other objects and some desired

task-designed constraints are ignored in the current control laws. A solution is to re-write

the admittance controller as an optimization problem, so we can generate a trajectory that

will obey the desired constraints (Marinho et al., 2019; Quiroz-Omana & Adorno, 2019).

Considering that the robot has physical contacts with the environment, its dynamic

model can be affected by the dynamics of the tools and/or other objects with which

the robot is in contact. Thus, an adaptive controller can be used to compensate for the

unknown parameters of the system model (Slotine & Li, 1987; Cheah et al., 2006a). This

would solve both the problems of lack of information of the robot model and changes in

the dynamics of the system produced by the interaction with the environment, including

humans. One could argue that we could use identification techniques first to estimate

the unknown parameters and then control the robot normally. However, when the robot

picks a tool in the middle of task execution, the parameters must be updated online.

Besides, a positive feature of adaptive control is that the error will converge regardless of

whether the trajectory is persistently exciting or not, which is not true using identification

algorithms (Cheah et al., 2006b). In our approach, we used the adaptive controller only to

improve the JSIM conditioning. An enhancement is to put together this algorithm and

the ones that estimate the kinematic and dynamic parameters of the system, and thus
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the controller would be able to adapt to modifications due to physical interactions with

the environment. Moreover, we have not proven that the closed-loop system under the

proposed algorithm that guarantees the better conditioning of the JSIM is stable, and

this is left as future works. Also, all controllers (admittance and kinematic) were designed

using the DQ logarithmic mapping. A more direct improvement of the task-space adaptive

controller is to also use in it the DQ logarithmic mapping, so that all task-space controllers

would use the same error definition, which respects the properties of the unit DQ group.

Concerning stability, it is also necessary to prove the stability of the closed-loop

system under the proposed kinematic controllers, which was not the focus of this thesis.

Furthermore, the stability of the whole cascade system, including the inner and the outer

loop must be formally proven.

6.2.1 Estimation of Human Intention

In addition to developing control strategies aiming at the safety in the pHRI, the cognitive

part is also important since understanding the human’s intentions increase the autonomy of

the system and makes the cooperative tasks more effective. Without knowing the human’s

intention, the robot can perform the task in such a way that it conflicts with the action

the human takes, which can endanger the person or damage the object with which the

robot interacts. Even if the task is fully defined, unforeseen events may occur during

its execution, such as obstacles that require a change in the previous nominal trajectory.

Therefore, it would be more efficient for the human to retrace the trajectory, so the robot

would understand its intention, allowing it to complete the desired task.

Humans have generally well-developed cognitive abilities, being able to communicate

with their partners, whether by speech, tact, or sight. Thus, one of the challenges of HRI

is to design a procedure to establish similar communication between humans and robots,

so the robot can understand the human’s intention (Bauer et al., 2008). In this sense,

for robots to share human-centered environments, it is indispensable to equip them with

manipulation, perception, and communication skills necessary for the interaction with the

environment and humans beings (Asfour et al., 2006). Although many sensors are already

available in most robots, it is necessary to define a kind of language to decode the data

from the sensors in meaningful information that indicates the human’s intention (Ajoudani

et al., 2018).

Bauer et al. (2008) presented a human-robot collaboration survey in which they discuss

the communication between humans and robots. Figure 6.1 shows some of the ways to

communicate the human intention to the robot, explicitly, implicitly, and also unconsciously.

Speech, gestures, haptic signals, and also physiological signals are some of the possible ways

to communicate. Explicit communication includes words, sentences, pointing gestures,

sign-language gestures, applied forces and torques, angles, or orientations. Some of the
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implicit communication consists of heart rate, brain activity, and muscle activity. There is

also the unconscious communication given by emotion in speeches and facial expressions,

for example.

Figure 6.1: Main ways of communicating intentions. Unconsciously communication is
marked in gray. Source: (Bauer et al., 2008)

The information used to provide hints of the human’s intention is gathered from

different type of sensors, as for example haptic sensors (Dumora et al., 2012), RGB-D

sensors (Gonzalez et al., 2012; Cherubini et al., 2013; Zimmermann et al., 2018), wearable

motion sensors (Cehajic et al., 2015), force sensors (Caccavale et al., 2008), Inertia

Measurement Unit (IMU) (de Brito, 2016), and bio-signals as EEG and EMG (Bell et al.,

2008). Many works have stood out the multi-modal sensory information in the estimation

of human’s intention (Ajoudani et al., 2018). According to Ajoudani et al., over 76% of the

publications in the field of HRI used multi-modal interfaces in 2015. Thus, multi-modal

information is promising and can be used in our architecture, for instance, to recognize

the configuration of the kinematic chain of the human partner, and also the exerted force

in the manipulated object. Then, it is necessary to decode this information to understand

the human’s intention.

We already use force/torque sensors at the robot end-effector to measure the wrenches

that are used by the admittance controller. However, this information can also be used,

together with other sensors such as the IMU and RGB-D sensors, to assist in the estimation

of the human posture. The RGB-D sensors can be used to capture the kinematic chain of

the human being, or the pose of the person’s hand, as done by Cherubini et al. (2013);

Gonzalez et al. (2012, 2013). Figure 6.2 shows the image returned by the low-cost Microsoft

Kinect RGB-D sensor. This image shows the skeleton of two people identified by the

sensor from which it is possible to extract information of the human kinematic chain.

An IMU can also be used to assist in capturing human pose data. IMUs are usually

equipped with an accelerometer and a gyroscope, and may also have a magnetometer,

barometer, or temperature sensor. With the help of these sensors, the rotation and

acceleration of the measuring unit can be detected. If an IMU is placed on the arm of

the person with which the robot is interacting, the arm pose can be determined and this

information can be used in the robot control law (de Brito, 2016). Also, inertia sensors

measurements can be combined with the ones from a RGB-D sensor, using a Kalman filter,
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Figure 6.2: Image returned by the Kinect RGB-D sensor, identifying the skeleton of two
people.1

to estimate the joints angle of a human body (Bo et al., 2011).

This sensor information can be used not only to estimate the human’s posture but also

to identify its movement. Baptista et al. (2017) proposed an approach to segment discrete

movements (movements that have an unambiguously identifiable start and end) using

a Switching Linear Dynamic System (SLDS), which is “a stochastic approach suitable

for modeling and tracking aspects in time series.” According to Baptista et al. (2017), a

movement can be described by breaking it down into elements according to the change in

angular motion of each body joint, such as flexion and extension, and its effects in posture

changes. Thus, by identifying the changes in joints angle and posture, it is possible to

recognize the phases of the movement (e.g., sit, rising, stand), and then, from the period

that each phase was executed and the temporal sequence of the phases, the complete

movement can be identified (e.g., sit-to-stand). This approach can be used to recognize

the human’s movement, helping in the identification of its intention.

In addition to providing information of the human’s current postures and their hand

poses (concerning the robot end-effector), it is possible to use information from the sensors

to create a communication language with the robot, so that it can understand the human’s

intention in the execution of a certain task. Dumora et al. (2012) use haptic sensors to

create implicit communication between human and robot. Given a variety of movements,

these are mapped into torque and force measurements, in addition to the displacement

of the human operator’s hand. Thus, changes in the sensors’ measurements indicate

the human’s intention and the robot then acts accordingly. Therefore, one idea for a

prospective work is to map certain human’s intentions, considered more relevant in the

execution of cooperation tasks, into measurements in the available sensors, similar to what

Dumora et al. have done. This mapping will allow the robot to understand the intent of

1Source: http://www.imaginativeuniversal.com/blog/2013/11/26/kinect-for-windows-v2-first-look/
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its human partner, and thus optimize the execution of the cooperation task. Different from

what Dumora et al. have done, the idea is to consider complete movements (translation

and rotation) on all axes, not just movements in the horizontal plane.

Another work that can be used as an inspiration is the one of Unhelkar et al. (2018).

The authors used a Multiple-Predictor System (MPS) to predict the motion of the human

so the robot adapts its behavior according to this motion. A Safe-Interval Path Planner

(SIPP) is used to plan robot trajectories. The human motion predictions together with the

path planning “allow the robot to make intelligent decisions about how to move towards

its own goal” (Unhelkar et al., 2018). Unhelkar et al. use this approach to avoid collision

between the robot and the human in a collaborative factory environment where both

human and robot have a common shared operating region. However, a similar approach

can be used in pHRI, not only to prevent collisions between robot and person but for the

robot to follow its human partner in a locomotion task.

The whole process including the understanding of human intentions and the control

strategies for a safe interaction is described in Figure 6.3. Given a cooperation task to be

executed, the multi-modal information will be used to recognize the human’s intention.

Once the intention is discovered, it is necessary to find the desired end-effectors pose to

better execute the task. This desired pose will be provided to the admittance controller,

which will regulate the desired apparent inertia, damping, and stiffness of the robot, and

will return a reference pose for the motion controller to control.
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Figure 6.3: HRI scheme to accomplish a cooperative task. The human’s intention must
be recognized and then control strategies are applied to control the robot end-effector to
ensure the safety of the ones involved in the task.



A
Kinematic and Dynamic Model of KUKA

LBR4+

The model of the KUKA LBR4+ was the one used in simulations related to the torque

control and dynamic behavior. Both kinematic and dynamic model were retrieved from

V-REP, and are detailed here.

A.1 Kinematic Model

The KUKA LBR4+ has seven DOFs. The standard DH parameters that describe the

kinematic model of the robot are described in Table A.1 and illustrated in Figure A.1.

Besides the DH parameters, which gives us the end-effector pose x0
7 = x0

eff, the kinematic

model also considers the transformation of the first DH frame to the robot’s base, that is

given by

rbase
0 = 1

pbase
0 = 0.31k̂

xbase
0 = rbase

0 + 0.5εpbase
0 rbase

0 .

Thus, the complete kinematic model is

xbase
eff = xbase

0 x0
eff.
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Figure A.1: Standard DH parameters of
KUKA LBR4+.

Table A.1: Standard DH parameters of
KUKA LBR4+.

Link θ (rad) d (m) a (m) α (rad)
1 0 0 0 π/2

2 0 0 0 −π/2

3 0 0.4 0 π/2

4 0 0 0 −π/2

5 0 0.39 0 π/2

6 0 0 0 −π/2

7 0 0.087 0 0

A.2 Dynamic Model

To derive the dynamic model, even using Newton-Euler or Euler-Lagrange method, some

parameters are important, as the mass, the inertia tensor, and the center of mass (COM)

of each link of the robot. The dynamic parameters that were gotten from V-REP are

shown in Tables A.2-A.4.

Table A.2: Mass of each link.

Link Mass (Kg)
1 2.7
2 2.7
3 2.7
4 2.7
5 1.7
6 1.6
7 0.3
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Table A.3: Position of the center of mass of each link, related to its DH frame.

COM
Link x y z

1 0.0000781 −0.0599002 0.0255518
2 0.0101166 0.0278437 0.1066027
3 0.0100804 −0.0626202 −0.0278332
4 −0.0192432 −0.0255866 0.0958104
5 −0.0192526 −0.0887392 0.0252519
6 −0.0190836 0.0089009 0.0011072
7 −0.0192717 −0.0004046 −0.0126029

Table A.4: Inertia tensor of each link, at its center of mass and related to the DH frame of
the link.

Link Inertia tensor

1

 0.0163405 −0.0000029 −0.0000007
−0.0000029 0.0050261 −0.0035343
−0.0000007 −0.0035343 0.0161729


2

 0.0163404 −0.0000008 0.0000035
−0.0000008 0.0161732 0.0035339
0.0000035 0.0035339 0.0050272


3

 0.0163404 0.0000029 −0.0000008
0.0000029 0.0050276 0.0035334
−0.0000008 0.0035334 0.0161727


4

 0.0163404 −0.0000005 −0.0000025
−0.0000005 0.0161734 −0.0035336
−0.0000025 −0.0035336 0.0050257


5

 0.0098192 0.0000016 0.0000009
0.0000016 0.0037085 −0.0030943
0.0000009 −0.0030943 0.0090912


6

 0.0030112 0.0000000 −0.0000001
0.0000000 0.0030224 −0.0000192
−0.0000001 −0.0000192 0.0034144


7

 0.1017180 0.0000000 −0.0000014
0.0000000 0.1017179 −0.0000033
−0.0000014 −0.0000033 0.1584360

× 10−3
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B
Kinematic and Dynamic Model of BAZAR

Arms

The BAZAR is a bimanual mobile manipulator that consists of 2 KUKA LWR4+ arms

and a mobile base. The kinematic and dynamic model of each arm are described here. The

modified DH parameters and the dynamic model was obtained from (Katsumata et al.,

2019).

B.1 Kinematic Model

The KUKA LWR4+ has seven DOFs. The modified DH parameters that describe the

kinematic model of the robot are described in Table B.1 and illustrated in B.1 on the

following page.

The transformation to the tip of the end-effector is given by

x7
eff = 1 + ε

1
2
(
0.078k̂

)
.

Thus, the kinematic model is given by

x0
eff = x0

7x
7
eff,

where x0
7 is the kinematic model given by the modified DH parameters.
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Figure B.1: Frames and sizes of the KUKA
LWR4+ used in the modified DH parame-
ters.

Table B.1: Modified DH parameters of
KUKA LWR4+.

Link θ (rad) d (m) a (m) α (rad)
1 0 0.3105 0 0
2 0 0 0 π/2

3 0 0.4 0 −π/2

4 0 0 0 −π/2

5 0 0.39 0 π/2

6 0 0 0 π/2

7 0 0 0 −π/2

The arms are located differently in the BAZAR robot. Thus, the transformation of the

base of each arm is differently, and described as follow.

B.1.1 Right Arm Base

The rotation of the base of the right arm is given by

rz = cos π/24 + k̂ sin π/24

ry = cos π/2 + ̂ sin π/2

rx = cos π/4 + ı̂ sin π/4

rbase
0 = rzryrx,

and the translation is

pbase
base0 = 0.10193ı̂− 0.11472̂+ 0.4582k̂.

Thus, the complete base transformation is

xbase
0 = rbase

0 + ε
1
2p

base
base0r

base
0 . (B.1)



B.2. DYNAMIC MODEL 145

B.1.2 Left Arm Base

For the left arm, the rotation of the base is

rz = cos −π/24 + k̂ sin −π/24

ry = cos π/2 + ̂ sin π/2

rx = cos 3π/4 + ı̂ sin 3π/4

rbase
0 = rzryrx,

and the translation is

pbase
base0 = 0.10193ı̂+ 0.11472̂+ 0.4582k̂.

The complete transformation of the base is given by Equation (B.1).

The complete kinematic model of each arm is given by

xbase
eff = xbase

0 x0
7x

7
eff.

B.2 Dynamic Model

The dynamic parameters of the KUKA LWR4+ identified at LIRMM (Katsumata et al.,

2019) are the following:

Table B.2: Mass of each link.

Link Mass (Kg)
1 2.70
2 2.70
3 2.68
4 2.68
5 1.67
6 1.57
7 0.27
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Table B.3: Position of the center of mass of each link, related to its modified DH frame.

COM
Link x y z

1 0.0036 0.0708 −0.2370
2 −0.0261 0.2089 0.0708
3 0.0176 −0.0849 −0.3195
4 0.0030 −0.2477 0.0567
5 −0.0006 0.0460 −0.2591
6 −0.0042 0.0475 0.0094
7 0.0138 −0.0032 0.1059

Table B.4: Inertia tensor of each link, at its center of mass and related to the modified
DH frame of the link.

Link Inertia tensor

1

 0.0848 −0.0000 0.0001
−0.0000 0.0825 0.0009
0.0001 0.0009 0.0039


2

 0.1813 −0.0152 0.0532
−0.0152 0.2576 0.2629
0.0532 0.2629 0.2955


3

 0.0315 0.0020 0.0084
0.0020 0.0858 −0.0123
0.0084 −0.0123 0.0214


4

 0.0542 0.0001 0.0035
0.0001 0.0220 0.0262
0.0035 0.0262 0.0501


5

 0.0613 0.0023 −0.0088
0.0023 0.0659 0.0022
−0.0088 0.0022 0.0023


6

 0.0075 0.0003 −0.0008
0.0003 0.0015 0.0015
−0.0008 0.0015 0.0057


7

 0.0062 −0.0001 0.0003
−0.0001 0.0066 −0.0001
0.0003 −0.0001 0.0010





C
General Mathematical Properties

Lemma C.1. If a matrix A ∈ Rn×n is skew-symmetric
(
A = −AT

)
, then sTAs =

0, ∀s ∈ Rn.

Proof. Consider s ∈ Rn, A ∈ Rn×n, with A = −AT , and b ∈ R, with b = sTAs. Thus,

b = sTAs = sT
(
−AT

)
s = −sTAs = −b.

Therefore, b = 0, which concludes the proof.

Lemma C.2. The rotation matrix R ∈ SO (3) is related to the rotation quaternion r ∈ S3

by the relationship

R = Ī
+
H4 (r)

−
H4 (r∗) ĪT .

Proof. Considering r = r1 + ı̂r2 + ̂r3 + k̂r4, the direct calculation of Ī
+
H4 (r)

−
H4 (r∗) ĪT
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yields

Ī
+
H4 (r)

−
H4 (r∗) ĪT =

[
03×1 I3×3

]

r1 −r2 −r3 −r4

r2 r1 −r4 r3

r3 r4 r1 −r2

r4 −r3 r2 r1




r1 r2 r3 r4

−r2 r1 −r4 r3

−r3 r4 r1 −r2

−r4 −r3 r2 r1


01×3

I3×3



=


r2 r1 −r4 r3

r3 r4 r1 −r2

r4 −r3 r2 r1



r2 r3 r4

r1 −r4 r3

r4 r1 −r2

−r3 r2 r1



=


r2

2 + r2
1 +−r2

4 − r2
3 r2r3 − r1r4 − r4r1 + r3r2 r2r4 + r1r3 + r4r2 + r3r1

r3r2 + r4r1 + r1r4 + r2r3 r2
3 − r2

4 + r2
1 − r2

2 r3r4 + r4r3 − r1r2 − r2r1

r4r2 − r3r1 + r2r4 − r1r3 r4r3 + r3r4 + r2r1 + r1r2 r2
4 − r2

3 − r2
2 + r2

1



=


2 (r2

1 + r2
2)− 1 2 (r2r3 − r1r4) 2 (r2r4 + r1r3)

2 (r2r3 + r1r4) 2 (r2
1 + r2

3)− 1 2 (r3r4 − r1r2)
2 (r2r4 − r1r3) 2 (r3r4 + r1r2) 2 (r2

1 + r2
4)− 1

 ,

which is the equation to transform a quaternion r to a rotation matrix R (Siciliano et al.,

2009, section 2.6, Equation (2.33)).

Lemma C.3. The matrix W (r) = 2
−
H4 (r∗)Q4 (r) is given by

W (r) =
 01×3

W (r)


for all r ∈ S3, where W (r) ∈ R3×3.

Proof. By direct calculation of
−
H4 (r∗)Q4 (r) we have

1
2W (r) =

−
H4 (r∗)Q4 (r) =


r1 r2 r3 r4

−r2 r1 −r4 r3

−r3 r4 r1 −r2

−r4 −r3 r2 r1




−r2 −r3 −r4

Γn2
x + Θ Γnxny Γnxnz

Γnynx Γny2 + Θ Γnynz
Γnznx Γnzny Γnz2 + Θ

 ,

where ri is the i-th coefficient of r, Γ and Θ are given by Equations (3.15) and (3.16),

respectively, and nx, ny, nz are the coefficients of the rotational axis n.

Therefore, the first row of this multiplication is given by

1
2
[
w1,1 w1,2 w1,3

]
,
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where

1
2w1,1 = −r1r2 + r2

(
Γn2

x + Θ
)

+ r3Γnynx + r4Γnznx,
1
2w1,2 = −r1r3 + r2Γnxny + r3

(
Γn2

y + Θ
)

+ r4Γnzny,
1
2w1,3 = −r1r4 + r2Γnxnz + r3Γnynz + r4

(
Γn2

z + Θ
)
.

Hence,

1
2w1,1 = − cos φ2nx sin φ2 + nx sin φ2

[(
cos φ2 −Θ

)
n2
x + Θ

]

+ ny sin φ2

(
cos φ2 −Θ

)
nynx + nz sin φ2

(
cos φ2 −Θ

)
nznx

= − cos φ2 sin φ2nx + sin φ2 cos φ2n
3
x − sin φ2 Θn3

x + sin φ2 Θnx

+ sin φ2 cos φ
2
n2
ynx − sin φ2 Θny2nx + sin φ2 cos φ2nz

2nx − sin φ2 Θn2
znx

=
(
− cos φ2 sin φ2 + sin φ2 Θ

)
nx +

(
sin φ2 cos φ2 − sin φ2 Θ

)
n3
x

+
(

sin φ2 cos φ2 − sin φ2 Θ
)
ny

2nx +
(

sin φ2 cos φ2 − sin φ2 Θ
)
nz

2nx

=
(
− cos φ2 sin φ2 + sin φ2 Θ +

(
sin φ2 cos φ2 − sin φ2 Θ

)
n2
x

+
(

sin φ2 cos φ2 − sin φ2 Θ
)
ny² +

(
sin φ2 cos φ2 − sin φ2 Θ

)
nz²

)
nx

=
(
− cos φ2 sin φ2 + sin φ2 Θ +

(
sin φ2 cos φ2 − sin φ2 Θ

)(
n2
x + ny² + nz²

))
nx.

Since n2
x + ny² + nz² = 1, thus 1

2w1,1 = 0. Similarly, 1
2w1,2 = 1

2w1,3 = 0. Therefore, the

first row of the matrix W (r) is a row of zeros, which concludes the proof.

Lemma C.4. Considering the positive definite matrices Kφ ∈ R3×3 and Kp ∈ R3×3 that

represent the rotational and translational stiffness matrices, respectively, and that there is

no coupling between translation and rotation, the elastic potential energy given by

U =
(
vec6 y

c
d

)T
Kd vec6 y

c
d

is port-symmetric if Kd = 2 diag
(
Kφ,K

′
p

)
, with K ′p , 1

2Kp + 1
2R

c
dKpR

cT
d , and y =

nφ/2 + εp/2.

Proof. The potential energy is port-symmetric if it is the same whether seen from either
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Fc or Fd. Therefore, consider the energy seen from Fc as

U c =
(
vec6 y

c
d

)T
Kd vec6 y

c
d

=
[(

vec3
ncdφ

2

)T (
vec3

pccd
2

)T ] 2Kφ 0
0 2K ′p

vec3
ncdφ

2

vec3
pccd
2


=
(

vec3
ncdφ

2

)T
2Kφ vec3

ncdφ

2︸ ︷︷ ︸
Ucr

+
(

vec3
pccd
2

)T (
Kp +Rc

dKpR
cT
d

)
vec3

pccd
2︸ ︷︷ ︸

Ucp

.

Manipulating U cp gives

U cp =
(

vec3
pccd
2

)T
Kp vec3

pccd
2 +

(
vec3

pccd
2

)T
Rc
dKpR

cT
d vec3

pccd
2

=
(

vec3
pccd
2

)T
Kp vec3

pccd
2 +

(
RcT
d vec3

pccd
2

)T
KpR

cT
d vec3

pccd
2

=
(

vec3
pccd
2

)T
Kp vec3

pccd
2 +

(
vec3

pdcd
2

)T
Kp vec3

pdcd
2 .

Similarly, the energy seen from Fd is

Ud =
(
vec6 y

d
c

)T
Kd vec6 y

d
c

=
[(

vec3
ndcφ

2

)T (
vec3

pdcd
2

)T ] 2Kφ 0
0 2K ′p

vec3
ndcφ

2

vec3
pdcd
2


=
(

vec3
ndcφ

2

)T
2Kφ vec3

ndcφ

2︸ ︷︷ ︸
Udr

+
(

vec3
pdcd
2

)T (
Kp +Rd

cKpR
dT
c

)
vec3

pdcd
2︸ ︷︷ ︸ .

Udp

Again, manipulating the translation energy Udp yields to

Udp =
(

vec3
pdcd
2

)T
Kp vec3

pdcd
2 +

(
vec3

pdcd
2

)T
Rd
cKpR

dT
c vec3

pdcd
2

=
(

vec3
pdcd
2

)T
Kp vec3

pdcd
2 +

(
RdT
c vec3

pdcd
2

)T
KpR

dT
c vec3

pdcd
2

=
(

vec3
pdcd
2

)T
Kp vec3

pdcd
2 +

(
vec3

pccd
2

)T
Kp vec3

pccd
2 .

Therefore, U cp = Udp .
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Moreover, since ndc = −ncd, thus

Udr =
(
− vec3

ncdφ

2

)T
2Kφ

(
− vec3

ncdφ

2

)

=
(

vec3
ncdφ

2

)T
2Kφ

(
vec3

ncdφ

2

)
= U cr ,

which concludes the proof.
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D
Admittance Using the Imaginary Part of the

Rotation Quaternion (ACIm)

Caccavale et al. (2008) propose a similar controller as Equation (4.19), but they used

the imaginary part of a unit quaternion to represent the rotational displacement in the

stiffness term. More specifically, their admittance controller is given by1

ζ̇
c

cd = M−1
d

(
−I#ςceff,eff −Bdζ

c
cd −K ′′dhcd

)
, (D.1)

where hcd ,
[
(vec3 Im (rcd))

T (vec3 p
c
cd)

T
]T

, with Im (rcd) = nccd sin (φ/2), and

K ′′d =
2E ′T (rcd)Kφ

1
2K

′′
p

03×3 K ′p

 , (D.2)

with E ′ (rcd) = Re (rcd) I3×3 − S (vec3 Im (rcd)) and Re (rcd) = cos (φ/2) (Caccavale et al.,

2008), Kφ ∈ R3×3 being the rotational stiffness matrix, and K
′

p and K
′′

p being the matrices

defined in Equations (4.11) and (4.13).

As shown by Caccavale et al. (1999), the closed-loop system has two sets of equilibrium

points, one stable and the other one unstable. The latter consists of rotations of π rad

around a rotation axis parallel to any eigenvector of Kφ. If the initial state is inside this

unstable set, the system gets trapped. This is the so-called topological obstruction (Bhat

1We changed the order of the rotational and translation terms in hcd and ζccd to be consistent with our
notation.
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& Bernstein, 1998).

More specifically, if ζccd = 0, Equation (D.1) becomes

ζ̇
c

cd = M−1
d

(
−I#ςceff,eff −K ′′dhcd

)
.

Having φ = π and a rotation axis parallel to any eigenvector of Kφ yields to E ′ (rcd) =
−S (vec3n

c
cd) and Kφ vec3n

c
cd = λφ vec3n

c
cd. Hence,

K ′′dh
c
d =

2S (vec3n
c
cd)λφ vec3n

c
cd + 1

2K
′′
p vec3 p

c
cd

K ′p vec3 p
c
cd

 .
Since S (vec3n

c
cd) vec3n

c
cd = 0, thus

K ′′dh
c
d =

1
2K

′′
p vec3 p

c
cd

K ′p vec3 p
c
cd

 .
Therefore, if

−I#ςceff,eff = K ′′dh
c
d =⇒ −

vec3m
c
eff,eff

vec3 f
c
eff,eff

 =
1

2K
′′
p vec3 p

c
cd

K ′p vec3 p
c
cd

 ,
with f ceff,eff and mc

eff,eff the force and moment with respect to Fc, then ζ̇
c

cd = 0 and the

system gets trapped.



Bibliography

Adorno, B. V. (2011). Two-arm Manipulation: From Manipulators to Enhanced Human-
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Haddadin, S., Albu-SchäCurrency Signffer, A., & Hirzinger, G. (2009). Requirements for

safe robots: Measurements, analysis and new insights. International Journal of Robotics

Research, 28(11-12), 1507–1527.

Hamilton, W. R. (1844). On Quaternions, Or On a New System of Imaginaries in Algebra.

Philosophical Magazine Series 3, 25(163), 10–13.

Hanlei, W. (2010). On the Recursive Implementation of Adaptive Control for Robot

Manipulators. In Proceedings of the 29th Chinese Control Conference (pp. 2154–2161).

Higa, F. Y. G., Lahr, G. J. G., Caurin, G. A. P., & Boaventura, T. (2019). Joint kinematic

configuration influence on the passivity of an impedance-controlled robotic leg. In 2019

International Conference on Robotics and Automation (ICRA) (pp. 9516–9522).

Hinds, P., Roberts, T., & Jones, H. (2004). Whose Job Is It Anyway? A Study of

Human-Robot Interaction in a Collaborative Task. Human-Computer Interaction, 19(1),

151–181.

Hoffman, E. M., Laurenzi, A., Muratore, L., Tsagarakis, N. G., & Caldwell, D. G.

(2018). Multi-Priority Cartesian Impedance Control Based on Quadratic Programming

Optimization. In 2018 IEEE International Conference on Robotics and Automation

(ICRA) (pp. 309–315). Brisbane: IEEE.

Hogan, N. (1985). Impedance Control: An Approach to Manipulation. Journal of Dynamic

Systems, Measurement, and Control, 107(1), 1–7.

Hollander, M., A. Wolfe, D., & Chicken, E. (1999). Nonparametric Statistical Methods.

Wiley Series in Probability and Statistics. Wiley, second edition.

Ju, Z., Yang, C., & Ma, H. (2014). Kinematics Modeling and Experimental Verification of

Baxter Robot. In Proceedings of the 33rd Chinese Control Conference, CCC 2014 (pp.

8518–8523).



BIBLIOGRAPHY 161

Katsumata, T., Navarro, B., Bonnet, V., Fraisse, P., Crosnier, A., & Venture, G. (2019).

Optimal exciting motion for fast robot identification. Application to contact painting

tasks with estimated external forces. Robotics and Autonomous Systems, 113, 149–159.

Keemink, A. Q., van der Kooij, H., & Stienen, A. H. (2018). Admittance control for

physical human-robot interaction. International Journal of Robotics Research, 37(11),

1421–1444.
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