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especialmente a mi familia. No podŕıa haber llegado tan lejos sin el apoyo de todos ustedes.

Gracias por las alentadoras videollamadas que me ayudaron a superar esos momentos en

los que más extrañaba estar en casa.
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Resumo

Este trabalho usa desigualdades de campos vetoriais (DCV) para prevenir colisões com

o ambiente e com o próprio robô. As DCVs são estendidas para cinemática de segunda

ordem (DCVSO). Diferentemente de trabalhos anteriores, o método pode ser aplicado a

robôs atuados tanto em velocidade quanto em torque. Além disso, é apresentada uma

prova formal de prevenção de colisões usando DCVs de segunda ordem. É proposta uma

nova função de distância e a sua Jacobiana correspondente para gerar uma DCV que evita

atingir um ângulo entre duas linhas de Plücker. Essa nova DCV é usada para evitar atingir

os limites das juntas ou orientações indesejadas no efetuador. Além disso, é proposta uma

nova Jacobiana relacionada com o poĺıgono de suporte de um robô humanoide. Isso é

usado para maximizar a área do poĺıgono de suporte do robô e, potencialmente, aumentar

o alcance e a segurança do robô em termos do equiĺıbrio. As Jacobianas propostas e as

DCVs são usadas para realizar controle de corpo completo com múltiplos contatos usando

um robô humanoide.

O modelo de Euler-Lagrange, o qual é usado com as DCVSOs em robôs atuados em

torque, é derivado por meio do prinćıpio da mı́nima restrição de Gauss usando álgebra de

quatérnios duais. O uso de álgebra de quatérnios duais permite uma representação mais

compacta e unificada para os heligiros e as heliforças.

O método proposto é avaliado em uma simulação realista e em um humanoide com 27

graus de liberdade e em três robôs reais: um humanoide com 9 graus de liberdade, um

manipulador bimanual com 8 graus de liberdade e um manipulador bimanual móvel não

holonômico com 16 graus de liberdade. Os resultados mostram que todas as restrições são

respeitadas enquanto o robô realiza tarefas de manipulação.

Palavras-chave: Desigualdades de Campos Vetoriais, Robôs Humanoides, Prinćıpio da

Mı́nima Restrição de Gauss, Quatérnios duais, Programação Quadrática.
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Abstract

This work uses vector field inequalities (VFIs) to prevent robot self-collisions and collisions

with the workspace. We extend the VFIs to second order kinematics (SOVFIs) and,

differently from previous approaches, the method is suitable for both velocity and torque-

actuated robots. Furthermore, we present a formal proof of collision avoidance using

SOVFIs. We propose a new distance function and its corresponding Jacobian in order to

generate a VFIs to limit the angle between two Plücker lines. This new VFI is used to

prevent both undesired end-effector orientations and violation of joints limits. In addition,

we propose a new Jacobian related with the support polygon of a humanoid robot. This is

used to maximize the support polygon area of the robot, and potentially increasing the

robot’s reachability and the robot safety in terms of its balance. We use the proposed

Jacobians and the VFIs framework to enable whole-body control with multi-contacts using

a full humanoid robot in simulation.

The Euler-Lagrange model, which is used in conjunction with the SOVFIs for torque-

actuated robots, is derived by means of the Gauss’s Principle of Least Constraint using

dual quaternion algebra. The use of dual quaternion algebra allows a more compact and

unified representation for the twists and wrenches.

The proposed method is evaluated in a realistic simulation on a 27-DOF full humanoid

robot and on three real platforms: a 9-DOF humanoid robot, a 8-DOF bimanual manipula-

tor, and a 16-DOF nonholonomic bimanual manipulator. Results show that all constraints

are respected while the robot performs a manipulation task.

Keywords: Vector Fields Inequalities, Humanoid Robots, Gauss’s Principle of Least

Constraint, Dual Quaternions, Quadratic Programming.
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1
Introduction

In the last 20 years, the field of robotics has been experiencing great growth thanks to

new technological advances in several branches of knowledge (Siciliano & Khatib, 2018).

Now, robots are not restricted to industrial sectors only. New applications for robotics

have emerged as military (Carlson & Murphy, 2005), educational (Chin et al., 2014) and

medical fields (Taylor, 2006). Furthermore, we are witnessing robots performing tasks and

interacting with humans in human environments (Cha et al., 2015). These new paradigms

have brought new challenges and robots as humanoid robots, as shown in Fig. 1.1, some of

them designed to assist and interact with humans in daily activities (Chen et al., 2013;

Siciliano & Khatib, 2018).

Humanoid robots are robotic systems designed to perform human-like manipulation

and locomotion tasks in a variety of scenarios, especially in cluttered ones such as human

environments. Often, those robots have a large number of degrees of freedom, which

increases the dexterity and possibilities of movements.

The motion generation of humanoid robots requires performing contacts with the

environment sequentially under several constraints, which ensure, for instance, the robot

balance, (self) collision avoidance, preventing of violation of joint limits, etc. The contacts

can be cyclic or acyclic according to whether they are periodic or not. Cyclic contacts have

been widely used in walking gaits, where in that specific case the contacts are composed of

two phases: a single support phase and a double support phase. This strategy is considered

a mature topic, with solutions that work in real time (Kajita et al., 2003; Baudouin et al.,

2011; Farshidian et al., 2017). On the other hand, acyclic contacts allow a rich set of phases,
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Figure 1.1: Humanoid robots. From left to right : Atlas from Boston Dynamics, Talos from
Pal Robotics, HPR2 from Kawada Industries, and Poppeye robot from Poppy Project.

including multi-contacts with the environment and are a challenging topic of research.

These are more suitable to perform tasks in cluttered environments, as there are more

options of movement to face the difficulties of the terrain, as shown in Fig. 1.2.

Figure 1.2: Multi-contact example. The goal is to grab a cup that is on the table. On the
left, the robot reachability is limited by the CoM constraint, which maintains the CoM
projection inside the support polygon. On the right, the robot reachability is extended by
performing a new contact with the table, which changes the balance support polygon.

In order to generate acyclic motion, three problems must be solved simultaneously:

computing the discrete contact sequence, the continuous contact locations and the contin-

uous path between two contact combinations (Bouyarmane et al., 2017; Tonneau et al.,

2018). However, dealing with those problems at the same time can lead to a combinatorial

explosion. Usually, this issue has been addressed separately in two ways: using local

optimization and motion planning. The former has been used to trade the computation

cost at the expense of local convergence, whereas the latter aims the global convergence at
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the expense of prohibitive costs (Deits & Tedrake, 2014; Tonneau et al., 2018).

Although remarkable works have been done using discrete searches (Hauser et al., 2008;

Tonneau et al., 2018), local optimization have proved to be a promising road (Mordatch

et al., 2012; Dai & Tedrake, 2016), allowing smooth and optimal local solutions, with no

need for post-processing computed trajectories (Bouyarmane et al., 2009).

Local optimization strategies can be formulated explicitly by using mathematical

programming, which allows dealing with inequality (i.e., unilateral) constraints directly

in the optimization formulation, providing an efficient and elegant solution, where all

constraints are clearly separated from the main task (Bouyarmane et al., 2019). Analytical

solutions, however, usually do not exist and numeric solvers must be used (Kim & Oh,

2013; Escande et al., 2014a; Goncalves et al., 2016).

Marinho et al., 2018 propose active constraints based on Vector Fields Inequalities

(VFIs) to deal with collision avoidance in surgical applications. Both robot and obstacles

are modeled by using geometric primitives—such as points, planes, and Plücker lines—,

and distance functions with their respective Jacobian matrices are computed from these

geometric primitives. The advantage of VFIs is that they limit the robot velocities only

in the direction towards the collision. This strategy can be extended to second order

kinematics (SOVFIs), which enables applications that use the robot dynamics, a more

suitable model to multi-contact framework (Sentis, 2007).

Furthermore, inequality constraints can be used to relax tasks. The main idea is to

describe the task by target regions instead of specific points. This decreases the number of

degrees of freedom (DOF) necessary to perform the task. In this way, by releasing some

robot DOF, secondary tasks can be performed.

This work focuses on whole-body control at the task space level using first and second

order kinematics under VFIs and SOVFIs respectively. This approach allows to relax

specific tasks, to define manipulation tasks and multi-contact applications, and to impose

constraints in order to prevent collisions and self collisions, or prevent violation of joints

limits. Furthermore, this works develops strategies for robot dynamic modeling using dual

quaternion algebra. This allows the use of the SOVFIs framework in robots commanded

by joint torques, as shown in Fig. 1.3.

1.1 Objective and Contributions

The main objective of this work is to develop whole-body motion control strategies for

humanoid robots with (self) collision avoidance and multi-contact constraints in order to

extend the robot manipulation capabilities. The strategies must be efficient enough to be

implemented on real robotic systems. The specific objectives are:

1. Define a suitable objective function in order to perform whole-body control at second
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τGP

q̈

q, q̇

Task

q, q̇

Figure 1.3: Whole-Body control strategy used for manipulation tasks, cooperative manipu-
lation tasks and multi-contact applications. The blue boxes denote the explored topics,
whereas the green ones denote the contributions of this thesis.

order kinematics and validate the proposed techniques on applications that use the

robot dynamics.

2. Develop suitable constraints in order to ensure collision and self-collision avoidance.

3. Allow task flexibilization to release DOF, which can be used to fulfill secondary

tasks.

4. Develop suitable constraints to perform multi-contact applications and general

manipulation tasks.

5. Exploit the VFIs framework to impose constraints that ensure balance tasks and

contact forces with other robot body parts, namely, the hands.

6. Validate the proposed techniques on simulation and on a real platform available in

our research group MACRO.1

The contributions of this work can be summarized as follows:

� We extends the VFIs method, which was first proposed using first order kinematics

(Marinho et al., 2018), to use second order kinematics, SOVFIs, which is introduced

in Chapter 4. This enables applications that use the robot dynamics by means of

the relationship between joint torques and joint accelerations in the Euler-Lagrange

equations.

1http://macro.ppgee.ufmg.br/
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� We propose a new distance function related to the angle between two Plücker lines

and the corresponding Jacobian matrix to prevent violations of joint limits and avoid

undesired end-effector orientations. These are introduced in Chapter 4.

� We present a formal proof ensuring collision avoidance for SOVFIs. The proof is

introduced in Chapter 4.

� We propose a new Jacobian related with the support polygon of a humanoid robot.

This enables tasks as maximization of the support polygon area, which can potentially

increase the robot’s reachability and the robot safety in terms of its balance.

� We present the formulation of the Gauss’s Principle of Least Constraint using

dual quaternion algebra, in Section 5. This strategy allows taking into account

additional constraints in the accelerations, which can be exploited, for instance,

in nonholonomic robotic systems. In addition, the computational cost in terms of

number of multiplications, additions, and trigonometric operations is presented and

compared with their classic counterparts. Furthermore, we show the connections

between Gauss’s principle, Gibbs-Appell equations, and Kane’s method.

1.2 Publications

Parts of this dissertation have been published or submitted in the following works:

Journals:

� Quiroz-Omaña, J. J.; Adorno, B. V. Whole-Body Control With (Self) Collision

Avoidance Using Vector Field Inequalities. IEEE Robotics and Automation Letters

(RA-L), vol. 4, no. 4, pp. 4048–4053, oct 2019.

� F.F.A.; Quiroz-Omaña, J. J.; Adorno, B. V. Dynamics of Mobile Manipulators

using Dual Quaternion Algebra. (submitted to Journal of Mechanisms and Robotics

(ASME-TMR)).

Workshops:

� Quiroz-Omaña, J. J.; Adorno, B. V. Bimanual Mobile Manipulation Using the

Cooperative Dual Task-Space Framework and Vector Fields Inequalities. In Workshop

on Applications of Dual Quaternion Algebra to Robotics, International Conference

on Advanced Robotics (ICAR) 2019, in Belo Horizonte, Brazil on December 2019.
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1.3 Structure of the Text

This dissertation is organized as follows, Chapter 2 presents some of the most relevant

works in acyclic motion with multi-contacts for humanoids robots and (self) collision

avoidance. Chapter 3 briefly reviews the mathematical foundation required to understand

the presented methods, and establishes the notation used in this work. Chapter 4 introduces

one contribution of this dissertation, the Second Order Vector Fields Inequalities (SOVFIs),

its formal proof for collision avoidance, and presents a new distance function and its related

Jacobian. Furthermore, that chapter presents a new Jacobian related with the support

polygon of a humanoid robot. Chapter 5 introduces another contribution of this work,

the Gauss’s Principle of Least Constraint in dual quaternion algebra, and its connections

with the Gibbs-Appell equations and Kane’s method. Chapter 6 presents the simulation

and experimental results. Chapter 7 presents the conclusions and future works. Finally

Appendix A reviews the dual quaternion algebra required to understand the Gauss’s

Principle of Least Constraint derivation.
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2
State of the Art

This chapter reviews some recent works related to the research on humanoid robots and is

organized as follows: Section 2.1 presents a review of control strategies for multi-contact

control of humanoid robots based on discrete searches. Section 2.2 reviews multi-contact

control strategies based on local optimization.

The locomotion principle of a humanoid robot is based on performing contacts sequen-

tially. The first works on humanoid robots focused on cyclic walking gaits, where only

two phases compose the contacts: the single support phase and the double support phase.

However, because this approach does not consider multiple contacts, it can limit the robot

dexterity and its reachability, especially in cluttered scenarios, since multiple contacts with

other links are not taken into account. For those cases, where multi-contacts are required,

acyclic contacts have been used.

2.1 Multi-Contact Control of Humanoid Robots: Discrete

Searches

Early works using acyclic contacts were based on motion graphs (Kovar et al., 2002; Pettré

et al., 2003). This strategy requires motion capture data, where a graph encodes how

the captured frames could be assembled in different ways. Because the movements are

highly data-dependent, this approach does not allow adaptations to new scenarios or new

movements directly.
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The acyclic contact planning paradigm requires computing the robot base1 trajectory in

SE(3), planning a sequence of configurations that respect a set of constraints along the base

trajectory, and interpolating a continuous motion between two configurations (Tonneau

et al., 2018; Bouyarmane et al., 2017). This huge amount of choices is a combinatorial

problem, and often it has been addressed in two ways: based on local optimization or

discrete searches that decouple the problems to reduce the complexity (Deits & Tedrake,

2014; Tonneau et al., 2018).

Roughly speaking, discrete searches strategies are based on motion planning that use

probabilistic algorithms. In the context of multi-contact generation, the contacts are

performed in the boundary between the free space and the obstacle space, see Fig. 2.1.

Here, naive probabilistic methods do not work, since the subspace of the configuration

space is zero measure (Escande et al., 2013). That is, the probability of sampling a

configuration in the boundary is zero. In those cases, the sampled configurations must

be projected in contact with the obstacles, increasing the numerical cost of the operation

(Tonneau et al., 2018).

Cobs

Cobs

Cobs Cobs

Cobs

Cobs

Cobs

Cobs

CobsCfree Cfree Cfree

qstart

qgoal qgoal

qstart

qstart

qgoal

Cguide

Figure 2.1: Motion planning: On the left, collision-free motion planning. On the middle,
Contacts guide planning. On the right, Contact-points planning. (Bouyarmane et al.,
2009)

Bretl et al., 2005 proposed an acyclic motion algorithm for free-climbing robots based on

probabilistic road maps (PRM) using the contact-before-motion approach. The algorithm

works with specific climbing scenarios using a pre-specified steps sequence but is not

applicable to general ones. Hauser et al., 2005 extended that strategy to a humanoid

robot. A set of contacts is defined as a stance. Stances are sampled and stored in a

stance-adjacency graph. The set of stance sequences are searched in the stance-adjacency

graph. Two stances are connected if they differ by one contact and contain a feasible

configuration, as shown Fig. 2.2. Incremental improvements were performed in the graph

search process aiming for smoother trajectories. For instance, using potential functions or

guide trajectories to avoid complicated paths and postures (Escande et al., 2006, 2009,

2008; Bouyarmane et al., 2009). Hauser et al. (2008) used a library of motion primitives to

obtain smoother and more natural motions at the expense of loss of generality, preventing

the discovery of new possible motions.

1The base or root of the robot is often the pelvis. It is used to define the localization of the robot with
respect to a reference coordinate system.
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Figure 2.2: Examples of two stances: On the left, the robot performs three contacts. On
the right, the robot performs four contacts. The stances differ by one contact between
them.

Tonneau et al. (2018) proposed an acyclic planner for legged robots with remarkable

computational efficiency. The strategy is composed of two stages and is based on the the

contact reachability. First, a trajectory of the robot base is computed in SE(3) using a

PRM. The contact surface must be included in the reachability of the robot to allow a

contact creation while the robot base is free of collision. Second, the algorithm computes

a sequence of statically balanced and collision-free configurations along of the path of the

robot base using an offline database of the robot limbs configurations, which the algorithm

chooses based on a heuristic. However, the planning success rate is highly-dependent of

the environment.

Table (2.1) summarizes the main approaches for multi-contact control using discrete

searches. In this dissertation, the multi-contact control will be addressed using local

optimizations, aiming for lower computational times with respect to discrete searches, but

at expense of local convergence.

2.2 Multi-Contact Control of Humanoid Robots: Local Op-

timization

Other strategies for acyclic motion generation have been approached using local opti-

mization. Mordatch et al. (2012) proposed the Contact-Invariant Optimization (CIO)

method to perform simultaneous optimization of contacts and behavior. The objective

function is composed of four cost functions related to the dynamic model, the desired task,

optional hints costs and the contact-invariant cost. This latter affects not only the cost

9
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Table 2.1: Main approaches for multi-contact control using discrete searches.

Work Strategy Drawbacks
Kovar et al. (2002)

Motion graphs

It requires motion capture data.

Pettré et al. (2003) Highly data-dependent.

No adaptations, no new motions.

Bretl et al., 2005 Probabilistic Road Maps

Computationally expensive.

Hauser et al., 2005

Contact-before-motion

Escande et al. (2006)

Escande et al. (2009)

Bouyarmane et al. (2009)

Hauser et al. (2008)

Tonneau et al., 2018 RRT Requires user-defined parameters

Contact reachability Requires highly-constrained scenarios.

function but also the dynamics by enabling and disabling contact forces. The optimization

process is composed of three phases. In phase one, only the cost function related to the

task is enabled, which allows the rapid discovery of a movement without being physically

consistent. In phase two, all cost functions are enabled but down-weighting the one related

with the dynamic model. This allows to obtain a rough physical realism while guided by

hints. Finally, in phase 3, all cost functions are enabled except the one related with the

hints. This is used to refine the final solution. The authors use a reduced model aiming at

better performance. However the method is far from real time, requiring between two to

ten minutes on each of the three phases in simulation tests. This strategy was implemented

on a real a robot by Mordatch et al. (2015) using off-line strategies.

A similar approach was proposed by Al Borno et al. (2013) to handle highly dynamic

motions with cyclic and acyclic movements using spacetime constraints (Witkin & Kass,

1988). As in the work of Mordatch et al. (2012), the computational cost is still prohibitive.

Lengagne et al. (2013) addressed the dynamic multi-contact motion generation by using

nonlinear optimization and considering the full-body dynamic model. The authors used a

B-spline parameterization for the joints and the optimization formulation was written as a

semi-infinite program. Unlike Mordatch’s work, the method requires the desired contact

sequence. Still, the proposed method is computational expensive. For instance, the time

required to perform a sitting motion task is about 3 hours.

Saab et al. (2013) used a hierarchical quadratic program (HQP) to handle dynamic

motion under inequality constraints. The authors proposed a reduced formulation for rigid

planar contacts. Experiments showed a successful and efficient implementation on a real

robot in a multi-contact task. However, the solver requires a predefined set of contacts.

Shu-Yun Chung & Khatib (2015) addressed the multi-contact locomotion using a

decoupled approach using the elastic strips framework (Brock & Khatib, 2002). The

contact regions are extracted from the environment and represented as a 3D point cloud. A

global planner searches a sequence of contact-regions based on the reachability. After that,
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a prioritized controller simultaneously adjusts the postures and contact regions. However,

collisions are not taken into account in the planning phase and therefore, replanning is

required in the case of failure. Simulation results have shown that the proposed method

finds the contact sequence and the corresponding motions in a few seconds.

Murooka et al. (2020a) addressed the multi-contact generation using quadratic program-

ming to simultaneously compute the control inputs and the points of contacts on the body

surface. The authors modeled the robot using a convex polyhedron based on the robot

mesh. To prevent discontinuities in the search of points on the edge of the polyhedron,

the authors proposed a smoothed normal direction on the body surface. Different from

previous approaches (Escande et al., 2014b, 2016), the strategy does not require additional

computations to approximate the robot model.

Deits & Tedrake (2014) addressed the contact planning using a mixed-integer problem

(MIP). A set of convex obstacle-free configuration space regions are precomputed and

integer variables are used to assign footstep to those regions. The method is efficient but

only cyclic gaits are handled and the robot dynamic model is not considered. Ponton et al.

(2016), extended the work of Deits & Tedrake (2014) allowing multi-contacts. Instead of

using a full dynamic model, the authors proposed a convex model, namely the centroidal

momentum dynamics (CMD) (Dai et al., 2014) aiming at computational efficiency. Ponton

et al. (2018) proposed convex relaxations of the CMD to enable specifications about

desired angular momentum in the objective function. That work was then extended

(Ponton et al., 2021) to include the optimization of timing by using a sequence of convex

approximations of the centroidal dynamics. Although strategies based on MIP have shown

the potential for contact planning, it is still computationally expensive. To mitigate that

limitation, Tonneau et al. (2020) formulated the MIP contact planning by means of linear

programming. This allows taking advantage of the sparse solutions at expense of optimality

approximations. Results showed faster contact planning for cases involving both a small

number of contacts and contact surfaces.

Table (2.2) summarizes the main approaches for multi-contact control using local

optimization. In this dissertation, the multi-contact control will be addressed as proposed

by Saab et al. (2013) but using sets of candidate contact regions instead of a set of contacts

and exploiting both unilateral and bilateral constraints.

2.3 (Self ) Collision Avoidance

Collision avoidance has been addressed either in off-line or on-line approaches. The

former is based on motion planning, where probabilistic methods have been widely used

(Karaman et al., 2011; Burget et al., 2016). These strategies are usually applied in the

configuration space and are computationally expensive, free of local minima and used in

known scenarios (Moll et al., 2015). The latter is based on reactive methods and usually
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Table 2.2: Main approaches for multi-contact control using local optimization.

Work Strategy Drawbacks
Mordatch et al., 2012

Contact-Invariant Optimization

Reduced Dynamic Model.

Al Borno et al. (2013)
Computationally expensive.

Mordatch et al. (2015)

Saab et al. (2013) Hierarchical quadratic program Requires the a predefined set of contacts.

Shu-Yun Chung & Khatib (2015) Elastic strips Collisions are not handled in the planning

phase.

Murooka et al. (2020b) Quadratic programming Robot dynamics not considered.

Deits & Tedrake (2014)
Mixed-integer problem

Cyclic gaits only.

Robot dynamics not considered.

Ponton et al. (2016, 2018, 2021) Reduced model.

Tonneau et al. (2020) Linear Programming Optimality approximations.

require less computation time; therefore, they can be used in real-time feedback control

and are suitable for applications within unknown workspaces.

Reactive methods are, in general, based on minimization problems (Laumond et al.,

2015), which exploit the robot redundancy by selecting admissible control inputs based on

a specified criterion. When the robot is commanded by joint velocity inputs and operates

under relatively low velocities and accelerations, its behavior is appropriately described by

the kinematic model and, as a consequence, the minimization can be performed in the

joint velocities. In that case, since the control law is based entirely on the kinematic model,

it is not affected by uncertainties in the inertial parameters (e.g., mass and moment of

inertia). On the other hand, if the robot is commanded by torque inputs, the minimization

is performed in the joint torques, which usually requires the robot dynamic model. Both

methods are widely used to perform whole-body control with reactive behavior.

Whole-body control strategies with collision avoidance usually have been handled by

using the task-priority framework, where the overall task is divided into subtasks with

different priorities. For instance, distance functions with continuous gradients between

convex hulls (or between simple geometrical primitives such as spheres and cylinders)

that represent the body parts are used and the lower-priority collision-avoidance tasks

are satisfied in the null space of higher-priority ones (Stasse et al., 2008; Schwienbacher

et al., 2011). Those secondary tasks are fulfilled as long as they are not in conflict with

the higher-priority ones. Therefore, they do not prevent collisions when in conflict with

the primary task. One way to circumvent this problem is to place the collision avoidance

as the higher priority task (Sentis & Khatib, 2004), at the expense of not guaranteeing

the fulfillment of the main task, such as reaching targets with the end-effector. Some

authors address this by using a dynamic task prioritization, where the control law is

blended continuously between the collision-avoidance task and the end-effector pose control

task as a function of the collision distance (Sugiura et al., 2007). Dietrich et al. (2012)

propose a torque-based self-collision avoidance also using dynamic prioritization, where the
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transitions are designed to be continuous and comply with the robot’s physical constraints,

such as the limits on joint torque derivatives. However, changing priorities to enforce

inequality constraints has an exponential cost in the number of inequalities (Kanoun

et al., 2011). Alternatively, non-hierarchical formulations based on weighted least-square

solutions are used to solve the problem of constrained closed-loop kinematics in the context

of self-collision avoidance (Patel et al., 2005). However, the non-hieararchical approach

requires an appropriate weighting matrix that results in a collision-free motion, which may

not work in general, specially for high-speed motions (Dariush et al., 2010). That can be

solved by combining the weighting matrix with the virtual surface method, which redirects

the collision points along a virtual surface surrounding the robot links at the expense of

potentially disturbing the trajectory tracking when the distance between collidable parts

is smaller than a critical value.

Other strategies addressed the collision-free motion generation problem explicitly by

using mathematical programming, which allows dealing with inequality (i.e., unilateral)

constraints directly in the optimization formulation (Decre et al., 2009; Quiroz-Omaña &

Adorno, 2018; Marinho et al., 2018, 2019; Bouyarmane et al., 2019).

Faverjon & Tournassoud (1987) used inequalities constraints to handle collision avoid-

ance, and Bouyarmane et al. (2017) extended it to second order kinematics. The distance

between the robot and the obstacle is computed by using an algorithm that models the

robot by means of convex shapes.

Marinho et al. (2018) proposed active constraints based on VFIs to deal with collision

avoidance in surgical applications. Both robot and obstacles are modeled by using geometric

primitives—such as points, planes, and Plücker lines—, and distance functions with their

respective Jacobian matrices are computed from these geometric primitives. The advantage

of VFIs is that they limit the robot velocities only in the direction towards the collision.

Koptev et al. (2021) addressed the real-time self-collision avoidance of a humanoid

robot by learning feasible regions and using a quadratic program to generate collision-free

motions. The idea is to collect an offline dataset by sampling the robot workspace, for

collision-free and non collision free joint space configurations, using a precise triangle mesh

representation of the robot. The authors used machine learning to obtain smooth boundary

functions, which are used as inequality constraints in quadratic programming to prevent

robot self-collisions. This strategy is less conservative than the ones that model the robot

using convex geometrical approximations. However, collisions with the environment or

other objects are neglected.

Marinho et al. (2019) extended the VFIs framework to prevent collisions between

moving entities by means of dynamic active constraints. This strategy enables applications

with any number of robots sharing the workspace or applications with dynamic objects as

long as their velocities are available. However, the proposed VFIs strategy uses first order

kinematics only. This limits applications that use the robot dynamics.
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Osorio et al. (2020) worked with collision-avoidance unilateral constraints and second

order kinematics to perform torque control. However, the geometric primitives used are

limited to points only. This can be restrictive since point-based models can increase the

number of constraints in some scenarios.

Table (2.3) summarizes the main approaches for collision avoidance based on reactive

methods. The strategies based on VFIs and mathematical programming are promising but

second order kinematics is not taken into account. In this dissertation, VFIs with second

order kinematics are taken into account in conjunction with mathematical programming.

Table 2.3: Main approaches for collision avoidance using inequality constraints.

Work Strategy Drawbacks

Stasse et al. (2008)

The task priority framework.

Collision-avoidance tasks have lower priorities.

Schwienbacher et al. (2011) There is no guarantee of collision avoidance.

Sentis & Khatib (2004) Collision-avoidance tasks have higher priorities.

No guarantee of the fulfillment of the main task.

Sugiura et al. (2007)
Dynamic prioritization. Exponential cost in the number of inequalities.

Dietrich et al. (2012)

Patel et al. (2005)
Weighted least-square solutions. It may not work in general.

Dariush et al. (2010)

Quiroz-Omaña & Adorno (2018) Mathematical programming.

It uses first order kinematics only.Marinho et al. (2018) Vector Fields Inequalities (VFIs).

Marinho et al. (2019) Dynamic VFIs

Koptev et al. (2021)

Learned feasible regions to
compute smooth boundary
functions.

Only self-collision avoidance.

It uses first order kinematics only.

Osorio et al. (2020)
Unilateral constraints based on
point-based primitives.

Limited number of geometric primitives.

2.4 Conclusions

This chapter presented some important works related to multi-contact control of humanoid

robots and self-collision and collision avoidance. Section 2.1 reviewed the strategies based

on discrete searches for acyclic contact planning. In this paradigm, three problems must

be solved simultaneously: computing the sequence of discrete contacts, the continuous

contacts locations, and the continuous path between two contacts combinations (Tonneau

et al., 2018; Bouyarmane et al., 2017). Since dealing with those problems at the same time

can lead to a combinatorial explosion, the problem has been addressed separately in two

ways: motion planning and using local optimization. The former is based on probabilistic

algorithms and aims for the global convergence at the expense of prohibitive costs. The

latter usually has a lower computational cost at the expense of local convergence (Deits &
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Tedrake, 2014; Tonneau et al., 2018) and is presented in Section. 2.2. Finally, Section. 2.3

presented some important works about strategies for (self) collision avoidance. This is

addressed either using off-line (motion planning) or on-line approaches (reactive methods).

Reactive methods are, in general, based on minimization problems (Laumond et al., 2015),

which exploit the robot redundancy by selecting admissible control inputs based on a

specified criterion. Furthermore, they usually require less computation time than off-line

approaches; therefore, they can be used in real-time feedback control and are suitable for

applications within unknown workspaces.
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3
Mathematical Background

This chapter reviews some concepts, foundations and operations related to task-space

control and vector field inequalities.

3.1 Task-Space Control Using Mathematical Programming

A classic strategy used in differential inverse kinematic problems consists in solving an

optimization problem that minimizes the joint velocities, q̇ ∈ Rn, in the l2-norm sense.

Given a desired task xd ∈ Rm, where ẋd = 0, ∀t, and the task error x̃ , x − xd, the

control input u is obtained as

u ∈ arg min
q̇

‖Jq̇ + ηx̃‖2
2 + λ2 ‖q̇‖2

2

subject to Wq̇ ≤ w,
(3.1)

where J ∈ Rm×n is the task Jacobian that satisfies ẋ = Jq̇, λ ∈ [0,∞) is a damping

factor, and W ∈ Rl×n and w ∈ Rl are used to impose linear constraints in the control

inputs (Marinho et al., 2019). Furthermore, η ∈ (0,∞) denotes the convergence rate and

is selected in order to obtain a fast and smooth convergence.

An analogous scheme can be used to perform the minimization at the joint acceleration

level. Given the desired error dynamics ¨̃xd = −kd ˙̃x− kpx̃, with kd, kp ∈ (0,∞) such that

k2
d − 4kp > 0 to obtain a non-oscillatory exponential error decay, the minimization problem
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3.1 TASK-SPACE CONTROL USING MATHEMATICAL PROGRAMMING

in the constrained case is formulated as

ua ∈ arg min
q̈

∥∥∥∥∥∥∥∥Jq̈ + J̇ q̇︸ ︷︷ ︸
¨̃x

− (−kpx̃− kdJq̇)︸ ︷︷ ︸
¨̃xd

∥∥∥∥∥∥∥∥
2

2

+ λ2 ‖q̈‖2
2

subject to Λq̈ ≤ ρ,

(3.2)

where Λ ,
[
I −I W T

]T
∈ R(2n+l)×n and ρ ,

[
γTu ,−γTl ,wT

]T
∈ R2n+l.

By regrouping the terms, we can write

ua ∈ arg min
q̈

∥∥∥∥∥∥∥∥Jq̈ + J̇ q̇ + kpx̃+ kdJq̇︸ ︷︷ ︸
β

∥∥∥∥∥∥∥∥
2

2

+ λ2 ‖q̈‖2
2

subject to Λq̈ ≤ ρ.

, (3.3)

Analogously to (3.1), W and w are used to impose arbitrary linear constraints in the

acceleration inputs, and two additional constraints, that is γ l ≤ q̈ ≤ γu, are imposed to

minimize the joint velocities by limiting the joint accelerations. The idea is that those

bounds depend on the joint velocities, as shown in Fig. 3.1. More specifically, we define

the acceleration lower bound γ l and the acceleration upper bound γu, respectively:

γ l , k
(
−1ng

(
˙̃x
)
− q̇

)
, γu , k

(
1ng

(
˙̃x
)
− q̇

)
, (3.4)

where k ∈ [0,∞) is used to scale the feasible region, g : Rm → [0,∞) is a positive definite

nondecreasing function (e.g., g
(

˙̃x
)
,
∥∥∥ ˙̃x
∥∥∥

2
) and 1n is an n-dimensional column vector

composed of ones. As the bounds (3.4) depend on the error velocity ˙̃x, then γ l → γu when

˙̃x→ 0. Therefore, γ l = γu = γ and γ ≤ q̈ ≤ γ becomes q̈ = γ = −kq̇, whose solution is

given by q̇ (t) = q̇ (0) exp (−kt); that is, as the task velocity goes to zero, the robot stops

accordingly.1

1Those bounds are necessary because (3.3) minimizes the joint accelerations. Without them, the
objective function can be minimized even if the joint velocities are not null.
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θ̇ > 0

θ̇ < 0

θ̈ ≤ −kθ̇

θ̈ ≥ −kθ̇

Figure 3.1: Joint acceleration bounds behavior when the task is fulfilled (i.e., g
(

˙̃x
)

= 0).

On the left, the case when there is a positive angular velocity θ̇ > 0, the constraint enforces
a negative acceleration θ̈ ≤ −kθ̇ that decrease the velocity θ̇ to zero. On the right, the
analogous case for θ̇ < 0, where the constraint enforces θ̈ ≥ −kθ̇.

In some cases, the constraints Wq̈ ≤ w and γ l ≤ q̈ ≤ γu may become conflicting and

therefore (3.3) could be infeasible. A classic strategy to address this problem is to exploit

the robot redundancy using the task priority framework (Kanoun et al., 2011). The idea,

if feasible, is to minimize the joints velocities at the lower priority level while ensuring the

execution of the higher priority task. The higher priority level control law is formulated as

ua1 ∈ arg min
q̈

‖Jq̈ + β‖2
2 + λ2 ‖q̈‖2

2

subject to Wq̈ ≤ w.
. (3.5)

The lower priority level control law is formulated as

ua2 ∈ argmin ‖q̈ + αq̇‖2
2

subject to Jq̈ = Jua1

Wq̈ ≤ w,

(3.6)

where α ∈ (0,∞), and the equality constraint Jq̈ + β = Jua1 + β =⇒ Jq̈ = Jua1

ensures the error dynamics imposed in 3.5.

If the robot is commanded by means of torque inputs (i.e., τ , uτ ), we use (3.3) and

the Euler-Langrange equation Mq̈ + n = τ , where M ∈ Rn×n is the inertia matrix and

n ∈ Rn denotes the nonlinear terms including Coriolis and gravity forces, to compute the

control input

uτ = n+Ma, (3.7)

where a ∈ {ua1 ,ua2} are the joint accelerations computed by (3.3) or using the hierarchical

framework given by (3.5) and (3.6).
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3.2 DISTANCE FUNCTIONS AND JACOBIANS

3.2 Distance Functions and Jacobians

The VFIs are differential inequalities that are used to avoid collisions between pairs of

geometrical primitives (Faverjon & Tournassoud, 1987; Marinho et al., 2019). Each VFI

requires a distance function between two geometric primitives and both the Jacobian

and residual, which relate the robot joint velocities to the time-derivative of the distance

function as follows

ḋ = Jq̇ + ζ (t) .

The geometric primitives can be represented by dual quaternions (Adorno, 2017) (see

appendix A), as shown in Fig. 3.2. For instance, points S 3 p = 1 + ε1
2p are described

by their Cartesian coordinates p ∈ Hp. A plane S 3 π = nπ + εdπ is described by

the unit norm vector normal to the plane nπ ∈ Hp ∩ S3 and the perpendicular distance

dπ = 〈pπ,nπ〉 from the origin of the reference frame, where pπ ∈ Hp is an arbitrary point

on the plane. Furthermore, a line Hp ∩ S 3 l = l + εm is defined by the line direction

Hp ∩ S3 3 l and the line moment m = pl × l, in which pl ∈ Hp is an arbitrary point on

the line.

pπ

p

nπ

dπ

l

pl

l = l + εm

π = nπ + εdπ

p = 1 + ε1
2p

dsafe

dsafe

Figure 3.2: Geometric primitives and its representation using dual quaternions. From left
to right : Point, plane and line primitives. Points and lines can also describe spheres and
cylinders, respectively, by using safe distances on the VFIs approach.

Marinho et al. (2019) presented some useful distance functions and their corresponding

Jacobians based on pair of geometric primitives composed of Plücker lines, planes, and

points. To illustrate the computation of the Jacobians and residuals, consider the point-to-

plane primitive of Fig. 3.3. Given a robot point p , p (q) ∈ Hp, in which q ∈ Rn are the

robot joints configurations, and an arbitrary plane H 3 π = nπ+εdπ, where dπ = 〈pπ,nπ〉
with pπ being an arbitrary point in the plane, the distance between them is given as

dp,π = 〈p,nπ〉 − dπ. (3.8)

Using the definition (A.12), the time derivative of (3.8) is given as (Marinho et al.,
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3.2 DISTANCE FUNCTIONS AND JACOBIANS

2019)

ḋp,π = vec4 (nπ)T Jp︸ ︷︷ ︸
Jp,π

q̇ + 〈p, ṅπ〉 − ḋπ︸ ︷︷ ︸
ζp,π

, (3.9)

where Jp is the translation Jacobian that satisfies the relation vec4 ṗ = Jpq̇.

The Jacobians and residuals of all primitives are computed analogously to the point-to-

point primitive and are summarized in Table 3.1 and illustrated in Fig. 3.3.

dsafe

dp,nπ

dp,l

dlz,l

l

lz

l

π

ps
dp,ps

dsafe

z

Fz

Point-to-point Point-to-plane

Point-to-line
Line-to-line

p

p

p

xz

F

Figure 3.3: Pair of geometric primitives and their distance functions. Point p and frame
Fz are attached to the robot kinematic chain. The pose of frame Fz is represented by the
dual quaternion xz.

We can use the geometric primitives to verify collisions between the robot and the

obstacles. Consider a robot performing a task near a wall. We can model the wall using a

plane and the robot end-effector using a sphere, which corresponds to a robot point with a

safe distance, as shown in Fig. 3.3. Then, we can use them as a collision-checker tool by
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computing the distance between the primitives as

d̃p,π = dp,π − dsafe,

where dp,π is the distance between the robot point and the plane, and dsafe is a safe distance

defined by the user. In this way, if d̃p,π ≥ 0, the robot is in a free-collision configuration.

Otherwise, the robot collided with the obstacle.

Table 3.1: Summary of primitives.(Marinho et al., 2019)

Primitives Distance function Jacobian Residual

Point-to-point Dp,ps , d2
p,ps Jp,ps ζp,ps

Point-to-line Dp,l , d2
p,l Jp,l ζp,l

Point-to-plane dp,π Jp,π ζp,π

Line-to-line Dlz ,l
, d2

lz ,l
J lz ,l ζlz ,l

3.3 Conclusions

This chapter reviewed some concepts, foundations and operations related to task space

control based on quadratic programming and vector field inequalities.

Section. 3.1 presented the control law strategies based on constrained quadratic pro-

gramming, which are used to minimize the joint velocities or accelerations. These control

laws allow the generation of the control inputs under inequality constraints, specifically,

the vector field inequalities (VFIs), in the case of robots commanded by joint velocities. In

the case of robots commanded by joint accelerations or torques, we use the extension of the

VFIs to second order kinematics (SOVFIs), which is presented in Chapter. 4. Section. 3.2

presented a brief introduction about the distance functions between geometric primitives

and their respective Jacobians. These concepts are used in Chapter 4 to define new

distance functions and Jacobians as the angle between two Plücker lines, which are useful

to prevent undesired orientations and violation of the joint limits. Furthermore, the chapter

introduces a new Jacobian related to the support polygon (SP) area of a humanoid robot,

which is useful to increase the SP area and potentially improve the robot reachability.
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Second Order Vector Field Inequalities

This chapter shows one of the contributions of this dissertation. First, the VFIs are

extended to second order kinematics (SOVFIs). This enables applications that use the

robot dynamics by means of the relationship between joint torques and joint accelerations

in the Euler-Lagrange equations. Second, a formal proof that shows that SOVFIs ensure

collision avoidance is presented. In addition, a new distance function related to the

angle between two Plücker lines and the corresponding Jacobian matrix are proposed,

which may be useful to prevent the violation of joint limits and/or to avoid undesired

end-effector orientations. Next, the chapter shows a new Jacobian related with the support

polygon area of a humanoid robot, which may be useful to potentially increase the robot’s

reachability and the robot safety in terms of its balance. Finally, a strategy for multi-contact

applications based on VFIs is presented.

The VFI framework was proposed by Marinho et al. (2018), and it is composed of

differential inequalities that are used to prevent collisions between pairs of geometrical

primitives within the dual quaternion algebra. It requires a signed distance function

d (t) ∈ R between two collidable objects and the Jacobian matrix Jd relating the robot

joint velocities with the time derivative of the distance; that is, ḋ (t) = Jdq̇ + ζ (t) , where

ζ (t) is the residual that contains the distance dynamics unrelated to the robot’s joints

velocities. Furthermore, it is assumed that the residual is known but it cannot be controlled

(Marinho et al., 2019).

In order to keep the robot outside a collision zone, the error distance is defined as

d̃ (t) , d (t)− dsafe, where dsafe , dsafe (t) ∈ [0,∞) is an arbitrary safe distance, and the

22



4 SECOND ORDER VECTOR FIELD INEQUALITIES

following inequalities must hold for all t (Marinho et al., 2019):

˙̃d (t) ≥ −ηdd̃ (t)⇐⇒ −Jdq̇ ≤ ηdd̃ (t) + ζsafe (t) , (4.1)

where the residual

ζsafe (t) , ζ (t)− ḋsafe (4.2)

encodes the effects of a moving obstacle with residual ζ (t) and of a time-varying safe-zone

distance ḋsafe. Furthermore ηd ∈ [0,∞) is used to adjust the approach velocity. The lower

is ηd, the lower is the allowed approach velocity.

Alternatively to the work of Marinho et al., 2019, if we consider acceleration inputs,

the VFI can be extended by means of a second-order differential inequality

¨̃d (t) ≥ −ηd ˙̃d (t)− ηpd̃ (t) , (4.3)

where d̃ (t) , d (t)− dsafe, and ηd, ηp ∈ [0,∞), with ηd ≥ 2
∣∣∣ ˙̃d(0)

∣∣∣/d̃(0) are used to adjust the

approach acceleration. We enforce the condition η2
d − 4ηp > 0 to obtain, in the worst case,

a non-oscillatory exponential approach.

Using the fact that d̃ (t) , d (t)− dsafe, we compute its first and second time derivative

as ˙̃d (t) = ḋ (t) − ḋsafe and ¨̃d (t) = d̈ (t) − d̈safe, respectively. Furthermore, we have that

ḋ (t) = Jdq̇ + ζ (t) =⇒ d̈ (t) = Jdq̈ + J̇dq̇ + ζ̇ (t). Therefore, using (4.2), we rewrite ˙̃d (t)
and ¨̃d (t), respectively as

˙̃d (t) = Jdq̇ + ζsafe (t) , (4.4)

¨̃d (t) = Jdq̈ + J̇dq̇ + ζ̇safe (t) . (4.5)

Using (4.4) and (4.5), we rewrite the constraint (4.3) as

−Jdq̈ ≤
(
ηdJd + J̇d

)
q̇ + ηpd̃ (t)︸ ︷︷ ︸

βd

+ ζ̇safe (t) + ηdζsafe (t)︸ ︷︷ ︸ .
βres

(4.6)

Analogously, if it is desired to keep the robot inside a safe region (i.e., d̃ (t) ≤ 0), the

constraints (4.1) and (4.3) are rewritten, respectively, as

˙̃d (t) ≤ −ηdd̃ (t)⇐⇒ Jdq̇ ≤ −
(
ηdd̃ (t) + ζsafe (t)

)
, (4.7)

¨̃d (t) ≤ −ηd ˙̃d (t)− ηpd̃ (t)⇐⇒ Jdq̈ ≤ − (βd + βres) . (4.8)
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Note that in case of static entities (i.e. fixed obstacles and static safe regions) the term

βres equals 0, and the constraints (4.6) and (4.8) are the same as proposed in our previous

work (Quiroz-Omana & Adorno, 2019).

In order to show that the second inequality in (4.3) prevents collisions—i.e., d̃ (t) ≥ 0,

∀t ∈ [0,∞) assuming that d̃ (0) ≥ 0—in robot commanded by means of acceleration

inputs,1 we propose the following lemma.

Lemma 4.1. Consider the second inequality constraint in (4.3), with ηd, ηp ∈ (0,∞),
η2
d − 4ηp > 0, d̃ (0) , d̃0 > 0, ˙̃d (0) , ˙̃d0 ∈ (−∞,∞) and ηd ≥ 2

∣∣∣ ˙̃d0

∣∣∣/d̃0. Let d̃ (t) be a

smooth function for all t ∈ [0,∞), then d̃ (t) > 0, ∀t ∈ [0,∞).

Proof. This proof is based on the Comparison Lemma, which is stated for first order scalar

differential equations. Therefore, first we reduce the order of the differential inequality.

Consider ¨̃d (t) = −ηd ˙̃d (t)− ηpd̃ (t), where d̃ (0) = d̃0, ˙̃d (0) ∈ (−∞,∞), and ηd, ηp respects

the aforementioned conditions. Let z ,
[
z1 z2

]T
, with z1 , d̃ (t) and z2 , ˙̃d (t), then,

the second ODE is rewritten as

ż =
 0 1
−ηp −ηd


︸ ︷︷ ︸

A

z. (4.9)

By the existence and uniqueness theorem, the solution exists, and is unique (Boyce &

DiPrima, 2008, p. 111). To compute the solution, we first pre-multiply both sides of (4.9)

by exp (−At), which can be rewritten as (Chen, 1998, p. 87)

exp (−At) ż − exp (−At)Az︸ ︷︷ ︸
d
dt

(exp(−At)z)

= 0. (4.10)

By integrating (4.10) from 0 to t, we can rewrite

ˆ t

0

d

dτ
(exp (−Aτ) z) dτ = 0 =⇒ z = exp (At) z (0) , (4.11)

where exp (At) can be computed as follows (Chen, 1998, p. 87)

exp (At) = L −1
[
(sI2 −A)−1

]
, (4.12)

where I2 ∈ R2×2 is the identity matrix, and (sI2 −A)−1 is given as follows

(sI2 −A)−1 =
 s −1
np s+ nd

−1

= 1
s2 + ηds+ ηp

 ηd + s 1
−ηp s

 . (4.13)

1Actual robots are usually commanded by means of velocity or torque inputs. In the latter case,
acceleration inputs are tranformed into torque inputs by using (3.7).

24



4 SECOND ORDER VECTOR FIELD INEQUALITIES

The roots r1, r2 ∈ (−∞, 0) of the characteristic equation s2 + ηps + ηd are given as

follows

r1 =
−nd +

√
η2
d − 4ηp

2 , r2 =
−nd −

√
η2
d − 4ηp

2 .

The equation (4.13) can be rewritten as,

(sI2 −A)−1 = 1
(s− r1) (s− r2)

 ηd + s 1
−ηp s

 . (4.14)

Using the Laplace transformations considering zero initial conditions (Ogata, 2010, p.

863),

1
(s− r1) (s− r2) ⇐⇒

1
r1 − r2

(exp (r1t)− exp (r2t))

s

(s− r1) (s− r2) ⇐⇒
1

r1 − r2
(r1 exp (r1t)− r2 exp (r2t)) ,

to compute (4.12), and using (4.11), the solution of equation (4.9) is given by

z =
( 1
r1 − r2

) exp (r1t) (r1 + ηd) + exp (r2t) (−ηd − r2) exp (r1t)− exp (r2t)
−ηp (exp (r1t)− exp (r2t)) r1 exp (r1t)− r2 exp (r2t)

 z (0) .

(4.15)

Since z (0) =
[
d̃0

˙̃d0

]T
, and using the facts r1 + r2 = −ηd, and r1 · r2 = ηp, we

rewrite (4.15) as follows

z =
 z1

z2

 =
 c1 exp (r1t) + c2 exp (r2t)
c1r1 exp (r1t) + c2r2 exp (r2t)

 , (4.16)

where c1, c2 ∈ R are given as

c1 ,
˙̃d0 − d̃0r2

r1 − r2
, c2 ,

d̃0r1 − ˙̃d0

r1 − r2
. (4.17)

Let us rewrite analogously the inequality (4.3) as

v̇ ≥ Av,

where v ,
[
v1 v2

]T
, with v1 , d̃ (t) and v2 , ˙̃d (t). Because the inequality v̇1 ≥ ż1 is

satisfied when v1 (0) ≥ z1 (0) for all t ∈ [0,∞), then, by the Comparison Lemma2 (Khalil,

1996, p. 85)

v1 ≥ z1 ∀t ∈ [0,∞) , (4.18)

2Let u̇ = f (t, u), v̇ ≤ f (t, v), where f is continuous in t and in the functions u(t) and v(t), and v0 ≤ u0;
then v(t) ≤ u(t) ∀t ∈ [0, T ).
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which implies

d̃ (t) ≥ c1 exp (r1t)︸ ︷︷ ︸
f1(t)

+ c2 exp (r2t)︸ ︷︷ ︸
f2(t)

, ∀t ∈ [0,∞) , (4.19)

where r1 − r2 > 0. Both f1 (t) , exp (r1t) and f2 , exp (r2t) are decreasing monotonic

functions where f2 (t) decreases at a higher rate than f1 (t) due to the fact that r1, r2 ∈
(−∞, 0) and r2 < r1. Therefore, by inspection (see Fig. (4.1)), d̃ (t) ≥ 0, ∀t ∈ [0,∞)
if c1 ≥ 0 and c1 ≥ |c2|, which is satisfied when ˙̃d0 ≥ d̃0r2 and ˙̃d0 ≥ d̃0 (r1 + r2) /2.

Because ˙̃d0 ≥ d̃0 (r1 + r2) /2 ≥ d̃0r2 and ηd = − (r1 + r2), then ηd ≥ −2 ˙̃d0/d̃0. Since

2
∣∣∣∣ ˙̃d0

∣∣∣∣ /d̃0 ≥ −2 ˙̃d0/d̃0 then we choose ηd ≥ 2
∣∣∣∣ ˙̃d0

∣∣∣∣ /d̃0, which concludes the proof.

Since we consider arbitrary values for ˙̃d0, additional bounds on the accelerations (i.e.,

q̈min ≤ q̈ ≤ q̈max) may result in the unfeasibility of constraints (4.6) and (4.8). Therefore,

existing techniques (Del Prete, 2018) may be adapted to determine the maximum bounds

on the accelerations such that the VFIs can still be satisfied.

Fig (4.1) shows the behavior of solution (4.19) for different cases where the coefficients

c1 and c2 have different relations between them. Notice that for both the cases c1 ≥ 0,

c2 ≥ 0 and c1 > 0, c2 < 0, c1 = |c2|, we also have d̃ (t) ≥ 0, ∀t ∈ [0,∞). The former case

is satisfied when d̃0r2 ≤ ˙̃d0 ≤ d̃0r1 whereas the latter requires ˙̃d0 ≥ d̃0r1 and ˙̃d0 > d̃0r1.

The case c1 ≥ 0, c1 ≥ |c2|, which is used in the proof of the Lemma 4.1, is the only one

whose requirement is given in terms of the gain ηd. This is convenient to define the criteria

design of the constraint (4.3).

f1 (t) f2 (t)f1 (t) f2 (t) d̃ (t)

Figure 4.1: Relation between the distance d̃ (t) and the coefficients c1 and c2. The distance
d̃ (t) is higher than or equal to zero when c1 ≥ 0 and c2 ≥ 0 or c1 ≥ 0 and c1 ≥ |c2|.
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4.1 Simulation Test

To evaluate the SOVFIs framework in the presence of a dynamic object, this section

presents a simulation using a 6-DOF arm manipulator, commanded by joint torques,

performing a task of controlling the end-effector position. The simulation is implemented

on Python using the computation library DQ Robotics (Adorno & Marques Marinho,

2020) and CoppeliaSim.3 Furthermore, the time-varying position of the object is given

by Hp 3 ps , ps (t) = ps (0) − (b sin (wt) ı̂+ at̂), with ps (0) = 0.23ı̂ + 0.24̂ + 0.8k̂ ,

a = 0.1, b = 0.2, and w = 0.6. The goal is to prevent collisions between the dynamic

object and a spherical region in space, whose center is located in the end-effector, which is

denoted as p , p (q) ∈ Hp, and q ∈ R6 represents the robot joint configurations. We use

the point-to-point primitive (3.9) to impose the constraint (4.6) with dsafe = 0.22, with

ḋsafe = 0, ∀t, and the control law (3.6). We compute the square distance4 between the

entities as

Dp,ps , d2
p,ps = ‖p− ps‖

2 (4.20)

Using the definition (A.12), the time derivative of (4.20) is given as

Ḋp,ps = 2 vec4 (p− ps)
T Jp︸ ︷︷ ︸

Jp,ps

q̇ + 2〈p− ps,−ṗs〉︸ ︷︷ ︸
ζp,ps

, (4.21)

where Jp is the translation Jacobian that satisfies the relation vec4 ṗ = Jpq̇, and ζp,ps is

the residual that contains the information about the velocity of the dynamic object.

The error distance is defined as

D̃p,ps , Dp,ps −Dsafe, (4.22)

where Dsafe , d2
safe is the square safe distance. Furthermore, the time derivative of the

error distance is given as

˙̃Dp,ps = Jp,ps q̇ + ζsafe =⇒ ¨̃Dp,ps = Jp,ps q̈ + J̇p,ps q̇ + ζ̇safe, (4.23)

where ζsafe , ζp,ps −Dsafe. Finally, the SOVFI constraint is given by (4.6) with Jd , Jp,ps ,

and d̃ (t) , D̃p,ps .

Fig. 4.3 shows the snapshots of three simulations that represent three cases. In case I,

the SOVFI constraint is disabled. Because of that, the robot performs the task but does

not take into account the obstacle, and consequently, the robot and the object collide,

as expected. The case II shows a situation where the SOVFI constraint is enabled but

the kinematics of the object is not taken into account. In other words, the robot knows

3https://www.coppeliarobotics.com/
4We use the square distance since ḋp,ps

is singular at dp,ps
= 0.
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the position of the object all the time, but considers it as a static entity, and therefore,

both the velocity and acceleration of the object are neglected. We simulate that situation

by setting βres = 0 in (4.6). Notice that βres contains the information about the object

kinematics. The robot performs the task and tries to avoid the collision but, in this specific

example, the evasive maneuvers were not enough, and finally, both the robot and the

object collide. This is expected since the robot does not know the required information

about the object to prevent the collision. Finally, case III presents the best scenario, in

terms of collisions avoidance. The SOVFI constraint is enabled and the kinematics of

the object is taken into account. In this case, the robot performs the task and prevents

collision with the object. Fig. 4.2 shows the distances, for the three cases, between the

dynamic object and the robot end-effector point.

dsafe

d (t)

Case IICase I

Case III

Collision Zone

Figure 4.2: Control of the position end-effector using the robot dynamics and the SOVFIs
(Distances for the three cases). The distance between the dynamic object and the robot
end-effector point is represented by d (t). The radius of the sphere, which correspond to
the safe distance, is dsafe = 0.22.
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Collision

Collision

CollisionTime-varying
Object

Desired
position

Figure 4.3: Control of the position end-effector using the robot dynamics and the SOVFIs
(Snapshots of the simulation). The green ball has radius dsafe and represent the safe region.
A blue dynamic object collides with the robot safe region when the SOVFIs constraint is
disabled or when βres = 0. When two objects collide both are presented in red.
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4.2 Line-to-line Angle Jacobian

In some applications, it is advantageous to define target regions, instead of one specific

position and/or orientation, in order to relax the task and, therefore, release some of the

robot degrees of freedom (DOF) for additional tasks. For instance, if the task consists in

carrying a cup of water from one place to another, one way to perform it is by defining a

time-varying trajectory that determines the robot end-effector pose at all times, which

requires six DOF. An alternative is to define a target position to where the cup of water

should be moved (which requires three DOF) while ensuring that the cup is not too tilted

to prevent spilling, which requires one more DOF (i.e., the angle between a vertical line

and the line passing through the center of the cup, as shown in Fig. 4.5). The task can be

further relaxed by using only the distance to the final position, which requires only one

DOF, plus the angle constraint, which requires, when activated, one more DOF.

The idea of using a conic constraint, which is equivalent to constraining the angle

between two intersecting lines, was first proposed by Gienger et al., 2006. However, their

description is singular when the angle equals kπ, for all k ∈ Z. Therefore, we propose

a singularity-free conic constraint based on VFIs. Since this constraint requires a new

Jacobian, namely the line-to-line angle Jacobian, which is based on the line Jacobian, we

briefly review the line Jacobian (Marinho et al., 2018).

Consider the Line-to-line primitive, as showed in Fig. 4.4. Given a frame Fz attached

to the robot kinematic chain, whose pose is given by xz , xz (q) = r + ε1
2pr, a dynamic

Plücker line Hp ∩ S 3 lz , lz (q) collinear to the z-axis of Fz is described with respect to

the inertial frame F as

lz = lz + εmz, (4.24)

where Hp ∩ S3 3 lz = rk̂r∗ is the line direction, and the line moment mz = pz × lz, in

which pz ∈ Hp is an arbitrary point on the line. The time derivative of (4.24) is given by

(Marinho et al., 2018)

l̇z = l̇z + εṁz =⇒ vec6 l̇z =
 J lz

Jmz


︸ ︷︷ ︸

J lz

q̇, (4.25)

where J lz is the line Jacobian.

The angle between lz = lz + εmz and an arbitrary Plücker line l = l+ εm, is given by

φlz ,l = arccos (〈lz, l〉) . (4.26)
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The time derivative of 4.26 is

φ̇lz ,l = − 1√
1− (〈lz, l〉)2

vec3 l
TJ lz q̇ + 〈lz, l̇〉. (4.27)

The function (4.26) is an intuitive choice to control the angle between both lines.

However, its time derivative, which is given by (4.27), is singular when 〈lz, l〉 = ±1. We

propose the function f : [0, π]→ [0, 4] instead:

f
(
φlz ,l

)
, ‖lz − l‖2

2 = 〈lz − l, lz − l〉 (4.28)

= 2− 2 cosφlz ,l. (4.29)

As f
(
φlz ,l

)
is a smooth bijective function (see Lemma (4.2)), controlling the distance

function (4.28) is equivalent to controlling the angle φlz ,l ∈ [0, π].
The time derivative of (4.28) is given by

d

dt
f
(
φlz ,l

)
= 2 vec3 (lz − l)T J lz︸ ︷︷ ︸

Jφlz,l

q̇ + 2〈lz − l,−l̇〉︸ ︷︷ ︸
ζφlz,l

. (4.30)

Notice that if the angle between the lines φlz ,l equals zero, which happen when both

orientation lines are the same (i.e., lz − l = 0), we have d
dt
f
(
φlz ,l

)
= 0.

Proposition 4.1. Given f : [0, π]→ [0, 4], with f
(
φlz ,l

)
= 2−2 cosφlz ,l, for all a, a′ ∈ [0, π] ,

a 6= a′, implies f (a) 6= f (a′). In other words, f : [0, π] → [0, 4] is injective (Hammack,

2018, p. 228).

Proof. We use the contrapositive5 approach. Suppose that a, a′ ∈ [0, π] and f (a) = f (a′).
Then, we have that 2 − 2 cos a = 2 − 2 cos a′ =⇒ a = a′. By contraposition, for all

a, a′ ∈ [0, π] , with a 6= a′ implies f (a) 6= f (a′). Therefore, f
(
φlz ,l

)
is injective.

Proposition 4.2. Given f : [0, π]→ [0, 4], with f
(
φlz ,l

)
= 2−2 cosφlz ,l, for every b ∈ [0, 4]

there is an a ∈ [0, π], with f (a) = b. In other words, f : [0, π] → [0, 4] is surjective

(Hammack, 2018, p. 228).

Proof. Suppose b ∈ [0, 4], then we seek an a ∈ [0, π] for which f (a) = b, that is, for which

2 − 2 cos a = b. Solving for a, we have a = arccos ((2− b) /2), which is defined because

b ∈ [0, 4]. Therefore, f
(
φlz ,l

)
is surjective.

Lemma 4.2. The function f : [0, π]→ [0, 4], which is given as f
(
φlz ,l

)
= 2− 2 cosφlz ,l, is

bijective.

Proof. From propositions (4.1) and (4.2) we have that f
(
φlz ,l

)
is both injective and

surjective, respectively. Hence, f
(
φlz ,l

)
is bijective.

5Given the statement P =⇒ Q, its equivalent contrapositive form is ¬Q =⇒ ¬P .
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lz

lz

l

φlz,l

dφlz,l

Fz
F

z

xz

Figure 4.4: The figure on the left shows a Plücker line lz attached to one of the links in
the robot kinematic chain. The frame Fz is attached to the robot kinematic chain and its
pose is represented by the dual quaternion xz. The figure on the right shows the angle
φlz ,l between two Plücker lines, which is related to the distance dφlz,l by means of the law
of cosines.

4.3 (Self )-Collision Avoidance Constraints

l

lz

φlz,l

φsafe

φlz,l φsafe

l

lz

Feff

z

Figure 4.5: Applications of the line-to-line-angle Jacobian. On the left, the constraint is
used to restrict the orientation of the end-effector with respect to a vertical line passing
through the origin of the end-effector frame. On the right, the constraint is used to impose
joint limits.

As shown in Fig. 4.5, the line-static-line-angle constraint can be used to prevent

violation of joint limits (right) and also to avoid undesired end-effector orientations (left).

In order to prevent violation of joint limits, for each joint we place a static line l, (i.e., l̇ = 0,

∀t), perpendicular to the joint rotation axis and in the middle of its angular displacement

range. We also place a line, lz, along the link attached to the joint; therefore, the angle

between them is calculated by using (4.28). Since the angle distance is constrained between
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[0, π] in any direction (the other one is equivalent to [−π, 0]), the maximum joint range

limit can be defined in the interval [−π, π], as shown in Fig. 4.6.

φlz,l
l

lz

φlz,l

φsafe

l

lz

φlz,l

φsafe

l

lz

φlz,l

φsafe

l

lz

00

0 0

φsafe
π
4

3π
4

π

π
2

Figure 4.6: Range limits between two lines. The maximum range limit is when φsafe = π.
This allows ranges motions between −π ≤ φlz ,l ≤ π.

Likewise, this strategy allows defining a maximum end-effector angle to avoid undesired

orientations. In this case, however, the angle is obtained between a vertical line, l, passing

through the origin of the end-effector frame and a line collinear with the z-axis of the

end-effector frame, lz. Given a maximum angle φsafe, the constraint φlz ,l ≤ φsafe defines a

cone whose centerline is given by l.

We define the distance error as f̃
(
φlz ,l

)
, f

(
φlz ,l

)
− f (φsafe). Using (4.7) and (4.8),

we obtain the corresponding first-order and second-order VFIs used to constrain the angle

inside a safe cone, respectively, as

˙̃f
(
φlz ,l

)
≤ −ηf̃

(
φlz ,l

)
, (4.31)

¨̃f
(
φlz ,l

)
≤ −η1

˙̃f
(
φlz ,l

)
− η2f̃

(
φlz ,l

)
. (4.32)

Using the the facts ˙̃f
(
φlz ,l

)
= Jφlz,l q̇ + ζφsafe and ¨̃f

(
φlz ,l

)
= Jφlz,l q̈ + J̇φlz,l q̇ + ζ̇φsafe,

with ζφsafe , ζφlz,l − ḟ (φsafe), we rewrite (4.31) and (4.32), respectively, as

Jφlz,l q̇ ≤ −
(
ηf̃
(
φlz ,l

)
+ ζφsafe

)
, (4.33)

Jφlz,l q̈ ≤ −
(
βφlz,l + βφres

)
, (4.34)
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where βφlz,l =
(
η1Jφlz,l + J̇φlz,l

)
q̇ + η2f̃

(
φlz ,l

)
, J̇φlz,l = 2

[
q̇TJTlzJ lz + vec3 (lz − l)T J̇ lz

]
,

and βφres = ζ̇φsafe + η1ζφsafe . Notice that for a static line l (i.e., l̇ = 0, ∀t), and for a static

safe region (i.e., ḟ (φsafe) = 0, ∀t), the residual ζφsafe and the term βφres are equal to zero.

In those cases, constraints (4.33) and (4.34) are written, respectively, as

Jφlz,l q̇ ≤ −ηf̃
(
φlz ,l

)
, (4.35)

Jφlz,l q̈ ≤ −βφlz,l . (4.36)

In order to prevent self-collisions, we modeled the robot with spheres and cylinders, as

shown in Fig. 4.7.

lz

l

lz

l

dlz,l = 0

Figure 4.7: On the left, the distance dlz ,l between the lines is zero. However, there is
no collisions between the torso and the arm. On the right, the robot description using
geometric primitives. The torso and the forearms are modeled with infinite cylinders and
spheres.

The line-to-line constraint is used to prevent collisions between the arm and the torso,

where the line lz is located along the torso and the line l is placed along the forearm.

In case that the distance dlz ,l between the lines is zero but there is no collision (see

Fig (4.7)), which could happen because lines are infinite, the constraint is disabled and

a point-static-line constraint is used instead. In this case, the point located at the hand

or the one located at the elbow is used, depending which one is closest to the line. The

corresponding first-order and second-order VFIs to describe the torso-arm constraint are

written, respectively, as

−J tarmq̇ ≤ ηd̃tarm + ζtarmsafe
, (4.37)

−J tarmq̈ ≤ βtarm + βtarmres , (4.38)
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where βtarmres = ζ̇tarmsafe
+ η1ζtarmsafe

, with

J tarm = J lz ,l, d̃tarm = dlz ,l − dsafe, ζtarmsafe
= ζlz ,l − ḋsafe, if dlz ,l 6= 0,

or J tarm = Jp,l, d̃tarm = dp,l − dsafe, ζtarmsafe
= ζp,l − ḋsafe, otherwise.

To prevent collisions with obstacles, which are modeled with spheres, cylinders or

planes, we use additional constraints. For instance, in case the robot must prevent collisions

with a table, the point-static-plane constraint is suitable. Fig. 4.8 shows other application

based on the same constraint, where four lateral planes are used to constrain the robot

hand inside a desired region. This way, it is impossible for the robot hand to reach the

target region from below because the hand cannot trespass any of the four lateral planes.

These four additional constraints are written using first-order and second-order VFIs,

respectively as

−Jp,nπi q̇ ≤ ηd̃p,nπi + ζp,nπi ,safe, (4.39)

−Jp,nπi q̈ ≤ βp,nπi + βp,nπi ,res, (4.40)

where i ∈ {1, 2, 3, 4}, d̃p,nπi = dp,nπi − dπ,safe, with dπ,safe being the safe distance to each

plane, ζp,nπi ,safe = ζp,nπi − ḋπ,safe, and βp,nπi ,res = ζ̇p,nπi ,safe + η1ζp,nπi ,safe.

Figure 4.8: Application of the point-static-plane VFI. On the left, a target region is defined
for the right hand. On the right, planes are used to constrain the right hand into an
admissible space towards the target region.
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4.4 Support Polygon Area Jacobian

Figure 4.9: Application of the SP Area Jacobian. (Snapshots of the CoppeliaSim simu-
lation). A pendulum is used to generate disturbances. On the left, the support polygon
area is not maximized after the hand is placed on the table and the robot falls after the
collision with the pendulum. On the right, the support polygon area is maximized. In this
case, the balance is maintained.

In humanoid robot applications, it is fundamental to ensure the robot balance, while

performing additional tasks. To accomplish this, some key concepts as the robot center of

mass and the support polygon must be taken into account.

When the robot operates under relative low velocities and accelerations to neglect

inertia, and assuming rigid contacts and suitable friction forces, the robot must be able to

apply contacts on the environment to compensate the gravity forces without causing slip
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and therefore, to achieve static equilibrium (Bretl & Lall, 2008). Under these conditions,

the robot balance is ensured by keeping the projection of the center of mass inside the

support polygon, which corresponds to the convex hull of the contact points (Bretl & Lall,

2008; Collette et al., 2007).

In some applications, it is convenient to increase the area of the support polygon in

order to improve the robot reachability or to improve the robot balance in the presence of

external disturbances. Consider, for instance, a humanoid robot performing a contact with

a table using the left hand, as shown in Fig. 4.9. A pendulum collides with the robot and

generates disturbances on its center of mass. Fig. 4.9 shows two cases with different SP. In

the case where the SP has a smaller area, the projection of the center of mass does not

remain inside the support polygon after the collision with the pendulum, and consequently,

the robot falls. However, in the case where the SP has a larger area, the robot balance is

maintained, precisely because of the larger area, which is enough to keep the projection of

the center of mass inside the SP. This larger support polygon can be obtained, for instance,

as the result of the maximization of the support polygon area.

This section shows the derivation of a new Jacobian related to the area of the support

polygon. We assume static equilibrium, fixed feet, rigid planar contacts, and enough friction

forces to keep the contacts fixed. First, we propose an approximation of the support

polygon, which is a function of some contact points. We represent that SP approximation

as SPA. Although this approximation is conservative, it simplifies the computation of the

Jacobian. Finally, we compute the Jacobian related with the SPA.

Consider Fig. 4.10. When the robot performs contacts just using the feet, the SP

region corresponds to the polygon that encapsulates both feet. Once the robot performs a

contact with a table using the left hand, for instance, the SP area increases. Assuming a

fixed contact, we can compute the new SP by means of an equivalent configuration that

use all contacts on the same horizontal plane. This new SP is composed of the convex hull

of the contact points, as shown in Fig. 4.10.

We select a contact point of the robot hand to build an approximation of the support

polygon (SPA) such that the SPA polygon is inside the SP. In this way, the set of points

that compose the SPA is a subset of the points that compose SP by construction. Therefore,

the SPA corresponds to the convex hull of the points pixy ∈ R2, with i ∈ {a, b, c, d}, as

shown in Fig. 4.11.

The SPA area is composed of the areas of two triangles, and it is given as follows

A = 1
2

ed sinα︸ ︷︷ ︸
A1

+ ab sinφc︸ ︷︷ ︸
A2

 , (4.41)

where a =
∥∥∥pcxy − pdxy∥∥∥, b =

∥∥∥pcxy − pbxy∥∥∥, c =
∥∥∥pdxy − pbxy∥∥∥, d =

∥∥∥pbxy − paxy∥∥∥and

e =
∥∥∥pdxy − paxy∥∥∥. Furthermore, pcxy is defined as the first two lines of vec3 pc, with
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SPSPA

Figure 4.10: The support polygon (SP) and the support polygon approximation (SPA). On
the left, the robot performs contact using the feet only. On the middle, a robot performs a
contact on the table. On the right, the equivalent flat multi-contact configuration. The
yellow region denotes the SP and the green one represents the SPA.

φc

pcxy

paxypbxy

a

b

c

d

e

α

pdxy

F
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y F

pc

pcxy

A1

A2

Figure 4.11: The humanoid robot performs a contact with the left hand on the wall. The
green region is an approximation of the support polygon, which is composed of the convex
hull of the contact points pixy ∈ R2, with i ∈ {a, b, c, d}.
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pc ∈ Hp being the position of the hand contact.

Considering fixed feet contact, we have that ċ = ė = ḋ = 0∀t. Likewise, the goal is

to find the relation between the changes of the SPA area and the joint velocities.6 More

specifically, the goal is to find Jacobian matrix JA that satisfies

Ȧ = JAq̇,

The time derivative of (4.41) is

Ȧ = 1
2
(
ȧb sinφc + aḃ sinφc + abφ̇c cosφc

)
. (4.42)

Using the fact that

ȧ = 1
a

(
pcxy − pdxy

)T
ṗcxy , (4.43)

and

ḃ = 1
b

(
pcxy − pbxy

)T
ṗcxy , (4.44)

we rewrite (4.42) as follows

Ȧ = 1
2

(
b sinφc
a

(
pcxy − pdxy

)T
+ a sinφc

b

(
pcxy − pbxy

)T)
︸ ︷︷ ︸

JA1

ṗcxy + 1
2ab cos (φc) φ̇c. (4.45)

Using the law of cosines, c2 = a2 + b2 − 2ab cosφc, the angle φc is given as follows

φc = arccos
(
a2 + b2 − c2

2ab

)
. (4.46)

Let u , ᾱβ̄−1, with ᾱ , a2 + b2 − c2 and β̄ , 2ab. Then, the time derivative of (4.46)

is

φ̇c = − u̇√
1− u2

, (4.47)

where u̇ =
(

˙̄αβ̄ − ˙̄βᾱ
)
β̄−2. Since ˙̄α = 2aȧ+ 2bḃ7 and ˙̄β = 2ȧb+ 2aḃ, we rewrite u̇ as

u̇ =
(
c2 + a2 − b2

2a2b

)
ȧ+

(
c2 − a2 + b2

2ab2

)
ḃ. (4.48)

6In Fig. 4.11, the feet plane is the X-Y plane.
7Notice that c =

∥∥∥pdxy
− pbxy

∥∥∥, where pdxy
and pbxy

are fixed feet points. Therefore ċ = 0 ∀t.
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Using (4.43) and (4.44) in (4.48), we obtain

u̇ =
((

c2 + a2 − b2

2a3b

)(
pcxy − pdxy

)T
+
(
c2 − a2 + b2

2ab3

)(
pcxy − pbxy

)T)
︸ ︷︷ ︸

Ju

ṗcxy , (4.49)

where a, b > 0 are ensured by imposing the desired task dynamics that maximize A2.

Remark 4.1. The equation (4.47) is always non singular. To illustrate this, consider the

singular case u = 1 =⇒ ᾱ = β̄. Then, we have that

a2 + b2 − c2 = 2ab =⇒ ((a+ c)− b) (a− (b+ c)) = 0, (4.50)

which implies that a+ c = b or b+ c = a. However, for non-degenerate triangles, which

is our case because we assume that pbxy , pcxy , and pdxy are not collinear, the triangle

inequality implies a+ c > b and b+ c > a.

Using (4.49) in (4.47), we have

φ̇c = − 1√
1− u2

Juṗcxy . (4.51)

Furthermore, using (4.51) in (4.45), we obtain the SPA-area Jacobian

Ȧ = (JA1 + JA2)︸ ︷︷ ︸
J̄A

ṗcxy , (4.52)

where

JA2 , − ab cosφc
2
√

1− u2
Ju.

Since ṗcxy is defined as the first two lines of vec3 pc, the Jacobian J cxy correspond to

the first two lines of the position Jacobian Jp that respects the relation vec3 ṗc = Jpq̇.

Therefore, we have

ṗcxy = J cxy q̇. (4.53)

Finally, we rewrite (4.52) in terms of the joints velocities using (4.53), as follows

Ȧ = J̄AJ cxy︸ ︷︷ ︸
JA

q̇. (4.54)
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4.5 Multi-Contact Applications

Multi-contact control strategies have been intensively explored over the last twenty years.

One of the reasons is the amount of potential applications for humanoid robots in cluttered

scenarios. In some specific cases, this strategy allows the use of multiple contacts with

the environment to increase the reachability or increase the support polygon of the robot

to improve static balance. For instance, consider the Fig. 4.12. A humanoid is required

to touch a ball using its right hand. However, since the projection of the robot center

of mass must be maintained inside the support polygon to ensure the robot balance, its

workspace reachability is limited, and therefore, the robot is not able to accomplish the

task. An alternative is to approach the ball before attempting to touch it. However, this is

not always possible since the robot must avoid collisions with possible obstacles, including

the table. A better solution in this example is to perform first a contact with the table

using the left hand. This improves the balance support polygon, allowing the robot to

accomplish the task. However, in some cases, performing the contact is not enough to

reach the ball. In those cases, the maximization of the support polygon area could help,

since the robot reachability could be potentially increased after that maximization. If it is

not possible to reach the ball yet, a last resource can be applied. One can relax the contact

constraint in order to allow a sliding contact with the table surface, whereas the robot

tries to reach the ball simultaneously. In total, there are four attempts to accomplish the

main task. Fig. 4.13 summarizes the proposed multi-contact strategy, which is composed

of six states.

Figure 4.12: Example of a multi-contact task. The goal is to control the right hand of a
humanoid robot to touch the green ball. The red lines’ intersection represents the robot
center of mass. On the left, the initial configuration of the robot. On the middle, four
planes constraints ensure the robot balance by keeping the projection of the center of mass
inside the support polygon. However, in this case, the robot does not reach the green ball.
On the right, the support polygon area is increased by performing a contact on the table
with the left hand. Four additional planes define the target left-hand-contact region. This
allows reaching the green ball with the right hand.
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Figure 4.13: State transition diagram for the multi-contact manipulation task algorithm.
The green arrows represent success (S) events. The red arrows are fails (F) events. 1)
The robot tries to accomplish the main task (TT). 2) The robot performs a contact with
the environment and after, tries (TT). 3) The robot maximizes the support polygon and
after, tries (TT). 4) The hand-contact constraint is relaxed allowing a sliding contact on
the surface and simultaneously tries (TT). 5) The task is fulfilled. 6) The robot fails to
accomplish the main task.

4.5.1 Contact Task

A contact task requires both to align and to approach the end-effector to the contact

surface. This can be defined using a time-varying trajectory specifying the end-effector

pose at all times. However, the idea is to use relaxed tasks to release some robot DOF

for additional tasks, as discussed in section 4.2. Instead of defining a specific desired

end-effector pose, we define a target region using the constraints 4.39. In addition, we

attach a plane π , π (q) = nπ + εdπ to the end-effector and a plane πd = nπd + εdπd to

the contact surface, as shown in Fig. 4.14. The task error is defined as

π̃ , π − πd. (4.55)

Furthermore, the plane velocities are related with the joints velocities by means of the

plane Jacobian (Marinho et al., 2019) as follows

vec8 π̇ = Jπq̇. (4.56)

In this way, when π̃ → 0 then both the error of the orientation between the end-effector

and the table and the distance between them go to zero, and consequently, the robot

performs the contact successfully.
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π

πd

nπ

nπd dnπ,nπd

πd

phi

p

d̃π

nπd
dπd

dπ

Figure 4.14: Task definition using geometric primitives. The goal is to control the robot
hand to perform a contact on the table. On the left, a plane π = nπ + εdπ is attached
to the robot hand. Furthermore, a target plane (displayed in blue) πd = nπd + εdπd is
attached to the table. On the right, four planes (displayed in red) define the target region
(green zone). In addition, four point-to-plane constraints (red points phi , i ∈ {1, 2, 3, 4}
and the target plane πd) ensure avoidance collision between the hand and the table.

To prevent collisions between the end-effector and the surface contact, we use four

point-to-plane constraints. The points are attached to the hand-surface vertex, as shown

in Fig. 4.14. In this way, the only way to perform the contact is with the end-effector

aligned to the target region. These four additional constraints are written as

− Jphi ,nπd q̇ ≤ ηd̃phi ,nπd , (4.57)

where i ∈ {1, 2, 3, 4} and d̃phi ,nπd = dphi ,nπd − dph,safe, with dphi ,safe being the safe distance

to each point.

In addition, to keep stationary the robot’s feet on the ground, we use the cooperative

dual task space framework (Adorno, 2011), as shown in Fig. 4.15. In this framework, both

serial kinematic chains (in this case the legs) are encapsulated by means of the cooperative

variables: the absolute pose xabs and the relative pose xrel. The former represents the

pose of a frame located in the middle of both legs. The latter represents the pose of the

left leg with respect to the right one. To keep both feet ideally stationary on the ground,

we must ensure (Fonseca & Adorno, 2016) ẋrel = 0 to prevent changes in relative feet pose,

and P (ẋabs) = 0 to prevent changes in the orientation of the absolute frame Fabs. These

constraints are written as

J relq̇ = 0, (4.58)

JPabs
q̇ = 0, (4.59)
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where J rel and Jabs are the cooperative Jacobians that respect the relations vec8 ẋrel = J relq̇

and vec8 ẋabs = Jabsq̇. Furthermore, Jabs =
[
JTPabs

JTDabs

]T
.

xabs xleft

xright

xrel

F

Fabs

Figure 4.15: Cooperative variables: The relative pose xr and the absolute pose xa related
to the humanoid’s feet. The pose of the left and right leg are xleft and xright, respectively.

In some cases, it is required to keep the hand contact fixed whereas the robot perform

a given task, as shown in Fig. 4.16. For instance, state 2 in Fig. 4.13 requires to perform

the main task (TT) keeping the hand contact fixed, whose pose is xc. To ensure this, we

use the constraint

J cq̇ = 0, (4.60)

where the Jacobian matrix J c respects the relation vec8 ẋc = J cq̇. The constraint (4.60)

keeps both the position and orientation of the end-effector fixed, and consequently, keeps

the hand contact fixed.

To relax the constraint (4.60), as required by state 4 in Fig. 4.13, we use a plane-to-plane

constraint. The idea is to limit the robot hand movement to the surface contact. This

allows sliding the robot hand on the surface but always maintaining the contact, as shown

in Fig. 4.16. This constraint is written as

Jπq̇ = 0, (4.61)

where the plane Jacobian Jπ respects the relation vec8 π̇c = Jπq̇, with πc being a plane

attached to the robot hand once the robot perform the contact.

Notice that the discretization effects can introduce an eventual drift. However, assuming

physical constraints, as for instance, enough friction forces, those effects can be minimized.
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4.5 MULTI-CONTACT APPLICATIONS

πc xc

Figure 4.16: Fixed and sliding contacts. On the left, the plane πc is attached to the robot
hand once the contact is performed. The constraint π̇c = 0 allows sliding the robot hand
on the surface. On the right, xc represents the pose of the robot hand once the contact is
performed. The constraint ẋc = 0 keeps the end-effector pose fixed, and consequently, the
contact is maintained fixed.

4.5.2 Center of Mass Constraints

As shown in Fig. 4.17, the point-to-plane constraint can be used to maintain the robot the

projection of the center of mass pcomx,y inside the support polygon. These constraints are

written as

Jpcomx,y ,nπci
q̇ ≤ −ηd̃pcomx,y ,nπci , (4.62)

where i = {1, 2, 3, 4} and d̃pcomx,y ,nπci
= dpcomx,y ,nπci

− dπc,safe, with dπc,safe being the safe

distance to each plane.

πc2

πc3

πc4

pcomx,y

pcom
πc1

Figure 4.17: Center of mass plane constraints. The goal is to keep the projection of the
robot center of mass inside the support polygon, which is denoted by the green dashed
line. Four planes πci , i ∈ {1, 2, 3, 4} On the left, the robot performs feet contacts only. On
the right, a third contact is performed with the hand. The point-to-plane constraints are
updated according the multi-contact configuration.
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4.6 Conclusions

This chapter presented one of the contributions of this thesis. First, the chapter extended

the VFIs framework to second order kinematics (SOVFIs) and presented a formal proof

that the method ensures collision avoidance. This ensures collision avoidance between

pairs of geometrical primitives by means of second order differential inequalities taking

into account their positions, velocities and accelerations involved. The main motivation of

the SOVFIs framework is to enable applications that use the robot dynamics by means

of the relationship between joint torques and joint accelerations in the Euler-Lagrange

equations, which are derived in Chapter 4 using dual quaternion algebra.

Second, the chapter showed a novel singularity-free conic constraint to limit the angle

between two Plücker lines. This new constraint is used to prevent the violation of joint

limits or to avoid undesired end-effector orientations.

Next, the chapter showed a novel Jacobian related with the support polygon area

of a humanoid robot. This enables tasks as maximization of the SP area, which can

potentially increase the robot’s reachability and the robot safety in terms of its balance.

The SP Jacobian is computed by means of an approximation of the support polygon (SPA)

as a function of some contact points. Although this approximation is conservative, it

simplifies the computation of the Jacobian. This strategy, however, has some limitations.

For instance, the frictions forces are neglected by assuming enough friction in each contact,

and static and dynamic friction coefficients are not taken into account in fixed or sliding

contacts. Furthermore, only flat surfaces of the robot (planar feet and hands) and flat

surfaces of the environment (e.g., tables, walls, etc.) are taken into account.

Finally, the chapter presented a brief motivation of multi-contact applications and

proposed a strategy to enable it based on VFIs framework. Likewise, the chapter showed

the tasks definitions to perform contacts on flat surfaces and the constraints to maintain

the robot balance. However, this strategy is initially defined to first-order kinematics

applications only. In addition, the strategy assumes enough robot DoF to execute all

desired tasks.
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5
Dynamic Modeling in Dual Quaternion

Algebra

This chapter shows another contributions of this thesis. First, we rewrite the Gauss’s

Principle of Least Constraint for articulated bodies, similar to the formulation proposed

by Wieber (2005), but using dual quaternion algebra. This leads to the Euler-Lagrange

dynamic equation of a robotic system. Dual quaternion algebra allows a compact repre-

sentation of the linear and angular accelerations. The connections between the Gauss’s

Principle of Least Constraint and the Gibbs-Appell and Kane’s equations are shown.

Furthermore, additional constraints are explored and the dynamic model of a humanoid

robot is presented. Finally, the section is closed with a cost comparison between a proposed

algorithm for obtaining the Euler-Lagrange dynamic equation for a serial manipulator and

their classic counterparts.

5.1 Motivation

The SOVFIs framework, presented in the previous chapter, operates in the second order

kinematics level and therefore, allows using it in robot dynamics applications. Consider,

for instance, a robot commanded by joint torques, whose goal is to perform some set

of desired tasks subject to SOVFI constraints. First, we compute the robot kinematics

and the VFIs using geometric primitives. Second, we obtain the joint accelerations that

minimize the task error and respect all constraints using mathematical programming, as
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5 GAUSS’S PRINCIPLE OF LEAST CONSTRAINT

shown in Section. 3.1. Then, we compute the joint torques using the Euler Lagrange

dynamic equation.

The robot kinematic model is obtained using dual quaternion algebra. This formalism

enables a high-level mathematical abstraction and provides a straightforward and compact

representation of both rigid motions and geometric primitives (e.g., points, lines and

planes). Furthermore, in the context of robot kinematics, dual quaternion algebra allows

modeling a variety of different robots using the same systematic procedure, thanks to

their strong algebraic properties (Adorno, 2017)(Perez & McCarthy, 2004; Adorno, 2011;

Gouasmi, 2012; Cohen & Shoham, 2016; Özgür & Mezouar, 2016; Kong, 2017; Dantam,

2020). Therefore, a question that rises at the moment of describing the robot dynamics is

how to compute it using dual quaternions?

That question motivates the derivation of the of the Gauss’s Principle of Least Con-

straint using the tools from dual quaternion algebra.

This principle has been used in robotics to describe the dynamics of robot manipulators

(Bruyninckx & Khatib, 2000) and rigid body simulations (Redon et al., 2002). Wieber

(2006) uses the GPLC to derive the analytic expression of the Lagrangian dynamics of

a humanoid robot. Bouyarmane & Kheddar (2012) extend Wieber’s work by handling

arbitrary parameterization of free-floating-base mechanisms. This allows using rotation

matrices or unit quaternions to represent the free-floating-base orientations. In this section,

we rewrite the GPLC for articulated bodies, similar to Wieber’s formulation (Wieber, 2006),

but using dual quaternion algebra. This allows a more compact and unified representation

than the one by Bouyarmane & Kheddar (2012).

5.2 Gauss’s Principle of Least Constraint

The GPLC (Kalaba & Udwadia, 1993) is a differential variational principle, equivalent

to the D’Alembert one, that is based on the variation of the acceleration. For a system

composed of n bodies, it can be stated as the least-squares minimization problem

min
n∑
i=1

1
2 (aci − āci)

T Ψci (aci − āci) , (5.1)

where aci and āci are the accelerations of the center of mass of the ith rigid body

under constraints and without constraints, respectively. Furthermore, Ψci , Ψci (Ici ,mi)
encapsulates the inertial parameters of the ith rigid body, such as the inertia tensor

Ii ∈ R3×3 and the mass mi.

In the next subsection, we write the constrained accelerations as a linear function

of the vector of joint velocities and joint accelerations. This allows solving (5.1) for the

joint accelerations and, therefore, additional constraints can be directly imposed in the
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5 GAUSS’S PRINCIPLE OF LEAST CONSTRAINT

optimization formulation.

5.2.1 Constrained acceleration
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Figure 5.1: On the left, a n-DOF robot manipulator. On the right, a n-DOF nonholonomic
mobile manipulator.

Consider the robotic system in Fig. 5.1. The robot is composed of rigid bodies that

are constrained1 to one another by joints. To express the twist ξci0,ci
of the ith center

of mass explicitly as a linear combination between its Jacobian Jξci0,ci
and the vector of

joint velocities q̇ ∈ Rn, we use the operators vec8 : H → R8, which maps the coefficients

of a dual quaternion into an eight-dimensional vector,2 and
+
H8 : H → R8×8, such

that vec8 (h1h2) =
+
H8 (h1) vec8 h2 Adorno (2011). Therefore, from (A.19) we obtain

ξci0,ci
= 2

(
x0
ci

)∗
ẋ0
ci

, which implies vec8 ξ
ci
0,ci

= 2
+
H8 (xci0 ) vec8 ẋ

0
ci

.

Because ξci0,ci
∈ Hp, the first and fifth elements of vec8 ξ

ci
0,ci

equal zero, thus we also use

the operator vec6 : Hp → R6 such that vec6 ξ
ci
0,ci

, Ī vec8 ξ
ci
0,ci

, where

Ī ,

03×1 I3 03×1 03×3

03×1 03×3 03×1 I3

 ,
with I3 ∈ R3×3 being the identity matrix and 0m×n ∈ Rm×n being a matrix of zeros.

Moreover, vec8 ẋ
0
ci

= Jx0
ci
q̇i, with q̇i =

[
q̇1 · · · q̇i

]T
, and Jx0

ci
∈ R8×i is the Jacobian

matrix that is obtained algebraically (Adorno, 2011). Hence,

νci , vec6 ξ
ci
0,ci

=
[
J̄ξci0,ci

06×(n−i)

]
︸ ︷︷ ︸

J
ξ
ci
0,ci

q̇, (5.2)

1In this case, the constraints are holonomic. However, nonholonomic constraints can be taken into
account as well.

2Given h = h1 + ı̂h2 + ̂h3 + k̂h4 + ε
(
h5 + ı̂h6 + ̂h7 + k̂h8

)
, vec8 h =

[
h1 · · · h8

]T
.
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5 GAUSS’S PRINCIPLE OF LEAST CONSTRAINT

where J̄ξci0,ci
= 2Ī

+
H8 (xci0 )Jx0

ci
∈ R6×i.

Finally, the constrained acceleration of the ith center of mass is given by

aci , vec6 ξ̇
ci

0,ci
= Jξci0,ci

q̈ + J̇ξci0,ci
q̇. (5.3)

5.2.2 Unconstrained acceleration

ω
ci
0,ci

ṗ
ci
0,ci

τ
ci
0,ci

f
ci
0,ci

x0
ci

Fci

F0

Figure 5.2: Linear and angular momentum acting on a rigid ith body. The unit dual
quaternion x0

ci
represents its pose with respect to the body frame Fci .

Consider the Fig. 5.2, where x0
ci

= r0
ci

+ (1/2)εp0
0,cir

0
ci

represents the rigid motion from

F0 to Fci . The twist ξ
ci

0,ci
,3 at Fci of the ith body under no constraints, is4

ξ
ci

0,ci
= ωci0,ci + εṗci0,ci =⇒ vec6 ξ

ci

0,ci
=
 vec3ω

ci
0,ci

vec3 ṗ
ci
0,ci

 , (5.4)

where vec3 : Hp → R3 such that vec3(aı̂+ b̂+ ck̂) =
[
a b c

]T
.

The unconstrained acceleration ξ̇
ci

0,ci
is computed by taking the time derivative of the

twist ξ
ci

0,ci
= xci0 ξ

0
0,ci
x0
ci

, and is given explicitly as5

āci , vec6 ξ̇
ci

0,ci
=
 vec3 ω̇

ci
0,ci

vec3
(
p̈ci0,ci + ṗci0,ci × ω

ci
0,ci

)  . (5.5)

Although the final form of (5.3) and (5.5) are essentially the same, the latter does not

depend on q, q̇, and q̈, precisely because it is unconstrained.

3We recall that ξ
ci

0,ci
is the twist of body frame Fci with respect to frame F0, expressed in the body

frame Fci .
4See (A.1).
5See (A.2).
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5.2.3 Euler-Lagrange equations

Let G (q, q̇, q̈) = ∑n
i=1

1
2 (aci − āci)

T Ψci (aci − āci), in which aci and āci are given by (5.3)

and (5.5), and the generalized inertia tensor Ψci is defined as

Ψci , blkdiag (Icii ,miI3) . (5.6)

Expanding G (q, q̇, q̈), we obtain

G (q, q̇, q̈) =
n∑
i=1

(Gai (q, q̇, q̈) + Gbi (q, q̇)) , (5.7)

where6

Gai (q, q̇, q̈) , 1
2 q̈

TJTξci0,ci
ΨciJξci0,ci

q̈ + q̇T J̇Tξci0,ci
ΨciJξci0,ci

q̈ − q̈TJTξci0,ci
Ψciāci

and

Gbi (q, q̇) , 1
2 ā

T
ci
Ψciāci + 1

2 q̇
T J̇

T

ξ
ci
0,ci

ΨciJ̇ξci0,ci
q̇ − q̇T J̇Tξci0,ci

Ψciāci .

From the optimality condition, the solution of (5.1) is computed as (Wieber, 2005)

∂G (q, q̇, q̈)
∂q̈

= ∂

∂q̈

(
n∑
i=1
Gai (q, q̇, q̈)

)
= 01×n. (5.8)

Using (5.7) in (5.8), we have

0n×1 =
n∑
i=1

(
JTξci0,ci

ΨciJξci0,ci
q̈ + JTξci0,ci

ΨciJ̇ξci0,ci
q̇ + Φ

)
, (5.9)

where Φ = −JTξci0,ci
Ψciāci .

Since Jξci0,ci
=
[
JTP(ξci0,ci)

JTD(ξci0,ci)
]T

, using (5.5) and the elements Icii and mi of Ψci ,

the term Φ from (5.9) can be rewritten as

Φ = −JTP(ξci0,ci)
Icii vec3 ω̇

ci
0,ci − J

T
D(ξci0,ci)

vec3 f
ci
0,ci −miJ

T
D(ξci0,ci)

vec3
(
ṗci0,ci × ω

ci
0,ci

)
(5.10)

where vec3
(
ṗci0,ci × ω

ci
0,ci

)
= −S

(
ωci0,ci

)
vec3 ṗ

ci
0,ci , with vec3 ṗ

ci
0,ci=JD(ξci0,ci)

q̇, f ci0,ci=mip̈
ci
0,ci ,

and S (·)∈ so(3) is the skew-symmetric matrix used as an operator that performs the

cross-product (Spong et al., 2006).

Furthermore, as vec3ω
ci
0,ci = JP(ξci0,ci)

q̇ and τ ci0,ci is the torque about the ith link’s

6Notice that q̈TJTξci
0,ci

Ψci
J̇ξci

0,ci

q̇ = q̇T J̇
T

ξ
ci
0,ci

Ψci
Jξci

0,ci

q̈ and q̈TJTξci
0,ci

Ψci
āci

= āTci
Ψci

Jξci
0,ci

q̈.
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center of mass, given by the Euler’s rotation equation

Icii vec3 ω̇
ci
0,ci= vec3 τ

ci
0,ci+S (sci)JP(ξci0,ci)

q̇, (5.11)

where sci , Icii vec3ω
ci
0,ci , and use it in (5.10) to obtain

Φ = −JTP(ξci0,ci)
vec3 τ

ci
0,ci − JTD(ξci0,ci)

vec3 f
ci
0,ci + JTξci0,ci

S
(
ωci0,ci ,Ψci

)
Jξci0,ci

q̇ (5.12)

with

S
(
ωci0,ci ,Ψci

)
, blkdiag

(
−S (sci) ,miS

(
ωci0,ci

))
. (5.13)

Finally, using (5.12) in (5.9) yields

MGPq̈ +CGPq̇ = τ̄GP, (5.14)

where MGP ,MGP (q) ∈ Rn×n is the inertia matrix, CGP , CGP (q, q̇) ∈ Rn×n denotes

the nonlinear dynamic effects (including the Coriolis terms), and τ̄GP , τ̄GP (q) ∈ Rn

represents the generalized forces acting on the system; also,

MGP ,
n∑
i=1
JTξci0,ci

ΨciJξci0,ci
, (5.15)

CGP ,
n∑
i=1

(
JTξci0,ci

S
(
ωci0,ci ,Ψci

)
Jξci0,ci

+ JTξci0,ci
ΨciJ̇ξci0,ci

)
, (5.16)

τ̄GP ,
n∑
i=1
JTξci0,ci

ς̄ci , (5.17)

where ς̄ci is the wrench at the ith center of mass, defined as

ς̄ci ,

03×3 I3×3

I3×3 03×3

 vec6 ζ
ci
0,ci
, (5.18)

with ζci0,ci
= f ci0,ci + ετ ci0,ci .

Specifically, the generalized forces τ̄GP vector is given as follows

τ̄GP =
n∑
i=1

(
JTP(ξci0,ci)

vec3 τ
ci
0,ci + JTD(ξci0,ci)

vec3 f
ci
0,ci

)
.

Furthermore, since the gravity does not generate any resultant moment at the center of

mass of a link, the vector of gravitational forces τ g , τ g (q) is obtained from τ̄GP by letting

τ ci0,ci = 0 and f ci0,ci = Ad (rci0 )f gi , where f gi = mig and g ∈ Hp are the gravitational force
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and gravitational acceleration, respectively, both expressed in the inertial frame. Hence,

τ g =
n∑
i=1
JTD(ξci0,ci)

vec3
(
Ad (rci0 )f gi

)
. (5.19)

By considering the generalized forces τGP applied in the joints and the gravitational

forces τ g, the resultant forces acting on the system are τ̄GP = τGP + τ g. Let gGP , −τ g,
then (5.14) is rewritten in the canonical form as

MGPq̈ +CGPq̇ + gGP = τGP. (5.20)

In this way, solving (5.1) leads to the Euler-Lagrange dynamic description of a mechanical

system by means of dual quaternion algebra. Algorithm 5.1 summarizes the procedure for

obtaining the Euler-Lagrange dynamic equation for a serial manipulator. Once again, we

assume that the robot forward kinematics and differential kinematics are available in dual

quaternion space (Adorno, 2011).

Algorithm 5.1 Euler Lagrange model using the Dual Quaternion Gauss’s Principle of Least
Constraint Formalism for a robot manipulator.
Require: The forward kinematics, the differential kinematics, and the generalized inertia

tensor Ψci for all links’ centers of mass
1: function euler lagrange(q, q̇, q̈)
2: MGP ← 0, CGP ← 0, gGP ← 0
3: for i← 1, n do
4: . Calculation of necessary kinematic information for each center of mass
5: xci0 ←forward kinematics(q)
6: Jx0

ci
←differential kinematics(q)

7: Jξci0,ci
← 2Ī

+
H8 (xci0 )Jx0

ci

8: vec6 ξ
ci
0,ci
← Jξci0,ci

q̇

9: ωci0,ci ← P
(
ξci0,ci

)
10: J̇ξci0,ci

← Twist Jacobian derivative

11: . Calculation of the dynamic model
12: MGP ←MGP + JTξci0,ci

ΨciJξci0,ci

13: N ← S
(
ωci0,ci ,Ψci

)
Jξci0,ci

+ ΨciJ̇ξci0,ci

14: CGP ← CGP + JTξci0,ci
N

15: . Recall that Jξci0,ci
=
[
JTP JTD

]T
16: gGP ← gGP + JTD vec3

(
−f ci0,ci

)
17: end for
18: τGP ←MGPq̈ +CGPq̇ + gGP

19: return τGP

20: end function
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Remark 5.1. Let A , (1/2)ṀGP −CGP, then

A = −
n∑
i=1
JTξci0,ci

S
(
ωci0,ci ,Ψci

)
Jξci0,ci

.

Since S
(
ωci0,ci ,Ψci

)
is skew-symmetric by construction, by direct calculation, AT = −A,

which implies

uT
(1

2ṀGP (q)−CGP (q, q̇)
)
u = 0 (5.21)

for all q, q̇,u ∈ Rn. Property (5.21) is useful to show formal closed-loop stability in robot

dynamic control using strategies based on Lyapunov functions (Kelly et al., 2005).

5.3 Connections with the Gibbs-Appell and Kane’s equa-

tions

The Gibbs-Appell and Kane’s equations have proven to be a powerful mathematical tool

to describe both unconstrained and constrained mechanical systems without the use of

Lagrange multipliers (Storch & Gates, 1989; Honein & O’Reilly, 2021). Both are different

ways to get the equations of motion, but equivalent in the sense that a set of equations

implies the other (Townsend, 1992; Desloge, 1987; Levinson, 1987).

The Gibbs-Appell method is closely related with the Gauss’s Principle of Least Con-

straint since both approaches use scalar quadratic functions in terms of accelerations. The

former could be seen as a generalization of the latter (Ray, 1972, 1992). However, they

are equivalent and both can be derived from the other (Ray, 1972; Lewis, 1996; Udwadia

& Kalaba, 1998). Nonetheless, different from the Gibbs-Appell and Kane’s equations, the

Gauss’s principle strategy does not require setting up quasi-velocities and allows taking

into account additional constraints directly in the optimization formulation.

In this section, we rewrite the Gibbs-Appell and Kane’s equations using the equations

derived in Sections 5.2.2–5.2.3. Furthermore, we show that the Euler-Lagrange dynamic

description of a mechanical system can be shown to be a particular case of the Gibbs-Appell

and Kane’s equations. This is done by selecting the quasi-velocities to be the same as the

generalized velocities.
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5.3.1 Gibbs-Appell equation

For n rigid bodies, the Gibbs-Appell equation of motion is given by (Desloge, 1988)

∂S

∂u̇
=

n∑
i=1

(
∂

∂u
νci

)T
ς̄ci︸ ︷︷ ︸

τ̄GA

, (5.22)

where S is the Gibbs-Appell function,7 which is a scalar function in terms of accelera-

tions. The vector τ̄GA contains generalized forces associated with the quasi-velocities u.

Furthermore, νci is the twist of the ith body, and

ς̄ci =
[

vec3
(
τ ci0,ci

)T
vec3

(
f ci0,ci

)T ]T
(5.23)

are generalized forces defined by (5.18).

Let u , q̇, then, the Gibbs function in dual quaternion algebra can be written as a

function of the configuration q, configuration velocity q̇, and configuration acceleration q̈

as follows

S (q, q̇, q̈) ,
n∑
i=1

(1
2a

T
ci
Ψciaci + aTciS

(
ωci0,ci ,Ψci

)
νci

)
, (5.24)

where vci and aci are given by (5.2) and (5.3), respectively. Furthermore, S
(
ωci0,ci ,Ψci

)
is

given by (5.13) with Ψci given by (5.6).

Using (5.24), we rewrite (5.22) as

∂S (q, q̇, q̈)
∂q̈

=
n∑
i=1

(
∂

∂q̇
vec6 ξ

ci
0,ci

)T
,ς̄ci︸ ︷︷ ︸

τ̄GA

. (5.25)

The left side of equation (5.25) is computed as follows

∂S (q, q̇, q̈)
∂q̈

=
n∑
i=1
JTξci0,ci

ΨciJξci0,ci︸ ︷︷ ︸
MGP

q̈ +
n∑
i=1
JTξci0,ci

(
S
(
ωci0,ci ,Ψci

)
Jξci0,ci

+ ΨciJ̇ξci0,ci

)
︸ ︷︷ ︸

CGP

q̇,

∂S (q, q̇, q̈)
∂q̈

= MGPq̈ +CGPq̇, (5.26)

where MGP ∈ Rn×n is the inertia matrix and CGP ∈ Rn×n denotes the nonlinear dynamic

effects (including the Coriolis terms). Note that both MGP and CGP are identical to the

ones obtained by the Gauss’s principle, which are given by (5.15) and 5.16, respectively.

Furthermore, as νci = vec6 ξ
ci
0,ci

, we have

7The Gibbs-Appell function is also called the energy of acceleration, or simply the Gibbs function.
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∂νci
∂u

= ∂

∂q̇

(
Jξci0,ci

q̇
)

= Jξci0,ci
. (5.27)

Using (5.23) and (5.27), the vector τ̄GA can be rewritten as

τ̄GA = JTξci0,ci
ς̄ci = τ̄GP. (5.28)

Notice that the generalized forces τ̄GA are identical to the ones obtained by the Gauss’s

principle, which are denoted by τ̄GP (5.17).

Finally, using (5.26) and (5.28) in (5.25) yields

MGPq̈ +CGPq̇ = τ̄GP. (5.29)

In this way, solving (5.22) leads to the Euler-Lagrange equation, which is identical to

the one obtained by using the Gauss’s principle (5.14), as expected.

5.3.2 Kane’s equation

The Kane’s equation of motion is given by (Kane, 1983)

ϕ− ϕ̄ = 0, (5.30)

where ϕ contains the generalized active forces and ϕ̄ contains the generalized inertia forces.

To obtain the equation of motion using Kane’s method, we use the Newton’s and

Euler’s equations for n rigid bodies, which are given respectively as

n∑
i=1
mi vec3 p̈

ci
0,ci=

n∑
i=1

vec3 f
ci
0,ci , (5.31)

and

n∑
i=1

(
Icii vec3 ω̇

ci
0,ci−S (sci) vec3ω

ci
0,ci

)
=

n∑
i=1

vec3 τ
ci
0,ci , (5.32)

where the vector sci is given by (5.11).

Equations (5.32) and (5.31) can be grouped as follows:

n∑
i=1

 (Icii vec3 ω̇
ci
0,ci − S (sci) vec3ω

ci
0,ci

)
mi vec3 p̈

ci
0,ci

 =
n∑
i=1

 vec3 τ
ci
0,ci

vec3 f
ci
0,ci


︸ ︷︷ ︸

ς̄ci

. (5.33)

Using (5.13), and the fact that νci = vec6 ξ
ci
0,ci

, with ξci0,ci
, ξci0,ci

(q) given as in

(5.4), aci = vec6 ξ̇
ci

0,ci
, with ξ̇

ci

0,ci
, ξ̇

ci

0,ci
(q, q̇) given as in (5.5),8 and vec3

(
ṗci0,ci × ω

ci
0,ci

)
=

8Notice that, although aci is analogous to (5.5), it refers to the actual accelerations and, therefore, the
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−S
(
ωci0,ci

)
vec3 ṗ

ci
0,ci , we rewrite (5.33) as

n∑
i=1

(
Ψciaci + S

(
ωci0,ci ,Ψci

)
νci
)

︸ ︷︷ ︸
κi

=
n∑
i=1
ς̄ci . (5.34)

Since κi = ς̄ci for i ∈ {1, . . . , n}, we multiply both sides of (5.34) by
(
∂
∂u
νci
)T

= JTξci0,ci
,

and use (5.3) to obtain the Kane’s equations (Kane, 1983), which yields

n∑
i=1
JTξci0,ci

(
Ψciaci + S

(
ωci0,ci ,Ψci

)
νci
)

︸ ︷︷ ︸
ϕ

=
n∑
i=1
JTξci0,ci

ς̄ci︸ ︷︷ ︸
ϕ̄

, (5.35)

n∑
i=1
JTξci0,ci

ΨciJξci0,ci︸ ︷︷ ︸
MGP

q̈ +
n∑
i=1
JTξci0,ci

(
S
(
ωci0,ci ,Ψci

)
Jξci0,ci

+ ΨciJ̇ξci0,ci

)
︸ ︷︷ ︸

CGP

q̇ = τ̄GP︸ ︷︷ ︸
ϕ̄

(5.36)

MGPq̈ +CGPq̇︸ ︷︷ ︸
ϕ

= τ̄GP︸ ︷︷ ︸
ϕ̄

, (5.37)

which is the same dynamic equation as the the Gibbs-Appell equation (5.29), and the one

obtained by the Gauss’s principle (5.14), as expected.

Therefore, when considering the quasi-velocities to be the same as the generalized

velocities (i.e., u , q̇) the relations between Gauss’s principle, Gibbs-Appell equations

and Kane’s method are given by

∂G (q, q̇, q̈)
∂q̈

= ∂S (q, q̇, q̈)
∂q̈

− τ̄GA = ϕ− ϕ̄ = 0n×1. (5.38)

Notice that the relations given by 5.38 are computed using the tools from dual quaternion

algebra. However, they are valid using any representation.

5.4 Constrained Robotic Systems

Additional constraints can be imposed in the GPLC formulation. This can be done

by means of Lagrange multipliers (Bouyarmane & Kheddar, 2012) or using the Udwadia-

Kalaba formulation (Kalaba & Udwadia, 1992). The former requires the computation of

the Lagrange multipliers, whereas the latter employs a simpler method, albeit equivalent

(See Appendix (B)), which is based on generalized inverses as the solution to a constrained

quadratic program and can take into account inequality constraints directly in the opti-

mization formulation. However, unilateral constraints in the GPLC formulation are not

explored in this dissertation.

constrained ones. Consequently, aci
depends on q and q̇, whereas (5.5) does not.
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Kalaba & Udwadia, 1992 proposed an elegant solution to the constrained Gauss’s

Principle, which is stated as

min
ẍ

(ẍ− a)T M (ẍ− a)

subject to Aẍ = b,
(5.39)

where ẍ and a are the accelerations under constraints and without constraints, respectively,

of a system of n particles and M is a positive definite matrix. Furthermore, A and b

are the matrix and vector constraints, respectively. The solution to the problem (5.39) is

called the fundamental equation and is given by

ẍ = a+M−1/2
(
AM−1/2

)+
(b−Aa) , (5.40)

where the superscript “ + ” denotes the Moore-Penrose generalized inverse.

We rewrite the problem (5.39) in the joint space as follows. Let q̈a be the joint

accelerations without considering constraints, and q̈ be the joint accelerations under

constraints. Then, we have

min
q̈

(q̈ − q̈a)
T MGP (q̈ − q̈a)

subject to Aq̈ = b,
(5.41)

where

q̈a = M−1
GPQ, (5.42)

with

Q , τ̄GP −CGPq̇. (5.43)

Using (5.40), the solution to the problem (5.41) is given as

q̈ = M−1
GPQ+M−1/2

GP

(
AM

−1/2
GP

)+ (
b−AM−1

GPQ
)
. (5.44)

Multiplying by MGP and using (5.42) and (5.43)

MGPq̈+CGPq̇ = τ̄GP +M 1/2
GP

(
AM

−1/2
GP

)+ (
b−AM−1

GP (τ̄GP −CGPq̇)
)
. (5.45)

Letting D ,
(
AM

−1/2
GP

)
, the equation (5.45) is rewritten as

MGPq̈ +
(
I −M 1/2

GPD
+AM−1

GP

)
CGPq̇ =

(
I −M 1/2

GPD
+AM−1

GP

)
τ̄GP +M 1/2

GPD
+b.

(5.46)

Finally, letting Ω ,
(
I −M 1/2

GPD
+AM−1

GP

)
, the Euler-Lagrange description of a
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constrained robotic system using Gauss’s Principle of Least Constraint is

MGPq̈ + ΩCGPq̇ −M 1/2
GPD

+b = Ωτ̄GP. (5.47)

For example, consider the well-known differential-drive mobile robot, in which the

nonholonomic constraint ensures the conditions of pure rolling and non-slipping movements

(Fierro & Lewis, 1997). The robot configuration is specified by the vector q =
[
x y φ

]T
,

where x, y is the position coordinates and φ is the orientation of the robot on the plane.

The nonholonomic constraint is given by

[
− sinφ cosφ 0

]
︸ ︷︷ ︸

A

q̇ = 0, (5.48)

which can be enforced in (5.47) by taking the time derivative of (5.48) such that Ȧq̇+Aq̈ =
0. Therefore, b = −Ȧq̇.

5.4.1 Example: Dynamic Modeling of Humanoid Robot

In this section, we use the Gauss’s Principle of Least Constraint presented in Section 5.2

to write the Euler-Lagrange equation of a humanoid robot. First, we define the generalized

coordinates to fully describe the humanoid robot. Second, we compute the twist Jacobians,

and finally, we impose the unit norm constraint in the optimization problem using (5.47),

similar to the formulation proposed by Bouyarmane & Kheddar (2012).

The movement of a humanoid robot is determined by its joint configurations and the

pose of its body with respect to a reference frame. Furthermore, the contacts between the

robot and the environment generate reaction forces, which are used for the balance and

locomotion tasks.

Let Rn+8 3 q̄ ,
[
qT

(
vec8 x

0
p

)T ]T
be the optimization vector in the problem (5.1),

where q ∈ Rn is the robot’s joint configuration vector and x0
p ∈ S is the pose of its body

frame Fp with respect to an inertial frame F0, as shown in Fig. 5.3.

5.4.2 Twist Jacobians

Let xpci = f (q) be a function of the robot’s joint configurations q, with f : Rn → S,

where xpci denotes the pose of the frame Fci with respect to the pelvis frame Fp. Moreover,

its time derivative and the associated twist (see. (A.19)) is given as

ẋpci = 1
2x

p
ci
ξci
p,ci

=⇒ ξci
p,ci

= 2xp∗ci ẋ
p
ci
. (5.49)

Applying the vec6 (·) operator, and using the fact vec8 ẋ
p
ci

= Jxpci q̇, we rewrite (5.49)
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F0

Fp

x0
p

xpci

Fci

F0

x0
ci

Fp

x0
p

Figure 5.3: Humanoid robot modeling. On the left, x0
p represents the pose of the pelvis

frame Fp with respect to the frame F0. On the right, x0
ci

represents the pose of a frame
Fci with respect to the frame F0, and whose origin is the CoM of the ith body.

as

vec6 ξ
ci
p,ci

= 2Ī
+
H8

(
xp∗ci

)
Jxpci︸ ︷︷ ︸

Jξci
p,ci

q̇,

where q̇ =
[
q̇1 · · · q̇n

]T
, with Jxpci ∈ R8×n and Jξci

p,ci

∈ R6×n being the pose Jacobian

and the twist Jacobian matrices, respectively, both obtained algebraically (Adorno, 2011).

The goal is to find the twist Jacobian Jξci0,ci
∈ R6×(n+8) that satisfies vec6 ξ

ci
0,ci

= Jξci0,ci
˙̄q,

which is required to compute MGP (5.15), CGP (5.16) and τ̄GP (5.17).

Consider the frame place at the ith center of mass x0
ci

, which is computed as

x0
ci

= x0
px

p
ci
. (5.50)

The time derivative of (5.50) is given as

ẋ0
ci

= ẋ0
px

p
ci

+ x0
pẋ

p
ci
. (5.51)

Since ẋ0
ci

= 1
2x

0
ci
ξci0,ci

, we rewrite (5.51) as

ξci0,ci
= 2x0∗

ci
ẋ0
px

p
ci

+ 2xp∗ci ẋ
p
ci
. (5.52)

60



5.4 CONSTRAINED ROBOTIC SYSTEMS

Applying the vec6 (·) operator to (5.52), we have

vec6 ξ
ci
0,ci

=

 2Ī
+
H8

(
xp∗ci

)
J ẋpci︸ ︷︷ ︸ q̇

Jξci
p,ci

2Ī
+
H8

(
x0∗
ci

) −
H8

(
xpci

)
︸ ︷︷ ︸

Ξci

vec8 ẋ
0
p

 . (5.53)

Since ˙̄q =
[
q̇T

(
vec8 ẋ

0
p

)T ]T
, we rewrite (5.53) as

vec6 ξ
ci
0,ci

= Jξci0,ci
˙̄q,

where the twist Jacobian Jξci0,ci
is defined as

Jξci0,ci
,
[
Jξci

p,ci

Ξci

]
. (5.54)

To compute the inertia matrix MGP ∈ R(n+8)×(n+8), for instance, we use (5.54) in

(5.15), which yields

MGP =
n∑
i=1

 JTξcip,ciΨciJξcip,ci
JTξci

p,ci

ΨciΞci

ΞT
ci
ΨciJξcip,ci

ΞT
ci
ΨciΞci

 .
Analogously, we compute CGP and τ̄GP using (5.16) and (5.17), respectively, which results

in

CGP =
n∑
i=1

 J
T
ξci
p,ci

(
S
(
ωci0,ci ,Ψci

)
Jξci

p,ci

+ ΨciJ̇ξcip,ci

)
JTξci

p,ci

(
S
(
ωci0,ci ,Ψci

)
Ξci + ΨciΞ̇ci

)
ΞT
ci

(
S
(
ωci0,ci ,Ψci

)
Jξci

p,ci

+ ΨciJ̇ξcip,ci

)
ΞT
ci

(
S
(
ωci0,ci ,Ψci

)
Ξci + ΨciΞ̇ci

)
 ,

and

τ̄GP =
n∑
i=1

 JTξcip,ci
ΞT
ci

 ς̄ci .
5.4.3 Unit Norm Constraint

Since x0
p has unit norm, then

x0∗
p x

0
p = 1. (5.55)

The time derivative of (5.55) is

ẋ0∗
p x

0
p + x0∗

p ẋ
0
p = 0. (5.56)

Applying the vec8 (·) and the Hamilton operators to (5.56), we have

P
(
x0
p

)
vec8

(
ẋ0
p

)
= 0, (5.57)
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where P
(
x0
p

)
,
( −
H8

(
x0
p

)
C8 +

+
H8

(
x0∗
p

))
.

Using the time derivative of (5.57), we obtain the constraint at the acceleration level

as follows

P
(
x0
p

)
vec8

(
ẍ0
p

)
= −P

(
ẋ0
p

)
vec8

(
ẋ0
p

)
, (5.58)

where P
(
ẋ0
p

)
=
( −
H8

(
ẋ0
p

)
C8 +

+
H8

(
ẋ0∗
p

))
.

The constraint (5.58) is rewritten in function of ¨̄q as follows

[
08×n P

(
x0
p

) ]
︸ ︷︷ ︸

P̄(x0
p)

 q̈

vec8
(
ẍ0
p

) 
︸ ︷︷ ︸

¨̄q

= −
[

08×n P
(
ẋ0
p

) ]
︸ ︷︷ ︸

P̄(ẋ0
p)

 q̇

vec8
(
ẋ0
p

) 
︸ ︷︷ ︸

˙̄q

,

P̄
(
x0
p

)
¨̄q = −P̄

(
ẋ0
p

)
˙̄q. (5.59)

The final dynamic equation of the humanoid robot is given by (5.47), where the matrix

and vector constraints are A , P̄
(
x0
p

)
and b , −P̄

(
ẋ0
p

)
˙̄q, respectively.

5.5 Computational Cost

The comparison between the proposed algorithm (5.1) and their classic counterparts is

made in terms of number of multiplications, additions, and trigonometric operations

involved in each method. To that aim, first we define a cost operator C (op) that is used

to calculate the cost of the operation op as a function of the cost of simpler operations

(Adorno, 2011). For example, given a, b ∈ H, the cost of their multiplication is given

by C (ab) and, since Ad (a) b = aba∗ then C (Ad (a) b) = 2C (ab) + C (a∗). In other

words, the cost of one adjoint operation is equivalent to the cost of two dual quaternion

multiplications plus one dual quaternion conjugation. Table 5.1 summarizes the cost of

elementary operations used throughout this section.

5.5.1 Dual Quaternion Euler Lagrange algorithm using Gauss’s Principle

of Least Constraint

From (5.2), the cost of calculating Jξci0,ci
is

C
(
Jξci0,ci

)
=C

(
Jx0

ci

)
+C (λa)+C

(
A
6×8
B
8×i

)
, (5.60)

where we used the facts that the product Ī
+
H8 (xci0 ) is equivalent to removing the first and

fifth rows from
+
H8 (xci0 ) and 2

+
H8 (xci0 ) =

+
H8 (2xci0 ).
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Table 5.1: Cost of operations with quaternions, dual quaternions, matrices and vectors in
terms of multiplication and addition of real numbers.

Mult. Add.

Quaternions
(I ∈ R3×3, a, b ∈ H, and λ ∈ R)
C (λa) 4 0

C (Ad (a) b) = 2C (ab) + C (a∗) 35 24

Dual quaternions (a, b ∈ H)
C (λa) 8 0

C (Ad (a) b) = 2C (ab) + C (a∗) 102 80

Matrices and vectors ( c ∈ R3 )

C
(
λA
m×p

)
mp 0

C
(
A
m×p

+ B
m×p

)
0 mp

C
(
A
m×p

B
p×r

)
mpr mr(p−1)

C (S(c)) = C (λc) 3 0

C
(
S
(
ωci0,ci ,Ψci

))
(See Eq. 5.13) 18 6

The time derivative of the Jacobian Jξci0,ci
is given by

J̇ξci0,ci
=
[

˙̄Jξci0,ci
06×(n−i)

]
(5.61)

with

˙̄Jξci0,ci
= 2Ī

( +
H8 (ẋci0 )Jx0

ci
+

+
H8 (xci0 ) J̇x0

ci

)
.

Therefore, the cost of calculating ˙̄Jξci0,ci
is given by

C
(
J̇ξci0,ci

)
= C

(
J̇x0

ci

)
+ 2C

(
A
6×8
B
8×i

)
+ C

(
A
6×i

+ B
6×i

)
+ C (λa) (5.62)

since Jx0
ci

and
+
H8 (2xci0 ) were already calculated for Jξci0,ci

.

From (5.60), the cost of calculating the n Jacobians Jξci0,ci
is

n∑
i=1

C
(
Jξci0,ci

)
=

n∑
i=1

(
C
(
Jx0

ci

)
+ C

(
A
6×8
B
8×i

))
+ nC (λa) . (5.63)

Since C
(
Jx0

ci

)
+ C

(
A
6×8
B
8×i

)
= cαi+ cβ, where cα and cβ are found by inspection, then we

63



5.5 COMPUTATIONAL COST

use the relation
∑n
i=1 i = n (n+ 1) /2 to find

n∑
i=1

C
(
Jξci0,ci

)
=

n∑
i=1

(cαi+ cβ) + nC (λa)

= cαn
2

2 +
(
cα
2 + cβ + C (λa)

)
n. (5.64)

When considering the cost in terms of multiplications, cα = 237 and cβ = −48.

Therefore,

C
mult

(
Jξ
)
,

n∑
i=1

C
mult

(
Jξci0,ci

)
= 118.5n2 + 78.5n.

Analogously, when considering the cost in terms of additions, cα = 184 and cβ = −40.

Hence,

C
add

(
Jξ
)
,

n∑
i=1

C
add

(
Jξci0,ci

)
= 92n2 + 52n.

Analogously, from (5.62) we let C
(
J̇x0

ci

)
+ 2C

(
A
6×8
B
8×i

)
+C

(
A
6×i

+ B
6×i

)
=cγi+ cλ to find

an expression identical to (5.64), in which cα and cβ are replaced by cγ and cλ, respectively.

When considering the cost in terms of multiplications, cγ = 408 and cλ = 0, whereas in

terms of additions, cγ = 358 and cλ = −8. Hence,

C
mult

(
J̇ξ
)
,

n∑
i=1

C
mult

(
J̇ξci0,ci

)
= 204n2 + 212n,

C
add

(
J̇ξ
)
,

n∑
i=1

C
add

(
J̇ξci0,ci

)
= 179n2 + 171n.

The costs for calculating all Jacobians matrices are summarized in Table 5.2.

Table 5.2: Number of operations in different parts of the Jacobians and its derivatives

Mult. Add.

C
(
Jx0

ci

)
(Adorno, 2011) 189i− 48 142i− 40

C
(
J̇x0

ci

)
(Adorno, 2011) 312i 268i− 8

C
(
Jξci0,ci

)
237i− 40 184i− 40

C
(
J̇ξci0,ci

)
408i+ 8 358i− 8

C
(
Jξ
)

118.5n2 + 78.5n 92n2 + 52n
C
(
J̇ξ
)

204n2 + 212n 179n2 + 171n

To obtain the computational cost of (5.15), we define M̄ i , J̄
T

ξ
ci
0,ci

ΨciJ̄ξci0,ci
∈ Ri×i such

that

C
(
M̄ i

)
= C

(
A
i×6
B
6×6

)
+ C

(
A
i×6
B
6×i

)
. (5.65)
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Since

M i =
 M̄ i 0i×(n−i)

0(n−i)×i 0(n−i)×(n−i)

 ∈ Rn×n,

then MGP = ∑n

i=1
M i, whose cost is given by

C (MGP) =
n∑
i=1

C
(
M̄ i

)
+ (n− 1)C

(
A
n×n

+ B
n×n

)
. (5.66)

To calculate the computational cost of (5.16), we define the matrix

C̄i , J̄
T

ξ
ci
0,ci

(
S
(
ωci0,ci ,Ψci

)
J̄ξci0,ci

+ Ψci
˙̄Jξci0,ci

)
∈ Ri×i,

whose calculation cost is given by

C
(
C̄i

)
= C

(
S
(
ωci0,ci ,Ψci

))
+ 2C

(
A
6×6
B
6×i

)
+ C

(
A
6×i

+ B
6×i

)
+ C

(
A
i×6
B
6×i

)
+ C

(
A
6×i

+ B
6×i

)
+ C

(
A
i×6
B
6×i

)
. (5.67)

Considering the matrix

Ci =
 C̄i 0i×(n−i)

0(n−i)×i 0(n−i)×(n−i)

 ∈ Rn×n,

we have CGP = ∑n

i=1
Ci with corresponding cost given by

C (CGP) =
n∑
i=1

C
(
C̄i

)
+ (n− 1)C

(
A
n×n

+ B
n×n

)
. (5.68)

To calculate
∑n

i=1
C
(
M̄ i

)
and

∑n

i=1
C
(
C̄i

)
in (5.66) and (5.68), respectively, we must

realize that the summands C
(
C̄i

)
and C

(
M̄ i

)
have similar structure, such as C

(
C̄i

)
=

cαC i
2 + cβC i+ cγC .9 Therefore,

n∑
i=0

C
(
C̄i

)
=cαC

n∑
i=0

i2+cβC
n∑
i=0

i+cγC
n∑
i=0

1

=cαC
(n2+n)(2n+1)

6 +cβC
n (n+1)

2 +cγCn, (5.69)

where used the fact that
∑n
i=0 i

2 = (n2+n)(2n+1) /6 (Beardon, 1996). Using (5.68) and

9Expanding (5.67), we obtain cαC
= 6, cβC

= 72, and cγC
= 18 for the number of multiplications in

C
(
C̄i

)
and cαC

= 5, cβC
= 66, and cγC

= 6 for the number of additions. An analogous reasoning can be

done for C
(
M̄ i

)
.
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(5.69), we obtain the final cost for computing the Coriolis matrix in (5.16). An analogous

reasoning is done to obtain the final cost (5.66) for computing the inertia matrix in (5.15).

Last, to obtain the cost of calculating (5.19), we define the vector

ḡi , J̄
T

D(ξci0,ci) vec3
(
−Ad (rci0 )f gi

)
∈ Ri×1,

where J̄ξci0,ci
=
[
J̄
T

P(ξci0,ci) J̄
T

D(ξci0,ci)
]T

, and whose calculation cost is given by

C (ḡi) = C
(
A
i×3
B
3×1

)
+ C (Ad (a) b)

= cαg i+ cβg , (5.70)

in which cαg and cβg are constants that are found by inspection.10 Considering gi =[
ḡTi 0T(n−i)

]T
∈ Rn×1, then gGP = ∑n

i=1
gi, with cost given by

C (gGP) =
n∑
i=1

C (ḡi) + (n− 1)C
(
A
n×1

+ B
n×1

)

= cαg
n (n+ 1)

2 + cβgn+ (n− 1)C
(
A
n×1

+ B
n×1

)
. (5.71)

The costs (5.65)–(5.71) are summarized in Table 5.3, with their explicit values in terms

of additions and multiplications of real numbers.

Finally, the total cost of obtaining τGP in (5.20) is given by

C (GPDQ) = C (MGP) + C (CGP) + C (gGP) + C
(
Jξ
)

+ C
(
J̇ξ
)

+ 2C
(
A
n×n

B
n×1

)
+ 2C

(
A
n×1

+ B
n×1

)
,

for which the explicit values, in terms of number of multiplications and additions involved,

is presented in Table 5.4. Furthermore, Table 5.4 presents the cost comparison between the

proposed algorithm 5.1 and their classic counterparts, in terms of number of multiplications

and additions of real numbers.

10In case of multiplications, cαg
= 3 and cβg

= 35; in case of additions, cαg
= 2 and cβg

= 24.
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Table 5.3: Number of operations in the Euler-Lagrange Description

Mult. Add.

C
(
M̄ i

)
6i2 + 36i 5i2 + 30i

C
(
C̄i

)
6i2 + 72i+ 18 5i2 + 66i+ 6

C (ḡi) 3i+ 35 2i+ 24
C (MGP) 2n3 + 21n2 + 19n 8

3n
3 + 33

2 n
2 + 95

6 n

C (CGP) 2n3 + 39n2 + 55n 8
3n

3 + 69
2 n

2 + 239
6 n

C (gGP) 1.5n2 + 36.5n 2n2 + 24n

Table 5.4: Cost comparison between the proposed method and their classic counterparts
for obtaining the dynamical model for an n-DOF serial robot.

Method Mult. Add.
Dual Quaternion Euler-Lagrange algorithm
using Gauss’s Principle of Least Constraint

4n3 + 386n2 + 401n 16
3 n

3 + 326n2 + 908
3 n

Classic Euler-Lagrange algorithm
(Hollerbach, 1980)

412n− 277 320n− 201

Dual Quaternion Newton-Euler algorithm
(cost for arbitrary joints)
(Silva et al., 2020)

882n− 48 724n− 40

Classic Newton-Euler algorithm
(Balafoutis, 1994)

150n− 48 131n− 48

67
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5.6 Conclusions

The first part of this chapter presented the Gauss’s Principle of Least Constraint (GPLC)

using dual quaternion algebra, which is a contribution of this thesis. This strategy is

stated as a least-squares minimization problem and leads to the Euler-Lagrange dynamic

description of a mechanical system.

Different from the work of Wieber (2006) and Bouyarmane & Kheddar (2012), the

formulation presented in this chapter relies on dual quaternions. This enables a high-level

mathematical abstraction and provides a compact and unified representation.

Although the matrix representation of dual quaternions is used, all aforementioned

advantages are still valid because operations in the matrix form respect the group operations

of Spin(3)nR3, and therefore, both representations are equivalent. In addition, the matrix

form allows a minimization over the field of real vectors. This enables the use of well-

established analytical and numerical strategies to solve the least-squares minimization

problem, which are not available for dual quaternion elements.

The second part of the chapter presented the connections between Gauss’s principle,

Gibbs-Appell equations, and Kane’s method using the tools from dual quaternion algebra.

By selecting the quasi-velocities to be the same as the generalized velocities, the chapter

showed that the Euler-Lagrange dynamic description of a mechanical system is a particular

case of the Gibbs-Appell and Kane’s equations. Although the three methods deal with

nonholonomic constraints without the necessity of Lagrange multipliers, only Gauss’s

principle does not require setting up quasi-velocities and allows taking into account

additional constraints directly in the optimization formulation.

Next, the chapter showed how to impose bilateral constraints in the Gauss’s principle

by means of the Udwadia-Kalaba formulation (Kalaba & Udwadia, 1992). In addition, an

example about how to model a humanoid robot including additional constraints and using

the Euler-Lagrange equation based on the Gauss’s Principle is presented.

Last, the chapter presented the computational cost of the proposed algorithm for a

robot manipulator and presented a comparison with their classic counterparts in terms

of number of multiplications, additions, and trigonometric operations involved in each

method. The Euler-Lagrange method based on the Gauss’s Principle of Least Constraint

is, as expected, more expensive than the ones based on the Newton-Euler and classic

Euler-Lagrange formalism since it is not based on recursive strategies. However, this

strategy allows taking into account additional constraints in the accelerations, which can

be exploited, for instance, in nonholonomic robotic systems. Furthermore, we made no

hard attempt, if any, to optimize our implementation since the main interest, at this

moment, are theoretical aspects of the dynamic modeling using dual quaternion algebra

rather than in ensuring computational efficiency.
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6
Simulations and Experimental Results

This chapter presents some simulations and experimental results performed to validate the

proposed strategies related to SOVFIs (discussed in Chapter 4) and the Gauss’s Principle

of Least Constraint based on dual quaternion algebra (discussed in Chapter 5).

First, some simulations were performed to assess the VFIs and SOVFIs framework

in a humanoid robot composed of the upper body only. The constraints are used to

prevent collisions and self-collisions. Furthermore, the conic constraint for VFIs (4.35) and

SOVFIs (4.36) are used to prevent undesired end-effector orientations and violation of

joint limits. In addition, some experiments using Python and ROS were performed using

real robots commanded by joint velocities. Specifically, we used a 9-DOF humanoid robot

(the 5-DOF torso serialized with a 4-DOF arm), a 13-DOF bimanual manipulator, and

finally a 15-DOF nonholonomic mobile bimanual manipulator.

Also, simulations were performed using a 27-DOF full humanoid robot to evaluate

the multi-contact strategy and the maximization of the SP area, which were discussed in

Section 4.5 and Section 4.4, respectively.

Finally, simulations were performed in Matlab and V-REP to validate the Euler-

Lagrange model obtained using the dual quaternion Gauss’s Principle of Least Constraint

(DQGP) in both holonomic and nonholonomic robots.
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6.1.1 TASK SPACE CONTROL: JOINT VELOCITY INPUTS

6.1 (Self )-Collision Avoidance and Conic Constraint Tests

We performed simulations on V-REP1 and Matlab,2 and real experiments using ROS3 and

Python. Furthermore, we used DQ Robotics (Adorno & Marques Marinho, 2020) for both

robot modeling and the description of the geometric primitives.

To illustrate the effect of the constraints when are enabled and disabled, we implemented

two controllers based on quadratic programming, namely QP and CQP, where QP does

not take into account constraints and CQP denotes the constrained case. The control laws

used are (3.1) for robots using velocity inputs, and (3.3) for robots commanded by torque

inputs. Furthermore, we validated both controllers QP and CQP in simulation and in a

real-time implementation on a real robot. In all cases, we used constant safe distances and

static primitives such that the residual ζsafe (t) in both 4.1 and 4.6 are equal to zero.

The goal is to control the left-hand of a humanoid robot to put a cup on a table while

keeping the cup tilting below threshold (constraint (4.33)), avoiding reaching joint limits

(one constraint (4.33) for each joint) and preventing self-collisions (constraint (4.37)) and

collisions with the workspace (constraint (4.39)), as shown in Fig. 6.1. To accomplish this

goal, the control law minimizes the distance between the left-hand and the table, which is

modeled as a plane, and the control inputs take into account the kinematic chain composed

of the 5-DOF torso and the 4-DOF left arm, which has a total of nine DOF. The safe

angle, φsafe = 0.1rad, denotes the cup maximum tilting angle, as shown in Fig. 4.5. We

defined four additional planes, as shown in Fig. 4.8, to prevent reaching the table from

below, where dπ,safe = 0.01 for all four planes. Furthermore, the safe distance between the

arm and the torso is dsafe , dtarm = 0.07. The same setup was used for the simulation

using velocity inputs and the one using torque inputs.

6.1.1 Task space control: Joint velocity inputs

For both QP and CQP, the objective function is defined as in (3.1), where x̃ , dp,nπ is the

distance between the end-effector and the table, and J , Jp,nπ is the corresponding point-

static-plane Jacobian matrix (see Table 3.1). Furthermore, the convergence parameter

(η = 0.36) and the damping factor (λ = 0.01) were defined empirically in order to provide

a smooth and fast enough convergence rate.

In the constrained case (CQP), the control inputs u , q̇ are computed using (3.1)

with the aforementiond task-Jacobian and error function, where

W =
[
JTφlz,l

−JTp,nπI JTφlzI ,lI
−JTtarm

]T
1http://www.coppeliarobotics.com/
2https://www.mathworks.com/
3https://www.ros.org/
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QP QP QP

CQP CQP CQP

QP

CQP

Figure 6.1: Control of the left-hand using the robot kinematics and first-order VFIs
(snapshots of the simulation). On top, only the plane constraints were used, whereas on
bottom all constraints were used. The blue axis denotes the cup orientation and the red
cone represents the maximum allowable tilting for the blue axis. Red-shaded body parts
indicate a collision.
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6.1.2 TASK SPACE CONTROL: JOINT TORQUE INPUTS

with

Jp,nπI =
[
JTp,nπ1

· · · JTp,nπ4

]T
, (6.1)

JφlzI ,lI =
[
JTφlz1

,l1
· · · JTφlz9

,l9

]T
, (6.2)

and w = η
[
−f̃

(
φlz ,l

)
d̃
T

p,nπI
−F̃ T

d̃tarm
]T

with

d̃p,nπI =
[
d̃p,nπ1

· · · d̃p,nπ4

]T
, (6.3)

F̃ =
[
f̃
(
φlz1

,l1

)
· · · f̃

(
φlz9

,l9

)]T
. (6.4)

Eq. (6.1) and (6.3) are used to enforce the four plane constraints (recall (4.39)), whereas

(6.2) and (6.4) are used to avoid joint limits in all nine joints.

Figure 6.1 shows the simulation snapshots. Although the task is fulfilled for both

controllers, only CQP prevents undesired cup orientations and respects all other constraints

as shown in Fig. 6.2.

QP

CQP

Collision zone

Lim

Figure 6.2: Control of the left-hand in simulation using the robot kinematics and first-order
VFIs. The dashed-black line corresponds to QP and the solid-blue line denotes the CQP.
On the left, the distance dp,nπ between the robot hand and the four lateral planes. On the
right, the distance dtarm between the torso and the arm. The horizontal axis are iterations.
The vertical axis are distances in meters.

6.1.2 Task Space Control: Joint torque inputs

We performed a second simulation using the robot dynamic model with second-order VFIs.

V-REP was used only as a visualization and collision-checking tool. We assume perfect

knowledge of the inertial parameters, which are obtained directly from V-REP. The mini-

mization is performed in the joint accelerations using formulation (3.3) with the constraints

3.4, where J and x̃, which are needed to obtain β, are the same as in Section 6.1.1. In

addition, all constraints are rewritten as in (4.6) and (4.8) to obtain W and w, where W

is exactly the same as in the first-order case and w =
[
−βφlz,l βTp,nπI

−βTjoints βtarm
]T

,
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6.1.3 EXPERIMENTAL RESULTS

with βp,nπI
=
[
βp,nπ1

· · · βp,nπ4

]T
and βjoints =

[
βφlz1

,l1
· · · βφlz9

,l9

]T
. Furthermore,

kd = η1 = 1.5, kp = η2 = 0.3, and g
(

˙̃x
)
,
∥∥∥ ˙̃x
∥∥∥

2
. Finally, the control inputs u , τ

are computed using (3.7) where the dynamic description is obtained using the Gauss’s

Principle of Least Constraint, see chapter 5.

Fig. 6.3 shows that both QP and CQP minimize the task error and the joint accelerations,

as expected. The joint accelerations in CQP, however, are more abrupt because the collision-

avoidance constraints enforce abrupt changes in the robot velocities to prevent collisions.

Because of that, CQP required a higher control effort, as shown in Table 6.1.

Table 6.1: Control of the left-hand: control effort.

Control law Metric QP CQP

Problem (3.1)
√´∞

0 ‖q̇ (t)‖22 dt 0.1637 0.5132

Problem (3.7)
√´∞

0 ‖τ (t)‖22 dt 61.508 115.07

Since CQP enforces the constraints γ l ≤ q̈ ≤ γu, where γ l and γu are calculated

according to (3.4), the joint velocities go to zero as the end-effector stops. As QP does not

enforce those constraints, the robot joints continue to move after the end-effector stops, as

shown in the third graph of Fig. 6.3.

Finally, the cup maximum tilting angle is respected, as well as the other constraints

for collision avoidance and joint limit avoidance, as shown in Fig. 6.4, only when CQP is

used, as expected.

CQP

QP
Lim

Figure 6.3: Control of the left-hand using the robot dynamics and second-order VFIs on
simulations. The dashed-black line corresponds to QP and the solid-blue line denotes
the CQP. From left to right: norm of the control inputs (torques); norm of the joint
accelerations; norm of the joint velocities; norm of the task error; angle φlz ,l and the
joints positions of the torso and the left arm. The red-dashed line in the last two graphs
corresponds to the maximum allowable tilting angle φsafe and the joint limits. The
horizontal axis are iterations.
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LimCollision zone

Figure 6.4: Control of the left-hand using the robot dynamics and second-order VFIs on
simulations. The dashed-black line corresponds to QP and the solid-blue line denotes the
CQP. On the left, the distance dp,nπ between the robot hand and the four lateral planes.
On the right, the distance dtarm between the torso and the arm. The horizontal axis are
iterations. The vertical axis are distances in meters.

6.1.3 Experimental Results

We performed a real experiment using the platform composed of the upper body of the

Poppy humanoid robot.4 We used Python and ROS Melodic in a computer running Ubuntu

18.04 64 bits, equipped with a Intel i7 4712HQ with 16GB RAM, in addition to quadprog5

to solve (3.1). The solver required about 191µs ± 47µs to generate the control inputs

in the constrained case. Furthermore, it was required about 5.2ms ± 1ms to compute

15 constraint Jacobians (one angle constraint, four plane constraints, one torso-left-arm

constraint, and nine joint limit constraints). However, we set the loop rate control to 20ms
due to low-level drivers limitations.

CQP

QP Lim

Figure 6.5: Control of the left-hand using the robot kinematics and first-order VFIs using
the real robot. From left to right: norm of the control inputs (joint velocities); norm
of the task error; the angle φlz ,l between the cup centerline and a vertical line, and the
joints positions of the torso and the left arm. The dashed red line denotes the maximum
allowable tilting angle and the joint limits. The horizontal axis are iterations.

We used the same task specification and parameters defined in Sections 6.1 and 6.1.1.

4https://www.poppy-project.org/en/robots/poppy-humanoid
5https://pypi.org/project/quadprog/
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All collision-avoidance constraints were activated, for both QP and CQP, to ensure the

robot safety. This way, the only difference between them is that QP does not have the cup

tilting angle constraint whereas CQP has. Fig. 6.5 shows the task error decay and the angle

φlz ,l for both controllers. In both cases, the task is fulfilled with the same convergence

rate, which is determined by η. However, only CQP respects the angle constraint and the

limit joints constraints, as expected.

Figure 6.6 and 6.7 shows that, in both cases, the end-effector reached the target zone,

but only CQP does not violate the cup tilting angle constraint, as expected.

CQPQP

Figure 6.6: Control of the left-hand using the real robot (top view of the real-time
experiment in the final configuration). On the left, the cup tilting angle constraint is
disabled, whereas on the right this constraint is enabled. The red square denotes the target
region

We validated the proposed conic constraint discussed in Section. 2.3 using the Cooper-

ative Dual Task Space (CDTS) framework (Adorno, 2011) in a bimanual manipulation

using the same parameters and task specification,6 as shown in Fig. 6.8. The difference

here is that the cup tilting angle constraint was imposed in the orientation of the absolute

cooperative variable xabs instead of the left hand orientation. We imposed, in addition,

the constraint ẋrel = 0, which is required to keep constant the relative pose between the

hands.

Figure. 6.9 shows the snapshots of the real-time experiment and Fig. 6.10 shows that

in both cases the task is fulfilled but only the CQP respects the angle constraint and the

limit joints constraints, as expected.

6In this case we use φsafe = 0.3rad.
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Â

QP

CQP

Figure 6.7: Control of the left-hand using the real robot (snapshots of the real-time
implementation experiment). On top three snapshots, the cup tilting angle constraint
is disabled, whereas on bottom three snapshots this constraint is enabled. All other
collision-avoidance constraints are activated to ensure the robot safety. The red square
denotes the target region.
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φsafe

l

lz

z

φlz,l

xabs

xrel

Fabs

F0
Fabs

Figure 6.8: Experimental setup using the Cooperative Dual Task Space (CDTS) framework.
On the left, the the cup tilting angle constraint is imposed in the orientation of the frame
Fabs. On the right, a nonholonomic mobile bimanual manipulator. The relative pose
between the hands is denoted by xrel and the absolute pose of the frame Fabs is given by
xabs.

Finally, we used a nonholonomic mobile bimanual manipulator, which is composed

of a differential platform and the upper body of the Poppy humanoid robot, as shown

in Fig. 6.11. In this case, the goal was to minimize the distance between the absolute

cooperative variable and the target zone. We used all collision-avoidance constraints,

the limit joints constraints and the relative pose constraint ẋrel = 0. In the initial

configuration, the relative pose xrel is set to grasp the ball using both hands. This relative

pose is maintained fixed all the time by the relative pose constraint. When the robot

reaches the target zone, the robot stops and disables all constraints, and finally, the robot

releases the ball increasing the distance between the hands. That is the reason why in the

third snapshot of Fig. 6.11 the relative pose between the hands is different from the first

two snapshots.

Figure .6.12 shows that, in both cases, the frame Fabs reached the target zone, but

only CQP does not violate the joints limits, as expected. The small violations of the joint

limits in the CQP (see the third graph of Fig. 6.12) are due to discretization effects and

because the movement of the nonholonomic drive robot excites the inertia of the robot,

which is not taken into account in the kinematic model. These effects can be minimized

using a lower discretization time and working with lower velocities and accelerations.
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Figure 6.9: Control of both hands using the CDTS framework (snapshots of the real-time
experiment). On the left, the robot is in the initial configuration. On the middle, the cup
tilting angle constraint is disabled, whereas on the right this constraint is enabled.

Lim

CQP

QP

Figure 6.10: Control of both hands using the CDTS framework. From left to right: norm
of the control inputs (joint velocities); norm of the task error; the angle φlz ,l between the
cup centerline and a vertical line and the joints positions of the torso and the left arm. The
dashed red line on the third graph denotes the maximum allowable tilting angle whereas
in the fourth and fifth graph it correspond to the joint limits. The horizontal axis are
iterations.
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1

2

3

Figure 6.11: Control of both hands using the CDTS framework using a nonholonomic
mobile bimanual manipulator (snapshots of the real-time experiment). The goal is to
minimize the distance between the frame Fabs to the target zone. In the third snapshot,
the robot releases the ball. Because of that, the relative pose changes.
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CQP

QP

Lim

Figure 6.12: Control of both hands using the CDTS framework using a nonholonomic
mobile bimanual manipulator. From left to right: norm of the control inputs (joint
velocities); norm of the task error and the joints configuration of the torso and the left
arm. The dashed red line on the third and fourth graph denotes the joint limits. The
horizontal axis are iterations.

6.2 Multi-Contact Control: Simulation Setup

In order to validate the proposed multi-contact strategy, we performed simulations on

V-REP7 and Python. Furthermore, we used the 27-DOF Thormang8 humanoid robot,

which is composed of two 7-DOF arms, two 6-DOF legs, and a 1-DOF torso.

The goal is to control the right-hand of a humanoid robot to touch a target ball

preventing self-collisions (constraint (4.37)) and ensuring the robot balance (constraint

(4.62)), as shown in Fig. 6.13. In this specific case, we set three steps to accomplish the

task, labeled as step I, II, and III. In the first step, the robot performs a contact with

the environment (the blue table) using the left hand. In the second one, the SP area

is maximized. Finally, in the third step, the robot touches the ball. All three steps are

required in this specific example, as shown in Fig. 6.14. Otherwise, the robot fails to

accomplish the task.

6.2.1 Step I. Perform Contact

To accomplish this task, we use two planes to define the task error, as described in

section 4.5.1. One plane π is attached to the left-hand of the robot, and the other

plane, denoted by πd, is used to model the table. The control law (3.1) minimizes the

task error π̃ , π − πd = nπ − nπd + ε (dπ − dπd). Furthermore, the kinematic chain is

composed of the 12-DOF legs, the 1-DOF torso and the 7-DOF left arm. To show the

task error behavior, we define the distance dπ̃ , dnπ ,nπd + d̃π, which is composed of two

distances, dnπ ,nπd , ‖nπ − nπd‖ and d̃π , |dπ − dπd |. The former quantifies the error of

7http://www.coppeliarobotics.com/
8https://www.robotis.us/thormang/
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1

2

3

4

Figure 6.13: Example 1 of a multi-contact task using the robot kinematics and first-order
VFIs (snapshots of the simulation). 1) Initial configuration. The goal is to control the right
hand of the robot to touch the green ball in three steps. 2) Step I: the robot performs
a contact with the left hand on a target region. 3) Step II: the SP area is maximized. 4)
Step III: the robot touches the ball keeping the contact with the table fixed.

Failed
Failed Succeed

Figure 6.14: Example 1 of a multi-contact task using the robot kinematics and first-order
VFIs: final configurations (snapshots of the simulation). On the left, the robot fails to
accomplish the task (touching the ball). On the middle, the robot tries to touch the
ball, by performing first a contact with the table, however, the robot fails again. On the
right, the robot maximizes the area after performing a contact with the table. This allows
fulfilling the task.
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the orientation between the left hand and the table. The latter quantifies the distance

between them, as shown in Fig. 4.14. In this way, when π̃ → 0 then both the distance

between the plane orientations dnπ ,nπd and the distance between the planes d̃π go to zero.

We use (3.1) with J , Jπ, x̃ , Drh,b, η = 1, and λ = 0.08. The target region is defined

using the plane constraints (4.39). We impose the constraints (4.57) and (4.37) to maintain

both feet stationary on the ground, and the CoM plane constraints (4.62) to maintain the

robot COM projection pcomx,y inside the support polygon. These constraints, in addition to

the self-collision avoidance constraint (4.37), are used in all three steps. Finally, constraint

(4.39) prevents collisions between the hand and the table.dπ̃ = dnπ ,nπd + d̃π

6.2.2 Step II. Maximize SP Area

Once the robot has performed the contact with the table, the goal is to maximize the

support polygon area (Step II) using a control law as in (3.1) where J correspond to the

SP area Jacobian, which is given by (4.54). Since the task error dynamics is governed by

the equation Ȧ (t) = ηA (t), whose solution is given by A (t) = A (0) exp (−ηt), a negative

value for the convergence factor (i.e., η < 0) is used to impose an exponential increase of

the SP area. Nonetheless, its growth is limited by the plane constraints (4.39) and the CoM

plane constraints (4.62), which define the target region and keep the robot CoM inside

the support polygon, respectively. Furthermore, the SP area is maximized performing

movements of the left hand only. To keep the left hand constrained to movements over

the contact surface while the area is maximized, we impose the plane-to-plane constraint

(4.61).

6.2.3 Step III. Try Task

In the last step, the control law minimizes the square distance between the right-hand

and the ball, which is represented by Drh,b , d2
rh,b. Both the right hand and the ball are

modeled using the point-to-point primitive with an associated radius drh,bsafe = 0.04 (see

Table. 3.1). The same constraints of Step II are used, except the four planes constraint

to define the target region ((4.39)), which is not required anymore.9 In addition, the

constraint (4.61) is replaced by (4.60) to keep fixed the contact between the left hand and

the table. Table. 6.2 summarizes the steps with their respective objective functions and

constraints.

Fig 6.15 shows that the distance dπ̃ and the square distance Drh,b are minimized, as

expected. Furthermore, the exponential growth of the SP area is limited by the additional

constraints, which maintain the left hand on the table and the robot CoM inside the

support polygon.

9The target region is used to limit the region of the left hand. In this step, the contact of the left hand
with the table must be maintained fixed.
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Table 6.2: Objective function definition and constraints used for steps I, II, and III.

Control Law
(3.1)

I. Perform Contact II. Maximize SP
Area

III. Try Task

Jacobian Task J Jπ (4.56) JA (4.54) J rh,b (3.9)
Task error x̃ vec8 π̃ (4.55) A (4.41) Drh,b (3.8)
Convergence
parameter

η 2 -0.5 1

Damping factor λ 0.05 0.1 0.08
Constraints
Target region (4.39) (4.39)
Collision
avoidance

(4.57), (4.37) (4.37) (4.37)

Stationary feet (4.58), (4.59) (4.58), (4.59) (4.58), (4.59)
Center of mass (4.62) (4.62) (4.62)
Sliding contact (4.61)
Fixed contact (4.60)

I

II

target

Feet polygon

Feet & hand polygon

Maximized

Figure 6.15: Example 1 of a multi-contact task using the robot kinematics and first-order
VFIs. On the left, the distance dπ̃ between the robot’s left hand and the table. On the
middle, the support polygon area. The green dashed line denotes the SP area in the initial
configuration. The red dashed line correspond to the SP area after the hand contact, in
Step I. Finally, the blue line is the SP area in Step II. On the right, the distance between
the right hand and the green ball. The robot touches the ball only when it performs a
contact with the table and maximizes the area (blue line). When the robot tries to touch
the ball without performing the hand contact (green dashed line) or performing the hand
contact but with no SP area maximization, the robot fails to accomplish the task. The
horizontal axis are iterations.
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Fig. 6.16 shows that in all three steps, the CQP controller respects the robot CoM

constraints and minimizes the norm of the control inputs, as expected. Furthermore, the

support polygon, provided by the maximization of the SP area, allowed the robot to put

the pcomx,y in a suitable position such that the ball can be reached by the right hand,

as shown in Fig. 6.14 and Fig 6.15. Notice that when the robot tries to touch the ball

without performing the hand contact (green dashed line), the distance Drh,b is lower than

the one when the robot performs the hand contact (red dashed line). In other words, in

this specific example, the robot configuration is worst, in terms of the robot reachability,

when performing a hand contact when compared to the robot configuration without the

hand contact. This is not surprising, since the proposed strategy to maximize the SP area

does not ensure better robot reachability when the SP is larger.

Fig. 6.13 shows the simulation snapshots. All intermediary tasks are performed

successfully, and the final task is fulfilled.

I II III I II III

I

II
pcomx,y

Figure 6.16: On the left, the distance between the center of mass (CoM) projection and
the CoM plane constraints for steps I, II and III. On the middle, the support polygon
region. On the right, norm of the control inputs (joints velocities) for for steps I, II and
III. The horizontal axis are iterations.

We performed a second simulation using the same task specification aforementioned for

the multi-contact strategy. In this case, the robot performs the hand contact with a wall.

Fig. 6.17 shows the simulation snapshots. In this case, the robot accomplishes the

task by performing the wall contact without the necessity of maximizing the SP area.

Even, the maximization of the SP area led to a worse configuration in terms of the robot

reachability, as shown in Fig. 6.18. However, this is addressed by relaxing the wall contact,

which allows to reach the ball and potentially get a higher SP area, when compared to the

SP area obtained by performing the contact without the area maximization.

Often, the exact sequence of states needed to accomplish a given task is unknown.

In those cases, we can use the proposed strategy described in Section. 4.5. Table 6.3

summarizes the states and Fig. 6.19 shows the state transitions for a wall contact example.

84



6.2 MULTI-CONTACT CONTROL: SIMULATION SETUP

No contact

SucceedFailed Failed Succeed

No contact Maximization SP Area: OFF Maximization SP Area: ON Relax Contact Constraint

Figure 6.17: Final configuration of an example of a multi-contact task using the robot
kinematics and first-order VFIs. From left to right: The robot tries to touch the ball and
fails; The robot performs a contact with the wall and succeeds; The robot maximizes the
SP area but fails; The robot relaxes the wall contact and accomplishes the task.

target

pcomx,y

I

II

Feet polygon

Feet & hand polygon

Maximized
I

II

Figure 6.18: Example 2 of a multi-contact task using the robot kinematics and first-order
VFIs. On the left, the support polygon. On the middle, the support polygon area. On the
right, distance between the right hand and the green ball. In this case, the robot touches
the ball only when performs a contact with the wall without the SP area maximization
(red dashed line). When the robot tries to touch the ball without performing the hand
contact (green dashed line) or performing the hand contact with SP area maximization
(blue line), the robot fails.

Table 6.3: State description for the proposed multi-contact strategy to touch a ball.

State Description

1 Try Task (TT). The robot tries to touch the target ball.

2
Perform Contact
& TT.

The robot performs a contact with the
environment and after, tries (TT).

3
Maximize SP Area
& TT.

The robot maximizes the support polygon
and after, tries (TT).

4
Relax Contact Constraint
& TT.

The hand-contact constraint is relaxed allowing
a sliding contact on the surface and simultaneously
tries (TT).

5 Task Done. The task is fulfilled.

6 Task Failed. The robot fails to accomplish the task.
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Figure 6.19: Proposed strategy for multi-contact tasks to touch a ball. The strategy is
based on the state transition described in Fig. (4.13). The green arrows represent success
(S) events. The red arrows are fails (F) events. The robot executes a maximum of four
attempts to accomplish the main task.
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6.3 Numerical Tests Using the GLPC

To evaluate the Euler-Lagrange model obtained using the dual quaternion Gauss’s Principle

of Least Constraint (DQGP), this section presents simulations using robot manipulators

and nonholonomic mobile manipulators.

6.3.1 7-DOF Robot Manipulator

First, we perform simulations of a 7-DOF robot manipulator, which are implemented on

Matlab 2018a using the computational library DQ Robotics (Adorno & Marques Marinho,

2020). The implementation is performed using a computer equipped with an Intel i7

4712HQ with 16GB RAM running Ubuntu 18.04 64 bits. In addition, we computed

the average computational time required to obtain the joint torques of a 7-DOF robot

manipulator in Python.

Since the Robotics Toolbox (Corke, 2017), which implements a classic Newton-Euler

algorithm (RTNE), is widely used and its accuracy has been verified throughout the years,

the goal is to compare the torques it generates to the torques generated by Algorithm 5.1.

First, 10000 random joint configurations, velocities, and accelerations are generated

and then obtained the corresponding torque vectors acting in each joint of the manipulator.

The percentage relative error of each joint is

τierror = 100 · |τimethod − τibaseline |
τibaseline

, (6.5)

where τibaseline is the torque of the ith joint generated by RTNE. Moreover, τimethod is the

torque of the ith joint generated by Algorithm 5.1 that is being compared to the baseline.

Finally, the mean percentage error of each joint is computed as follows

τ̄ierror = 1
n

n∑
j=1

τj,ierror ,

where n = 10000, and τj,ierror is the percentage relative error of the joint ith at trial j. A

trial correspond to an execution of the Algorithm 5.1. Furthermore, it is computed the

corresponding standard deviation σierror for both simulations.

Fig. 6.20 shows that, when compared to RTNE, Algorithm 5.1, which is based on the

dual quaternion Gauss’s Principle of Least Constraint, is as accurate as Robotics Toolbox.

The mean percentage error and the standard deviation are very small. This demonstrates

the similarity between both methods, in terms of accuracy.

Fig. 6.21 shows the average computational time of 10000 trials and its respective

standard deviation (s.d.). Both strategies, RTNE10 and DQGP, are implemented on

10https://github.com/petercorke/robotics-toolbox-python
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Figure 6.20: Mean percentage error τ̄ierror , and corresponding standard deviation σierror of
the comparison between RTNE, and the algorithm 5.1.

88



6.3 NUMERICAL TESTS USING THE GPLC

Python.

0 10000

1

2

3

T
im

e
(m

s) DQGP

RTNE

1.2115 (0.17)

0.0642 (0.01)

Figure 6.21: Mean (s. d.) computational time in miliseconds.

6.3.2 V-REP Simulations

The goal is to evaluate the Euler-Lagrange model based on DQGP using mobile manip-

ulators, namely a 9-DOF holonomic mobile manipulator, and an 8-DOF nonholonomic

mobile manipulator. The idea is to illustrate that the proposed strategy works with several

types of robotics systems. Since the Robotics Toolbox only supports dynamic modeling of

fixed-base robots, this section presents simulations11 implemented on the robot simulator

V-REP PRO EDU V3.6.212 using an interface with Matlab 2020a and the computational

library DQ Robotics (Adorno & Marques Marinho, 2020). In addition, we evaluate the

Euler-Lagrange model based on DQGP using a fixed-base 50-DOF serial manipulator, to

validate the Algorithm (5.1) in a highly redundant robot.

In Section 6.3.1, we generated random joint configurations, velocities, and accelerations

and, we use them to compare the joint torques between two models: RTNE and DQGP.

In order to apply the same strategy using V-REP, we require to set joint configurations q,

velocities q̇, and accelerations q̈ and the read the torques τ s. Then we can compare the

read torques from V-REP τ s with the torques computed using DQGP (5.20). However,

11The work described in this subsection was developed in collaboration with Frederico Fernandes Afonso
Silva, a PhD Candidate at UFMG (Silva et al., 2020).

12Available at: https://www.coppeliarobotics.com/
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Figure 6.22: Snapshots of the V-REP simulation. On the left , a nonholonomic mobile
manipulator, which is composed of a differential-drive robot, and a 6-DOF arm manipulator.
On the right , the mobile manipulator is composed of a holonomic-drive robot and the
same 6-DOF arm manipulator.

V-REP does not support commands to set joint accelerations. Because of that, we do not

compare the torques.

Instead, we compare the generalized accelerations q̈m obtained through the DQGP and

the values q̈ from V-REP. To perform the comparison, we use the coefficient of multiple

correlation (CMC) (Ferrari et al., 2010) between the waveforms. The CMC provides a

coefficient ranging between zero and one that indicates how similar two given waveforms

are. Identical waveforms have CMC equal to one, whereas completely different waveforms

have CMC equal to zero.

First, we generate a trajectory of torques τGP to be applied to both the V-REP

simulator and the DQGP model, as shown in Fig. 6.23. To take into account the same

initial conditions in the DQGP model, we read from V-REP, before applying the torques

τGP, the generalized configurations and generalized velocities, which are denoted as q0

and q̇0, respectively.

In the cases of the fixed-base 50-DOF serial manipulator, and the 9-DOF holonomic

mobile manipulator, we compute the generalized accelerations q̈ using (5.20), which yields

q̈m = (MGP (q0))−1 (τGP −CGP (q0, q̇0) q̇0 − gGP (q0)) . (6.6)

Likewise, for the 8-DOF nonholonomic mobile manipulator, we use (5.47) to compute

the generalized accelerations, which yields

q̈m = (MGP (q0))−1
(
Ω (q0) (τ̄GP −CGP (q0, q̇0) q̇0) +M 1/2

GP (q0)D+ (q0) b
)
, (6.7)
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where τ̄GP are the the generalized forces. As discussed in Section 5.2.3, we consider the

generalized forces τGP applied in the joints and the gravitational forces τ g, such that the

resultant forces acting on the system are τ̄GP = τGP + τ g. By letting gGP , −τ g, we have

that τ̄GP = τGP − gGP. Furthermore, the nonholonomic constraint is written analogously

to (5.48), with A ,
[
− sinφ cosφ 0 01×6

]
and b = −Ȧq̇.

The V-REP simulator does not allow the direct reading of accelerations. Therefore, to

obtain the configuration acceleration vector q̈, we first read the velocity vector q̇ ∈ R9,

then filtered all elements q̇1, . . . , q̇9 with a discrete classic low-pass Butterworth filter, since

it provides good performance and smooth responses. We used the filtered values to obtain

the accelerations by means of numerical differentiation based on a second forward finite

difference approximation, as shown in Fig. 6.23. We then calculated the CMC between

each element q̈i, with i ∈ {1, . . . , 9}, of the generalized acceleration waveform and its

counterpart from V-REP. Afterward, we used those CMCs to obtain the mean, minimum,

and maximum CMCs for the model, alongside their standard deviation.

Furthermore, for the simulation of the fixed-base 50-DOF serial manipulator, we also

used the classic Newton-Euler algorithm (RTNE) implemented on the Robotics Toolbox

(Corke, 2017), and calculated the CMC between the joint acceleration waveforms yielded

by it and the ones from V-REP.13

τGP

q̈m ¨̄qm

¨̄q
q̇ ˙̄q

CMCτGP

q0, q̇0

Figure 6.23: Strategy used to validate the models based on DQGP on V-REP. The inputs
are the joints torques τ . The generalized accelerations q̈m are computed using τ , q0, and
q̇0, where q0, q̇0 are the generalized configurations and generalized velocities, respectively,
both read from V-REP before applying the torques τGP. Next, q̈m is filtered and denoted
as ¨̄qm. On the other hand, the generalized velocities q̇ are read from V-REP after applying
the torques τGP. Next, q̇ is filtered using the same filter previously used, and denoted as
˙̄q. Likewise, ¨̄q is computed by means of numerical differentiation. Finally, both ¨̄qm and ¨̄q
are compared using the CMC.

Table 6.4 presents the CMC between the generalized acceleration waveforms obtained

through two different dynamic model strategies (DQGP and RTNE) and the values

obtained from V-REP.

The current version of the Robotics Toolbox only supports dynamic modeling of fixed-

13In this case, we used the Vortex Studio engine (www.cm-labs.com) because it presented better
numerical stability for the 50-DOF manipulator.
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base robots and was only applied to the 50-DOF serial manipulator. The cases where the

model could not be obtained using the listed strategy are indicated in Table 6.4 by N/A.

(i.e., not available). For all other cases, all models presented mean and minimum CMC

close to one, with small standard deviation (s.d.) and high maximum (max) CMC; thus

indicating high similarity between the generalized acceleration waveform obtained from

them and the values from V-REP.

Table 6.4: CMC between the joint acceleration waveforms obtained through different
dynamic model strategies and the values obtained from V-REP. The closer to one, the
more similar the waveforms are.

50-DOF serial

manipulator

9-DOF holonomic

mobile manipulator

8-DOF nonholonomic

mobile manipulator
Method min mean std max min mean std max min mean std max

DQGP 0.9044 0.9893 0.0182 0.9993 0.9934 0.9973 0.0026 0.9999 0.8860 0.9839 0.0368 0.9999

RTNE 0.9044 0.9893 0.0182 0.9993 N/A N/A N/A N/A N/A N/A N/A N/A

For qualitative analysis, Fig. 6.24 presents the generalized accelerations obtained using

DQGP, alongside the V-REP values, for the minimum, maximum, and intermediate

CMCs found during simulations. Even for the smallest value of CMC (i.e., 0.8860), the

accelerations obtained using our formulation match closely the V-REP values. The small

discrepancies arise from both discretization effects and because the accelerations in V-REP

are estimated from noisy velocity values.
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CMC = 0.8860

CMC = 0.9999

CMC = 0.9922

¨̄q

Figure 6.24: Generalized acceleration waveforms of the 8-DOF nonholonomic mobile
manipulator. Solid curves correspond to the V-REP values ¨̄q, whereas dot-dashed curves
correspond to the values ¨̄qm obtained using the DQGP for the generalized acceleration
waveforms of the first (CMC = 0.8860), ninth (CMC = 0.9999), and fifth (CMC = 0.9922)
coefficients of the configuration vector, respectively.
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6.4 Conclusions

The chapter presented the results of the simulation and experiments performed. Section. 6.1

detailed the specification of the experimental environment based on the upper body of the

Poppy humanoid robot and two control laws: QP and CQP. In simulation environments, QP

does not take into account constraints, and CQP denotes the constrained case. Section. 6.1.1

showed the simulation results using first-order kinematics and the line-to-line angle Jacobian,

which was presented in Section 4.2. In this case, the goal is to put a cup on a table, using

the left-hand of a humanoid robot, while keeping the cup tilting below a threshold, avoiding

reaching joint limits, and preventing self-collisions and collisions with the workspace. The

results showed that the task error converges to zero for both controllers, however, only

CQP prevents undesired cup orientations and respects all other constraints. Section. 6.1.2

showed a second simulation using the robot dynamic model with second order vector fields

inequalities (SOVFIs). Although CQP respects all constraints and minimizes both the

joint accelerations and the task error, it generates more abrupt control inputs because the

collision-avoidance constraints enforce abrupt changes in the robot velocities to prevent

collisions. Because of that, CQP required a higher control effort. Section 6.2 presented

an example of the multi-contact strategy proposed in Section 4.5. The goal is to control

the right-hand of a humanoid robot to touch a target ball, preventing self-collisions and

ensuring the robot balance. To accomplish the task, the robot performs a contact with

the environment and maximizes the SP area. The results showed that CQP controller

respects the robot CoM constraints and minimizes the norm of the control inputs and

the task error, as expected. Although in the first simulation performed in section (6.2),

the maximization of the support polygon increased the robot reachability, this behavior

is not ensured. In other words, the proposed SP maximization does not guarantee the

improvement of the robot reachability and therefore, the robot could fail to accomplish a

specific task. This case is showed with a second simulation. To address these cases, the

chapter presented a strategy based on a finite-state machine. When the robot fails to

accomplish a task performing first an SP maximization, the hand contact constraint can

be relaxed to allow a sliding contact. Section. 6.1.3 presented the experimental results

and showed the applications of the line-to-line angle Jacobian on three different platforms,

including serial manipulators (torso and left hand), bimanual manipulators (both arms

using the cooperative manipulation) and nonholonomic bimanual manipulators (differential

base and both arms using the cooperative manipulation).
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This work extended the VFIs framework based on dual quaternion algebra, which was

initially proposed using first order kinematics by Marinho et al. (2018), to second order

kinematics. This allows its use in applications that require the robot dynamics by means

of the relationship between the joint torques and joint accelerations in the Euler-Lagrange

equations. Furthermore, we proposed a novel singularity-free conic constraint to limit the

angle between two Plücker lines. This new constraint is used to prevent the violation of

joint limits and/or to avoid undesired end-effector orientations. In addition, we proposed a

new Jacobian related with the support polygon area of a humanoid robot. This Jacobian is

used to increase the area of the support polygon and, potentially to improve the workspace

reachability or the robot balance in the presence of external disturbances. This is done by

doing an approximation of the support polygon (SPA) function of some contact points.

Although this approximation is conservative, it simplifies the computation of the Jacobian.

The VFIs framework requires an environment modeled with sufficient geometric primitives

and is not free of local minima, but it does provide reactive behaviors.

We evaluated the proposed method using kinematic and dynamic formulations, both in

simulation and on a real humanoid robot. The results showed that the robot always avoids

collisions with static obstacles, self-collisions, and undesired orientations while performing

manipulation tasks. However, the generation of the control inputs under SOVFIs, which

is based on quadratic programming, assumes feasibility. Future works will be focused on

strategies to ensure feasibility in the optimization formulation.

The strategy for multi-contacts applications, however, was explored only for first order
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kinematics. This enables the use in robots commanded by joints velocities at expense of

neglecting the forces and moments acting on the robot. Future works will be focused on

multi-contacts applications based on SOVFIs. This allows the use of the robot dynamics to

take into account the contact forces and friction forces to compute the support polygon area

(Samadi et al., 2020), to account for center of mass accelerations (Audren & Kheddar, 2018),

and handling non-coplanar contacts (Samadi et al., 2021). In addition, the second order

kinematics allows the use the of zero moment point (ZMP) concept (VUKOBRATOVIĆ

& BOROVAC, 2004), which is useful to achieve dynamic stability (Caron et al., 2017).

Last, this thesis presented the Gauss’s Principle of Least Constraint (GPLC) for

articulated bodies using dual quaternion algebra. This formulation leads to the Euler-

Lagrange dynamic equation of a robotic system. The use of dual quaternion algebra allows

a compact representation of the wrenches and accelerations. Furthermore, we presented

the connections with other classic treatises of mechanics as Gibbs-Appell equations, and

Kane’s method. All three approaches deal with nonholonomic constraints without the

necessity of Lagrange multipliers. However, the Gibbs-Appell equations and Kane’s method

require setting up quasi-velocities, whereas the Gauss’s Principle does not, and allows

taking into account additional constraints directly in the optimization formulation. We

proposed an algorithm to compute the Euler-Lagrange model using the dual quaternion

GPLC Formalism for a robot manipulator. Furthermore, we presented its computation

cost. The proposed algorithm is, as expected, more expensive than the ones based on

the Newton-Euler and classic Euler-Lagrange formalism since it is not based on recursive

strategies. However, this strategy allows taking into account additional constraints in the

accelerations, which can be exploited, for instance, in nonholonomic robotic systems or

humanoid robots. Future works will be focused on exploiting inequality constraints in the

optimization formulation and.

Although the representation for robot modeling and task description is based on dual

quaternion algebra, both the control law and the modeling based on the Gauss’s Principle

of Least Constraint require the matrix form to perform the optimization over the fields of

real vectors. This opens some theoretical questions about how to perform an optimization

over the ring of dual quaternions. Future works will be focused on the robot dynamic

modeling for a variety of different robots using the GPLC and its formulation in dual

quaternion algebra using the hypercomplex form. The use of optimization formulations

over non-Euclidean manifolds usually allows an elegant mathematical description of the

tasks and avoid the necessity of additional variables and constraints (Audren & Kheddar,

2018).

95



Bibliography

Adorno, B. V. (2011). Two-arm Manipulation: From Manipulators to Enhanced Human-
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A
Dual Quaternion Algebra

This chapter reviews some concepts, foundations and operations related to quaternions

and dual quaternions.

A.1 Fundamentals of Dual Quaternion Algebra

Unit dual quaternions have proven to be a powerful mathematical tool in robotics, not

only in the representation of rigid motions, but also in robot modeling (Adorno 2011;

Selig 2005), robot design (Perez & McCarthy, 2004), and control (Pham et al., 2010;

Xiangke Wang et al., 2012; Figueredo et al., 2013; Wang & Yu, 2013; Marinho et al.,

2015; Kussaba et al., 2017). They are more compact and computationally efficient than

homogeneous transformation matrices and also do not present representational singularities

(Adorno, 2011; Adorno & Fraisse, 2017). Thanks to their strong algebraic properties,

different robots can be modeled using the same systematic procedure (e.g., single or

cooperative manipulators (Adorno et al., 2010), mobile manipulators (Adorno, 2011)

and humanoids (Oliveira & Adorno, 2015; Fonseca & Adorno, 2016), and the resultant

models can be directly used with standard kinematic controllers without the need of

any intermediate parameterization (Pham et al., 2010; Figueredo et al., 2013). Unit

dual quaternions represents rigid motions in a very compact way, by combining a unit

quaternion1 representing rotation and a pure quaternion2 representing translation.

1h ∈ H is a unit quaternion if ‖h‖ = 1.
2h ∈ H is a pure quaternion if Re (h) = 0.
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A.1.1 Quaternions (Adorno, 2017)

Quaternions are algebraic structures that can be regarded as an extension of complex

numbers introduced first by Sir William Rowan Hamilton in 1843 (1844, apud Adorno

2011). They are composed of a real part and three imaginary components ı̂, ̂, k̂, also

called imaginary or quaternionic units. The imaginary units have the following properties

ı̂2 = ̂2 = k̂2 = ı̂̂k̂ = −1. (A.1)

The set H of quaternions is defined as

H ,
{
h1 + ı̂h2 + ̂h3 + k̂h4 : h1, h2, h3, h4 ∈ R

}
.

Definition A.1. Given h ∈ H, its real part is denoted by Re (h) , h1, and its imaginary

part is denoted by Im (h) , ı̂h2 + ̂h3 + k̂h4, such that h = Re (h) + Im (h).

Definition A.2. Given h ∈ H, its conjugate is defined as

h∗ , Re (h)− Im (h) . (A.2)

Definition A.3. Given h ∈ H, its norm is defined as

‖h‖ ,
√
h∗h =

√
hh∗. (A.3)

Definition A.4. The vec4 : H→ R4 operator performs a one-to-one mapping. Given h ∈ H,

this operator is defined as (Adorno, 2017)

vec4 (h) ,
[
h1 h2 h3 h4

]T
. (A.4)

Definition A.5. Given h ∈ H, the Hamilton operators are defined as (Adorno, 2017)

+
H4 (h) ,


h1 −h2 −h3 −h4

h2 h1 −h4 h3

h3 h4 h1 −h2

h4 −h3 h2 h1

 ,
−
H4 (h) ,


h1 −h2 −h3 −h4

h2 h1 h4 −h3

h3 −h4 h1 h2

h4 h3 −h2 h1

 (A.5)

Definition A.6. Given a,b ∈ H, the Hamilton operators satisfy the following equalities

(Adorno, 2017)

vec4 (ab) =
+
H4 (a) vec4 (b) =

−
H4 (b) vec4 (a) . (A.6)
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Definition A.7. The conjugating matrix C4 is defined as (Adorno, 2011)

C4 ,


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (A.7)

Given h ∈ H, this matrix satisfies the following condition

vec4 (h∗) = C4 vec4 (h) .

The set of pure quaternions is defined as (Adorno, 2017)

Hp , {p ∈ H : Re (p) = 0}

Definition A.8. Given a, b ∈ Hp, the cross product is defined as (Adorno, 2017)

a× b , ab− ba
2 . (A.8)

Definition A.9. Given a, b ∈ Hp, the dot product is defined as (Adorno, 2017)

〈a, b〉 = −ab+ ba
2 = vec4 a

T vec4 b = vec4 b
T vec4 a. (A.9)

Definition A.10. Given a, b ∈ Hp, the
+
S () operator is defined as (Adorno, 2011)

S (a) = 1
2

[ +
H4 (a)−

−
H4 (a)

]
, (A.10)

and satisfies the following equalities

vec4 (a× b) = S (a) vec4 (b) = −S (b) vec4 (a) = S (b)T vec4 (a) .

Definition A.11. Given a unit quaternion rab and a pure quaternion paa,b, the adjoint

transformation is defined as

Ad (rab )paa,b , rabpaa,bra∗b . (A.11)

Definition A.12. The set of quaternions with unit norm is defined as S3 , {h ∈ H : ‖h‖ = 1}.
Unit quaternions are useful to represent rigid rotations, and r ∈ S3 always can be written

as r = cos (φ/2) + n sin (φ/2), where φ ∈ R is the rotation angle around the rotation axis

n ∈ S3 ∩Hp (Adorno, 2017).

Definition A.13. Given a ∈ Hp, the time-derivative of the squared norm of a, when it
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exists, is given by
d

dt

(
‖a‖2

)
= ȧa∗ + aȧ∗ = 2〈ȧ,a〉. (A.12)

Given rab ∈ S3, its time derivative ṙ is related with the angular velocity of a frame as

(Adorno, 2017)

ṙab = 1
2ω

a
abr

a
b = 1

2r
a
bω

b
ab, (A.13)

Definition A.14. where rab is the rotation of frame Fb with respect to frame Fa , ωaab and

ωbab are the angular velocity of Fb with respect to frame Fa, expressed in frame Fa and

Fb, respectively.

A.1.2 Dual Quaternions (Adorno, 2017)

Dual quaternions are dual numbers where the primary and dual part are quaternions.

The dual numbers were introduced by Clifford (Adorno, 2011) and can be regarded as an

extension of quaternions.

Definition A.15. Given two numbers dP and dD, the dual number d is defined as (Adorno,

2011)

d = dP + εdD, (A.14)

where ε is the dual unit proposed by Clifford (1873), which is nilpotent and follows the

following property

ε2 = 0 with ε 6= 0. (A.15)

The primary part and the dual part can be extracted using the operators P (d) and

D (d), respectively. For instance, in (A.14) P (d) = dP and D (d) = dD.

The set of dual quaternions is defined as

H ,
{
h1 + εh2 : h1,h2 ∈ H, ε 6= 0, ε2 = 0

}
.

Definition A.16. Given the dual quaternion h = hP + εhD, its conjugate is defined as

h∗ , h∗P + εh∗D. (A.16)

Definition A.17. Given h ∈ H, its norm is defined as

‖h‖ ,
√
h∗h =

√
hh∗.

Definition A.18. The vec8 : H→ R8 operator performs a one-to-one mapping. Given the

quaternion h = h1 + ı̂h2 + ̂h3 + k̂h4 + ε
(
h5 + ı̂h6 + ̂h7 + k̂h8

)
, this operator is defined as

vec8 (h) ,
[
h1 . . . h8

]T
.
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The multiplication and addition operations between dual quaternions follow the same

rules of their counterparts between real numbers, but respecting the additional rules

determined by (A.1) and (A.15). It can be verified that, in general, multiplication of dual

quaternions is not commutative (i.e., given x,y ∈ H, in general xy 6= yx). However,

one can use Hamilton operators (Adorno, 2011) for manipulating algebraic expressions

containing dual quaternions such that

vec8
(
xy
)

=
+
H8 (x) vec8 y =

−
H8

(
y
)

vec8 (x) ,

where

+
H8 (h) ,


+
H4 (hP) 04×4
+
H4 (hD)

+
H4 (hP)

 , −
H8 (h) ,


−
H4 (hP) 04×4
−
H4 (hD)

−
H4 (hP)

 . (A.17)

Definition A.19. The conjugating matrix C8 is defined as (Adorno, 2011)

C8 ,

 C4 0
0 C4

 . (A.18)

Given h ∈ H, this matrix satisfies the following condition

vec8 (h∗) = C8 vec8 (h) .

The set of unit dual quaternions defined as S , {h ∈ H : ‖h‖ = 1} can represent

rigid motions, and x ∈ S always can be written as x = r + ε1
2pr, where r ∈ S3 and

p ∈ Hp represent the orientation and position, respectively.

Furthermore, elements of the set Hp , {h ∈ H : Re (h) = 0} are called pure dual

quaternions.

Definition A.20. Given the frames F0, F1, and F2, the unit dual quaternions x0
1 and x1

2

represent the rigid motions from F0 to F1 and F1 to F2, respectively. The transformation

from F0 to F2 is given by x0
2 = x0

1x
1
2 (Adorno, 2011), as shown in Fig. A.1.

Definition A.21. Let h = r + ε1
2pr, with r = cos (φ/2) + n sin (φ/2). The logarithm of h

is

logh = φn

2 + ε
p

2 .

Definition A.22. Let g ∈ Hp, the exponential of g is

exp g = P
(
exp g

)
+ εD

(
g
)
P
(
exp g

)
,
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x0
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Figure A.1: Sequence of rigid transformations using dual quaternions.

where

P
(
exp g

)
=


cos

∥∥∥P (g)∥∥∥+ sin‖P(g)‖
‖P(g)‖ P

(
g
)

if
∥∥∥P (g)∥∥∥ 6= 0

1 otherwise.

Definition A.23. The geometrical exponentiation of the unit dual quaternion h ∈ S (i.e.,

h raised to the λ-th power) is defined as

h{λ} , exp (λ logh) .

Given xab ∈ S, its time derivative can be expressed as (Adorno, 2017)

ẋab = 1
2ξ

a
a,b
xab = 1

2x
a
bξ

b
a,b
, (A.19)

where xab denotes the rigid transformation of frame Fb with respect to frame Fa. The twist

ξa
a,b

= ωaa,b + ε
(
ṗaa,b + paa,b × ωaa,b

)
(A.20)

represents the twist of frame Fb with respect to frame Fa, expressed in frame Fa. Further-

more, the twist ξb
a,b

is the twist of frame Fb with respect to frame Fa, expressed in frame

Fb.3

Remark A.1. Consider the twists ξa
ab

given by (A.20). Then, the twist ξb
ab

is given as

ξb
a,b

= xa∗b ξ
a
a,b
xab . (A.21)

3So, for example, ξc
a,b

is the twist of frame Fb with respect to frame Fa, expressed in frame Fc.
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Expanding (A.21), we have

ξb
a,b

= P (xa∗b )P
(
ξa
a,b

)
P (xab ) + εP (xa∗b )D

(
ξa
a,b

)
P (xab )

+ εD (xa∗b )P
(
ξa
a,b

)
P (xab ) + εP (xa∗b )P

(
ξa
a,b

)
D (xab ) . (A.22)

Using (A.21),(A.22), (A.8), and using the facts P (xab ) = rab , D (xab ) = (1/2)paa,brab and

pa∗a,b = −paa,b we rewrite (A.22) as follows

ξb
a,b

= Ad (ra∗b )ωaa,b + εAd (ra∗b ) ṗaa,b + εAd (ra∗b )
(
paa,b × ωaa,b

)
+ εAd (ra∗b )

(
ωaa,b × paa,b

)
.

(A.23)

Finally, since ωaa,b × paa,b = −paa,b × ωaa,b from (A.23), we obtain

ξb
a,b

= ωba,b + εṗba,b. (A.24)

Remark A.2. The time derivative of (A.21) is computed as

ξ̇
b

ab
= ẋa∗b ξ

a
ab
xab + xa∗b ξ̇

a

ab
xab + xa∗b ξaabẋ

a
b =⇒ ξ̇

b

ab
= Ad (ẋa∗b ) ξ̇a

ab
. (A.25)

Expanding (A.25), we have

ξ̇
b

ab
= P (xa∗b )P

(
ξ̇
a

a,b

)
P (xab ) + εP (xa∗b )D

(
ξ̇
a

a,b

)
P (xab )

+ εD (xa∗b )P
(
ξ̇
a

a,b

)
P (xab ) + εP (xa∗b )P

(
ξ̇
a

a,b

)
D (xab ) . (A.26)

Using

ξ̇
b

ab
= Ad (ra∗b ) ω̇aa,b + εAd (ra∗b )

(
p̈aa,b + ṗaa,b × ωaa,b + paa,b × ω̇aa,b

)
+ εAd (ra∗b )

(
ω̇aa,b × paa,b

)
ξ̇
b

ab
= ω̇ba,b + ε

(
p̈ba,b + ṗaa,b × ωaa,b

)
. (A.27)
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B
Constrained Euler-Lagrange Model using

Lagrange Multipliers

The Euler-Lagrange equations under equality constraints in the form Aq̈ = b can be

written by means of the Lagrange multipliers as

MGPq̈ = Q+ATλ, (B.1)

where Q , Q (q, q̇) = τ̄GP −CGPq̇, and λ denotes the Lagrange multipliers.

Solving for the joint accelerations from (B.1), we have

q̈ = M−1
GP

(
Q+ATλ

)
. (B.2)

Using (B.2) in the equality constraints Aq̈ = b, we have

AM−1
GP

(
Q+ATλ

)
︸ ︷︷ ︸

q̈

= b,

AM−1
GPQ+AM−1

GPA
Tλ = b,

λ =
(
AM−1

GPA
T
)−1 (

b−AM−1
GPQ

)
. (B.3)

Finally, using (B.3) we rewrite (B.1) as

MGPq̈ = Q+R
(
b−AM−1

GPQ
)
, (B.4)
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where

R , AT
(
AM−1

GPA
T
)−1

= AT
(
AM

−1/2
GP M

−1/2
GP AT

)−1
. (B.5)

Notice that (B.4) is equivalent to the solution of the constrained GPLC formulation,1

which is based on the Udwadia-Kalaba formulation (Kalaba & Udwadia, 1992), and is

given by (5.44). To illustrate this, let D , AM−1/2
GP . Then, we have that

DT = M
−1/2
GP AT =⇒ AT = M

1/2
GPD

T . (B.6)

We rewrite (B.5) using (B.6) as follow

R = M
1/2
GPD

T
(
DDT

)−1

︸ ︷︷ ︸
D+

. (B.7)

Using (B.4) and (B.7), we obtain

MGPq̈ = Q+M 1/2
GPD

+
(
b−AM−1

GPQ
)
, (B.8)

which implies

q̈ = M−1
GPQ+M−1/2

GP

(
AM

−1/2
GP

)+ (
b−AM−1

GPQ
)
. (B.9)

The final solution (B.9) is identical to the one obtained by means of the Udwadia-Kalaba

formulation, which is given by (5.44), as expected.

1See section (5.4).
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