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Resumo

Essa tese propõe uma técnica para a modelagem dinâmica de robôs seriais e ramificados

utilizando álgebra de quatérnios duais. O modelo considera tanto todas as juntas do

tipo lower-pair kinematic quanto juntas de seis graus de liberdade e, adicionalmente, o

procedimento permite a composição modular sistemática de modelos dinâmicos compostos

de múltiplos subsistemas, cada um deles, por sua vez, composto de diversos corpos

ŕıgidos. A estratégia proposta é aplicável ainda que alguns subsistemas se comportem

como caixas pretas, exigindo apenas os heligiros e as heliforças do ponto de conexão entre

eles. Para auxiliar na composição de modelos, é também proposta uma representação

em grafos que codifica a propagação de heligiros e heliforças dentre os subsistemas. As

heliforças das juntas são resultado do cálculo da matriz de interconexão do grafo, tornando

intuitivo o procedimento de modelagem. O formalismo proposto foi validado utilizando

manipuladores robóticos de 6-DoF e 50-DoF, um manipulador móvel de base holonômica

de 9-DoF e um robô ramificado de 38-DoF, composto de 9 subsistemas. Os resultados

foram comparados com as bibliotecas Robotics Toolbox, desenvolvida pelo Peter Corke, e

Spatial V2, desenvolvida pelo Roy Featherstone, além do simulador V-REP/CoppeliaSim,

demonstrando que o método proposto é tão preciso quanto as bibliotecas do estado da

arte.
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Abstract

This thesis proposes a technique for the dynamic modeling of serial and branched robots

using dual quaternion algebra. The modeling accounts for all lower-pair kinematic joints

and six-degree-of-freedom joints, and the framework enables the systematic modular

composition of dynamic models comprising several subsystems, each, in turn, composed

of multiple rigid bodies. The proposed strategy is applicable even if some subsystems

are regarded as black boxes, requiring only the twists and wrenches at the connection

points between different subsystems. To help in the model composition, a unified graph

representation that encodes the propagation of twists and wrenches between the subsystems

is also proposed. The joint wrenches result from the calculation of the interconnection

matrix of the graph, making the modeling procedure straightforward. The framework

was validated using serial manipulators of 6-DoF and 50-DoF, a 9-DoF holonomic mobile

manipulator, and a 38-DoF branched robot composed of 9 subsystems. The results were

compared with Peter Corke’s Robotics Toolbox, Roy Featherstone’s Spatial V2, and the

robot simulator V-REP/CoppeliaSim, demonstrating that the proposed formalism is as

accurate as state-of-the-art libraries.
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Notation and Conventions

or

A =


a11 · · · a1m

...
. . .

...

an1 · · · anm

 , A ∈ Hn×m
p .

Variables with hats represent spatial vectors. For example,

v̂ =



ωx

ωy

ωz

vx

vy

vz


=
 ω
v



is a spatial velocity, in which ω and v are, respectively, the angular and linear velocities.

Variables with upside down hats represent elements in the Lie algebras associated to

SO (3) and to SE (3):

Ξ̌ =
 ω̌ v

01×3 0

 , ∈ R4×4,

where Ξ̌ ∈ se (3), ω̌ ∈ so (3), and 01×3 ∈ R1×3 is a vector of zeros.

Subscripts and superscripts are used to indicate the reference frames of the variables.

For instance, ωba,b represents the angular velocity of frame Fb relative to Fa, expressed on

frame Fb. If no superscript is used, it is assumed the global inertial reference frame.

xix



1
Introduction

When asked to describe what a robot is, people will often answer something on the lines of

a human-like machine, capable of navigating and interacting with objects from our usual

environment and performing complex tasks without the need for human intervention. This

view present in popular imagination conveys a crucial aspect of robotics; the complexity

of a robotic system goes far beyond the complexity of the mechanism itself. A typical

robotic system involves motion/force/impedance control, path planning, task planning,

and many more higher-level layers. Alas, representations that are very useful for robot

modeling, such as homogeneous transformation matrices, are not necessarily easy to use

when performing pose control or impedance control, for example. That is precisely the

reason why it is common to use homogeneous transformation matrices to obtain the

robot kinematics but then indirectly find the geometric Jacobian and, finally, to use

quaternions and position vectors to perform pose control in the task-space (Yuan, 1988;

Xian et al., 2004). There are several drawbacks to using the aforementioned strategy. The

mix of different representations unnecessarily complicates the overall description of the

system, and the mapping between them usually introduces mathematical artifacts, such as

algorithmic singularities and discontinuities (Silva et al., 2022).

Those are some of the reasons why, in the last thirty years, there have been an

expressive amount of papers—published in prestigious journals and conferences—dealing

with different representations for robot modeling. Notorious examples can be found in

the works of Featherstone (2008, 2010a,b), McCarthy (1990), Dooley & McCarthy (1991),

Perez & McCarthy (2004), Selig (2004, 2005), and Selig & Bayro-Corrochano (2010),
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among many others.

Amongst the different representations, dual quaternion algebra possesses elements

that have strong geometrical meaning, such as in screw theory, and are also represented

as coupled entities within single elements. In kinematics, this representation has been

extensively explored to obtain the robot kinematics and differential kinematics (Perez &

McCarthy, 2004; Adorno, 2011; Gouasmi, 2012; Cohen & Shoham, 2016; Özgür & Mezouar,

2016; Kong, 2017; Dantam, 2020). Furthermore, in recent works, dual quaternions have

been used to perform:

• admittance control (Fonseca et al., 2020), which is fundamental in physical human-

robot interaction;

• constrained motion control (Marinho et al., 2019; Quiroz-Omana & Adorno, 2019),

which takes into account geometrical constraints imposed by the workspace;

• hybrid control, which takes into account the topology of the space of rigid motions

(Kussaba et al., 2017) and optimal control, which uses a linear-quadratic optimal

tracking controller for robotic manipulators (Marinho et al., 2015);

• distributed pose formation control (Savino et al., 2020) and cooperative manipulation

(Adorno et al., 2010; Figueredo et al., 2014), including the ones that involve human-

robot collaboration (Adorno et al., 2015);

• and to define high-level geometrical tasks (Lana et al., 2015).

Moreover, elements such as unit dual quaternions and pure dual quaternions, when equipped

with standard multiplication and addition operations, form Lie groups with associated Lie

algebras. Therefore, a formulation based on dual quaternion algebra offers the geometrical

insights of screw theory, the rigor of Lie Algebra, and a simple algebraic treatment of

the dynamical model as present in the spatial algebra (Featherstone, 2008). Hence, often

reducing the necessity of an extensive geometric analysis of the mechanism, which contrasts

with approaches based on the representation of screw theory using matrices (Huang et al.,

2015; Renda et al., 2017).

Concerning dynamics, although several works have addressed the study of rigid body

dynamics using dual quaternions over the last decades—including modeling (Baklouti &

Castelain, 1993; Pennock & Meehan, 2000; Brodsky & Shoham, 1999), estimation (Zu

et al., 2018), and control (Wang & Yu, 2010; Zhang et al., 2010; Zhang & Duan, 2011;

Filipe & Tsiotras, 2013; Abaunza et al., 2016; Gui & Vukovich, 2016)—the literature

still lacks a concise and systematic methodology to attain the dynamic model of robotic

systems using dual quaternion algebra. That is even more evident when considering robots

with more general joint types (e.g., helical, cylindrical, 6-DoF, etc.) and branched robots

(e.g., humanoid robots).
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In conclusion, since there are no adequately general methodology to obtain robot

dynamic models based on dual quaternion algebra, there is still a theoretical gap that

creates the unnecessary need for intermediate mappings when using higher-level algorithms

based on dual quaternions to connect them to the low-level dynamic model. The purpose

of this thesis is to fill that gap by proposing suitable dynamic models of robotic systems

using dual quaternion algebra.

Contributions

The contributions of this thesis are summarized into the following groups:

1. A novel quaternionic inertia tensor that enables the description of rigid body dynamics

exclusively with operations inside the dual quaternion algebra is proposed and used

to develop a technique for the dynamic modeling of serial and branched robots that

accounts for all lower-pair kinematic joints and six-degrees-of-freedom joints. Thus,

extending the systematic application of dual quaternions from kinematic (Adorno,

2011) to dynamic modeling.

2. A systematic modular composition of dynamic models comprising several subsystems,

each in turn composed of multiple rigid bodies, is developed. The proposed strategy is

applicable even if the complete information of the subsystems’ dynamics is unavailable,

requiring only the twists and wrenches at the connection points between different

subsystems. Moreover, a unified graph representation that encodes the propagation

of twists and wrenches between the subsystems aids the model composition. The

joint wrenches result from the calculation of the interconnection matrix of the graph,

making the modeling procedure straightforward.

Organization of the thesis

Chapter 2 presents a literature review on different algebras used in the dynamic modeling

of multibody systems to motivate the choice of dual quaternions. Furthermore, it assesses

the state of the art of dynamic modeling using dual quaternion algebra and strategies based

on topological graphs and modular dynamic modeling to contextualize the contributions

of this thesis.

Chapter 3 gives a brief revision of the classic recursive Newton-Euler formulation and

Euler-Lagrange canonical equation, typically presented on robotics textbooks, and also

provides an introduction to dual quaternion algebra. More notably, it reviews the dual

quaternion forward kinematic model proposed by Adorno (2011) alongside his strategy for

obtaining the differential forward kinematic model of serially coupled kinematic structures,

both of which motivated several ideas presented in this thesis.

Chapter 4 proposes a novel quaternionic inertia tensor that allows the description of

the dynamic properties of rigid bodies exclusively with operations in the dual quaternion
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algebra. This chapter also proposes the dual quaternion Newton-Euler formalism, a

systematic strategy for the dynamic modeling of branched robots, which includes fixed-

base and mobile manipulators as particular cases, and compares its cost in terms of the

number of elementary operations with the classic Newton-Euler recursive algorithm.

Chapter 5 proposes a modular composition methodology and a graph representation

of the robotic system that enables its assembling starting from intermediate subsystems,

even if the complete information of their dynamics is unavailable, requiring only the twists

and wrenches at the connection points between different subsystems.

Chapter 6 presents a final discussion and future works.
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Literature Review

For most of their existence, robots were primarily designed to work in controlled environ-

ments, performing well defined—and repetitive—tasks. Nowadays, however, rising fields of

interest on research projects include both more complex mechanisms, such as humanoid

robots (Sentis & Khatib, 2006; Schaal, 2019), and more complex tasks, ranging from

general human-robot interaction (Goodrich & Schultz, 2007) to medical applications (Chen

et al., 2013; Marinho et al., 2019). Regardless of the changes in the work environment and

the diversification of the tasks, most of the control techniques remain model-dependent

(Siciliano & Khatib, 2008). Therefore, a project in robotics often starts with determining

a suitable model for the robot.

Robot models are commonly divided into kinematic and dynamic models. Kinematic

models are concerned with the movements of the robot disregarding forces or torques

acting on the system. When the robot is rigid, has small inertia and the application

does not demand relatively high accelerations, the kinematic model is a well-suited choice.

Despite how restrictive these prerequisites may sound, kinematic models have been used

in several works employing both mobile manipulators (De Luca et al., 2006; Zhang et al.,

2012; Quiroz-Omaña & Adorno, 2017; Silva & Adorno, 2018) and humanoids (Nishiwaki

et al., 2005; Gienger et al., 2006; Park & Lee, 2013), even in tasks involving human-robot

interactions (Adorno, 2011; Adorno et al., 2011b,a, 2015; Lana et al., 2013; Lasota et al.,

2014).

Some tasks, however, demand the consideration of forces and torques present in the

activity. For instance, the backflip performed by the Boston Dynamics’ Atlas, depicted in
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figure 2.1, could not be achieved if only the robot kinematics was used. Other applications

that require the robot’s dynamic model are dynamic gait (Ott & Hyon, 2019; Reher et al.,

2019) and tasks involving unmanned aerial vehicles (UAVs) (Abaunza et al., 2016; Mello

et al., 2016; Rego et al., 2016; Zu et al., 2018) (see figure 2.2).

Figure 2.1: Atlas performing a backflip (courtesy of Boston Dynamics).

Similarly to how the choice of a proper model is crucial for the success of the application,

so is the choice of an adequate mathematical representation for it. An ill-chosen model

representation can inadvertently overcomplicate the control design and, at the worst,

even render it unfeasible. For this reason, several different representations have been

proposed throughout the history of robotics, and textbooks customarily dedicate their

initial chapters to the study of this subject (Spong et al., 2006; Siciliano & Khatib, 2008;

Siciliano et al., 2009; Corke, 2011).

In this context, the next section presents a brief review of the representations most

commonly used by roboticists for the dynamic modeling of robotic systems.

2.1 Representations used in robot dynamic modeling

Representations used in robot dynamic modeling can be categorized into two main groups.

The group of those that represent linear and angular velocities and accelerations, and forces

and torques, as independent elements, whose relations are given in different equations; and
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(a) Atlas jumping over a log (courtesy of Boston
Dynamics).

(b) UAV delivering a product (courtesy of Amazon).

Figure 2.2: Tasks that require dynamic models. Figure 2.2a presents the robot Atlas
jumping over a log, whereas figure 2.2b shows a delivery being performed by a UAV.

the group of those that couple linear and angular components into a single entity, thus

presenting their interactions in a single expression. A reader that has taken introductory

robotics courses is probably familiarized with the former and may even tend to see it as

the most intuitive representation since it often demands only basic knowledge of vector

algebra. Nonetheless, a coupled representation can lead to high-level abstractions that

aid the development of more general formulations for the dynamic modeling of robotic

systems. To further clarify this discussion, the remaining of this section presents four of

the most commonly used representations in robotics.

2.1.1 Classic representation using R3 and SO (3)

One of the most used dynamic model representations in robotics employs three-dimensional

vectors to represent the linear and angular variables and rotation matrices to perform

transformations between different reference frames. Take, for instance, the equations of the

forces f i−1
i ∈ R3 and the torques τ i−1

i ∈ R3 of the i-th link of an n-DoF serial manipulator

with revolute joints found in the classic recursive Newton-Euler algorithm1 (Spong et al.,

2006, p. 277), given by

f i−1
i = Ri−1

i f ii+1 +mi

(
ai−1

0,ci
+ gi−1

)
,

τ i−1
i = Ri−1

i τ ii+1 − f i−1
i × pi−1

i−1,ci
+
(
Ri−1
i f ii+1

)
× pi−1

i,ci
+ Īi−1

i ω̇i−1
0,ci

+ ωi−1
0,ci
×
(
Īi−1
i ωi−1

0,ci

)
,

(2.1)

1Remember that, as defined in the section of notations (page xix), subscripts and superscripts are used
to indicate the reference frames of the variables. For instance, ai−1

0,ci
represents the linear acceleration

of frame Fci
relative to F0, expressed on frame Fi−1. If no superscript is used, it is assumed the global

inertial reference frame.
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where Ri−1
i ∈ SO (3) is the rotation matrix representing the rotation from frame Fi−1 at

the end of the (i− 1)-th link to Fi at the end of the i-th link, mi ∈ (0,∞) and Īi−1
i ∈ R3×3,

with Īi−1
i > 0, are, respectively, the mass and the inertia tensor of the i-th link, ai−1

0,ci
∈ R3

and ω̇i−1
0,ci
∈ R3 are the linear and angular acceleration of the center of mass (CoM),

respectively, gi−1 ∈ R3 is the gravity acceleration, and pi−1
i−1,ci

∈ R3 is the position of the

i-th CoM with respect to Fi−1.

It is evident from (2.1) that the total torque appearing on the body is affected by

the lever arms produced by the forces acting on it. Nonetheless, forces and torques

are presented in different equations, thus demanding careful geometrical analysis of the

mechanism to model it correctly. For fixed-base robotic manipulators with revolute and

prismatic joints, the final expressions obtained through this analysis are well known

and readily available in different robotics textbooks (Selig, 2005; Siciliano et al., 2009)

and conventional computational libraries (Corke, 2017). For more general and complex

mechanisms, such as humanoid robots or differential-drive mobile manipulators, however,

the roboticist often has to be the one performing this geometrical analysis. Such a task is

both time-consuming and prone to errors, as one can easily neglect a lever arm or some

influence of the angular velocity on the linear acceleration. Furthermore, when considering

joint types other than revolute and prismatic (e.g., helical, cylindrical, 6-DoF, etc.), and

conventions other than the Denavit-Hartenberg convention, this vectorial representation

leads to convoluted equations of forces and torques. The aforementioned drawback is

evident in the following comment from Siciliano and Khatib about the classic Recursive

Newton-Euler Algorithm (RNEA) based on three-dimensional vector representation (given

by algorithm 3.3 in their book), (Siciliano & Khatib, 2008, p. 54)

The original version of the RNEA was developed and expressed using 3-D

vectors (e.g. [3.2, 4]). Algorithm 3.3 shows a special case of this algorithm, in

which the joints are assumed to be revolute, and the joint axes are assumed

to coincide with the z axes of the link coordinate systems. (Without these

assumptions, the equations would be a lot longer.) It also assumes that the

external forces are zero.

In conclusion, although well established and intuitive, the disconnection of linear and

angular components in the classic representation based on R3 and SO (3) is the prime

source of its drawbacks. Thus, the remainder of this section presents representations that

couple those entities into a single element.

2.1.2 Featherstone’s spatial algebra

Featherstone (2008) proposes one alternative to deal with the previously presented problems

replacing the three-dimensional vectors by spatial vectors, which are six-dimensional

vectors composed by the concatenation of the angular and linear components acting on
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the body. For instance, the classic representation of linear and angular velocities as two

three-dimensional vectors

v =


vx

vy

vz

 ,

ω =


ωx

ωy

ωz

 ,

is replaced by the spatial velocity

v̂ =



ωx

ωy

ωz

vx

vy

vz


=
 ω
v

 ∈ M6, (2.2)

where M6 is the set of the six-dimensional spatial motion vectors.

Featherstone proposed several operators to deal with rigid transformations and deduced

the most common algorithms of rigid body dynamics in spatial vector form (Featherstone,

2008), originating reliable and efficient implementations (Carpentier et al., 2019) that have

been tested on actual complex robotic platforms (Bouyarmane et al., 2019; Kleff et al.,

2021; Sleiman et al., 2021; Ramuzat et al., 2022). Nonetheless, the spatial algebra relies

majorly on standard matrix algebra and lacks the algebraic formalism of more thorough

approaches, such as the ones based on Lie algebra (Featherstone, 2010a, p. 94).

2.1.3 Lie algebra associated to SE (3)

One solution towards a more rigorous and elegant algebraic treatment of rigid body motions,

while still using matrices, is to introduce an exponential mapping to SE (3), such as the

one presented by Murray et al. (1994). Alternatively to the conventional rotation matrix,

the rotation of a body by θ radians around an unit rotation axis φ =
[
φx φy φz

]T
may

be described in the exponential form as

R (φ, θ) = eω̌θ, (2.3)

where

eω̌θ = I + ω̌ sin (θ) + ω̌2 (1− cos (θ)) ,
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with I ∈ R3×3 being the identity matrix. The skew-symmetric matrix ω̌ ∈ so (3) is an

element of the Lie algebra associated to SO (3), given by (Murray et al., 1994, p. 27)

ω̌ = S (φ) =


0 −φz φy

φz 0 −φx
−φy φx 0

 ∈ so (3) , (2.4)

where φ is a unit rotation axis.

Accordingly, elements of the Lie algebra se (3) associated to SE (3) are given, in

homogeneous coordinates, by

Ξ̌ =
 ω̌ v

01×3 0

 ∈ se (3) , (2.5)

where 01×3 ∈ R1×3 is a row vector of zeros and v = −φ× t, in which t ∈ R3 is a point on

the axis of rotation. The four-by-four matrix Ξ̌ ∈ se (3) is the twist (Murray et al., 1994,

p. 39) and, analogously to (2.3), is used to obtain the exponential mapping of SE (3),
whose homogeneous coordinates representation is given by (Murray et al., 1994, p. 46)

eΞ̌θ =
 eω̌θ

(
I − eω̌θ

)
(φ× v) + φφTvθ

01×3 1

 . (2.6)

As demonstrated by Murray et al. (1994), every rigid transformation can be written as

the exponential of some twist, in the form of (2.6). Also, when changing the reference frames

of twists, and wrenches,2 the corresponding adjoint transformation ensures that all the

appropriated lever arms are algebraically found. Nonetheless, this choice of representation

has its downsides. For instance, a movement consisting of a rotation of θ ∈ R radians

about an axis φ ∈ R3, here no longer considered unitary, followed by a translation d ∈ R
along the axis v ∈ R3, is given by a screw characterized by a pitch (i.e., the ratio of

translational to rotational motion)

h = φTv

‖φ‖2 ,

a rotation axis

l =


{
φ×v
‖φ‖2 + λφ : λ ∈ R

}
, if φ 6= 0

{0 + λv : λ ∈ R} , if φ = 0

and a magnitude

M =

‖φ‖ , if φ 6= 0

‖v‖ , if φ = 0.

2Similar to how twists are defined as elements composed of linear and angular velocities, wrenches are
defined as elements comprising of forces and torques.
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Thus, working with this representation involves not only working with matrix exponential

of the form (2.6), which does not have a readily intuitively geometrical meaning, but also

involves having to choose among different cases, depending on the existence or not of a

pure translation, in the construction of the screw.

2.1.4 Lie algebra associated to Spin(3) nR3

As yet another way to represent rigid motions, for those willing to leave aside the realm of

matrices, dual quaternion algebra presents itself as a compact and elegant solution that

allows the representation of angular and linear entities as a single element, while enabling

a straightforward algebraic treatment of the dynamic model, hence limiting the necessity

of geometric analysis of the system. For instance, a twist may be represented in dual

quaternion form as3

ξ = ω + εv

= ω + ε (ṗ+ p× ω)

= ωxı̂+ ωy ̂+ ωzk̂ + ε
(
vxı̂+ vy ̂+ vzk̂

)
, (2.7)

where ω ∈ Hp and v ∈ Hp are, respectively, the angular and linear velocities of the

body, p ∈ Hp is the position of its CoM, ı̂2 = ̂2 = k̂2 = ı̂̂k̂ = −1, and ε2 = 0. This

representation may resemble that given by (2.2), but it has important differences that

justify its use instead of a spatial velocity. Differently from what happens to spatial

vectors, unit dual quaternions and pure dual quaternions, when equipped with standard

multiplication and addition operations, form Lie groups with associated Lie algebras

(Adorno, 2017). Furthermore, dual quaternion algebra provides an elegant representation

of homogeneous transformations (Funda et al., 1990) and screw theory (Aspragathos

& Dimitros, 1998), such that the twist given by (2.7) is an element of the Lie algebra

associated with Spin(3) n R3.4 Additionally, unit dual quaternions, as homogeneous

transformation matrices (HTM), do not have representational singularities, and they are

more compact and have lower computational cost than HTM (Adorno, 2011). Consequently,

dual quaternion algebra possesses the thoroughness of the approach presented by Murray

et al. (1994) while preserving the intuitiveness grasped by Featherstone (2008) with his

spatial algebra. Nonetheless, as will be seen shortly, and further discussed in section 4.1,

one of the main limitations of the use of dual quaternions in dynamics lies on how to

properly represent inertia tensors within the algebra.

To better contextualize the contributions of this thesis, the next section presents the

state of the art in dynamic modeling of robotic systems based on dual quaternion algebra.

3More details are given in chapter 3. For now, it is only important to have a general idea of how a
dual quaternion representation of a twist looks like.

4The symbol n represents the semi-direct product between groups (Selig, 2005, p. 22).
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2.2 State of the art in dual quaternion dynamic mod-

eling

Several works have addressed the study of rigid body dynamics using dual quaternions over

the last decades. One of the most common approaches is to use dual angles as generalized

coordinates (figure 2.3) (Yang, 1965) and to represent body motions as screw motions5 in

a dual vector form (Pennock & Oncu, 1992), such as

θ

s

F0

F1

Figure 2.3: The dual angle between F0 and F1 is given by θ = θ + εs.

v =


ωx

ωy

ωz

+ ε


vx

vy

vz

 = ω + εv, (2.8)

where ω and v are, respectively, the angular and the linear velocity of the body, and

ε2 = 0.

Pioneering this methodology, and the use of dual quaternions in mechanics, Yang &

Freudenstein (1964) presented the use of dual quaternion algebra in the velocity and static

force analysis of a spatial four-link mechanism. A dual vector ao = aop + εaod expressed in

a reference frame Fo, where aop,a
o
d ∈ R3 are, respectively, the primary and the dual part

of ao, can be expressed in a different reference frame Fp as

ap = app + εtp,

where

tp = apd + d× app, (2.9)

5An introduction to the subject, using matrices, can be found in Murray et al. (1994).
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in which d ∈ R3 is the vector connecting Fo and Fp. Equation (2.9) is known as the

Equation of Transformation and has to be considered in every transformation of reference

frames, thus demanding a careful geometrical analysis of the system. This work was later

extended by Yang (1966), providing equations for the accelerations of the mechanism.

However, the application of dual quaternions to the study of rigid body dynamics was

only introduced by Yang (1967), when the author combined the linear and the angular

momentum of the body in a single dual quaternion, which he named dual momentum,

given by

h = mv + εĪω, (2.10)

where ω,v ∈ R3 are, respectively, the angular and linear velocities of the body. This work

was further extended by Yang (1971), combining the equations of the resultant external

forces and torques exerted on the body into a single dual vector equation, namely the dual

force

f = f + ετ ,

where f , τ ∈ R3 are, respectively, the forces and torques in the body, with

f = m (v + ω × d) ,

in which d ∈ R3 is the vector connecting the reference frame with the frame attached to

the CoM of the body, and

τ = ḣ+ ω × h+ v × f ,

where

h = 〈J,ω〉+m (d× v) ,

in which 〈J,ω〉 is the dot product between ω and the inertia dyadic of the body J.6

Although all these works (Yang & Freudenstein, 1964; Yang, 1966, 1967, 1971) provided

an in-depth analysis of the spatial four-link mechanism being studied, they were tailored

for that specific mechanism; hence, not concerning with achieving a systematic procedure

to attain the dynamic model of a general multibody system. Such procedure was presented

by Pennock & Yang (1983) in their analysis of a serial-open chain using matrices of dual

numbers. In their work, the authors replaced the dual momentum given by (2.10) with

h = Φ
[
ωx ωy ωz vx vy vz

]T
, (2.11)

6For the definition of a dyadic and the dot product between it and a vector, please refer to Gürgöze &
Zeren (2012).

13



Literature Review

where Φ is the inertia binor,7 given by

Φ =
 ST mI3

Ī S

 ∈ R6×6, (2.12)

where

S = m


0 −g3 g2

g3 0 −g1

−g2 g1 0


is called the first moment of mass, in which g1, g2 and g3 are the coordinates of the

CoM. The aforementioned calculation requires the mapping of the three-dimensional dual

velocities given by (2.8) into a six-dimensional real vector in (2.11). Afterward, the obtained

dual momentum must be remapped again to a three-dimensional dual vector. Moreover,

despite representing velocities and momentum as dual vectors, the inertia binor and

tensor are still given in the standard matrix representation, thus, not achieving a dynamic

modeling procedure exclusively performed in terms of a dual quaternion formulation.

In order to avoid the dependency on the inertia binor, Shoham & Brodsky (1993)

proposed the dual inertia, a mathematical object given given by

M = M
d

dε
+ εĪ =


m d

dε
+ εixx εixy εixz

εiyx m d
dε

+ εiyy εiyz

εizx εizy m d
dε

+ εizz

 , (2.13)

where inn, n ∈ {x, y, z} are elements of the inertia tensor of the body, and the operator

d/dε that extracts the dual part of a dual quaternion; for instance,

m
d

dε
(ω + εv) = mv.

It is worth highlighting that the symbol d/dε is a strong abuse of notation, having no

derivative sense since ε is a constant element of the algebra. Furthermore, ε−1 is not

defined because ε has no inverse, which makes an expression such as d/dε syntactically

inadequate. Nonetheless, using (2.13) the authors obtained the dual momentum as

h = Mv =


m d

dε
+ εixx εixy εixz

εiyx m d
dε

+ εiyy εiyz

εizx εizy m d
dε

+ εizz



ωx + εvx

ωy + εvy

ωz + εvz

 ,

thus avoiding the necessity of mapping v to R6 . To obtain the equations of a multibody

system, the authors proposed the use of the virtual-work and D’Alembert principle, thus

demanding the time derivative of the Jacobian matrix, which can be an expensive operation

7More details can be found in the work of Dimentberg (1965).
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(Chembrammel & Kesavadas, 2019). The use of the dual inertia was extended to the

Lagrangian formulation by Brodsky & Shoham (1994), through the deduction of the

equations of dual kinetic energy of a body.

As one of the few works in the literature not relying on dual angles, Dooley & McCarthy

(1991) proposed an alternative dynamic model for a multibody system, based on the study

of spatial motions and mechanisms presented by Ravani & Roth (1984), where dual

quaternions were represented as a pair, given by

h = (h,ho) = h1ı̂+ h2̂+ h3k̂ + h4 + ε
(
h5ı̂+ h6̂+ h7k̂ + h8

)
,

where ı̂2 = ̂2 = k̂2 = ı̂̂k̂ = −1; h1, h2, h3, h4 ∈ R are the Euler parameters of a rotation

matrix representing a rotation of a angle of θ ∈ R around a rotation axis n = (nx, ny, nz),
given by

h1 = nx sin
(
θ
2

)
, h2 = ny sin

(
θ
2

)
,

h3 = nz sin
(
θ
2

)
, h4 = cos

(
θ
2

)
;

(2.14)

and h5, h6, h7, h8 ∈ R are a combination of those parameters with the corresponding

translation, given by 
h5

h6

h7

h8

 = 1
2


0 −dz dy dx

dz 0 −dx dy

−dy dx 0 dz

−dx −dy −dz 0




h1

h2

h3

h4

 (2.15)

To compose successive transformations between reference frames, the authors used

Hamilton operators.8 For instance, given two dual quaternions g = (g, go) and h = (h,ho),
the transformation GH is given by

GH =
+
H8

(
g
)  h

ho

 =
−
H8 (h)

 g

go

 ,
where

+
H8

(
g
)

=


+
H4 (g) 04
+
H4 (go)

+
H4 (g)

 ,
−
H8 (h) =


−
H4 (h) 04
−
H4 (ho)

−
H4 (h)

 (2.16)

8Although Dooley & McCarthy did not use the term Hamilton operators, I have chosen to use the
name given by Adorno (2017).
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with

+
H4 (g) =


g4 −g3 g2 g1

g3 g4 −g1 g2

−g2 g1 g4 g3

−g1 −g2 −g3 g4

 ,

−
H4 (h) =


h4 h3 −h2 h1

−h3 h4 h1 h2

h2 −h1 h4 h3

−h1 −h2 −h3 h4

 .

To obtain the dynamic model of a multibody system, the authors applied the method of

generalized forces derived by Kane et al. (1983). The major disadvantage of the proposed

model is its complicated equations of motion, with a nonintuitive physical meaning of its

variables. Furthermore, this dynamic modeling formalism strongly mix dual quaternion

algebra and standard matrix algebra.

An elegant study of the use of dual quaternions in the dynamics of multibody systems

was presented by Hachicho & Eldin (2000). Representing dual quaternions in an exponential

form, they derived iterative equations of propagation of velocities, accelerations, torques,

and forces. However, the paper focus on the propagation of these equations, while the

extension of the method for the formalism of Newton-Euler was left for future works. To

the best of my knowledge, such work was never done. In addition, no validation of the

equations was provided, and the mathematical cost of this approach was not discussed.

Valverde & Tsiotras (2018a) used dual quaternions to model the dynamics of a single

rigid body, using a variation of the dual inertia matrix proposed by Shoham & Brodsky

(1993), which obliges the swapping of the primary and dual parts of the dual velocity

in order to obtain the dual momentum. To obtain the dynamics of a multibody system,

Valverde & Tsiotras (2018a) formulated the dynamical equations in the form of a linear

system (Salazar, 2018),

SY = B,

in which Y is a matrix of the unknown quantities (i.e., the linear and angular accelerations

of each of the bodies and the reaction torques and forces experienced by them due to

the kinematic coupling in the chain), while S and B are matrices constructed from the

non-reaction wrenches. Thus, this approach involves the inversion of the matrix S ∈ Rs,

where s = (8b+ r) × (8b+ r), in which b is the number of rigid bodies and r is the

dimensionality of the reaction wrenches. It is worth highlighting, however, that S is a

block matrix and can be inverted blockwise from its four sub-blocks. Nonetheless, such

sub-blocks are composed of 8b× 8b, 8b× r, r × 8b and r × r matrices, which may be still

expensive to invert.
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Miranda de Farias et al. (2019b), being more concerned with computational efficiency,

proposed to use the dual quaternion exponential mapping and Plücker lines to represent

screw displacements, as first proposed by Özgür & Mezouar (2016), to obtain the Newton-

Euler model of serial manipulators with revolute joints. In their approach, dual quaternions

were represented as

xi−ii (θi (t)) = δi−1
i exp

(
ai
4θi

2

)
,

where δii−1 ∈ H is the dual quaternion representing the transformation between frames Fi
and Fi−1, the pure dual quaternion ai ∈ Hp is the screw axis of frame Fi, and 4θi ∈ R
is the variation of the i-th joint with respect to its home configuration. Naturally, their

algorithm works only for that specific representation and currently only for revolute joints,

although an extension for prismatic joints should be fairly straightforward.

2.3 Topological graph and modular dynamic model-

ing

The approaches discussed on the previous section give a monolithic solution to the dynamic

modeling of the robot. That is, using the aforementioned strategies, it is not possible to

use the dynamic models of intermediate subsystems to compose the overall dynamic model

of the system.

There are plenty of motivations for seeking a systematic dynamic model composition

formalism. One could be assembling a robot using existing systems whose dynamic models

are already known, such as the limbs of a humanoid robot. In a different scenario, a self-

reconfiguring modular robot (Kotay et al., 1998; Neubert & Lipson, 2016; Unsal & Khosla,

2000) could possess the dynamic information of its modules. From a control perspective, one

could be interested in applying distributed control strategies to the subsystems comprising

a complex dynamic structure. To better contextualize the contributions of this thesis on

this subject, the remaining of this section presents a review of the literature on dynamic

modular composition strategies.

The application of linear graph theory in mechanism analysis is not a novelty, being

used to the dynamic modeling of single rigid bodies (Andrews & Kesavan, 1975; Chou

et al., 1986b) and multibody systems composed of open (Chou et al., 1986a) and closed

kinematic chains (Sheth & Uicker, 1972; Andrews et al., 1988; Baciu et al., 1990; McPhee,

1996, 1998; Reungwetwattana & Toyama, 2001). Most approaches lead to different graphs

for the rotational and translational variables of the mechanism (Andrews & Kesavan, 1975;

Chou et al., 1986b,a; Baciu et al., 1990; McPhee, 1998).

Jain (2012) proposed a technique of partitioning and aggregating graphs that allows

the consideration of subsystems during the dynamic modeling of multibody systems. The
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author used the subgraph elements to compose the mass matrix M (q) and the vector

c (q, q̇) of nonlinear Coriolis and gyroscopic terms of the aggregated system and then

calculated the stacked vector of generalized forces

Rn 3 τ = M (q) q̈ + c (q, q̇) ,

where q ∈ Rn is the vector of generalized coordinates of the n-DoF system. Thus, even

though composed of individual modules, full knowledge of the masses, inertia tensors,

Coriolis accelerations, and gyroscopic terms of the whole system is required.

McPhee (1998) presented a strategy where the terminal equations of individual graph

components (e.g., the dynamic equations of rigid bodies, rigid-arms, etc.) were combined

with the set of equations representing their connectivity, the so-called cutset and circuit

equations, to obtain the system dynamics. Furthermore, the author also proposed a

criterion for selecting the spanning trees of the translational and rotational graphs and a

novel set of “branch coordinates” that leads to fewer motion equations than what would

be obtained if either absolute or joint coordinates were used. The proposed formalism,

however, was restricted to planar mechanisms. McPhee et al. (2004) extended this work

to tree-dimensional mechanisms and proposed a strategy that uses individual subsystem

models to compose the dynamic model of mechatronic multibody systems. Their approach

uses free vectors and rotational matrices, thus decoupling translational and rotational

components, which require separated graphs. Moreover, this formalism relies on symbolic

implementation; thus, one must symbolically derive the subsystems before the modeling

process to reorganize the system of differential-algebraic equations in the form

Mq̈ +ΦTq λ = Q,

where M is a mass matrix, q is the vector of generalized coordinates, Φq is the Jacobian

matrix of the system’s constraints, λ is the vector of Lagrange multipliers, and Q is a

vector of external loads and quadratic velocity terms.

Moving away from graph representations, Matarazzo Orsino & Hess-Coelho (2015)

proposed a strategy for the modular modeling of multibody systems based on the dy-

namic invariant equations of its subsystems. Orsino (2017) extended this formalism by

proposing a hierarchical description of lumped-parameter dynamic systems that lead to

a recursive modeling methodology. Furthermore, the author also explored its relations

with the Udwadia-Kalaba equation (Udwadia & Kalaba, 1992). Albeit those formulations

(Matarazzo Orsino & Hess-Coelho, 2015; Orsino, 2017) do not impose limitations in how

the dynamic equations of each subsystem must be obtained, the final result is not given in

terms of the generalized forces of the overall dynamic system but rather by its dynamic

invariants. Thus, this strategy is not necessarily convenient for problems of robot dynamic

modeling, where one is typically interested in finding the joint forces/torques required to
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control the robot.

More recently, Hess-Coelho et al. (2021) presented a dynamic modular modeling

methodology for parallel mechanisms. Their strategy uses the hierarchical description

proposed by Orsino (2017) but follows a different approach to deduce the model. The

authors rely on the Jacobian matrices of the subsystem’s angular and linear velocities

and apply the Principle of Virtual Power to arrive at the Euler-Lagrange model of the

robot. Modularity is achieved by using a library of previously deduced subsystem models.

Nonetheless, the process of obtaining such models is highly dependent on geometric

analysis of the system (i.e., geometric inverse kinematics) and, if the library was not

developed beforehand, the methodology performs a monolithic solution of the robot

dynamics. Moreover, due to the free vector representation in this formalism, translational

and rotational components are decoupled. Furthermore, this strategy requires information

of the inertia matrix of the whole system.

2.4 Conclusions

The analysis of rigid body dynamics involves dealing with highly coupled linear and angular

components. Nonetheless, classic approaches represent those entities as different vectors

(Spong et al., 2006; Siciliano & Khatib, 2008; Siciliano et al., 2009; Corke, 2011), thus

demanding a deep geometrical analysis of the system being studied, which might be a

simple problem for serial manipulators but becomes increasingly complicated for more

complex structures, such as humanoid robots. As a possible way of unification of those

coupled components, Featherstone (1984) proposed the spatial algebra. This algebra has

appealing utilitarian aspects, such as its intuitiveness and the efficiency achieved by the

spatial algebra version of the classic dynamic modeling algorithms. However, the spatial

algebra lacks the necessary expressiveness in order to be free from ad hoc solutions in some

situations.

A more algebraically formal approach to treat those coupled linear and angular com-

ponents is given by the screw theory, in which they are represented as a single element.

The main advantage of this strategy over the spatial algebra is that screws form groups on

different Lie algebras, thus possessing strong algebraic properties. Murray et al. (1994)

presented the use of screws of the algebra se (3) through the exponential mapping of

SE (3). Although this representation mitigates the necessity of a deep geometrical analysis

of the systems, it is not as intuitive as the spatial algebra. Rigid transformations on SE (3)
are represented by the exponential of twists in this approach, thus demanding one to deal

with exponential of matrices. Additionally, twists are constructed as choices between “case

options” for its pitch, rotation axis and magnitude, depending on the value of the angular

velocity.

Screws also form a group on dual quaternion algebra. When represented as dual
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hypercomplex numbers, they preserve the intuitiveness grasped by Featherstone (1984)

while maintaining the thoroughness of the approach presented by Murray et al. (1994).

Besides, dual quaternions had their elegance and efficiency proved in kinematic modeling

(Perez & McCarthy, 2004; Adorno, 2011; Gouasmi, 2012; Cohen & Shoham, 2016; Özgür

& Mezouar, 2016; Kong, 2017; Dantam, 2020) and control (Adorno et al., 2010; Figueredo

et al., 2014; Adorno et al., 2015; Lana et al., 2015; Marinho et al., 2015; Kussaba et al., 2017;

Quiroz-Omana & Adorno, 2019; Marinho et al., 2019; Fonseca et al., 2020; Savino et al.,

2020), thus raising the question if they are an equally suitable mathematical representation

for the dynamic modeling of robotic systems.

Some works have addressed the use of dual quaternion algebra on rigid body dynamics

over the last decades, although not necessarily concerned with the creation of a formalism

for multibody system analysis (Yang & Freudenstein, 1964; Yang, 1966, 1967, 1971).

Among the works that sought this formalism, mostly are based on three-dimensional dual

vectors and demand some mapping to higher dimensional vectors in order to find the

dynamic equations of the system (Pennock & Yang, 1983; Dooley & McCarthy, 1991;

Shoham & Brodsky, 1993; Valverde & Tsiotras, 2018a), therefore losing the elegance

of a analysis based only on dual quaternion algebra and, at times, incurring in abuses

of notation (Dooley & McCarthy, 1991) or demanding artificial swaps on the vectors

(Valverde & Tsiotras, 2018b) in order to deal with that mixing of representations. Other

works focused on the propagation of dual quaternions (Hachicho & Eldin, 2000) or the

computational aspects of algorithms based on this algebra (Miranda de Farias et al., 2019b),

rather than on the algebraic and geometrical insights provided by the dual quaternion

dynamic modeling of robotics systems, which are especially important when dealing with

more complex robots (e.g., mobile manipulators, humanoids, etc.) and more general joint

types (e.g., helical, cylindrical, 6-DoF, etc.).

Regarding the use of topological graphs and modular dynamic modeling, the existing

model composition strategies oftentimes generate different graph representations for the

translational and rotational components (Andrews & Kesavan, 1975; Chou et al., 1986b,a;

Baciu et al., 1990; McPhee, 1998; McPhee et al., 2004) and either require the previous

construction of subsystem models (McPhee et al., 2004; Hess-Coelho et al., 2021) or

demand full knowledge of the dynamic elements of the whole system (Jain, 2012; Orsino,

2017).

In this context, this thesis presents a study on the application of the dual quaternion

algebra to the dynamic modeling of complex robotic systems whilst exploring to which

extension the expressiveness of this algebra simplifies the study of those systems and

what impacts the use of dual quaternions cause on the computational costs of classic

formalisms. This thesis proposes a general procedure to attain the dynamic model of

branched robotic systems using dual quaternion algebra, which includes serial kinematic

chains as a particular case. Moreover, the method allows easily assembling of previously
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calculated models into a single model of a more complex robotic system, even if some

subsystems are regarded as black boxes. Furthermore, it is expected that suitable dual

quaternion dynamic models will allow the development of dual quaternion control strategies

without the need for intermediate mappings, which usually introduce mathematical artifacts,

such as algorithmic singularities and discontinuities.
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3
Mathematical Background

This chapter presents the mathematical concepts and notations used throughout this

thesis. More specifically, it briefly reviews the classic1 Newton-Euler and Euler-Lagrange

formulations, commonly found in robotics textbooks, and the basic operations with

quaternions and dual quaternions, alongside their applications in kinematics.

Since neither of those topics is a contribution of this thesis, some details will be omitted

to avoid overextending the text. For a more complete account on the Newton-Euler and

Euler-Lagrange formulations, please refer to Spong et al. (2006); Siciliano et al. (2009).

For a thorough introduction on dual algebra and kinematic modeling and control, please

refer to Adorno (2017). Nonetheless, as shown in section 2.2, notations used for dual

quaternions vary greatly, and this chapter fulfills the crucial role of presenting the ones

chosen for this thesis. Readers should, therefore, at least skim section 3.3 of this chapter

to ensure that they are familiarized with them, even if they already have a great general

understanding of the algebra.

3.1 Classic Newton-Euler formulation

In the classic approach, the iterative Newton-Euler formulation for robot manipulators

(Luh et al., 1979) consists in the following process. First, in the serial process, the forward

recurrence equations are used to calculate the angular velocities (Spong et al., 2006, p.

1Henceforth, the term classic will be used to refer to approaches based on R3 and SO (3).
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275; Siciliano et al., 2009, p. 282)2

ωi−1
0,i = Ri−1

i−2ω
i−2
0,i−1 + θ̇iz

i−1
i−1,

the angular accelerations

ω̇i−1
0,i = Ri−1

i−2ω̇
i−2
0,i−1 + θ̈iz

i−1
i−1 +

(
Ri−1
i−2ω

i−2
0,i−1

)
×
(
θ̇iz

i−1
i−1

)
and the linear accelerations

ai−1
0,i = Ri−1

i−2

(
ai−2

0,i−1 + ω̇i−2
0,i−1 × pi−2

i−2,i−1 + ω̇i−2
0,i−1 ×

(
ωi−2

0,i−1 × pi−2
i−2,i−1

))
,

ai−1
0,ci

= ai−1
0,i + ω̇i−1

0,i × pi−1
i−1,ci

+ ω̇i−1
0,i ×

(
ωi−1

0,i × pi−1
i−1,ci

)
,

where Ri−1
i−2 ∈ SO (3) is the rotation matrix representing the rotation between frames Fi−1

and Fi−2. The variables θi ∈ R and zi−1
i−1 ∈ R3 are, respectively, the angle and the rotation

axis of the i-th joint, and pi−2
i−2,i−1 ∈ R3 is its position with respect to the previous joint,

expressed in the reference frame of the previous joint.3

Then, in the backward recursive process, those recurrence equations are used to calculate

the forces

f i−1
i−1 = Ri−1

i f ii +mi

(
ai−1
ci

+ gi−1
)
,

and the torques

τ i−1
i−1 = Ri−1

i τ ii − f i−1
i−1 × pi−1

i−1,ci
+Ri−1

i

(
f ii × pii,ci

)
+ Īi−1

i ω̇i−1
0,i + ωi−1

0,i ×
(
Īi−1
i ωi−1

0,i

)
,

where mi ∈ (0,∞) is the mass of the i-th link, Īi−1
i ∈ R3×3, with Īi−1

i > 0, is its inertia

matrix expressed in its own reference frame, and gi−1 ∈ R3 is the gravity acceleration

expressed in the CoM of the i-th link.

A possible extension of this method for holonomic mobile manipulators is achieved by

considering the mobile base as composed of virtual joints, namely two prismatic joints

aligned with the axes x, y and one rotational joint aligned with the axis z.

2Here, the standard D-H convention was used in the definition of the reference frames, although that
was not the case in Spong et al., 2006.

3As defined in the section of notations (page xix), this convention of subscripts and superscripts is
maintained throughout this thesis. If no superscript is used, it is assumed the global inertial frame.
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3.2 Classic Euler-Lagrange formulation

The canonical form of the Euler-Lagrange model for an n-DoF serial manipulator is given

by (Spong et al., 2006, p. 257)

M (q) q̈ +C (q, q̇) q̇ + g (q) = τ , (3.1)

where M (q) ∈ Rn×n is the inertia matrix, C (q, q̇) ∈ Rn×n is the Coriolis and Centrifugal

terms matrix, g (q) ∈ Rn is the gravity vector, and τ ∈ Rn is the vector of non-conservative

generalized forces.

Considering the global inertial reference frame, from the kinetic energy associated with

each link i, given by

Ki = 1
2 q̇

T

mi(JTvi
Jvi

) + JTωi
ĪiJωi︸ ︷︷ ︸

M i

 q̇,
where q̇ ∈ Rn is the time derivative of the robot configuration vector and Jvi

∈ R3×3

and Jωi
∈ R3×3 are, respectively, the Jacobian matrix of linear and angular velocity. The

inertia matrix M (q) may be obtained as

M (q) =
n∑
i=1
M i.

The Coriolis and Centrifugal terms matrix C (q, q̇) is obtained from M (q) through

the Christoffel symbols of first kind as

ckj =
n∑
i=1

1
2

(
∂m̄kj

∂qj
+ ∂m̄ki

∂qj
+ ∂m̄ij

∂qk

)
q̇i,

where ckj is the element of the k-th row and j-th column of C (q, q̇), m̄ij is the ij-th

element of M (q) and q̇i is the i-th element of q̇.

Finally, the gravitational vector g (q) is obtained from the potential energy P as

g (q) = ∂P

∂q
.
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3.2.1 Canonical Euler-Lagrange equation from the recursive New-

ton-Euler formulation

Alternatively, the matrices from the canonical form (3.1) can be obtained through the

iterative Newton-Euler algorithm4 as

g (q) = newton euler (q,0,0) ,

C (q, q̇) q̇ = newton euler (q, q̇,0)− g (q) , (3.2)

coli (M (q)) = newton euler (q,0, coli (In))− g (q) ,

where newton euler (q, q̇, q̈) represents the execution of the algorithm with the inputs of

joint positions, velocities, and accelerations, 0 ∈ Rn is a vector of zeros, in which n is the

number of rigid bodies in the kinematic chain, coli (·) extracts the i-th column of a given

matrix, and In ∈ Rn×n is the identity matrix.

3.3 Dual quaternion algebra

This thesis relies on dual quaternion algebra to derive the dynamical model of robotic

systems. This section presents the definitions, basic operations, and geometrical insights of

quaternion and dual quaternion algebra. Furthermore, section 3.3.3 briefly recollects the

dual quaternion forward kinematic model proposed by Adorno (2011) since this formulation

is essential for the dynamic modeling strategies proposed in this thesis.

However, it is important to highlight that the contributions of this thesis lie in the

methodology to derive the dynamic models themselves; therefore, there is no novelty in

the dual quaternion algebra presented here.

3.3.1 Quaternions

Quaternions were proposed by Hamilton in the 19th century (Hamilton, 1844, apud Adorno,

2011) with the purpose of extending the algebra of complex numbers, and they are elements

of the set given by

H , {h1 + ı̂h2 + ̂h3 + k̂h4 : h1, h2, h3, h4 ∈ R and ı̂2 = ̂2 = k̂2 = ı̂̂k̂ = −1}. (3.3)

Addition and multiplication of quaternions are analogous to their counterparts of

real and complex numbers; one must only respect the properties of the imaginary units

ı̂, ̂, k̂ given in (3.3). Quaternions whose real part (i.e., the element not multiplied by any

4This is an adaptation of the results given in the lecture notes of Prof. Alessandro De Luca (Luca,
2019).
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imaginary unit, given by Re (h)) is equal to zero are called pure quaternions and form the

set Hp , {h ∈ H : Re (h) = 0}.
Pure quaternions are used to represent positions (px, py, pz) in the three-dimensional

space by means of position quaternions

p = ı̂px + ̂py + k̂pz, (3.4)

as shown in figure 3.1.

ı̂

̂

k̂

px

pk
pj

Figure 3.1: Three-dimensional position (px, py, pz) represented by the pure quaternion

p = ı̂px + ̂py + k̂pz.

The norm of a quaternion h = hr + ı̂hx + ̂hy + k̂hz is defined as (Adorno, 2017)

‖h‖ =
√
hh∗ =

√
h∗h,

where h∗ = hr − ı̂hx − ̂hy − k̂hz is the conjugate of h, and ‖h‖ is equivalent to the

Euclidean norm. Quaternions whose norm is equal to one are called unit quaternions

(rotation quaternions) and are used to represent rotations by means of

r = cos
(
φ

2

)
+ n sin

(
φ

2

)
, (3.5)

where φ ∈ [0, 2π) is the rotation angle around the rotation axis n ∈ Hp ∩ S3, with

S3 = {h ∈ H : ‖h‖ = 1} (Selig, 2005), as illustrated in figure 3.2.

x0

y0

z0

nφ

x1

y1

z1

Figure 3.2: Rotation of an angle φ around a rotation axis n, represented by the rotation
quaternion r = cos (φ/2) + n sin (φ/2).
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Additionally,

a× b , ab− ba
2 , (3.6)

with a, b ∈ Hp, is the cross product between pure quaternions, which is analogous to the

cross product between vectors in R3; whereas

〈a, b〉 , −(ab+ ba)
2 , (3.7)

is the inner product between pure quaternions (Adorno, 2017).

3.3.2 Dual Quaternions

Clifford extended the algebra of quaternions in 1873 giving rise to dual quaternions (Selig,

2005), which are elements of the set

H , {hP + εhD : hP ,hD ∈ H, ε 6= 0, ε2 = 0}. (3.8)

Addition and multiplication of dual quaternions are analogous to their counterparts of

real and complex numbers; one must only respect the properties of imaginary units ı̂, ̂, k̂

and dual unit ε given by (3.3) and (3.8), respectively.

Given h ∈ H such that

h = h1 + ı̂h2 + ̂h3 + k̂h4︸ ︷︷ ︸
hP

+ε
(
h5 + ı̂h6 + ̂h7 + k̂h8

)
︸ ︷︷ ︸

hD

,

the operators

P (h) , hP
D (h) , hD

(3.9)

provide the primary part and dual part of h, respectively, whereas the operators Re (h) ,
h1 + εh5 and Im (h) = ı̂h2 + ̂h3 + k̂h4 + ε

(
ı̂h6 + ̂h7 + k̂h8

)
provide the real and the

imaginary parts of h, respectively. The conjugate of h is defined as h∗ , Re (h)− Im (h)
and its norm is given by ‖h‖ =

√
hh∗ =

√
h∗h (Adorno, 2017).

To help simplify some of the expressions that will be presented in chapter 4, the

following lemma is proposed.

Lemma 3.1. Given a ∈ H and b ∈ H, then

Ad (a) (εb) = a (εb)a∗ = Ad (P (a)) (εb) .
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Proof. Expanding Ad (a) (εb) and using the fact that a = P (a) + εD (a), we obtain

Ad (a) (εb) = a (εb)a∗

= (P (a) + εD (a)) (εb) (P (a∗) + εD (a∗))

= (P (a) (εb)) (P (a∗) + εD (a∗))

= P (a) (εb)P (a∗)

= Ad (P (a)) (εb) .

3.3.2.1 Unit dual quaternions

The subset S = {h ∈ H : ‖h‖ = 1}, known as the set of unit dual quaternions, is used to

represent poses (position and orientation) in the three-dimensional space and form the

group Spin(3)nR3 under the multiplication operation. Unit dual quaternions can always

be written as (Selig, 2005)

x = r + ε
1
2pr = r + ε

1
2rp

b, (3.10)

where p and r are given by (3.4) and (3.5), respectively, and pb = r∗pr is the position

with respect to the body frame.

Successive multiplications of unit dual quaternions, given by (3.10), represent a sequence

of rigid transformations, as shown in figure 3.3.

x0

y0

z0

x
1

y1

z1x0
1

x2

y2

z2

x1
2

x0
2 = x0

1x
1
2

F0

F1

F2

Figure 3.3: Sequence of rigid transformations represented by unit dual quaternions.

Pure dual quaternions are elements of the set Hp = {h ∈ H : Re (h) = 0} and are

used to represent twists and wrenches. The operator Ad (x) : Hp → Hp, where x ∈ S,

performs rigid transformations on those entities. For instance, given ξa ∈ Hp, a twist
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expressed in the reference frame Fa, and the unit dual quaternion xba that gives the pose

of Fa with respect to Fb, the same twist is expressed in frame Fb as (Adorno, 2017)

ξb = Ad
(
xba
)
ξa = xbaξ

a
(
xba
)∗
. (3.11)

The time derivative of xab is given by (Han et al., 2008)

ẋab = 1
2ξ

a

ab
xab = 1

2x
a
bξ

b

ab
, (3.12)

where

ξa
ab

= ωaab + ε (ṗaab + paab × ωaab) (3.13)

is the twist expressed in frame Fa, with ωaab ∈ Hp being the angular velocity, and5

ξb
ab

= Ad
(
xba
)
ξa
ab

= ωbab + εṗbab (3.14)

is the twist expressed in Fb. Furthermore, ξa
ab

is an element of the Lie algebra associated

to Spin(3)nR3. Additionally, given a, b ∈ Hp, in which a = a+ εa′ and b = b+ εb′,

〈a, b〉 , −(ab+ ba)
2 , (3.15)

is the inner product between pure dual quaternions and

a× b , ab− ba
2 = a× b+ ε (a× b′ + a′ × b) , (3.16)

is the cross-product between pure dual quaternions (Adorno, 2017).

Moreover, given the twist ξ′ expressed in frame F′ and the relative pose x ∈ S between

this frame and the frame the F, the time derivative of ξ = Ad (x) ξ′ is given by the

following lemma.

Lemma 3.2 (Silva et al., 2022). If x ∈ S, such that ẋ = (1/2)ξx and ξ′ ∈ Hp, then

d

dt

(
Ad (x) ξ′

)
= Ad (x) ξ̇′ + ξ ×

(
Ad (x) ξ′

)
. (3.17)

3.3.3 Forward Kinematic Model

As proposed by Adorno (2011), the forward kinematics of any robot can be represented

using dual quaternions by a suitable mapping f : Rn → Spin(3)nR3 such that

xeff = f (q) , (3.18)

5This result can be demonstrated by direct calculation.
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where q ∈ Rn is the robot configuration vector and xeff ∈ Spin(3)nR3 is the end-effector

pose.

For an n-DoF serial manipulator, as the one shown in figure 3.4,6 equation (3.18) can

be rewritten as

xeff = x0
n = x0

1x
1
2 . . .x

n−1
n , (3.19)

where xi−1
i is the pose of each intermediate link with respect to its predecessor in the

kinematic chain. For the specific case where the D-H convention is used, each xi−1
i is given

by

xi−1
i = rz,θi

p
z,di
p
x,ai
rx,αi

, (3.20)

where rz,θi
represents a pure rotation of θi ∈ R around the z-axis, whereas rx,αi

represents

a pure rotation of αi ∈ R around the x-axis, given by

rz,θi
= cos

(
θi
2

)
+ k̂ sin

(
θi
2

)
,

rx,αi
= cos

(
αi
2

)
+ ı̂ sin

(
αi
2

)
,

and p
z,di

represents a pure translation of di ∈ R along the z-axis, whereas p
x,ai

represents

a pure translation of ai ∈ R along the x-axis, given by

p
z,di

= 1 + ε
di
2 k̂,

p
x,ai

= 1 + ε
ai
2 ı̂.

In brief, the processes of obtaining the forward kinematic model of a given robot consist

of first finding the poses of each of its joints with respect to the previous one in the chain,

which are functions of the current joint configurations, and finally multiplying them to

obtain the end-effector pose, as given by (3.19). If using the D-H convention, then each

joint pose is given by (3.20); otherwise, they must be found following the specific choices

for the orientations of each reference frame and the corresponding positions of their origins.

3.3.3.1 Differential forward kinematic model of serially coupled kinematic

structures

It is not uncommon in robotics to divide a complex kinematic structure into individual

subsystems that are easier to model (e.g., one could divide a humanoid robot into legs, arms,

and torso). In this scenario, one would be later interested in assembling the independently

modeled subsystems to obtain the kinematic model of the overall robotic system. Adorno

6I would like to thank my colleague Juan José Quiroz Omaña for this illustration, which was made for
a draft of one of our co-authored publications but was replaced for the final version (Silva et al., 2022,
figure 1). This figure is a minor adaptation of his drawing.
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F0

F1

x0
1

x1
2

F2

Fn

Fn−1

x0
n = x0

1x
1
2 . . .x

n−1
n

xn−1
n

Figure 3.4: An n-DoF serial manipulator.

(2011) proposed a systematic methodology to achieve this goal using dual quaternion

algebra.

Consider a serial kinematic system composed of s subsystems, each of them represented

by the rigid transformations x1, x2, . . ., xs. Let x0
s be the transformation between the

last frame Fs and the inertial frame F0, its time derivative ẋ0
s is given by (Adorno, 2011)

vec8 ẋ
0
s =

s−1∑
i=0

+
H8

(
x0
i

) −
H8

(
xi+1
s

)
vec8 ẋ

i
i+1,

=
s−1∑
i=0

+
H8

(
x0
i

) −
H8

(
xi+1
s

)
Jxi

i+1︸ ︷︷ ︸
Li+1

θi+1

=
s−1∑
i=0
Li+1θi+1

where the operator vec8 : H → R8 maps the coefficients of a dual quaternion into an

eight-dimensional column vector7, Jxi
i+1

and θi+1 are, respectively, the dual quaternion

Jacobian matrix and the joint configurations of the subsystem represented by the rigid

transformation xii+1, Li+1 =
+
H8 (x0

i )
−
H8 (xi+1

s )Jxi
i+1

, in which the Hamilton operators are

given by
+
H8 : H → R8×8 and

−
H8 : H → R8×8, such that vec8 (h1h2) =

+
H8 (h1) vec8 h2 =

−
H8 (h2) vec8 h1.

7Given h = h1 + ı̂h2 + ̂h3 + k̂h4 + ε
(
h5 + ı̂h6 + ̂h7 + k̂h8

)
, vec8 h =

[
h1 · · · h8

]T
.
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3.4 Conclusions

This chapter reviewed some fundamental mathematical concepts to this work. Sections 3.1

and 3.2 respectively reviewed the classic recursive Newton-Euler and Euler-Lagrange

formulations. Section 3.3 presented the definitions, operations, properties and applications

of dual quaternions in the representation of rigid transformations, including a brief revision

of the dual quaternion forward kinematic model proposed by Adorno (2011) alongside

his strategy for obtaining the differential forward kinematic model of serially coupled

kinematic structures.

The next chapter is going to present the dual quaternion Newton-Euler formulation,

which is one of the main contributions of this thesis.
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4
The Dual Quaternion

Newton-Euler Formulation

This chapter proposes the dynamic modeling of robotic systems using the dual quaternion

Newton-Euler formulation, alongside a novel quaternionic inertia tensor that enables the

description of rigid body dynamics exclusively with operations inside the dual quaternion

algebra. This strategy covers serial kinematic chains and branched robots, works for

arbitrary joint types, and does not impose any particular parameterization convention for

twist/wrench propagation. The dual quaternion Newton-Euler formalism is one of the

main contributions of this thesis.

The formulation proposed in this chapter considers two basic premises: that the full kine-

matic model of the robot is available using dual quaternion algebra (section 3.3.3; Adorno,

2011) and that the robot is composed of rigid bodies (i.e., the dynamic model disregards

link deformations).

4.1 The inertia tensor

Before presenting the proposed dual quaternion Newton-Euler formulation, one crucial

element to the process deserves special attention: the inertia tensor.

Over the last 60 years (Yang, 1967, 1971; Pennock & Yang, 1983; Shoham & Brodsky,

1993; Miranda de Farias et al., 2019a), several authors have attempted to find a suitable way

to represent the inertia tensor in their dual quaternion dynamic modeling of rigid bodies.
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For instance, Yang (1967) introduced the classic three-by-three matrix representation,

Ī =


ixx ixy ixz

iyx iyy iyz

izx izy izz

 ∈ R3×3, (4.1)

in his formulations, whereas Yang (1971) worked with the dyadic representation of the

inertia tensor,

J = ixxii+ ixyij + ixzik + iyxji+ iyyjj + iyzjk + izxki+ izykj + izzkk,

where i, j and k are unit vectors (Gürgöze & Zeren, 2012). In both approaches, dual quater-

nion algebra was mixed with standard matrix/tensor algebra. Since Yang (Yang, 1967,

1971) represented dual quaternions as dual vectors, the introduction of matrices/dyadics

in his formulations did not demand the addition of new operators (see section 2.2).

Other authors opted to unify the representation of the mass and the inertia tensor of

the body into a single element. Pennock & Yang (1983) explored the use of the inertia

binor (Dimentberg, 1965)1

Φ =
 ST mI3

Ī S

 ∈ R6×6,

where Ī is given by (4.1) and I3, S, and m are given by (2.12). This approach, however,

still does not include the inertia tensor as an element of the algebra since Φ ∈ R6×6.

Alternatively, Shoham & Brodsky (1993) proposed the dual inertia

M =


m d

dε
+ εixx εixy εixz

εiyx m d
dε

+ εiyy εiyz

εizx εizy m d
dε

+ εizz

 ,

which depends on the operator d/dε, which in turn has its notational abuses discussed in

section 2.2, and also demands the representation of dual quaternions as dual vectors.

More recently, Miranda de Farias et al. (2019a) proposed operator given by the Dual

Quaternion Inertia Transformation

G
(
ξ
)

= mD
(
ξ
)

+ ε (ixωx + iyωy + izωz) , (4.2)

where D
(
ξ
)

= vxı̂ + vy ̂ + vzk̂ is the linear velocity of the body, whereas P
(
ξ
)

=
ωxı̂+ ωy ̂+ ωzk̂ is its angular velocity, and ix = ixxı̂+ ixy ̂+ ixzk̂, iy = iyxı̂+ iyy ̂+ iyzk̂,

and iz = ixz ı̂+ iyz ̂+ izzk̂, with inn, n ∈ {x, y, z}, are elements of the inertia tensor (4.1).

1Originally named second order inertia motor tensor by Mises (1924) (quoted in Wohlhart 1995).
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In this formulation, despite having its columns represented as pure quaternions, the inertia

tensor does not appear as an element of the algebra, existing only as an internal part of

the operator G (ω). Thus, it is unclear how one could deal with inertia tensors represented

in different reference frames.

The following section presents the formulation of a quaternionic inertia tensor that

allows the dynamic modeling of rigid bodies to be entirely performed within dual quaternion

algebra.

4.1.1 The quaternionic inertia tensor

Let H3
p be the set defined as

H3
p , Hp ×Hp ×Hp,

where Hp is the set of pure quaternions. That is, H3
p is the set of all ordered triples of pure

quaternions—i.e., the set of all triples (a1,a2,a3) where a1,a2,a3 ∈ Hp.

Regarding the set H3
p, consider the following definitions.

Definition 4.1. Consider the three-dimensional inertia tensor (4.1) of a given rigid body

and the set H3
p. The quaternionic inertia tensor I of this rigid body is given by

I , (ix, iy, iz) ∈ H3
p ⊂ Hn, (4.3)

where ix = ixxı̂+ ixy ̂+ ixzk̂, iy = iyxı̂+ iyy ̂+ iyzk̂, and iz = izxı̂+ izy ̂+ izzk̂.

Definition 4.2. GivenA = (ax,ay,az) ∈ H3
p and b ∈ Hp, the operator L3 : H3

p ×Hp → Hp,

is defined as

L3 (A) b = ı̂〈ax, b〉+ ̂〈ay, b〉+ k̂〈az, b〉, (4.4)

where the inner product between quaternions is given by (3.7).

Since only standard quaternion multiplications and additions are used in definition 4.2

(see (3.7)), all elements and operations in (4.4) are from quaternion algebra, which in turn

is a subset of dual quaternion algebra.

Considering the definitions 4.1 and 4.2, the following proposition presents how the

angular momentum of a rigid body can be obtained within the dual quaternion formulation.

Proposition 4.1. Given the quaternionic inertia tensor I ∈ H3
p of a rigid body and its

angular velocity ω ∈ Hp, with ω = ωxı̂ + ωy ̂ + ωzk̂, its angular momentum in dual

quaternion algebra is given by

l = L3 (I)ω ∈ Hp. (4.5)
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Proof. Expanding (4.5), one finds

l = ı̂〈ix,ω〉+ ̂〈iy,ω〉+ k̂〈iz,ω〉

= (ixxωx + ixyωy + ixzωz) ı̂+ (iyxωx + iyyωy + iyzωz) ̂+ (izxωx + izyωy + izzωz) k̂.
(4.6)

Consider now a rigid body whose inertia tensor is given by (4.1) and whose angular

velocity is ωvec =
[
ωx ωy ωz

]T
∈ R3. Its angular momentum is given by

lvec = Īωvec

=


ixx ixy ixz

iyx iyy iyz

izx izy izz



ωx

ωy

ωz

 =


ixxωx + ixyωy + ixzωz

iyxωx + iyyωy + iyzωz

izxωx + izyωy + izzωz

 . (4.7)

The comparison between (4.6) and (4.7) shows that lvec = vec3 (l), where vec3 : Hp →
R3 such that vec3(aı̂+ b̂+ ck̂) =

[
a b c

]T
. Therefore, the angular momentum of a rigid

body whose quaternionic inertia tensor is given by I ∈ H3
p and whose angular velocity is

given by ω ∈ Hp, is given by l = L3 (I)ω ∈ Hp.

The following examples show the applications of the proposed quaternionic inertia

tensor I ∈ H3
p and operator L3 to problems of rigid body dynamics.

Example 4.1. Consider a coordinate change for the angular momentum given by (4.7).

Given the rotation matrix R ∈ SO (3) between the reference frames, then the angular

momentum in the rotated frame is given by

l
′

vec = Rlvec

= RĪωvec ∈ R3.

Alternatively, l
′

vec can be given as l
′

vec = Ī′ω′vec, where Ī′ = RĪRT and ω
′
vec = Rωvec are

the inertia tensor and the angular velocity in the rotated frame, respectively.

Analogously, given the unit quaternion r representing the rotation between the reference

frames, the angular momentum (4.4) in the rotated frame is given by

l
′ = Ad (r) l

= Ad (r)L3 (I)ω. (4.8)

By direct calculation, it follows that l
′

vec = vec3
(
l
′)

. Moreover, the expansion of (4.8)
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leads to

l
′ = Ad (r)

(
ı̂〈ix,ω〉+ ̂〈iy,ω〉+ k̂〈iz,ω〉

)
= 〈ix,ω〉Ad (r) ı̂+ 〈iy,ω〉Ad (r) ̂+ 〈iz,ω〉Ad (r) k̂, (4.9)

since the adjoint transformation is a linear operation and the result of the inner product

of pure quaternions is a real number.

This demonstrates that the standard adjoint transformation of quaternions performs

the rigid coordinate change of the angular momentum. The following example better

illustrates how this transformation is analogous to the similarity transformation used in

matrix algebra.

Example 4.2. Consider two reference frames, F and F ′ , and use the superscript of the

variable to indicate its reference (e.g., l
′

vec is given with respect to F ′ , whereas l is given

with respect to F). Given the inertia tensor Ī ∈ R3×3 of a rigid body and its angular

velocity ω
′
vec ∈ R3, its angular momentum l

′

vec ∈ R3 is

l
′

vec = RĪRTω
′

vec,

where R ∈ SO (3) is the rotation matrix between the reference frames F ′ and F. Similarly,

given I ∈ H3
p and ω ∈ Hp, and using the previously established fact that l

′ = Ad (r) l, the

angular momentum l
′

is

l′ = Ad (r) l

= rlr∗

= r (L3 (I)ω) r∗

= r [L3 (I) (r∗ω′r)] r∗

= Ad (r)L3 (I) (r∗ω′r)

= Ad (r)L3 (I) Ad (r∗)ω′, (4.10)

where r is the rotation quaternion between the reference frames F ′ and F.

Conversely, given Ī′ ∈ R3×3 and ωvec ∈ R3, the angular momentum lvec ∈ R3 is

lvec = RT Ī′Rωvec.

Analogously, given I′ ∈ H3
p and ω ∈ Hp, the angular momentum l is

l = Ad (r∗)L3
(
I′
)

Ad (r)ω.

Therefore, the change of reference frames for the proposed inertia operator is not only
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achieved by the standard adjoint transformation of quaternions, as it is also analogous

to the matrix approach. Furthermore, all coordinate changes are performed within the

dual quaternion algebra, and there is no need to perform intermediate operations over

the three-by-three matrix inertia tensor Ī. Neither is there any need to map the angular

velocities ω ∈ Hp to vectors.

4.2 Dynamic modeling of serial kinematic chains

Section 3.3.3 presented the process of obtaining the end-effector pose of an n-DoF serial

manipulator through a sequence of multiplications of intermediate rigid transformations.

Similarly, twists and wrenches can be propagated throughout the kinematic chain to yield

the dynamic information of the robot. From this proposition arises the dual quaternion

Newton-Euler (dqNE) formalism.

4.2.1 Fixed-base robot manipulators

Consider the n-DoF serial manipulator presented in figure 4.1.2 The goal is to find the

wrenches acting on the robot joints, given the corresponding joints configurations, velocities,

and accelerations. This section presents the dual quaternion Newton-Euler formalism as

an iterative algorithm inspired by the classic version based on three-dimensional vectors

proposed by Luh et al. (1980). The dqNE, however, works with arbitrary joint types,

whereas the classic algorithm was designed to revolute and prismatic joints.

F0

F1

x0
1

x0
c1

Fc2

Fc1

x1
c2

x1
2

F2

Fn
Fcn

Fn−1

xn−1
n

xn−1
cn

Figure 4.1: An n-DoF serial manipulator.

2I would like to thank my colleague Juan José Quiroz Omaña for this illustration, which was made for
a draft of one of our co-authored publications but was replaced for the final version (Silva et al., 2022,
figure 1). This figure is a minor adaptation of his drawing.
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4.2.1.1 Forward Recursion

The first process of the iterative algorithm consists of a serial sweeping of the robot joints

to calculate the twist of the CoM3 of each link. The objective is to find the forward

recurrence relations that will then be used to iteratively obtain the wrenches acting on the

robot joints.

Twists The twist of the CoM of the first link with respect to the inertial frame F0 is

given by the pure dual quaternion

ξ0
0,c1

= ω0
0,c1 + εv0

0,c1 , (4.11)

where ω0
0,c1 = ωxı̂ + ωy ̂ + ωzk̂ and v0

0,c1 = vxı̂ + vy ̂ + vzk̂ are, respectively, the angular

and the linear velocities imposed by the movements of the first joint. Table 4.1 presents

the twists for some of the most commonly used joints in robotics, where l ∈ Hp ∩ S3 is a

constant unit-norm pure quaternion, which is equivalent to a vector in R3, that is used

to define an arbitrary axis. For instance, when using the standard Denavit-Hartenberg

convention, l = k̂, which is equivalent to the z-axis. Furthermore, ω, ωx, ωy, ωz ∈ R and

v, vx, vy, vz ∈ R are the scalar components of the angular and linear velocities, respectively.

Again, when using the DH convention, ω = θ̇ for a revolute joint and v = ḋ for a prismatic

joint. For helical joints, the constant h ∈ R is called the pitch.

Table 4.1: Twists of some of the most commonly used joints in robotics, where l ∈ Hp ∩ S3

and ω, ωx, ωy, ωz, v, vx, vy, vz, h ∈ R (adapted from Silva et al., 2022, table 1).

Joint Type Twist Joint Type Twist

Prismatic ξ = εvl Cylindrical ξ = (ω + εv) l

Revolute ξ = ωl Helical ξ = (ω + εhω) l

Spherical ξ = ωx ı̂+ ωy ̂+ ωz k̂
6-DoF

ξ = ωx ı̂+ ωy ̂+ ωz k̂

+ε
(
vx ı̂+ vy ̂+ vz k̂

)
Planar ξ = ωl+ ε (vx ı̂+ vy ̂)

3Henceforth, I will use the expression “twist of the CoM” as a shorthand for “the twist of the frame
attached to the center of mass.”
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Using (3.11) and the fact that xc1
0 =

(
x0
c1

)∗
, the twist (4.11) is expressed in Fc1 as

ξc1
0,c1

= Ad (xc1
0 ) ξ0

0,c1
= ωc1

0,c1 + ε
(
vc1

0,c1 + ωc1
0,c1 × p

c1
0,c1

)
, (4.12)

where the linear velocity due to the application of an angular velocity in a point displaced

from the CoM (i.e., at F0) arises algebraically. Figure 4.2 illustrates this phenomenon

when a purely rotational joint is used (i.e., ξ0
0,c1

= ω0
0,c1 = ω1l

0
1, where l01 ∈ Hp ∩ S3 gives

the joint motion axis).

F0

Fc1

pc1
0,c1

x0
c1

ξc1
0,c1

= ωc1
0,c1

+ ε(ωc1
0,c1
× pc1

0,c1
)

ξ0
0,c1

= ω0
0,c1

= ω1l
0
1

ω1

vt = ωc1
0,c1
× pc1

0,c1

Figure 4.2: Twist ξc1
0,c1

generated due to the application of an angular velocity ω1 around

an arbitrary axis of the reference frame F0. The circular trajectory that Fc1 follows is
represented by the dashed gray line. The linear velocity due to the application of ω1
appears algebraically through the adjoint transformation. Thus, the tangential velocity of
the reference frame Fc1 , represented as a solid black arrow, is given by the dual part of
the twist ξc1

0,c1
(adapted from Silva et al., 2022, figure 2).

The CoM twist of the second link with respect to the inertial frame depends not only

on the twist generated by its joint but also on the twist of the first link since those links

are physically attached. Therefore, it is given by

ξc2
0,c2

= ξc2
0,1 + ξc2

1,c2

= Ad
(
xc2
c1

)
ξc1

0,1 + Ad (xc2
1 ) ξ1

1,c2

= Ad
(
xc2
c1

) (
ξc1

0,c1
+ ξc1

c1,1

)
+ Ad (xc2

1 ) ξ1
1,c2
, (4.13)

where ξ1
1,c2

= ω1
1,c2 + εv1

1,c2 is the twist of the CoM of the second link with respect to F1,

which is generated by the second joint, and Ad
(
xc2
c1

) (
ξc1

0,c1
+ ξc1

c1,1

)
is the twist generated

by the first joint, but expressed in Fc2 using the adjoint transformation (3.11). Moreover,

ξc1
c1,1

= 0 because ẋc1
1 = 0 since the link is rigid. Therefore,

ξc2
0,c2

= Ad
(
xc2
c1

)
ξc1

0,c1
+ Ad (xc2

1 ) ξ1
1,c2
.

More generally, the twist in Fci
that provides the motion of Fci

with respect to F0,
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which arises from the movement of the first i joints, is given by

ξci

0,ci
= ξci

0,i−1 + ξci

i−1,ci
, (4.14)

where ξci

0,i−1 is the twist related to the motion of the first i− 1 joints and ξci

i−1,ci
is the twist

related to the motion of i-th joint. Also, ξci−1
ci−1,i−1 = 0 because ẋ

ci−1
i−1 = 0 for all i since all

links in the robot are rigid bodies. Furthermore, ξa0,0 = 0 for any a.

Analyzing (4.11), (4.13), and (4.14), by induction, the recurrence equation for the

total twist of the i-th CoM, which has the contribution of all joints up to the i-th joint,

expressed in Fci
, is given by

ξci

0,ci
= Ad

(
xci
ci−1

) (
ξci−1

0,ci−1
+ ξci−1

ci−1,i−1

)
+ Ad (xci

i−1) ξi−1
i−1,ci

,

where c0 , 0. Therefore,

ξci

0,ci
= Ad

(
xci
ci−1

)
ξci−1

0,ci−1
+ Ad (xci

i−1) ξi−1
i−1,ci

. (4.15)

Since the twist ξi−1
i−1,ci

is generated by the i-th joint, its expression depends on which type the

i-th joint is (see table 4.1). The transformation xci
ci−1

is calculated as xci
ci−1

=
(
x0
ci

)∗
x0
ci−1

,

where x0
ci

= x0
ci−1
x
ci−1
i−1 x

i−1
ci
, x0

0 = 1, the transformation x
ci−1
i−1 is constant, and xi−1

ci
is a

function of qi.

Time derivative of the twists Considering (3.17), the time derivative of (4.15) is

given by

ξ̇ci

0,ci
= Ad

(
xci
ci−1

)
ξ̇ci−1

0,ci−1
+ ξci

ci,ci−1
×
(
Ad

(
xci
ci−1

)
ξci−1

0,ci−1

)
+ Ad (xci

i−1) ξ̇i−1
i−1,ci

+ ξci

ci,i−1 ×
(
Ad (xci

i−1) ξi−1
i−1,ci

)
.

Since ξci

i−1,ci
= −ξci

ci,i−1, then

ξci

ci,i−1 ×
(
Ad (xci

i−1) ξi−1
i−1,ci

)
= −ξci

ci,i−1 × ξ
ci

ci,i−1 = 0.

Therefore,

ξ̇ci

0,ci
= Ad

(
xci
ci−1

)
ξ̇ci−1

0,ci−1
+ Ad (xci

i−1) ξ̇i−1
i−1,ci

+ ξci

ci,ci−1
×
[
Ad

(
xci
ci−1

)
ξci−1

0,ci−1

]
, (4.16)

where ξ̇c0
0,c0

, 0. Also, since ξi−1
ci,ci−1

= ξi−1
ci,i−1 + ξi−1

i−1,ci−1
and ξi−1

i−1,ci−1
= 0, then

ξci

ci,ci−1
= Ad (xci

i−1) ξi−1
ci,i−1 = −Ad (xci

i−1) ξi−1
i−1,ci

. (4.17)

As previously discussed, the twist ξi−1
i−1,ci

depends on the type of the i-th joint and,
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therefore, so does the term ξ̇i−1
i−1,ci

. For instance, if the i-th joint is revolute, then ξ̇i−1
i−1,ci

=
ω̇il

i−1
i . If it is prismatic, then ξ̇i−1

i−1,ci
= εv̇il

i−1
i . Analogously, if it is helical, then ξ̇i−1

i−1,ci
=

(ω̇i + εhω̇i) li−1
i , etc.

Remark 4.1. Although (4.16) is written in recursive form, one can always write twists as in

(3.13) and (3.14). Thus, as ξci

0,ci
= Ad (xci

0 ) ξ0
0,ci

, with ξ0
0,ci

= ω0
0,ci

+ε
(
ṗ0

0,ci
+ p0

0,ci
× ω0

0,ci

)
,

from (3.17) one obtains

ξ̇ci

0,ci
= Ad (xci

0 ) ξ̇0
0,ci

(4.18)

because ξci

ci,0
× Ad (xci

0 ) ξ0
0,ci

= −ξci

0,ci
× ξci

0,ci
= 0. Expanding (4.18) leads to

ξ̇ci

0,ci
= Ad (xci

0 )
(
ω̇0

0,ci
+ ε

(
p̈0

0,ci
+ ṗ0

0,ci
× ω0

0,ci
+ p0

0,ci
× ω̇0

0,ci

))
= Ad (xci

0 ) ω̇0
0,ci

+ Ad (xci
0 ) ε

(
p̈0

0,ci
+ ṗ0

0,ci
× ω0

0,ci
+ p0

0,ci
× ω̇0

0,ci

)
,

which, using lemma 3.1, simplifies to

ξ̇ci

0,ci
= Ad (xci

0 ) ω̇0
0,ci

+ Ad (rci
0 ) ε

(
p̈0

0,ci
+ ṗ0

0,ci
× ω0

0,ci
+ p0

0,ci
× ω̇0

0,ci

)
= ω̇ci

0,ci
+ ε

(
ω̇ci

0,ci
× p0

0,ci

)
+ ε

(
p̈ci

0,ci
+ ṗci

0,ci
× ωci

0,ci
+ pci

0,ci
× ω̇ci

0,ci

)
= ω̇ci

0,ci
+ ε

(
p̈ci

0,ci
+ ṗci

0,ci
× ωci

0,ci

)
, (4.19)

since ω̇ci
0,ci
× p0

0,ci
+ pci

0,ci
× ω̇ci

0,ci
= −pci

0,ci
× ω̇ci

0,ci
+ pci

0,ci
× ω̇ci

0,ci
= 0 . Moreover, since

D
(
ξ̇ci

0,ci

)
= p̈ci

0,ci
+ ṗci

0,ci
× ωci

0,ci
, then

p̈ci
0,ci

= D
(
ξ̇ci

0,ci

)
−D

(
ξci

0,ci

)
× P

(
ξci

0,ci

)
. (4.20)

4.2.1.2 Backward Recursion

The second process of the iterative algorithm consists of sweeping the serial robot from

the last to the first joint to calculate the wrenches applied at each one of them. To that

aim, let us use the twists previously obtained and their time derivatives.

Before obtaining the general expression for the backward recursion, let us continue

with the example from the previous section; that is, consider the n-DoF serial manipulator

shown in figure 4.1. The wrench at the CoM of the last link, expressed in Fcn , is given by

the pure dual quaternion

ζcn

0,cn
= ςcn

0,cn
−mng

cn , (4.21)

where mng
cn is the gravitational component, in which gcn ∈ Hp is the gravity acceleration

expressed in Fcn , and ςcn
0,cn

= f cn
0,cn

+ ετ cn
0,cn

, with f cn
0,cn

= fxı̂ + fy ̂ + fzk̂ being the force

at the CoM of the last link, given by Newton’s second law f cn
0,cn

= mnp̈
cn
0,cn

. Taking (4.20)
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into consideration, the force f cn
0,cn

is given by

f cn
0,cn

= mn

(
D
(
ξ̇cn

0,cn

)
+ P

(
ξcn

0,cn

)
×D

(
ξcn

0,cn

))
. (4.22)

Furthermore, τ cn
0,cn

is the torque about the CoM of the last link due to the change of its

angular momentum, given by the Euler’s rotation equation (Siciliano et al., 2009, p. 284)

τ cn
0,cn

= L3 (Icn
n ) ω̇cn

0,cn
+ ωcn

0,cn
×
(
L3 (Icn

n )ωcn
0,cn

)
= L3 (Icn

n )P
(
ξ̇cn

0,cn

)
+ P

(
ξcn

0,cn

)
×
(
L3 (Icn

n )P
(
ξcn

0,cn

))
, (4.23)

where L3 is given by (4.4) and Icn
n ∈ H3

p is the quaternionic inertia tensor of the last link,

expressed at its CoM (see definition 4.1). Because (4.23) is calculated with respect to the

CoM, the gravity acceleration does not contribute to the torque.

Using the adjoint transformation (3.11) in (4.21), the wrench at the last joint, resulting

from the wrench at the CoM of the last link, is given by

ζn−1
0,n = Ad

(
xn−1
cn

)
ζcn

0,cn
. (4.24)

The resultant wrench at the penultimate joint includes the effects of the wrenches from

the penultimate and the last links as they are rigidly attached to each other. Therefore,

the resultant wrench at the penultimate joint is given by

ζn−2
0,n−1 = Ad

(
xn−2
cn−1

)
ζcn−1

0,cn−1
+ Ad

(
xn−2
n−1

)
ζn−1

0,n , (4.25)

where ζcn−1
0,cn−1

= ς
cn−1
0,cn−1 −mn−1g

n−1, with ς
cn−1
0,cn−1 = f

cn−1
0,cn−1 + ετ

cn−1
0,cn−1 , is the wrench at the

CoM of the penultimate link expressed in Fcn−1 .

Thus, analyzing (4.21), (4.24), and (4.25), the backward recurrence relation for the

total wrench at the i-th joint, which includes the contribution of all wrenches starting at

the CoM of the last link up to the wrench at the CoM of the i-th one, expressed in Fi−1,

is given by

ζi−1
0,i = Ad

(
xi−1
ci

)
ζci

0,ci
+ Ad

(
xi−1
i

)
ζi0,i+1, (4.26)

with i ∈ {1, . . . , n}, where n is the number of rigid bodies in the kinematic chain, ζn0,n+1 = 0,

and ζci

0,ci
= ςci

0,ci
− mig

ci , with ςci
0,ci

= f ci
0,ci

+ ετ ci
0,ci

, is the wrench at the i-th CoM,4

f ci
0,ci

= mi

(
D
(
ξ̇ci

0,ci

)
+ P

(
ξci

0,ci

)
×D

(
ξci

0,ci

))
, and τ ci

0,ci
= L3 (Ici

i )P
(
ξ̇ci

0,ci

)
+ P

(
ξci

0,ci

)
×(

L3 (Ici
i )P

(
ξci

0,ci

))
. Moreover, the transformation xi−1

ci
is a function of the joint configura-

tion qi.

In the case of robots with revolute and/or prismatic joints, which are the most common

4If an external wrench is applied at the end-effector, then ζn

0,n+1 6= 0.
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ones, the wrenches given by (4.26) are projected onto the joints motion axes through5

〈ζi−1
0,i , l

i−1
i 〉 = fli + ετli , (4.27)

where fli , τli ∈ R and 〈ζi−1
0,i , l

i−1
i 〉 is the inner product between the wrench ζi−1

0,i = f i−1
0,i +

ετ i−1
0,i ∈ Hp and the motion axis li−1

i ∈ Hp ∩ S3 ⊂ Hp of the i-th joint, given by (3.15).

Therefore, if the i-th joint is revolute, then the corresponding torque is given by τli =
D
(
〈ζi−1

0,i , l
i−1
i 〉

)
. If it is prismatic, then the corresponding force along the axis li−1

i is given

by fli = P
(
〈ζi−1

0,i , l
i−1
i 〉

)
.

4.2.1.3 Summary

Algorithms 4.1, 4.2, 4.3, and 4.4 summarize the proposed dual quaternion Newton-Euler

formalism.

Algorithm 4.1 Dual Quaternion Newton-Euler Algorithm.

1: function newton euler(q, q̇, q̈)

2:
(
Ξ, Ξ̇

)
←forward recursion(q, q̇, q̈)

3: Γ←backward recursion(Ξ, Ξ̇)
4: return Γ
5: end function

Algorithm 4.2 Forward recursion to obtain the twists and their derivatives for the CoM
of all robot links.

1: function forward recursion(q, q̇, q̈)
2: ξc0

0,c0
← 0 and ξ̇c0

0,c0
← 0

3: for i = 1 ton do
4:

(
ξi−1
i−1,ci

, ξ̇i−1
i−1,ci

)
←joint twist(q̇, q̈)

5: . Calculation of the i-th CoM twist
6: ξci

0,ci
← Ad

(
xci
ci−1

)
ξci−1

0,ci−1
+Ad (xci

i−1) ξi−1
i−1,ci

7: . Calculation of the i-th CoM twist derivative
8: ξci

ci,ci−1
← −Ad (xci

i−1) ξi−1
i−1,ci

9: ξ̇ci

0,ci
← Ad

(
xci
ci−1

)
ξ̇ci−1

0,ci−1
+Ad (xci

i−1) ξ̇i−1
i−1,ci

+ ξci

ci,ci−1
×
[
Ad

(
xci
ci−1

)
ξci−1

0,ci−1

]
10: end for
11: Ξ←

(
ξc1

0,c1
, . . . , ξcn

0,cn

)
12: Ξ̇←

(
ξ̇c1

0,c1
, . . . , ξ̇cn

0,cn

)
13: return

(
Ξ, Ξ̇

)
14: end function

5Notice that for joints with more than one axis of movement (e.g., spherical joints, planar joints, etc.),
a similar procedure applies, where the wrenches are projected onto all the axes of motion of the joint.
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Algorithm 4.3 Function to obtain the twists of some of the most commonly used joints
in robotics.

1: function joint twist(q̇, q̈)
2: if revolute joint then
3: ξi−1

i−1,ci
← ωil

i−1
i and ξ̇i−1

i−1,ci
← ω̇il

i−1
i

4: else if prismatic joint then
5: ξi−1

i−1,ci
← εvil

i−1
i and ξ̇i−1

i−1,ci
← εv̇il

i−1
i

6: else if spherical joint then
7: ξi−1

i−1,ci
← ωix ı̂+ ωiy ̂+ ωiz k̂ and ξ̇i−1

i−1,ci
← ω̇ix ı̂+ ω̇iy ̂+ ω̇iz k̂

8: else if planar joint then
9: ξi−1

i−1,ci
← ωil

i−1
i + ε

(
vix ı̂+ viy ̂

)
and ξ̇i−1

i−1,ci
← ω̇il

i−1
i + ε

(
v̇ix ı̂+ v̇iy ̂

)
10: else if cylindrical joint then
11: ξi−1

i−1,ci
← (ωi + εvi) li−1

i and ξ̇i−1
i−1,ci

← (ω̇i + εv̇i) li−1
i

12: else if helical joint then
13: ξi−1

i−1,ci
← (ωi + εhiωi) li−1

i and ξ̇i−1
i−1,ci

← (ω̇i + εhiω̇i) li−1
i

14: else if 6-DoF joint then
15: ξi−1

i−1,ci
← ωix ı̂ + ωiy ̂ + ωiz k̂ + ε

(
vix ı̂+ viy ̂+ viz k̂

)
and ξ̇i−1

i−1,ci
← ω̇ix ı̂ + ω̇iy ̂ +

ω̇iz k̂ + ε
(
v̇ix ı̂+ v̇iy ̂+ v̇iz k̂

)
16: end if
17: return

(
ξi−1
i−1,ci

, ξ̇i−1
i−1,ci

)
18: end function

Algorithm 4.4 Backward recursion to obtain the wrenches at the robot joints.

1: function backward recursion(Ξ, Ξ̇)
2: ζn0,n+1 ← external wrench

3: for i = n to 1 do
4: ξci

0,ci
← Ξ[i] and ξ̇ci

0,ci
← Ξ̇[i]

5: f ci
0,ci
←mi

(
D
(
ξ̇ci

0,ci

)
+P

(
ξci

0,ci

)
×D

(
ξci

0,ci

))
6: τ ci

0,ci
← L3 (Ici

i )P
(
ξ̇ci

0,ci

)
+ P

(
ξci

0,ci

)
×
(
L3 (Ici

i )P
(
ξci

0,ci

))
7: ζci

0,ci
← f ci

0,ci
+ ετ ci

0,ci
−mig

ci

8: . Let Γ[i] = ζi−1
0,i

9: Γ[i]← Ad
(
xi−1
ci

)
ζci

0,ci
+ Ad

(
xi−1
i

)
ζi0,i+1

10: end for
11: return Γ
12: end function
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4.2.1.4 Cost comparison

The comparison between the proposed dqNE and its classic counterpart is made in

terms of number of multiplications and additions involved in each method. To that

aim, consider the cost operator C (op) that is used to calculate the cost of the operation

op as a function of the cost of simpler operations (Adorno, 2011). For instance, given

a, b ∈ H, the cost of their multiplication is given by C (ab) and, since Ad (a) b = aba∗

then C (Ad (a) b) = 2C (ab) + C (a∗). In other words, the cost of one adjoint operation

is equivalent to the cost of two dual quaternion multiplications plus one dual quaternion

conjugation. Table 4.2 summarizes the cost of elementary operations used throughout this

section.

Table 4.2: Cost of operations with quaternions and dual quaternions in terms of multipli-
cation and addition of real numbers.

Multiplications Additions

Quaternions (I ∈ H3
p, a, b ∈ H, and λ ∈ R)

C (L3(I)a) (see equation (4.4)) 9 6

C (λa) 4 0

C (a∗) 3 0

C (a+ b) 0 4

C (ab) 16 12

C (a×b)=2C (ab)+C (a+b)+C (λa) 36 28

C (Ad (a) b) = 2C (ab) + C (a∗) 35 24

Dual quaternions (a, b ∈ H)
C (λa) 8 0

C (a∗) 6 0

C (a+ b) 0 8

C (ab) 48 40

C (Ad (a) b) = 2C (ab) + C (a∗) 102 80

C (a×b)=2C (ab)+C (a+b)+C (λa) 104 88

The cost of calculating the twists throughout the kinematic chain is equivalent to

calculating ξcn

0,cn
, the twist of the n-th and last center of mass, thanks to the recursive

formulation. Therefore, from (4.15),

C
(
ξcn

0,cn

)
= 2nC (Ad (a) b) + nC (a+ b). (4.28)

From (4.16) and (4.17), the cost of calculating the time derivative of twists along the

whole kinematic chain, similarly to the calculation of the twists, is given by

C
(
ξ̇cn

0,cn

)
= n

(
2C (Ad (a) b) + C (a× b)

)
+ n

(
2C (a+ b) + C (λa)

)
, (4.29)
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considering the fact that Ad
(
xci
ci−1

)
ξci−1

0,ci−1
and Ad (xci

i−1) ξi−1
i−1,ci

were already calculated

for the twists.

Again, thanks to the recursive formulation, the cost of calculating the wrenches

throughout the kinematic chain is equivalent to calculating ζ0
0,1, the wrench of the first

joint. Therefore, from (4.26),

C
(
ζ0

0,1

)
=n

(
C
(
ζci

0,ci

)
+2C (Ad (a) b)+C (a+ b)

)
, (4.30)

where C
(
ζci

0,ci

)
is given in table 4.3.

Table 4.3: Number of operations in the computation of ζci

0,ci
(see line 7 in the dual

quaternion Newton-Euler algorithm 4.4).

Multiplications Additions

C
(
f ci

0,ci

)
= C (λa) + C (a× b) + C (a+ b) 40 32

C
(
τ ci

0,ci

)
=2C (L3(I)a)+C (a×b)+C (a+b) 54 44

C
(
ςci

0,ci

)
= C

(
f ci

0,ci

)
+ C

(
τ ci
ci

)
94 76

C
(
ζci

0,ci

)
= C

(
ςci

0,ci

)
+ C (a+ b) + C (λa) 98 80

Lastly, the total cost of the dual quaternion Newton-Euler algorithm also includes the

cost C (x0
n) of calculating the forward kinematics. Once more, since the forward kinematics

is calculated iteratively throughout the kinematic chain (Adorno, 2011), all intermediate

transformations are calculated at once. Therefore, the total cost of the dqNE algorithm is

given by

C
total

(dqNE) = C
(
x0
n

)
+ C

(
ξcn

0,cn

)
+ C

(
ξ̇cn

0,cn

)
+ C

(
ζ0

0,1

)
, (4.31)

where the intermediate costs are summarized in table 4.4 with their explicit values in

terms of additions and multiplications of real numbers.

Table 4.4: Number of operations in different parts of the dual quaternion Newton-Euler
algorithm.

Multiplications Additions
C (x0

n) (Adorno, 2011) 60n− 48 44n− 40
C
(
ξcn

0,cn

)
(equation (4.28)) 204n 168n

C
(
ξ̇cn

0,cn

)
(equation (4.29)) 316n 264n

C
(
ζ0

0,1

)
(equation (4.30)) 302n 248n

The cost comparison between the dual quaternion Newton-Euler formalism for obtaining

the dynamical model of an n-DoF serial robot and its classic counterpart, in terms of

number of multiplications and additions of real numbers, is summarized in table 4.5.
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For the classic Newton-Euler algorithm, it was considered the version based on three-

dimensional vectors proposed by Luh et al. (1980), whose mathematical cost was calculated

by Balafoutis (1994), and is, to the best of my knowledge, one of the most efficient

implementations in the literature.

Table 4.5: Cost comparison between the proposed method and its classic counterpart for
obtaining the dynamical model for an n-DoF serial robot.

Method Multiplications Additions
Dual quaternion Newton-Euler algorithm (cost for arbi- 882n− 48 724n− 40
trary joints)
Classic Newton-Euler algorithm (cost for revolute and 150n− 48 131n− 48
prismatic joints) (Balafoutis, 1994)

The algorithm presented by Luh et al. (1980) costs less than the dual quaternion

Newton-Euler formalism. The cost presented for the proposed method is, however, fairly

conservative and is given as an upper bound. For instance, the calculations could be further

optimized by exploring the fact that several operations involve pure dual quaternions,

which have six elements instead of eight.6 Additionally, the cost presented by Balafoutis

(1994) does not include the costs of obtaining the robot kinematic model (which would be

equivalent to the cost C (x0
n) in (4.31)). Also, the proposed method works for any type of

joint and the calculations were not optimized for any particular type of joint, differently

from Luh et al. (1980) who only consider prismatic and revolute joints, which are exploited

to optimize the computational cost. In contrast, the costs (4.28) and (4.29) take into

account an arbitrary twist ξi−1
i−1,ci

and corresponding twist derivative ξ̇i−1
i−1,ci

. Nonetheless,

both the proposed algorithm and the one of Luh et al. (1980) have linear costs in the

number of degrees of freedom, with coefficients of the same order of magnitude.

4.2.1.5 Simulations and discussions

This section presents two simulations of robot manipulators with revolute joints to illustrate

the application of the proposed dual quaternion Newton-Euler (dqNE) formalism. The first

one uses the dqNE to obtain the joint torques of a 6-DoF robotic manipulator, whereas the

second one utilizes the dqNE to find the joint accelerations of a 50-DoF serial manipulator.

Both simulations compare the proposed formalism with state-of-the-art libraries and are

performed in the robot simulator V-REP PRO EDU V3.6.2 (Rohmer et al., 2013) with

the Vortex Studio Academic7 physics engine using an interface with MATLAB 2020a

and the computational library DQ Robotics (Adorno & Marques Marinho, 2021) for dual

quaternion algebra on a computer running Ubuntu 18.04 LTS 64 bits equipped with an

6For the cost of the cross product of dual quaternions, one of the most expensive operation presented
in table 4.2, the reduction would be from C (a×b)= {104, 88} to C (a×b)= {60, 48}.

7Available at: https://www.cm-labs.com/vortex-studio/
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Intel Core i7 6500U with 8GB RAM.

Obtaining joint torques This simulation demonstrates the application of the dqNE to

obtain the joint torques of the 6-DoF JACO robotic arm shown in figure 4.3. The robot

follows sinusoidal joint velocity trajectories q̇d ∈ R6 using V-REP’s standard low-level

controllers and its joint configurations q ∈ R6, joint velocities q̇ ∈ R6, and joint torques

τ ∈ R6 are stored. Since the simulator does not allow the direct reading of accelerations,

q̇ is used to obtain the joint accelerations q̈ ∈ R6 by means of numerical differentiation

based on Richardson extrapolation (Gilat & Subramaniam, 2014, p. 322).8

Figure 4.3: The 6-DoF JACO robotic arm in the robot simulator V-REP.

Using the values of q, q̇, and q̈, the joint torques τ dqNE ∈ R6 are obtained by projecting

the joint wrenches yielded by the dqNE onto the joints motion axes through (4.27). Then,

both τ dqNE and τ are filtered with a 6nd-order low-pass digital Butterworth filter with

normalized cutoff frequency of 10Hz9 and the comparison between those two joint torque

waveforms is made considering the coefficient of multiple correlation (CMC) (Ferrari

et al., 2010) between them. The CMC measures the similarity of waveforms, taking into

account, among other things, effects of different offsets. Furthermore, the CMC formulation

proposed by Ferrari et al. (2010) was designed to access the similarity of waveforms acquired

synchronously through different media (e.g., different dynamic modeling strategies) when

one is interested in the effect of the media on the waveform. The CMC provides a coefficient

ranging between zero and one that indicates how similar two given waveforms are. Identical

waveforms have CMC equal to one, whereas completely different waveforms have CMC

equal to zero.10

Furthermore, the joint torques τ rtNE ∈ R6 are obtained from the Robotics Toolbox’s

Newton-Euler (rtNE) classic recursive algorithm (Corke, 2017), whereas τ sv2NE ∈ R6 are

8I would like to thank my colleague Juan José Quiroz Omaña for providing me with the MATLAB
implementation of the numerical differentiation class used in this thesis.

9A discussion about the filter and its necessity is presented in appendix D.
10I would like to thank my colleague Ana Christine de Oliveira for providing me with the MATLAB

implementation of the CMC used in this thesis.
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obtained from its spatial vector counterpart implemented on Roy Featherstone’s Spatial V2

(sv2NE) library.11 Accordingly, those joint torques are filtered using the same discrete

low-pass Butterworth filter applied to τ dqNE and τ . Finally, the CMCs between the joint

torque waveforms τ rtNE and τ and between τ sv2NE and τ are calculated. The Robotics

Toolbox and the Spatial V2 are widely used libraries whose accuracy has been verified

throughout the years; thus, they are an appropriate baseline for the evaluation of the

CMCs obtained by using the proposed dqNE on robotic manipulators. As no widespread

library for dynamic modeling using the Lie algebra se (3) is available, this representation

is not considered in the comparison.12

The joint torque waveforms from the different dynamic model strategies (τ dqNE, τ rtNE,

and τ sv2NE) and the values from V-REP (τ ) are shown in figure 4.4, whereas their relative

CMCs are presented in table 4.6. All models present mean (mean) and minimum (min)

CMC close to one, with small standard deviation (std) and high maximum (max) CMC;

thus, indicating high similarity between their joint torque waveforms and the values

from V-REP. Moreover, the dqNE is equivalent to both the rtNE and the sv2NE, which

demonstrates that the proposed strategy is as accurate as state-of-the-art libraries. The

small discrepancies between the joint torques calculated by the models and the ones read

from V-REP arise from both discretization effects, such as the approximation of the joint

accelerations q̈, and uncertainties in the kinematic/dynamic parameters. Adaptive control

strategies could be used to mitigate this problem, and have already been explored in classic

recursive Newton-Euler formulations in the literature (Walker, 1988; Walker et al., 1989;

Jone Hann Jean & Li-Chen Fu, 1993), but are outside the scope of this thesis.
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Figure 4.4: Joint torque waveforms of the 6-DoF JACO robotic arm. Solid curves
correspond to the joint torques τ , whereas dashed curves correspond to the joint torques
τ dqNE and dotted curves correspond to the joint torques τ rtNE and τ sv2NE. Since all the
model strategies (dqNE, rtNE, and sv2NE) obtained almost identical results, their joint
torque waveforms overlap in the graph.

11Available at: http://royfeatherstone.org/spatial/v2/
12The (Mathematica) packages “Screws.m” and “RobotLinks.m,” once maintained by Murray and Sur

(Murray et al., 1994, p. 435), are no longer available at avalon.caltech.edu.
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Table 4.6: CMC between the joint torque waveforms obtained through the different
dynamic model strategies (τ dqNE, τ rtNE, and τ sv2NE) and the values obtained from V-REP
(τ ) for the 6-DoF JACO robotic arm. The closer to one, the more similar the waveforms
are.

Method
CMC for the 6-DoF JACO robotic arm

min mean std max
dqNE 0.9667 0.9930 0.0130 0.9999
rtNE 0.9666 0.9930 0.0131 0.9999

sv2NE 0.9666 0.9930 0.0131 0.9999

Although not apparent from an illustrative example with a robotic manipulator, the

advantage of using the proposed dual quaternion Newton-Euler formalism is the unification

of the joint variables into twists and wrenches whilst maintaining a formal algebraic

description of the robot dynamics. This will become more evident in the sections dedicated

to the modular composition strategy, an idea introduced in chapter 5.

Obtaining joint accelerations This simulation demonstrates the application of the

dqNE to obtain the joint accelerations of a 50-DoF serial manipulator shown in figure 4.5.13

The setup is similar to one adopted in the previous example; that is, the robot uses the V-

REP’s standard low-level controllers to follow the joint velocity trajectories q̇d ∈ R50, have

its joint configurations q ∈ R50 and velocities q̇ ∈ R50 stored, and its joint accelerations

q̈ ∈ R50 numerically estimated from q̇.

Figure 4.5: A 50-DoF serial manipulator in the robot simulator V-REP.

13I would like to thank my colleague Juan José Quiroz Omaña for providing me with the V-REP
implementation of the 50-DoF serial manipulator used in this thesis.
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Applying the strategy presented in section 3.2.1, the Euler-Lagrange model of the

robot was obtained from the dqNE and the rtNE and then used to calculate the joint

accelerations q̈dqNE ∈ R50 and q̈rtNE ∈ R50, respectively, through

q̈ = M (q)−1 (τ −C (q, q̇) q̇ − g (q)) ,

in which the joint wrenches obtained from the dqNE must be projected onto the joints

motion axes through (4.27) to yield the vectors g (q), C (q, q̇) q̇ and the columns of M (q)
given by (3.2). For instance,

g (q) =


〈ζ0

0,1, l
0
1〉

...

〈ζ49
0,50, l

49
50〉

 ∈ R50,

where H50
p 3

[
ζ0

0,1 . . . ζ49
0,50

]T
= newton euler (q,0,0) is the stacked vector of joint

wrenches and
[
l01 . . . l49

50

]T
∈ (Hp ∩ S3)50

is the stacked vector of all the motion axes

of the robot’s joints. Finally, the joint accelerations q̈, q̈dqNE, and are q̈rtNE filtered, using

a 6nd-order low-pass digital Butterworth filter with normalized cutoff frequency of 100Hz,

and the CMCs between each model’s joint acceleration waveforms and q̈ are calculated.

The sv2NE is arbitrarily not used in the comparison since its almost identical accuracy

with the rtNE was established on the previous simulation; thus, its inclusion was deemed

unnecessary.

Table 4.7 presents the CMC between the joint acceleration waveforms obtained through

the different dynamic model strategies (q̈dqNE and q̈rtNE) and the values obtained from

V-REP (q̈) for the 50-DoF robot manipulator. For qualitative analysis, figure 4.6 presents

the joint accelerations which correspond to the minimum and maximum CMCs found

during simulations. Once again, the results indicate that the proposed dual quaternion

Newton-Euler formulation yields results that are as accurate as state-of-the-art libraries.

Table 4.7: CMC between the joint acceleration waveforms obtained through the different
dynamic model strategies (q̈dqNE and q̈rtNE) and the values obtained from V-REP (q̈) for
the 50-DoF serial manipulator. The closer to one, the more similar the waveforms are
(adapted from Silva et al., 2022, table 2).

Method
CMC for the 50-DoF serial manipulator

min mean std max
dqNE 0.9044 0.9893 0.0182 0.9993
rtNE 0.9044 0.9893 0.0182 0.9993

As a final remark, although applicable to the problem of forward dynamics through

(3.2), obtaining the Euler-Lagrange model through the Newton-Euler formalism requires

several executions of the algorithm. One execution to obtain the gravitational vector, one
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Figure 4.6: Joint acceleration waveforms of the 50-DoF robotic manipulator. Solid curves
correspond to the V-REP values, whereas dashed curves correspond to the values obtained
using the dqNE and dotted curves correspond to the values obtained using the rtNE
for the joint acceleration waveforms of the third (CMC = 0.9044) and twenty-seventh
(CMC = 0.9993) joints, respectively. Since both the model strategies (dqNE and rtNE)
obtained almost identical results, their joint torque waveforms overlap in the graph.

to obtain the vector of Coriolis and centrifugal terms and one for each column of the inertia

matrix. Considering the 50-DoF manipulator robot discussed in this example, this results

in 52 executions of each algorithm (dqNE and rtNE) for each simulation step. Therefore,

recursive Newton-Euler formulations are better suited for inverse dynamics applications

where one is interested in finding the joint torques; thus, requiring only one execution of

either the dqNE or the rtNE.

4.2.2 Adding more rigid bodies to the kinematic chain

This section introduces the idea of considering the dual quaternion Newton-Euler formalism

not as a recursive algorithm but as a—mathematical—function of the joint twists. Consider

the following definition.

Definition 4.3. Consider the i-th rigid body of a serial kinematic chain composed of n

rigid bodies. Given Ξ̄1,i, the stacked vector of twists imposed by the movements of joints

1 to i, and
^

Ξ i,n, the stacked vector of twists at CoMs i to n, in which Ξ̄a,b,
^

Ξa,b ∈ Hb−a+1
p ,

the twist at the i-th CoM and the wrench at the i-th joint of the robot are respectively
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given by the functions F : Hi
p → Hp and B : Hn−i+1

p → Hp. That is,

ξci

0,ci
= F i

(
Ξ̄1,i

)
,

ζi−1
0,i = Bi

(^

Ξ i,n

)
, (4.32)

where Ξ̄1,i =
[
ξ0

0,c1
ξ1

1,c2
· · · ξi−1

i−1,ci

]T
and

^

Ξ i,n =
[
ξci

0,ci
ξci+1

0,ci+1
· · · ξcn

0,cn

]T
.

From the recurrence equations of the twists, given by (4.15), it is straightforward to

notice that the total twist at the i-th CoM of the robot is a function of the joint motions

from the first up to the i-th joint. As for the joint wrench, from the recurrence equation

given by (4.26) one can notice that the i-th joint wrench is a function of the wrenches from

the last joint up to the i-th joint. Moreover, although Newton’s second law and the Euler’s

rotation equation demand the expression of ξ̇ci

0,ci
(see equations (4.22) and (4.23)), this is

the analytical time derivative of ξci

0,ci
, given by (3.17). Therefore, ξ̇ci

0,ci
can be explicitly

calculated in the function B using the twist ξci

0,ci
.

Considering (4.32), (4.15), and (4.26) the recurrence equations of the dual quaternion

Newton-Euler formalism, for the i-th rigid body in a kinematic chain, can be rewritten as

ξci

0,ci
= F i

(
Ξ̄1,i

)
= Ad

(
xci
ci−1

)
F i−1

(
Ξ̄1,i−1

)
+ Ad (xci

i−1) ξi−1
i−1,ci

, (4.33)

where F0

(
Ξ̄1,0

)
, 0 and

ζi−1
0,i = Bi

(^

Ξ i,n

)
= ζi−1

0,ci
+ Ad

(
xi−1
i

)
Bi+1

(^

Ξ i+1,n

)
, (4.34)

where Bn+1

(^

Ξn+1,n

)
, 0.

The next examples demonstrate how to apply equations (4.33) and (4.34) to obtain the

model of the simple two-link robot shown in figure 4.7 and how to consider the inclusion

of a third link at the end of the kinematic chain.

Example 4.3. Consider the simple two-link robot presented in figure 4.7. Taking into

account the functions F and B given by definition 4.3, the dynamic model of this robot is

given by

ζ1
0,2 = B2

(^

Ξ2,2

)
= Ad

(
x1
c2

)
ζc2

0,c2
,

ζ0
0,1 = B1

(^

Ξ1,2

)
= ζ0

0,c1
+ Ad

(
x0

1

)
B2

(^

Ξ2,2

)
= ζ0

0,c1
+ ζ0

0,2,

where
^

Ξ2,2 = ξc2
0,c2

,
^

Ξ1,2 =
[
ξc1

0,c1
ξc2

0,c2

]T
, and ζ0

0,c1
= Ad

(
x0
c1

)
ζc1

0,c1
. Moreover,

ξc1
0,c1

= F1

(
Ξ̄1,1

)
= Ad (xc1

0 ) ξ0
0,c1
,

ξc2
0,c2

= F2

(
Ξ̄1,2

)
= Ad

(
xc2
c1

)
F1

(
Ξ̄1,1

)
+ ξc2

1,c2
= ξc2

0,c1
+ ξc2

1,c2
, (4.35)
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Figure 4.7: A 2-DoF serial manipulator.

where Ξ̄1,1 = ξ0
0,c1

, Ξ̄1,2 =
[
ξ0

0,c1
ξ1

1,c2

]T
, in which the twist ξi−1

i−1,ci
is generated by the

i-th joint (see table 4.1), and ξc2
1,c2

= Ad (xc2
1 ) ξ1

1,c2
.

Example 4.4. Consider the addition of a third link at the end of the simple two-link

robot presented in figure 4.7, thus, yielding the three-link serial manipulator shown in

figure 4.8. The dynamic model of this newly-formed robot is given by

ζ2
0,3 = B3

(^

Ξ3,3

)
= Ad

(
x2
c3

)
ζc3

0,c3
,

ζ1
0,2 = B2

(^

Ξ2,3

)
= ζ1

0,c2
+ Ad

(
x1

2

)
B3

(^

Ξ3,3

)
= ζ1

0,c2
+ ζ2

0,3,

ζ0
0,1 = B1

(^

Ξ1,3

)
= ζ0

0,c1
+ Ad

(
x0

1

)
B2

(^

Ξ2,3

)
= ζ0

0,c1
+ ζ1

0,2,

where
^

Ξ3,3 = ξc3
0,c3

,
^

Ξ2,3 =
[
ξc2

0,c2
ξc3

0,c3

]T
,

^

Ξ1,3 =
[
ξc1

0,c1
ξc2

0,c2
ξc3

0,c3

]T
, ζ1

0,c2
=

Ad
(
x2
c2

)
ζc2

0,c2
, and ζ0

0,c1
= Ad

(
x0
c1

)
ζc1

0,c1
. Moreover,

ξc1
0,c1

= F1

(
Ξ̄1,1

)
= Ad (xc1

0 ) ξ0
0,c1
,

ξc2
0,c2

= F2

(
Ξ̄1,2

)
= Ad

(
xc2
c1

)
F1

(
Ξ̄1,1

)
+ ξc2

1,c2
= ξc2

0,c1
+ ξc2

1,c2
,

ξc3
0,c3

= F3

(
Ξ̄1,3

)
= Ad

(
xc3
c2

)
F2

(
Ξ̄1,2

)
+ ξc3

2,c3
= ξc3

0,c2
+ ξc3

2,c3
,

where Ξ̄1,1 = ξ0
0,c1

, Ξ̄1,2 =
[
ξ0

0,c1
ξ1

1,c2

]T
, Ξ̄1,2 =

[
ξ0

0,c1
ξ1

1,c2
ξ2

2,c3

]T
, in which the

twist ξi−1
i−1,ci

is generated by the i-th joint (see table 4.1), ξc2
1,c2

= Ad (xc2
1 ) ξ1

1,c2
, and
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ξc3
2,c3

= Ad (xc3
2 ) ξ2

2,c3
.
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Figure 4.8: A 3-DoF serial manipulator composed by the addition of a third link at the
end of the simple two-link robot presented in figure 4.7.

If the usefulness of functions F and B is not yet clear, the next sections demonstrate

how they simplify the explanation of the dynamic modeling of mobile manipulators and

branched robots. Nonetheless, the major advantage of seeing the dual quaternion Newton-

Euler formulation as a function (of the twists) is shown on chapter 5, which deals with the

composition of dynamic models of complete kinematic chains.

4.2.3 Mobile robot manipulators

Consider a fixed-base robotic manipulator composed of n links. When this serial kinematic

chain is attached to a mobile base, the dynamic model of the complete mobile manipulator

is given by (4.33) and (4.34), as demonstrated on the previous section. One needs only to

find, then, the expression F1

(
Ξ̄1,1

)
of the mobile base twist. This process is illustrated

in figure 4.9, in which the CoMs of the mobile base and of the first link of the robotic

manipulator are, respectively, represented by the frames Fc1 and Fc2 .

The next section demonstrate how to obtain the analytical expressions of the twists for

holonomic mobile bases. Notice, however, that this is presented as an example and the

same procedure could be used to find the twist of arbitrary mobile bases. For instance, a

UAV mobile base could be considered on the model as the addition of a 6-DoF joint at

the beginning of the serial kinematic chain, and its twist is already given in table 4.1.
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4.2.3.1 Holonomic mobile manipulators

Consider a holonomic mobile base, such as the one of the holonomic mobile manipulator

presented in figure 4.9, whose coordinates are given by (x, y, φ), where φ ∈ [0, 2π) is its

angle of rotation.

Fc1Fc1

F0F0

F1
(
Ξ̄1,1

)
F1

(
Ξ̄1,1

)

F1F1

Fc2Fc2

Ad
(
xc2
c1

)
F1

(
Ξ̄1,1

)
Ad

(
xc2
c1

)
F1

(
Ξ̄1,1

) Ad
(
xc2

1
)
ξ1

1,c2Ad
(
xc2

1
)
ξ1

1,c2

Figure 4.9: X-Terrabot, a holonomic mobile manipulator (courtesy of ASIMoV Robotics).

The mobile base twist F1

(
Ξ̄1,1

)
is propagated throughout the robotic manipulator through

(4.33).

The twist of this holonomic mobile base is given by

ξ
h

= ωh + εvh

= φ̇k̂ + ε (ẋı̂+ ẏ̂) , (4.36)

whose time derivative yields

ξ̇
h

= φ̈k̂ + ε (ẍı̂+ ÿ̂) .

The dynamical model of the holonomic mobile manipulator is then given by (4.33) and

(4.34), in which F1

(
Ξ̄1,1

)
is given by (4.36). Additionally, notice how the twist ξ

h
has

the same expression of the twist of a planar joint (see table 4.1) since that type of joint is

kinematically equivalent to a holonomic mobile base.

4.2.3.2 Simulations and discussions

Using the simulation setup described in section 4.2.1.5, the dqNE is applied to obtain the

generalized accelerations of the 9-DoF holonomic mobile manipulator shown in figure 4.10,

a robot composed of a JACO robotic arm attached to a KUKA’s youBot holonomic

base. The robot follows the generalized velocities trajectories q̇d ∈ R9, have its generalized
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configurations q ∈ R9 and velocities q̇ ∈ R9 stored, and its generalized accelerations q̈ ∈ R9

numerically estimated from q̇. The analysis is made in terms of generalized accelerations

because V-REP does not allow the direct reading of the mobile base’s generalized forces.

xx

zz

yy

Figure 4.10: 9-DoF holonomic mobile manipulator composed of a JACO robotic arm
attached to a KUKA’s youBot holonomic base in the robot simulator V-REP.

The joint accelerations q̈dqNE ∈ R9 are obtained from the dqNE applying the same

strategy presented in the simulation of the 50-DoF robotic manipulator (see section 4.2.1.5),

that is

q̈ = M (q)−1 (τ −C (q, q̇) q̇ − g (q)) .

For the holonomic mobile base, the projections onto the motion axes through (4.27) are

made considering 
fx

fy

τz

 =


P
(
〈ζc1

0,c1
,Ad (rc1

0 ) ı̂〉
)

P
(
〈ζc1

0,c1
,Ad (rc1

0 ) ̂〉
)

D
(
〈ζc1

0,c1
,Ad (rc1

0 ) k̂〉
)
 , (4.37)

where ζc1
0,c1

is the wrench at the CoM of the holonomic mobile base. Then, both q̈dqNE and

q̈ are filtered, using a 6nd-order low-pass digital Butterworth filter with normalized cutoff

frequency of 100Hz, and the CMCs between them are calculated and presented in table 4.8.

The results indicate that the proposed dual quaternion Newton-Euler formulation yields

accurate results, and, for qualitative analysis, figure 4.11 presents the joint accelerations

which correspond to the minimum and maximum CMCs found during simulations. Since

the almost identical accuracy between the dqNE, the rtNE , and the sv2NE was established

on the previous simulations, the inclusion of those extra libraries was deemed unnecessary.
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Table 4.8: CMC between the joint acceleration waveforms obtained through the dqNE
(q̈dqNE) and the values obtained from V-REP (q̈) for the 9-DoF holonomic mobile manipu-
lator. The closer to one, the more similar the waveforms are (adapted from Silva et al.,
2022, table 2).

Method
CMC for the 9-DoF holonomic mobile manipulator

min mean std max
dqNE 0.9938 0.9977 0.0022 0.9999

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-5

0

5

10

15

20

CMC = 0.9938

CMC = 0.9999

Figure 4.11: Generalized acceleration waveforms of the 9-DoF mobile manipulator. Solid
curves correspond to the V-REP values, whereas dashed curves correspond to the values
obtained using the dqNE for the generalized acceleration waveforms of the ninth (CMC =
0.9938) and third (CMC = 0.9999) joints, respectively.
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4.3 Dynamic modeling of branched robots

This section presents the dynamical modeling of branched robots. The process is a

generalization of the dual quaternion Newton-Euler formulation presented in section 4.2.

To illustrative purposes, consider the 6-DoF branched robot presented in figure 4.12.

x0
1

F1

F2

Fhead F4

F5x1
head

x1
2

x1
4

x4
5

F0

F3

x2
3

Fright hand

x3
right hand

x5
left hand

Fleft hand

1

23

4

5

6

Figure 4.12: A 6-DoF branched robot. The links of the robot are numbered from 1 to
6. For equation (4.38), the second link, marked by the green ellipsis, is simultaneously
labeled as p3 and p5. For equation (4.39), the set S2 is composed by the links marked by
the yellow ellipses; that is, S2 = {3, 5}.

Since branched robots do not contain loops, they form an open kinematic tree. On

this sort of mechanism, as happens with robot manipulators, each link of the robot is only

preceded by a single link. This means that the forward recursion of the Newton-Euler

formalism is the same when modeling the dynamics of an individual serial kinematic chain

or a branched robot. However, equation (4.33) needs to be adapted since link labels are not

sequential anymore. For instance, notice how frame F4 is preceded by frame F1. Therefore,

for a branched robot where the i-th link is preceded by the the link pi, the twist of the

i-th CoM is given by

ξci

0,ci
= Ad

(
xci
cpi

)
Fpi

(
Ξ̄1,pi

)
+ Ad (xci

i−1) ξi−1
i−1,ci

. (4.38)

On the other hand, the links of a branched robot can be succeeded by more than one

element, which means that the backward recursion of the Newton-Euler formalism needs

to be adapted. As wrenches belong to an additive group, the wrench of the i-th joint of

the robot is given by the summation of all wrenches acting on the i-th link. Those are:

the wrench at the CoM of the i-th link, obtained by using Newton’s second law and the

Euler’s rotation equation, and the wrenches propagating backwards from all branches that
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succeed this link on the robot. Therefore, for a branched robot composed of s links, where

the link i ∈ {1, 2, . . . , s} , S is succeeded by the links j ∈ {ji,1, . . . , ji,mi
} , Si ⊂ S, the

wrench of the i-th joint is given by

ζi−1
0,i = ζi−1

0,ci
+
∑
j∈Si

(
Ad

(
xi−1
j−1

)
Bj

(^

Ξj,nj

))
, (4.39)

where nj is the last link of the branch starting from link j ∈ Si.

Example 4.5. Consider the simplified14 upper body of the Poppy Humanoid, which forms

the 8-DoF branched robot shown in figure 4.13. In this representation, frames Fi and Fci

correspond to the i-th joint and i-th CoM, respectively, whereas the frames Fhead, Fright hand,

and Fleft hand, indicate the head, right hand, and left hand of the robot, respectively. The

robot comprises three branches going from frames F0 to Fhead, represented by black arrows;

F2 to Fright hand, depicted by green arrows; and F4 to Fleft hand, illustrated by red arrows.

A simplified drawing of this robot is given in figure 4.12.

The forward propagation of the dual quaternion Newton-Euler formalism is shown in

figure 4.14a, where, for simplification, only the most relevant reference frames are displayed.

The propagation of the twists starts at the first joint of the branched robot, represented

by frame F0, and proceeds independently on each branch of the open kinematic tree (i.e.,

to the left and to the right) since there is no direct connection between the rigid bodies of

each branch. The twists of CoMs of this branched robot are given by (4.38). For instance,

the twists of the third and fifth CoMs are given by

ξc3
0,c3

= Ad
(
xc3
cp3

)
Fp3

(
Ξ̄1,p3

)
+ Ad (xc3

2 ) ξ2
2,c3

= Ad
(
xc3
c1

)
F1

(
Ξ̄1,1

)
+ ξc3

2,c3
,

ξc5
0,c5

= Ad
(
xc5
cp5

)
Fp5

(
Ξ̄1,p5

)
+ Ad (xc5

4 ) ξ4
4,c5

= Ad
(
xc5
c1

)
F1

(
Ξ̄1,1

)
+ ξc5

4,c5
, (4.40)

where the preceding link of both the third and fifth links is p3 = p5 = 1, which has the twist

of its CoM given by Fp3

(
Ξ̄1,p3

)
= Fp5

(
Ξ̄1,p5

)
= F1

(
Ξ̄1,1

)
= ξc1

0,c1
, and the twists ξc3

2,c3

and ξc5
4,c5

are imposed by the movements of the third and fifth seventh joints, respectively.

Accordingly, the propagation of wrenches on each branch occurs independently during

the backward recursion of the dual quaternion Newton-Euler formalism. This process is

shown in figure 4.14b, where, for simplification, only the most relevant reference frames

are displayed. For instance, the wrenches propagating from branches Fright hand to F2 and

Fleft hand to F4 converge at the second link of the robot. Considering (4.39), the wrench of

14To avoid cluttering the illustration, several of the robot joints are omitted. The real platform has
5-DoF on its torso and 4-DoF on each of its arms.
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Figure 4.13: Simplified upper body of the Poppy Humanoid robot, which forms a 6-DoF
branched robot. The frames Fi and Fci

correspond to the i-th joint and i-th CoM,
respectively, whereas the frames Fhead, Fright hand, and Fleft hand, indicate the head, right
hand, and left hand of the robot, respectively. The robot comprises three branches going
from frames F0 to Fhead, represented by black arrows; F2 to Fright hand, depicted by green
arrows; and F4 to Fleft hand, illustrated by red arrows. A simplified drawing of this robot
is given in figure 4.12.
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the second joint of the branched robot, which is represented by the frame F1, is given by

ζ1
0,2 = ζ1

0,c2
+
∑
j∈S2

(
Ad

(
x1
j−1

)
Bj

(^

Ξj,nj

))
= ζ1

0,c2
+
(
Ad

(
x1

2

)
B3

(^

Ξ3,4

)
+ Ad

(
x1

4

)
B5

(^

Ξ5,6

))
,

where ζ1
0,c2

is the wrench of the second CoM given by Newton’s second law and the Euler’s

rotation equation (see equations (4.22) and (4.23)), S2 = {3, 5}, and B3

(^

Ξ3,4

)
= ζ2

0,3 and

B5

(^

Ξ5,6

)
= ζ4

0,5 are the total wrenches of the third and fifth joints, respectively.
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(a) Forward recursion of the dual quaternion formalism in an open
kinematic tree. Colored arrows represent the propagation of twists
through different branches.
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(b) Backward recursion of the dual quaternion formalism in an
open kinematic tree. Colored arrows represent the propagation of
wrenches through different branches.

Figure 4.14: Dual quaternion formalism applied to an open kinematic tree. Figure 4.14a
presents the forward recursion, where twists and their time derivatives are propagated
throughout the branches of the robot, whereas figure 4.14b illustrates the backward
recursion and the propagation of the wrenches of the robot.
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4.4 Conclusions

Section 4.1.1 proposed a novel quaternionic inertia tensor that allows the description of the

dynamic properties of rigid bodies exclusively with operations inside the dual quaternion

algebra, which was then used in section 4.2 for the deduction of the dual quaternion Newton-

Euler formalism. The proposed technique consists in a forward sweeping of the kinematic

chain to find the twists and their time derivatives, which are then used in a backward

recursive sweeping of the robot to attain the wrenches. This unified representation has

a straightforward treatment on dual quaternion algebra, in which the naturally coupled

linear and angular components algebraically appear on the application of the adjoint

transformation. Thus, the dual quaternion Newton-Euler formalism removes the necessity

of a deep geometrical analysis of the system, which contrasts with the classic approach.

Granted, for the specific case of robotic manipulators with revolute or prismatic joints, the

classic Newton-Euler algorithm (Luh et al., 1980) consists of iterative equations that are

easily implemented and readily found on undergraduate robotics textbooks (Spong et al.,

2006; Siciliano & Khatib, 2008; Siciliano et al., 2009) and computational libraries (Corke,

2017). However, for more complex systems (e.g., tree structures, such as humanoids), this

free-vector formalism demands geometrical analyses where all the coupled components

must be carefully found by the roboticist performing the dynamic modeling.

Furthermore, compared to previous works, the proposed dual quaternion Newton-Euler

formalism is more general because it works for arbitrary joint types and does not impose any

particular parameterization convention for the propagation of twists. In contrast, take, for

instance, the work of Miranda de Farias et al. (2019a), where the dual quaternion equations,

albeit easily extendable to prismatic joints, currently only cover robotic manipulators with

revolute joints and require screw displacements to be represented as proposed by Özgür &

Mezouar (2016).

Moreover, both the proposed method and the classic Newton-Euler algorithm proposed

by Luh et al. (1980) have linear costs in the number of degrees of freedom, with coefficients

of the same order of magnitude. However, the dqNE is much more general. That is, the

dual quaternion algebra allowed a generalization of the classic algorithm, while maintaining

its overall order of magnitude for the computational cost.

One straightforward extension of the proposed dual quaternion Newton-Euler formalism

was presented to the dynamic modeling of mobile robots. For those robot types, one only

needs to obtain the twist of the mobile base and include it at the beginning of the iterative

process, namely at (4.15) and (4.16). Section 4.2.3 presented the calculation of the twist

of holonomic mobile bases.

Section 4.3 demonstrated the application of the proposed dual quaternion Newton-Euler

formalism on branched robots. The only difference with regards to serial kinematic chains

occurs at the connection points of the branches, where twists propagate independently
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throughout each of them, whereas wrenches merge at the connection point and follow the

main branch.

At this point, it is important to recall and critically compare the present work with the

existing dynamic modeling approaches found in the literature. Representations aside, to be

fair, all dynamic models based on screw theory present similar final equations (Pennock &

Yang, 1983; Murray et al., 1994; Hachicho & Eldin, 2000; Spong et al., 2006; Featherstone,

2008; Siciliano & Khatib, 2008; Siciliano et al., 2009; Miranda de Farias et al., 2019a). One

of the major advantages of this type of formulation is the capacity of algebraically find

the coupled dynamical and kinematic elements caused by linear and angular components,

namely through the adjoint transformation. Being a structural and intrinsic feature of

the theory, this naturally extends to its different representations. Dynamic modeling

strategies that take advantage of the adjoint transformation exist in approaches using

matrices (Murray et al., 1994) and dual quaternions, where they go as far as the works of

Dimentberg (1965).15 In those regards, an interesting discussion concerning screw theory

does not revolve around the final equations of the model but rather is concerned with how

intuitive the chosen representation makes the process of deduction of the dynamic model

and what insights it provides along the way. Thus, one of the major advantages of the

proposed dual quaternion Newton-Euler formalism is its versatility and applicability to

the dynamic modeling of different robotic structures, including serial kinematic robots

with fixed and mobile bases and branched robots.

The next chapter is going to present a strategy for the dynamic modeling of branched

robots using modular composition, which is one of the main contributions of this thesis.

15Dimentberg (1965) did not use exactly an adjoint transformation but an operation based on matrices
of dual quaternions that yield the same results.
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Chapter 4 presented the dual quaternion Newton-Euler formalism at the level of each

rigid body in the robotic structure, notably, the “i-th link/joint/CoM.” Thus yielding

a monolithic solution that allows the easy concatenation of a mobile base to a serial

manipulator, as shown in section 4.2.3, and the analysis of the ramifications of a branched

robot, as presented in section 4.3. The goal of this chapter is, however, to find a systematic

formulation of a higher abstraction order, which will allow the composition of entire dynamic

models, which are, in turn, comprised of several rigid bodies each. Moreover, section 5.2

presents a graph representation of the robotic system that encodes the propagation of

twists and wrenches between the subsystems and aids the model composition. Furthermore,

the proposed strategy is applicable even if some subsystems are regarded as black boxes,

with complete dynamic information unavailable. The proposed modular composition

formulation, alongside the dual quaternion Newton-Euler formalism presented in chapter 4,

constitutes the main contributions of this thesis.

To illustrate the intuition behind the proposed formalism, let us consider the two serial

kinematic chains with n1 and n2 degrees of freedom each, shown in figure 5.1. If we were

to join both kinematic chains connecting the first joint of the n2-DoF kinematic chain

with the k-th link of the n1-DoF kinematic chain, as indicated by the gray dashed line

in figure 5.1, the dynamics of the newly-formed branched mechanism can still be given,

at the low modeling level, by the procedure described in section 4.3 for branched robots.

The objective of this chapter is, however, to find a strategy that gives the joint wrenches

Γt ∈ Hn1+n2
p of the overall system as a function of the dynamics of its subsystems.
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Figure 5.1: Two serial kinematic chains with n1 and n2 degrees of freedom.
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To aid in this pursue, the next definition extends the adjoint operation of dual quater-

nions to the set Hn
p .

Definition 5.1. Given a vector of unit dual quaternions X =
[
x1 x2 . . . xn

]T
∈ Sn

and a pure dual quaternion a ∈ Hp, the operator Adn : Sn ×Hp → Hn
p is defined as

Adn (X)a , diag (X)a


x∗1

x∗2
...

x∗n

 =


x1ax

∗
1

x2ax
∗
2

...

xnax
∗
n

 =


Ad (x1)a
Ad (x2)a

...

Ad (xn)a

 , (5.1)

where diag (X) ∈ Hn×n
p is a diagonal matrix with the elements of X in its main diagonal.

Before being connected with the n1-DoF serial kinematic chain, the CoM twists of

the subsystem composed of n2 rigid bodies shown in figure 5.1, henceforth labeled as

“subsystem 2,” was initially given by

Ξ2,2 =



ξc̆1
0̆,c̆1

ξc̆2
0̆,c̆2

ξc̆3
0̆,c̆3
...

ξ
c̆n2
0̆,c̆n2


=



F 1̆

(
Ξ̄ 1̆,1̆

)
F 2̆

(
Ξ̄ 1̆,2̆

)
F 3̆

(
Ξ̄ 1̆,3̆

)
...

F n̆2

(
Ξ̄ 1̆,n̆2

)


, (5.2)

where Ξ2,2 ∈ Hn
p is the stacked vector of twists at all the CoMs of subsystem 2 and the

symbol “˘” indicate reference frames of the second subsystem. It is important to highlight

here the difference between the double subscript in
^

Ξ i,j and in Ξi,j. For the monolithic

solution, the subscripts in
^

Ξ i,j referred to the twists at the CoM from links i to j. However,

in the context of modular composition, the subscripts in Ξi,j refer to the CoM twists in

subsystem j that originated from its interaction with subsystem i. Thus, for instance,

Ξ2,2 is the stacked vector of twists at all the CoMs of subsystem 2 that originated from

subsystem 2 itself.

Considering the recurrence (4.38), equation (5.2) can be expanded as

Ξ2,2 =



F 1̆

(
Ξ̄ 1̆,1̆

)
ξc̆2

1̆,c̆2
+ Ad

(
xc̆2
c̆1

)
F 1̆

(
Ξ̄ 1̆,1̆

)
ξc̆3

2̆,c̆3
+ Ad

(
xc̆3
c̆2

)
F 2̆

(
Ξ̄ 1̆,2̆

)
...

ξc̆n2
n̆2−1,c̆n2

+ Ad
(
x
c̆n2
c̆n2−1

)
F n̆2−1

(
Ξ̄ 1̆,n̆2−1

)


,

which, considering that rowi (A) , Ai ∈ Hn gives the i-th row of the matrix A =
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[
A1 . . . Am

]
∈ Hn×m, can then be further expanded to isolate the term F 1̆

(
Ξ̄ 1̆,1̆

)
,

row1
(
Ξ2,2

)
= F 1̆

(
Ξ̄ 1̆,1̆

)
row2

(
Ξ2,2

)
= ξc̆2

1̆,c̆2
+ Ad

(
xc̆2
c̆1

)
F 1̆

(
Ξ̄ 1̆,1̆

)
row3

(
Ξ2,2

)
= ξc̆3

2̆,c̆3
+ Ad

(
xc̆3
c̆2

) (
ξc̆2

1̆,c̆2
+ Ad

(
xc̆2
c̆1

)
F 1̆

(
Ξ̄ 1̆,1̆

))
...

rown

(
Ξ2,2

)
= ξc̆n2

n̆2−1,c̆n2
+ Ad

(
x
c̆n2
c̆n2−1

) (
ξ
c̆n2−1
n̆2−2,c̆n2−1 + Ad

(
x
c̆n2−1
c̆n2−2

) (
ξ
c̆n2−2
n̆2−3,c̆n2−2 + . . .

+Ad
(
xc̆3
c̆2

) (
ξc̆2

1̆,c̆2
+ Ad

(
xc̆2
c̆1

)
F 1̆

(
Ξ̄ 1̆,1̆

))
. . .
))
. (5.3)

Once connected with the k-th link of subsystem 1 (i.e., the n1-DoF kinematic chain), as

indicated by the gray dashed line in figure 5.1, the twist ξck

0,ck
of the k-th CoM of subsystem

1 will be added to the twist of the first CoM of subsystem 2, represented by the frame Fc̆1 ,

and, consequently, propagated throughout subsystem 2. This will result in1

row1 (Ξ2) = F 1̆

(
Ξ̄ 1̆,1̆

)
+ Ad

(
xc̆1
ck

)
ξck

0,ck

row2 (Ξ2) = ξc̆2
1̆,c̆2

+ Ad
(
xc̆2
c̆1

) (
F 1̆

(
Ξ̄ 1̆,1̆

)
+ Ad

(
xc̆1
ck

)
ξck

0,ck

)
row3 (Ξ2) = ξc̆3

2̆,c̆3
+ Ad

(
xc̆3
c̆2

) (
ξc̆2

1̆,c̆2
+ Ad

(
xc̆2
c̆1

) (
F 1̆

(
Ξ̄ 1̆,1̆

)
+ Ad

(
xc̆1
ck

)
ξck

0,ck

))
...

rown (Ξ2) = ξc̆n2
n̆2−1,c̆n2

+ Ad
(
x
c̆n2
c̆n2−1

) (
ξ
c̆n2−1
n̆2−2,c̆n2−1 + Ad

(
x
c̆n2−1
c̆n2−2

) (
ξ
c̆n2−2
n̆2−3,c̆n2−2 + . . .

+Ad
(
xc̆3
c̆2

) (
ξc̆2

1̆,c̆2
+ Ad

(
xc̆2
c̆1

) (
F 1̆

(
Ξ̄ 1̆,1̆

)
+ Ad

(
xc̆1
ck

)
ξck

0,ck

))
. . .
))
. (5.4)

Rearranging the terms of (5.4), such that all the elements ξck

0,ck
are isolated, leads to

row1 (Ξ2) = F 1̆

(
Ξ̄ 1̆,1̆

)
+ Ad

(
xc̆1
ck

)
ξck

0,ck

row2 (Ξ2) = ξc̆2
1̆,c̆2

+ Ad
(
xc̆2
c̆1

)
F 1̆

(
Ξ̄ 1̆,1̆

)
+ Ad

(
xc̆1
ck

)
ξck

0,ck

row3 (Ξ2) = ξc̆3
2̆,c̆3

+ Ad
(
xc̆3
c̆2

) (
ξc̆2

1̆,c̆2
+ Ad

(
xc̆2
c̆1

)
F 1̆

(
Ξ̄ 1̆,1̆

))
+ Ad

(
xc̆2
c̆1

)
Ad

(
xc̆1
ck

)
ξck

0,ck

...

rown (Ξ2) = ξc̆n2
n̆2−1,c̆n2

+ Ad
(
x
c̆n2
c̆n2−1

) (
ξ
c̆n2−1
n̆2−2,c̆n2−1 + Ad

(
x
c̆n2−1
c̆n2−2

) (
ξ
c̆n2−2
n̆2−3,c̆n2−2 + . . .

+Ad
(
xc̆3
c̆2

) (
ξc̆2

1̆,c̆2
+ Ad

(
xc̆2
c̆1

)
F 1̆

(
Ξ̄ 1̆,1̆

))
. . .
))

+ Ad
(
x
c̆n2
c̆n2−1

)
. . .Ad

(
xc̆3
c̆2

)
Ad

(
xc̆2
c̆1

)
Ad

(
xc̆1
ck

)
ξck

0,ck
. (5.5)

Then, considering that the first half of the expression of Ξ2 is identical to (5.3), which, in

turn, is an expansion of (5.2), and applying the Adn operator (see (5.1)) to simplify the

1Notice the single subscript in Ξ2. This indicate that this is the stacked vector of the total twists at
the CoMs of subsystem 2, originated from all the interactions between the it and its succeeding subsystem.
The final expression of Ξ2, that will be shown shortly, will further clarify this meaning.
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isolated vector containing ξck

0,ck
, equation (5.5) can be further organized as

Ξ2 =



ξc̆1
0̆,c̆1

ξc̆2
0̆,c̆2

ξc̆3
0̆,c̆3
...

ξ
c̆n2
0̆,c̆n2


+



Ad
(
xc̆1
ck

)
ξck

0,ck

Ad
(
xc̆2
ck

)
ξck

0,ck

Ad
(
xc̆3
ck

)
ξck

0,ck
...

Ad
(
x
c̆n2
ck

)
ξck

0,ck


= Ξ2,2 + Adn2

(
X1,2̆

)
ξck

0,ck︸ ︷︷ ︸
Ξ1,2

= Ξ2,2 + Ξ1,2, (5.6)

where Ξ1,2 , Adn2

(
X1,2̆

)
ξck

0,ck
and X1,2̆ =

[
xc̆1
ck

xc̆2
ck

xc̆3
ck
· · · xc̆n2

ck

]T
∈ Sn2 . Thus,

the total twists at the CoMs of subsystem 2 (Ξ2) are a combination of the twists originated

from its own motion (Ξ2,2) and from its interaction of subsystem 1 (Ξ1,2).

Equation (5.6) shows an important aspect of twist propagation between dynamic

systems. There are two ways of performing the process. The direct approach is to

add the twist of the preceding subsystem directly to the first joint of its successor and,

subsequently, let the Newton-Euler formalism’s forward recursion propagate it throughout

the system, which leads to (5.4). Alternatively, however, the new twist can be propagated

independently, through the Adn operation, and then have its effects added to all the

succeeding subsystem’s joints at once, resulting in (5.6). The same reasoning applies to

the backward recursion and wrench propagation.

Albeit arguably not the most straightforward solution to twist/wrench propagation

between subsystems, the latter approach allows a clear separation between the subsystem’s

own dynamics (e.g., Ξ2,2) and the dynamic information that originates from a different

subsystem (e.g., Ξ1,2). This, as will be shown shortly, leads to more compact high-level

dynamic equations of the overall integrated system.

5.1 The dual quaternion modular model composition

strategy

Consider a branched robot composed of a set of s coupled subsystems, such as the one

partially shown in figure 5.2, in which each subsystem i ∈ {1, . . . , s} , S is composed of

ni joints/links, is preceded by a subsystem pi ∈ S, and is immediately succeeded by the

subsystems j ∈ {ji,1, . . . , ji,mi
} , Si. Consider also that the subsystem i is connected to

the subsystem pi at the point ai and to each of the subsystems j at the connection points

bi,j.
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Finally, consider the following definition, which presents a function that maps the

vector of total twists at the CoM of each link of a subsystem to the corresponding vector

of wrenches at its joints. This can be seen as a generalization of the previously defined

function B, given by (4.32), to the set Hn
p .

Definition 5.2. For a subsystem i, the function W i : Hni
p → Hni

p , that gives the wrenches

Γi ∈ Hni
p at the ni joints of robot as a function of the vector Ξi =

[
ξc1

0,c1
· · · ξcni

0,cni

]T
∈

Hni
p of total twists at the CoM of each link, is defined as2

Γi = W i (Ξi) . (5.7)

As discussed in section 4.3, the composed branched robot is an open kinematic tree,

which means that each subsystem can only be preceded by one subsystem but can be

succeeded by several kinematic chains. Therefore, twists generated by the subsystem i will

be propagated to each j ∈ Si and all other subsequent subsystems. On the other hand, the

combined wrenches from all j ∈ Si will affect i and all its preceding subsystems. Therefore,

the wrenches at the joints of each subsystem i ∈ S originate from three sources: the twists

(and their derivatives) at the CoMs of each link in the i-th subsystem; the twist (and its

derivative) at the connection point with ai; and the wrenches at the connection points bi,j .

The wrenches generated at the joints of the i-th subsystem as a result of its own

motion, the motion of its predecessor, and the wrenches from its successors are shown

in figure 5.2. The connection point between pi and the i-th subsystem, denoted by 1 in

figure 5.2, contains the resultant twist generated by all moving joints from the connection

point up to the root node. On the other hand, the connection points j ∈ Si between

subsequent kinematic chains connected to the i-th subsystem, denoted by 2 and 3, contain

the resultant wrenches generated by those systems and all their successors.

Therefore, to calculate the wrenches at the joints of the i-th subsystem, one needs the

information of the twists (and its derivatives) at its CoMs, the twist at the connection

point with its predecessor, and the wrenches at the connection points with its successors.

Thus, the dynamic model of the composed branched robot is given by

Γt =


Γ̄1

Γ̄2
...

Γ̄k

 ∈ H
n
p , (5.8)

2Similarly to what was previously discussed for the function B (see (4.32)), the derivatives of the twists
used to calculate the wrenches can be explicitly calculated in the function Wi.
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pi

i

ji,1

ji,2

Figure 5.2: Wrenches generated at the joints of the i-th subsystem. For each subsystem,
the large gray circles represent joints, solid black lines represent links, and blue circles
with crosses represent CoMs. Subsystem i is represented in pink, subsystem pi is given
in blue, subsystems j ∈ {ji,1, ji,2} , Si are colored in green, and red circles on the red
dashed lines, numbered from 1 to 3, indicate the connection points ai, bi,j, with j ∈ Si,
respectively. Dotted arrows represent the forward propagation of twists, whereas solid
arrows represent the backward propagation of wrenches.
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where n = ∑
ni and

Γi = W i (Ξi) +
∑
j∈Si

Γ̊j,i, with Ξi = Ξpi,i + Ξi,i, (5.9)

in which the function W i is given by (5.7); Ξi,i ∈ Hni
p is the stacked vector of twists at the

ni CoMs of subsystem i ∈ S originated from its own motion; the elements of Ξpi,i ∈ Hni
p

are the twist at the connection point with ai expressed in each of the ni CoMs of subsystem

i, given by

Ξpi,i = Adni

(
X p̆i,i

)
ξăi

0,ăi
, (5.10)

where X p̆i,i =
[
xc1
ăi

. . . x
cni
ăi

]T
∈ Sni is the vector of the relative poses between the

connection point ai and the CoMs of the i-th subsystem and ξăi

0,ăi
is the twist of the

connection point ai given with respect to its own reference frame Făi
; and the elements of

Γ̊j,i ∈ Hni
p are the wrenches of the connection point bi,j, with j ∈ Si, expressed in each of

the η ≤ ni joints of subsystem i that precedes bi,j, given by

Γ̊j,i = Adni

(
X j̄,i

)
ζ
b̄i,j

0,b̄i,j
, (5.11)

in which X j̄,i =
[
X̄ j̄,i 0ni−η

]T
∈ Sni , with X̄ j̄,i =

[
x0
b̄i,j

. . . xη
b̄i,j

]T
∈ Sη being the

vector of the relative poses between the connection point bi,j and each of the η ≤ ni joints

of subsystem i that precede this connection point, 0ni−η ∈ Rni−η ⊂ Hni−η
p is a vector of

zeros, and ζ
b̄i,j

0,b̄i,j
is the wrench at the connection point bi,j given with respect to its own

reference frame Fb̄i,j
.

The proposed modular composition strategy is applicable to two different scenarios.

Strictly speaking, besides its own information, each subsystem i only requires the twist ξăi

0,ăi

and wrench ζ
b̄i,j

0,b̄i,j
of its connection points with other subsystems in the branched structure

(see (5.10) and (5.11)). Therefore, to calculate the joint wrenches of the i-th subsystem,

there is no necessity of knowing the remaining kinematic (e.g., current configuration,

generalized velocities, etc.) or dynamic (e.g., masses, inertia tensors, etc.) properties of

the neighboring subsystems. Thus, even if some subsystems are presented as black boxes,

the joint wrenches of the overall system can still be obtained, as long as we have ξăi

0,ăi

and ζ
b̄i,j

0,b̄i,j
(e.g., through sensor readings). Furthermore, this characteristic of the proposed

modular composition makes it a viable candidate for parallelization.

Alternatively, we could be dealing with the situation described in the beginning of this

chapter, where the dynamic models of the subsystems are known from previous modeling

processes but we do not necessarily have direct access to ξăi

0,ăi
and ζ

b̄i,j

0,b̄i,j
(see figure 5.1).

In this scenario, using the information of the CoM twists of subsystem pi and the joint

wrenches of succeeding subsystem j ∈ Si, it would still be possible to calculate the joint

wrenches of the i-th subsystem. Considering that the subsystem i is connected to the
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point ai at the k-th link of subsystem pi, the twist at the connection point ai, given with

respect to its own reference frame Făi
, can be calculated as ξăi

0,ăi
= Ad

(
xăi
c̆k

)
F k̆

(
Ξ̄ 1̆,k̆

)
(e.g., see (5.6)), and the wrenches at the connection points bi,j, given with respect to

its own reference frame Fb̄i,j
, can be calculated as ζ

b̄i,j

0,b̄i,j
= Ad

(
x
b̄i,j

η̄−1

)
B1̄

(^

Ξ 1̄,n̄j

)
, where

functions F and B, given by (4.32), respectively give the twist at the i-th CoM and the

wrench at the i-th joint of a subsystem. Furthermore, B1̄

(^

Ξ 1̄,n̄j

)
is also given by the first

element of Γ̄j and, consequently, equation (5.9) can be calculated iteratively.

The following example illustrates the application of the proposed modular composition

strategy to derive the dynamic model of the (n1 + n2)-DoF branched mechanism shown in

figure 5.1.

Example 5.1. Consider the two independent serial kinematic chains with n1-DoF and

n2-DoF shown in figure 5.1, whose joint wrenches are given by

Γ1 = W1 (Ξ1) ∈ Hn1
p ,

Γ2 = W2 (Ξ2) ∈ Hn2
p ,

respectively. Now, let us join both kinematic chains connecting the first joint of the

n2-DoF kinematic chain at the point a2 located on the k-th link of the n1-DoF kinematic

chain, as indicated by the gray dashed line in figure 5.1. The reference frames of the

joints of subsystems 1 (the n1-DoF kinematic chain) and 2 (the n2-DoF kinematic chain)

are, respectively, given by Fi and Fĭ, and the reference frame of the connection point a2

between them is given by Fā2 .

From (5.8), the joint wrenches vector Γt of the assembled branched mechanism is given

by

Γt =
 Γ̄1

Γ̄2

 ∈ Hn1+n2
p ,

where the set of succeeding kinematic chains are S1 = {2} and S2 = ∅ and

Γ̄1 = W1 (Ξ1) + Γ̊2,1 = W1

(
Ξ1,1

)
+ Γ̊2,1,

Γ̄2 = W2 (Ξ2) = W2

(
Ξ1,2 + Ξ2,2

)
, (5.12)

in which W1 (Ξ1) = W1

(
Ξ1,1

)
is the vector of wrenches generated at the joints of

subsystem 1 as a result of its own motion, Γ̊2,1 is the vector of wrenches generated by

its interaction with subsystem 2, its successor in the branched structure, and W2 (Ξ2) =
W2

(
Ξ1,2 + Ξ2,2

)
is the vector of wrenches generated at the joints of subsystem 2 by the

combination of its own motion (Ξ2,2) and the motion of subsystem 1 (Ξ1,2), its predecessor

in the branched structure. Moreover,

Ξ1,2 = Adn2

(
X 1̄,2̆

)
ξā2

0,ā2
, (5.13)
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where ξā2
0,ā2

= Ad
(
xā2
ck

)
Fk

(
Ξ̄1,k

)
is the twist at the connection point a2 that connects

the two subsystems, and

Γ̊2,1 = Adn1

(
X 2̄,1

)
ζ
b̄1,2
0,b̄1,2

, (5.14)

where ζ
b̄1,2
0,b̄1,2

= Ad
(
x
b̄1,2

k̆−1

)
B1̆

(^

Ξ 1̆,n̆2

)
is the wrench at b1,2 = a2 (represented in figure 5.1

by the frame Fā2). Furthermore, the pose transformation vectors are given by

X 1̄,2̆ =
[
xc̆1
ā2 xc̆2

ā2 · · · x
c̆n2
ā2

]T
∈ Sn2 ,

which contains the transformation between the frames at the CoMs of each link of subsystem

2 and the frame at the connection point a2, and

X 2̄,1 =
[
X̄ 2̄,1 0n1−η

]T
∈ Sn1 ,

where

X̄ 2̄,1 =
[
x0
b̄1,2

x1
b̄1,2

· · · xk−1
b̄1,2

]
∈ Sk,

which contains the transformation between the frames at each joint of subsystem 1 and the

frame at the connection point b1,2 = a2, and 0n1−k ∈ Rn1−k ⊂ Hn1−k
p is a vector of zeros.

The next section presents a graph representation of the dynamic system assembling

that facilitates the application of the proposed modular composition strategy.

5.2 Graph representation

Each subsystem in a branched robot can be considered as a vertex in a graph, in which

directed, weighted edges represent the propagation of wrenches and twists. The advantage

of such representation is that in addition to visually depicting the model composition, it

provides the joint wrenches from the calculation of the graph interconnection matrix. For

instance, the weighted graph in figure 5.3 represents the (n1 + n2)-DoF assembled branched

mechanism shown in figure 5.1, where dashed edges correspond to the propagation of

twists and solid edges represent the propagation of wrenches.

1

W1

(
Ξ1,1

)

Ξ1,1

2

W2

(
Ξ1,2 + Ξ2,2

)

Ξ2,2

Γ̊2,1

Ξ1,2

Figure 5.3: Graph representation of the (n1 + n2)-DoF assembled branched mechanism
shown in figure 5.1. The n1-DoF and the n2-DoF kinematic chains are labeled as subsystems
1 and 2, respectively.

76



Modular model composition

The interconnection matrix of the graph presented in figure 5.3 is given by

A =
[
Aij

]
,

 W1

(
Ξ1,1

)
Γ̊2,1

0n2 W2

(
Ξ1,2 + Ξ2,2

)  ∈ H(n1+n2)×2
p . (5.15)

The vectorsAij ∈ Hni
p of the partitioned matrixA indicates the propagation of wrenches

from vertex j to vertex i, represented as a solid edge, in which ni is the number of rigid

bodies of the i-th subsystem. The interconnection matrix A is analogous to the adjacency

matrix of the graph. However, instead of simply indicating the existence of a connection

between the vertexes, the element Aij gives the joint wrenches imposed by one subsystem

onto the other. For instance, since subsystem 1 has wrenches generated at its joints as a

result of its own motion, there is a self-loop in vertex 1 in the graph on figure 5.3 with a

solid edge whose weight, as denoted in (5.15), is A1,1 = W1

(
Ξ1,1

)
∈ Hn1

p . Additionally,

because there is no wrench propagation from subsystem 1 to 2, the corresponding weight is

A2,1 = 0n2 ∈ Rn2 ⊂ Hn2
p , in which 0n2 is a vector of zeros and there is no solid edge from 1

to 2 in the graph. Conversely, as there is wrench propagation from subsystem 2 to 1, there

is a solid edge with weight A1,2 = Γ̊2,1 ∈ Hn1
p in the graph. Finally, since subsystem 2 has

wrenches generated at its joints by the combination of its own motion and the motion of

subsystem 1, there is a self-loop in vertex 2 in the graph with a solid edge whose weight is

A2,2 = W2

(
Ξ1,2 + Ξ2,2

)
∈ Hn2

p .

More generally, the graph representation of the complete system composed of s kine-

matic chains is constructed as follows:

1. Create a vertex for each kinematic chain;

2. Add the edges, according to the following rules:

(a) Each vertex j has a dashed edge self-loop weighted by its own vector of twists

Ξj,j;

(b) Except for the vertex representing the root subsystem of the branched kinematic

chain, each vertex j has an incoming dashed edge from the vertex i representing

its predecessor, “weighted” by the vector of twists Ξi,j ∈ Wnj , and a solid edge

self-loop weighted by its own vector of wrenches given by the Wj(Ξj,j + Ξi,j)
function;

i. If the j-th vertex represents the root subsystem of the branched kinematic

chain, then the solid edge self-loop is weighted by Wj(Ξj,j).

(c) Except for the vertex representing the root subsystem of the branched kinematic

chain, each vertex j has an outgoing solid edge that goes to the vertex i

representing its predecessor, “weighted” by the vector of wrenches Γ̊j,i ∈ Wni .
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The proposition below shows how the adjacency matrix fully encapsulates the model of

the complete assembled system.

Proposition 5.1. Let a branched kinematic system be composed of n rigid bodies divided

into a set of s coupled subsystems, each one containing n1, n2, . . ., ns rigid bodies,

respectively. Considering the weighted graph representation proposed in section 5.2, the

vector of joint wrenches Γt of the complete system, given by (5.8), can be found as

Γt =


Γ̄1

Γ̄2
...

Γ̄s

 = A1s ∈ Hn
p , (5.16)

where Γ̄i ∈ Wni is the vector of the total joint wrenches of the i-th subsystem, A ∈ Hn×s
p

is the interconnection matrix, and 1s ∈ Rs is a vector of ones.

Proof. Each element Aij ∈ Wnj of the matrix A represents the edge from vertex j to

vertex i in the interconnection graph and, therefore, the propagation of wrenches from

subsystem j to i. Hence, each row of A contains all the wrenches acting upon the joints

of the i-th subsystem. Therefore, the vector Γ̄i of the total joint wrenches of the i-th

subsystem is given by Γ̄i = ∑s
j=1Aij = ∑s

j=1Aij · 1. Thus, Γtotal = A1s.

The following examples illustrate the application of the weighted graph representation

of a composed system to obtain its dynamic model through the proposition 5.1.

Example 5.2. Consider the (n1 + n2)-DoF branched mechanism shown in figure 5.1,

whose graph representation is given by figure 5.3. The joint wrenches vector Γt of the

complete system is given by

Γt = A12 =
 W1

(
Ξ1,1

)
Γ̊2,1

0n2 W2

(
Ξ1,2 + Ξ2,2

)   1
1

 =
 W1

(
Ξ1,1

)
+ Γ̊2,1

W2

(
Ξ1,2 + Ξ2,2

)  ∈ Hn1+n2
p ,

(5.17)

where the interconnection matrix A is given by (5.15), which is the same result previously

obtained in (5.12).

Example 5.3. Consider connection of a new n3-DoF kinematic chain into the system

described in example 5.2. The new subsystem, labeled as 3, branches from the n2-DoF

serial manipulator (i.e., the subsystem 2), as shown in figure 5.4.

The corresponding graph of the newly-assembled robot is shown in figure 5.5 and has

its interconnection matrix given by

A
′ =


W1

(
Ξ1,1

)
Γ̊2,1 0n1

0n2 W2

(
Ξ1,2 + Ξ2,2

)
Γ̊3,2

0n3 0n3 W2

(
Ξ2,3 + Ξ3,3

)
 ∈ H(n1+n2+n3)×3

p ,
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Figure 5.4: Three serial kinematic chains with n1, n2, and n3 degrees of freedom.

where 0n3 ∈ Rn3 ⊂ Hn3
p is a vector of zeros.

1

W1

(
Ξ1,1

)

Ξ1,1

2

W2

(
Ξ1,2 + Ξ2,2

)

Ξ2,2

Γ̊2,1

Ξ1,2

3

W2

(
Ξ2,3 + Ξ3,3

)

Ξ3,3

Γ̊3,2

Ξ2,3

Figure 5.5: Graph representation of the new (n1 + n2 + n3)-DoF assembled mechanism
composed of three serial kinematic chains shown in figure 5.4.

Following the proposition 5.1, the dynamic model of the newly-assembled system is

given by

Γt = A
′13 =


W1

(
Ξ1,1

)
Γ̊2,1 0n1

0n2 W2

(
Ξ1,2 + Ξ2,2

)
Γ̊3,2

0n3 0n3 W2

(
Ξ2,3 + Ξ3,3

)



1
1
1



=


W1

(
Ξ1,1

)
+ Γ̊2,1

W2

(
Ξ1,2 + Ξ2,2

)
+ Γ̊3,2

W2

(
Ξ2,3 + Ξ3,3

)
 ∈ Hn1+n2+n3

p , (5.18)

where Ξ2,3 ∈ Hn3
p and Γ̊3,2 ∈ Hn2

p are given by (5.10) and (5.11), respectively.

Notice how even though now connected into a more complex structure, the first two

subsystems still have the same graph representation in figure 5.5 that they had before the

addition of the third subsystem (see figure 5.3). Accordingly, notice how the expressions of

(5.18) closely resemble those of (5.17) for the first and second subsystems. It is crucial to

highlight, however, that the numerical value of Γ̊2,1 differs in examples 5.2 and 5.3, since

in the later Γ̊2,1 carries the information of the wrenches propagating from subsystem 3,
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which did not exist in the former example. Nonetheless, from the perspective of the first

subsystem, the numerical value of Γ̊2,1 is not relevant, as it is but a vector of wrenches to

be added to its nominal wrench values.

5.3 Simulations and discussions

Consider the 38-DoF branched robot shown in figure 5.6 and let us divide it into nine

subsystems, as indicated by the colored ellipses. This simulation demonstrates the appli-

cation of the dqNE to obtain the joint torques of this branched robot by means of the

proposed modular composition and graph representation. Additionally, the monolithic

solution implemented in the sv2NE is also presented for comparison. The simulation

setup is the same described in section 4.2.1.5. The robot follows sinusoidal generalized

velocities trajectories q̇d ∈ R38 using V-REP’s standard low-level controllers, have its joint

configurations q ∈ R38, joint velocities q̇ ∈ R38, and joint torques τ ∈ R38 stored, and its

generalized accelerations q̈ ∈ R38 numerically estimated from q̇.

1

2

3
4

5

6

7

8

9

Figure 5.6: A 38-DoF branched robot in the robot simulator V-REP. Different colored
ellipses highlight individual subsystems.

The weighted graph representing the 38-DoF branched robot is shown in figure 5.7,

and its interconnection matrix A ∈ H38×9
p is given by
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A =



W 1 Γ̊2,1 Γ̊3,1 Γ̊4,1 06 06 06 06 06

04 W 2 04 04 04 Γ̊6,2 04 04 04

04 04 W 3 04 04 04 04 04 04

04 04 04 W 4 Γ̊5,4 04 04 04 04

04 04 04 04 W 5 04 04 04 04

04 04 04 04 04 W 6 Γ̊7,6 Γ̊8,6 Γ̊9,6

04 04 04 04 04 04 W 7 04 04

04 04 04 04 04 04 04 W 8 04

04 04 04 04 04 04 04 04 W 9



,

where W i = W i

(
Ξpi,i + Ξi,i

)
, in which i ∈ {1, . . . 9}, p2 = p3 = p4 = 1, p5 = 4, p6 = 2,

and p7 = p8 = p9 = 6, and 06 ∈ R6 ⊂ H6
p and 04 ∈ R4 ⊂ H4

p are vectors of zeros.
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Figure 5.7: Graph representation of the 38-DoF branched robot. The colored nodes follow
the color scheme adopted in figure 5.6.

The joint wrenches ΓdqNE are given by (5.16), that is, ΓdqNE = A138 ∈ H38
p , where

138 ∈ R38 is a vector of ones, and then projected onto the joints motion axes through

(4.27), yielding τ dqNE ∈ R38. Then, the comparison between the joint torque waveforms

τ dqNE and τ , filtered using a 6nd-order low-pass digital Butterworth filter with normalized

cutoff frequency of 10Hz, is made considering the CMCs between them. Moreover, the

joint torques τ sv2NE ∈ R38 are obtained from the sv2NE, filtered using the same low-pass

Butterworth filter, and the CMCs between them and τ are also calculated.

Table 5.1 presents the CMC between the joint torque waveforms obtained through

the different dynamic model strategies (τ dqNE and τ sv2NE) and the values obtained from

V-REP (τ ). The results demonstrate the accuracy of the proposed dqNE modular model

composition and its similarity with the sv2NE. However, it is worth highlighting that the

dqNE performs the modular dynamic modeling of the robot, whereas the sv2NE obtains

the joint torques through a monolithic solution (i.e., without considering the existence of

subsystems or performing modular composition). Furthermore, for qualitative analysis,

figure 5.8 presents the joint torques obtained using dqNE and sv2NE, alongside the V-REP
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values, for the minimum, maximum, and intermediate CMCs found during simulations.

Even for the smallest value of CMC (i.e., 0.9850), the joint torques obtained using the

proposed composition formulation match closely the V-REP values.

Table 5.1: CMC between the joint torque waveforms obtained through the different
dynamic model strategies (τ dqNE and τ sv2NE) and the values obtained from V-REP (τ )
for the 38-DoF branched robot. The closer to one, the more similar the waveforms are.

Method
38-DOF branched robot

min mean std max
dqNE 0.9850 0.9968 0.0037 1.0000
sv2NE 0.9850 0.9968 0.0037 1.0000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-2
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CMC = 0.9850

CMC = 1.0000

CMC = 0.9961

Figure 5.8: Joint torque waveforms of the 38-DoF branched robot. Solid curves correspond
to the V-REP values, whereas dashed curves correspond to the values obtained using the
dqNE and dot-dashed curves correspond to the values obtained using the sv2NE for the
joint torque waveforms of the eleventh (CMC = 0.9850), sixth (CMC = 1.0000), and third
(CMC = 0.9961) joints, respectively. Since both the model strategies (dqNE and rtNE)
obtained almost identical results, their joint torque waveforms overlap in the graph.

5.4 Conclusions

This chapter proposed a modular model composition based on the dual quaternion Newton-

Euler formalism. This strategy is applicable even if some subsystems are regarded as black

boxes, requiring only the twists and wrenches at the connection points between different

subsystems. Furthermore, the framework presented in section 5.1 is general, has a high

level of abstraction, and thus can be instantiated into different representations, such as

spatial algebra (Featherstone, 2008) or the Lie algebra se (3) (Murray et al., 1994), as

long as the representations capture the high-level operations described in the section (see
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equation (5.9)). Moreover, section 5.2 presented a unified graph representation of the

system that, in addition to visually depicting the model composition, provides the joint

wrenches from the calculation of the graph interconnection matrix.
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6
Conclusion and Future Works

This thesis has presented a study of robot dynamic modeling using dual quaternion formu-

lations. A novel quaternionic inertia tensor has been proposed, allowing the description of

the dynamic properties of rigid bodies exclusively with operations inside the dual quater-

nion algebra; thus, overcoming one of the deterrents on the applications of this algebra to

dynamic modeling (Yang, 1967, 1971; Pennock & Yang, 1983; Shoham & Brodsky, 1993;

Miranda de Farias et al., 2019a).

Inspired by previous developments in kinematic modeling (Adorno, 2011) and classic

approaches based on three-dimensional vectors (Luh et al., 1980), the Newton-Euler

iterative algorithm has been rewritten using dual quaternions. In this unified formulation,

twists replace the decoupled representation of linear and angular velocities, whereas

wrenches unify forces and torques into a single element.

Simulations have demonstrated the applicability of the dual quaternion Newton-Euler

formalism to the dynamic modeling of branched robots and its accuracy when compared

to state-of-the-art libraries (Featherstone, 2008; Corke, 2017). One of the main limitations

of the proposed strategy lies in its computational cost, a problem that, nonetheless, was

outside the scope of this thesis. An initial step to optimize the current implementation

would be to consider that some operations involve quaternions instead of dual quaternions.1

The dynamic modeling of branched robots using modular composition (McPhee, 1998;

McPhee et al., 2004; Jain, 2012; Matarazzo Orsino & Hess-Coelho, 2015; Orsino, 2017;

Hess-Coelho et al., 2021) has also been incorporated into the dual quaternion formulation.

1Initial analyses show that this would result in a cost reduction of over a half for some calculations.
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A graph representation of the system further simplifies obtaining the joint wrenches of the

assembled robot. Intermediate subsystems can be black boxes or have dynamic models

obtained with different strategies or representations. Simulations have demonstrated

equivalent accuracy of the proposed formalism to monolithic solutions (Featherstone,

2008), as expected.

Future works

Thus far, only the expression of the twist for holonomic mobile bases has been deduced.

Future works will need to formalize the expressions of a broader range of bases. Ap-

pendix A presents an initial study of how this could be done considering the nonholonomic

constraints directly during the deduction of the twits for differential-drive mobile bases.

This process of modeling new mobile bases is equivalent to including new joint types in

table 4.1. Nonetheless, and more interestingly, future works should address the inclusion

of nonholonomic constraints into the dynamic models directly as dual quaternion algebra

elements.

Insofar as this thesis has presented the dynamic modeling of branched robots using dual

quaternion algebra, hence enabling the direct integration between the low-level dynamic

model and higher-level algorithms based on dual quaternions, no such applications have

been demonstrated. Future works are required to address the development of control

strategies that will use the proposed dynamic models. An early study in this regard is

presented in appendix B, which consists of a wrench control strategy that takes advantage

of the recurrence equations of the dual quaternion Newton-Euler formalism. Furthermore,

a simple application for end-effector position control based on potential fields (Khatib,

1986) illustrates the method.

Despite exploring the Newton-Euler formalism using dual quaternion algebra, this

thesis has not ventured into other dynamic modeling strategies. Going in this direction,

appendix C presents some initial thoughts on the dual quaternion Euler-Lagrange equation,

which requires more development.

Finally, the formalism presented in this thesis is applicable to branched robots com-

posed of rigid links. That is, rigid body mechanisms that form an open kinematic tree.

Future works are required to extend the dual quaternion Newton-Euler and the modular

composition strategy to robots with kinematic loops (e.g., parallel robots) and soft robotics

(i.e., robots with flexible links).
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A
Differential-drive mobile bases

Consider a differential-drive mobile base, such as, for instance, the one of the mobile

manipulator shown in figure A.1, whose coordinates are given by (x, y, φ), where φ ∈ [0, 2π)
is its angle of rotation around the vertical axis. The goal is to find the CoM twist of this

differential-drive mobile base, which will then be considered in F1

(
Ξ̄1,1

)
for (4.33).

Figure A.1: Little John, a nonholonomic mobile manipulator (courtesy of MACRO Research
Group).

To that end, consider that the mobile base’s CoM reference frame is given by the frame

Fd, which is located at the intersection of the wheel axis and the axis of symmetry, and

displaced by d ∈ R along the x-axis of Fr, as shown in figure A.2.
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Fr

Fd

x′

y′

x”

y”

d

φ

Figure A.2: Representation of a differential-drive mobile base.

The pose of the nonholonomic mobile base with respect to the inertial frame is given

by

x0
r = r0

r + ε
1
2p

0
0,rr

0
r,

where r0
r = cos (φ/2) + k̂ sin (φ/2) and p0

0,r = xı̂+ y̂. Furthermore,

xrd = 1 + ε
1
2p

d
r,d,

with pdr,d = dı̂. Thus,

x0
d = x0

rx
r
d, (A.1)

where

r0
d = cos (φ/2) + k̂ sin (φ/2) (A.2)

and

p0
0,d = (x+ d cos (φ)) ı̂+ (y + d sin (φ)) ̂. (A.3)

The time derivative of (A.2) is given by

ṙ0
d = − φ̇2 sin (φ/2) + k̂

φ̇

2 cos (φ/2) . (A.4)

Analyzing (A.2) and (A.4), and considering the fact that

ṙ0
d = 1

2ω
0
0,dr

0
d,
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the angular velocity of the mobile base, with respect to F0, is given by

ω0
0,d = φ̇k̂. (A.5)

Additionally, the time derivative of (A.3) is given by

ṗ0
0,d =

(
ẋ− dφ̇ sin (φ)

)
ı̂+

(
ẏ + dφ̇ cos (φ)

)
̂. (A.6)

From (A.5), (A.6) and (A.3), the twist ξ0
0,d is given by

ξ0
0,d = ω0

0,d + ε
(
ṗ0

0,d + p0
0,d × ω0

0,d

)
. (A.7)

However, this twist is given with respect to the inertial frame, whereas the robot’s inertia

tensor is usually given with respect to a reference frame attached to its body. Thus, the

twist given by (A.7) needs to be changed from F0 to Fd. Considering (3.11), this is given

by

ξd0,d = Ad
(
xd0
)
ξ0

0,d

= ωd0,d + ε
(
ṗd0,d

)
. (A.8)

Furthermore, the time derivative ξd0,d is given by (3.17), yielding

ξ̇d0,d = Ad
(
xd0
)
ξ̇0

0,d +
(((((((((((
ξd
d,0 ×

(
Ad

(
xd0
)
ξ0

0,d

)
= ω̇d0,d + ε

(
p̈d0,d + ṗd0,d × ωd0,d

)
,

since ξd
d,0 ×

(
Ad

(
xd0
)
ξ0

0,d

)
= −ξ0

0,d × ξ
0
0,d = 0.

The dynamical model of the differential-drive mobile manipulator is then given by

(4.33) and (4.34), in which F1

(
Ξ̄1,1

)
is given by (A.8).

A.1 Simulations and discussions

The simulation environment is the same described in section 4.2.1.5. The dqNE is applied

to obtain the generalized forces of the differential-drive mobile robot Pioneer shown in

figure A.3, considering the twist expressions (4.33) and (4.34). The robot is actuated with

arbitrary wheel torques τw =
[
τl τr

]T
∈ R2, in which τl and τr are respectively the left

and right wheel torques, have its generalized configurations q ∈ R3 and velocities q̇ ∈ R3

stored, and its generalized accelerations q̈ ∈ R3 numerically estimated from q̇.

The generalized forces τ dqNE ∈ R3 are obtained from the dqNE after projecting the

mobile base wrench onto the motion axes through (4.27) (see (4.37)). Moreover, the

generalized forces τ a ∈ R3 are calculated from the analytical solution given by (Fierro &
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Figure A.3: Differential-drive mobile robot Pioneer in the robot simulator V-REP.

Lewis, 1997)

M (q) qd + c (q, q̇) = τ a,

where

M (q) =


m 0 md sin (φ)
0 m −md cos (φ)

md sin (φ) −md cos (φ) i


is the inertia matrix, in which m is the mass of the robot, φ its rotation angle, i = i33 +md2,

where i33 is the element of the third row and third column of the inertia tensor of the

robot, and d ∈ R is the displacement along the x-axis of Fr (see figure A.2); and

c (q, q̇) =


mdφ̇2 cos (φ)
mdφ̇2 sin (φ)

0


is the Coriolis and centripetal forces vector.1 Finally, both τ dqNE and τ a are filtered,

using a 6nd-order low-pass digital Butterworth filter with normalized cutoff frequency of

10Hz, and the CMCs between them are calculated and presented in table A.1. The results

indicate that both models are similar, which is qualitatively shown in figure A.4.

Table A.1: CMC between the generalized force waveforms τ dqNE and τ a of the differential-
drive mobile robot Pioneer. The closer to one, the more similar the waveforms are.

Method
CMC for the differential-drive mobile robot Pioneer

min mean std max
dqNE 1.0000 1.0000 1.6385× 10−05 1.00000

1The simulation considers d = 0.001 and reads from V-REP the values of m = 16Kg, i33 = 2.0906, and
φ = φ (t), with φ (t) given by the simulation trajectory, which is generated by the Pioneer being actuated
with constant wheel torques of τl = 5Nm and τr = 8Nm for 2000 iterations.
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Figure A.4: Generalized force waveforms for the differential-drive mobile robot Pioneer.
Solid curves correspond to the analytical solution τ a, whereas dashed curves correspond
to the generalized force waveforms τ dqNE.
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Dynamic control

Although the objective of this thesis is to propose dynamic models for robotic systems based

on dual quaternion algebra, as discussed in chapter 1, one of the motivations for it is to find

suitable models that allow the development of dual quaternion control strategies without

the need for intermediate mappings, which usually introduce mathematical artifacts, such

as algorithmic singularities and discontinuities. In this regard, section B.1 presents a novel

wrench control architecture based on one of the main contributions of this thesis, the

dual quaternion Newton-Euler formalism presented in chapter 4. Therefore, to give the

proposed controller a proper context, this section presents the state of the art in force

control strategies based on the recursive Newton-Euler algorithm.

The recursive Newton-Euler algorithm (Luh et al., 1979) is well known and widely used

by roboticists as a highly efficient tool for robot modeling (Spong et al., 2006; Siciliano

et al., 2009; Felis, 2017). In control applications, however, the usage of the Euler-Lagrange

model is far more common (Murray et al., 1994; Siciliano & Khatib, 2008). The Newton-

Euler algorithm, if used, is applied either to obtain the canonical Euler-Lagrange equations

(Ploen, 1999; De Luca & Ferrajoli, 2009) or as an intermediate step to find the desired

joint torques given the desired joint positions, velocities, and accelerations (Lee & Chung,

1984). Some researches, nonetheless, have been trying to explore the recursive nature of

the Newton-Euler formulation directly in the control scheme.

Going in that direction, Walker (1988) uses Featherstone’s spatial algebra (Featherstone,

1983) to model a robot that may contain closed kinematic loops and proposes an adaptive

control strategy that estimates mass-related parameters and viscous friction coefficients
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of the robot. First, the author uses the desired position, velocity, and acceleration of

the independent joints to calculate the corresponding values of the unconstrained joints.

Then, he uses those values on the forward recursion of the Newton-Euler algorithm so that

the backward recursion equations, which include the equations to update the parameter

estimates, yield the control input joint torques.

Walker’s (Walker, 1988) strategy is further explored by Walker et al. (1989) to propose

an adaptive compliant control to solve the problem of two robotic manipulators carrying an

object of unknown mass while following the desired position and internal force trajectory.

Jone Hann Jean & Li-Chen Fu (1993) also apply that structure to design an adaptive hybrid

controller for constrained robots. Their control scheme can track both joint positions and

constrained forces. To deal with the latter, however, they characterize them in terms of a

multiplier function of generalized joints forces. The authors then insert those values into

the backward recursion equations. More recently, Hanlei (2010) has proposed a similar

strategy to perform a composite adaptation, where, as Jone Hann Jean & Li-Chen Fu

(1993), he uses on the backward recursion forces given on each joint reference frame.

The wrench control strategy presented in section B.1 explores the recursive aspect of

the dual quaternion Newton-Euler formulation to enable reasoning directly at the task level,

hence simplifying the control problem. Moreover, the proposed control formulation allows

the high-level definition of desired wrenches at arbitrary points of the robot. Furthermore,

the dual quaternion algebra ensures the coupled treatment of forces and torques, whose

desirability was previously discussed in this chapter.

B.1 Wrench control

The dual quaternion Newton-Euler formalism can be seen as the function N : Rn ×Rn ×
Rn → Hn

p given by

Γ = N (q, q̇, q̈) ∈ Hn
p , (B.1)

where n is the number of rigid bodies in the kinematic chain, Γ ∈ Hn
p is the vector of

wrenches acting on the robot joints, q ∈ Rn is the vector of joint configurations, and

q̇ ∈ Rn and q̈ ∈ Rn are its first and second-order time derivatives, respectively.

One direct application of this method in control is to use it to find the gravity

compensation torques for a n-DOF robot. To do so, one has to set the joint velocities

q̇ ∈ Rn and the joint accelerations q̈ ∈ Rn as vectors of zeros 0n ∈ Rn, such that

Γg = N (q,0n,0n) ∈ Hn
p , (B.2)

where Γg ∈ Hn
p is the vector of joint wrenches. That is, the joint wrenches Γg will keep

the robot on its current configuration q and with joint accelerations equal to 0n; thus,

compensating the gravity torques.
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Let us consider a more general application of the dual quaternion Newton-Euler

formalism in control. The wrenches returned by (B.1) are given by the recurrence equation

(4.26). For the n-th joint, it is considered that there is no wrench acting on the end-effector

of the robot (i.e., ζn
n

= 0) and the method works as previously described. Let us now assume

a desired end-effector wrench ζn
d
∈ Hp and modify (4.26) to consider ζn

n
= ζn

d
. To simplify

further explanations, consider the function N̄
(
q, q̇, q̈, ζn

d

)
: Rn × Rn × Rn ×Hp → Hn

p ,

such that

Γ = N̄
(
q, q̇, q̈, ζn

d

)
.

That is, revisiting (B.2), Γg = N (q,0n,0n) = N̄ (q,0n,0n, 0) .
Let us now assume, however, that we want to impose an arbitrary desired end-effector

wrench ζn
d
∈ Hp. In this scenario, consider the joint wrenches

Γu = N̄
(
q,0n,0n, ζnd

)
= Γg + Γζn

d
, (B.3)

where Γζn
d
∈ Hn

p is the vector of wrenches generated by the backward propagation of the

end-effector wrench ζn
d

throughout the kinematic chain. In other words, the vector Γζn
d

is

formed by the projection of ζn
d

into all the robot joints. Naturally, once in the presence of

the gravity acceleration, and disregarding numerical and modeling errors, the wrenches

Γg will cancel themselves out with the wrenches caused by the gravity. Thus, resulting

in Γu = Γζn
d
, which, by construction, are the joint wrenches that impose any arbitrarily

desired end-effector wrench ζn
d
.

It is worth highlighting that the definition of the desired wrench on the end-effector

was arbitrary and made to simplify the explanation of the method. The proposed strategy

may be used to impose a desired wrench at any arbitrary point of the robot (e.g., arms or

legs for a humanoid climbing on a surface).

B.1.1 End-effector position control based on potential fields

Consider an attractive force given by (Khatib, 1986)

fna = −kp (pn − pnd)− kvṗn, (B.4)

where kp ∈ R and kv ∈ R are positive real gains and pnd ,p
n ∈ Hp are, respectively, the

desired and the current end-effector positions expressed in the end-effector frame. This

force is then set as the desired end-effector wrench as ζn
d

= fna and the control input is

given by

Γu = N̄
(
q,0n,0n, ζnd

)
︸ ︷︷ ︸

Γζn
d

+Γdiss, (B.5)
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with Γdiss = −kdiss
[
ε
(
q̇1k̂

)
· · · ε

(
q̇nk̂

) ]T
∈ Hn

p , in which kdiss ∈ R is a positive real

gain and q̇ =
[
q̇1 · · · q̇n

]
∈ Rn is the vector of joint velocities.

The vector Γζn
d

is, by construction, the vector of wrenches that imposes the desired end-

effector wrench ζn
d

= −kp (pn − pnd)− kvṗn. Furthermore, Γdiss is a vector of dissipative

joint wrenches that is necessary since the robot is redundant to the task of position

regulation (i.e., it has more than 3-DOF), which means that even after end-effector

convergence it is still possible to have non-zero joint velocities. In other words, if we had

only Γu = Γζn
d
, the robot would be free to present joint motions at the null space of the

solution. As this behavior is undesirable in most situations, the term Γdiss ensures that

the robot remains still at the desired end-effector position.

The formalization of the proposed control strategy is still an open problem. For

instance, the proof that closed-loop system composed of (B.1) under (B.5) is stable for

the end-effector position regulation is yet to be presented. Furthermore, equation (B.5)

considers the application of the input wrench Γu on the actuators of the robot, whereas in

reality the joint inputs are given by the projected values of the joint wrenches onto their

motion axes through (4.27).

Nonetheless, the next section presents a simulation demonstrating the application of

(B.5) on the the 6-DOF JACO robotic arm.

B.1.2 Simulations and discussions

The proposed control strategy is used to perform the end-effector control of the 6-DOF

JACO robotic arm shown in figure 4.3. The initial and desired end-effector position are

p = 0.2828ı̂+ 0.1177̂+ 0.6855k̂ and pd = −0.4619ı̂− 0.0675̂+ 0.6277k̂, respectively. The

controller gains are kp = 30, kv = 15, and kdiss = 0.1. Considering those values, the joint

wrenches Γu from (B.5) are projected onto the joints motion axes through (4.27) and sent

to V-REP as input torques. The simulation runs in synchronous mode and stops after

the norm of the time derivative of the error remains lower than 10−5 for 2000 consecutive

iterations.

Fig B.1 presents the norm of the error of the end-effector position, whereas Fig B.2

presents the input joint torques. Although the system converges to the desired end-effector

position, there is a steady-state error that, nonetheless, could be removed with the addition

of an integral term on the control law (B.5). Moreover, the average execution time of the

controller is 40.87 ms. This value is expected to decrease to around 1.02 ms in a C++

implementation (Adorno & Marques Marinho, 2021), thus allowing application on a real

JACO.
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Figure B.1: Norm of the end-effector position error of the 6-DOF JACO robotic arm.

Figure B.2: Input joint torques Γu of the 6-DOF JACO robotic arm.
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C
Dual quaternion Euler-Lagrange

Formulation

Equation (3.1) presents the canonical form of the classic Euler-Lagrange model. Accordingly,

a similar dual quaternion Euler-Lagrange (dqEL) equation is given by

M (q) q̈ +C (q, q̇) +G (q) = Γ, (C.1)

where Γ ∈ Hn
p is the vector of joint wrenches, n is the number of rigid bodies in the

kinematic chain, and M ∈ Hn
p ×Hn

p , C ∈ Hn
p , and G ∈ Hn

p are given by

G (q) = N (q,0,0) ,

C (q, q̇) = N0 (q, q̇,0)−G (q) , (C.2)

coli (M (q)) = N0 (q,0, coli (I))−G (q) ,

where N is given by (B.1), coli (·) extracts the i-th column of a given matrix, I ∈ Rn×n is

the identity matrix, q̇ ∈ Rn is the first time derivative of the vector of joint configurations

q ∈ Rn, and 0 ∈ Rn is a vector of zeros.
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Dual quaternion Euler-Lagrange Formulation

C.1 Simulations and discussions

This simulation validates the dual quaternion Euler-Lagrange equation on the 7-DOF

KUKA LWR robotic arm. A set of 1000 random configurations (q, q̇, and q̈) are generated

and the left side of (C.1) is calculated considering the matrices given by (C.2), resulting

on the joint wrenches ΓdqEL. Furthermore, the dual quaternion Newton-Euler formalism is

used to obtain the joint wrenches ΓdqNE. Then, the wrench error ΓE = ΓdqNE − ΓdqEL is

calculated and have its Euclidean norm τe = norm (vec8 (ΓE)) stored.

Table C.1 presents the mean (mean (τe)) and the variance (var (τe)) of the error τe for

each joint of the 7-DOF KUKA LWR robotic arm, indicating a high similarity between

both modeling formalisms.

Table C.1: The mean and the variance of the error τe comparing the joint wrenches ΓdqEL
generated by the dqEL and the joint wrenches ΓdqNE obtained from dqNE for a set of 1000
randomly generated configurations (q, q̇, and q̈) for the 7-DOF KUKA LWR robotic arm.

Joint number mean (τe) var (τe)
1 6.605303× 10−14 1.741932× 10−27

2 5.491231× 10−14 1.234560× 10−27

3 4.508591× 10−14 8.430729× 10−28

4 3.272564× 10−14 4.812145× 10−28

5 2.405790× 10−14 2.775287× 10−28

6 1.235095× 10−14 7.839918× 10−29

6 1.987228× 10−15 2.114408× 10−30

A potential application of the dual quaternion Euler-Lagrange to control would be to

use it to find the joint accelerations of the robot, which are calculated as

q̈ = (M (q))−1 (Γ−C (q, q̇)−G (q)) . (C.3)

However, there are a few questions here that are yet to be answered. First, the inversion

of dual quaternion matrices is not properly defined; thus, the solution of (M (q))−1 is

unclear. Second, even if such inversion is obtainable, all elements on the right side of (C.3)

are pure dual quaternions, which leads to q̈ ∈ Hn.1 Obtaining physically meaningful real

values for q̈ is still an open problem.

1It is straightforward to demonstrate that the multiplication of elements of Hp results in elements of
H, which directly extends to Hn

p and Hn.
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D
Simulation Details

For the simulations presented in this thesis, the joint velocities q̇ are obtained from the

V-REP and used to calculate the joint accelerations q̈ by means of numerical differentiation

based on Richardson extrapolation (Gilat & Subramaniam, 2014, p. 322). To illustrate

the process, figure D.1b shows the joint velocity of the third joint of the 6-DoF JACO

robotic arm (see figure 4.3) obtained from the V-REP from a simulation where the robot

follows sinusoidal joint velocity trajectories q̇d ∈ R6 using V-REP’s standard low-level

controllers. When numerically differentiated, this joint velocity has its noises amplified,

thus resulting in the noisier joint acceleration presented in figure D.1b. Naturally, the joint

torques obtained from a dynamic modeling strategy using those noise joint velocities and

accelerations are equally noise, such as the unfiltered joint torque of the third joint of the

6-DoF JACO robotic arm shown in figure D.1c, which was arbitrarily obtained from the

dqNE. For this reason, the joint torques/accelerations obtained from the dqNE, the rtNE,

and the sv2NE are always filtered with a discrete low-pass Butterworth filter before being

compared with the—also filtered—results obtained from the V-REP.

Alternatively to the procedure adopted in this thesis, the joint velocities q̇ could have

been filtered before being used to calculate the joint accelerations q̈. Then, the obtained

joint accelerations q̈ could also have been filtered. Finally, the filtered q̇ and q̈ could have

been given to all the different dynamic modeling strategies. The results of such approach,

using a 2nd-order low-pass digital Butterworth filter with normalized cutoff frequency of

500Hz and 100Hz to respectively filter the joint velocities q̇ and the joint accelerations q̈,

are shown in figure D.2. Although less noisier than the joint torque presented in figure D.1c,
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Simulation Details
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(a) Unfiltered joint velocity waveform of the third joint of the 6-DoF
JACO robotic arm obtained from the V-REP.
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(b) Unfiltered joint acceleration waveform of the third joint of the 6-DoF
JACO robotic arm obtained from the numerical differentiation of the
unfiltered joint velocity shown in figure D.1a.
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(c) Unfiltered joint torque waveform of the third joint of the 6-DoF
JACO robotic arm obtained by the dqNE considering the unfiltered
joint velocity and the joint acceleration given in figures D.1a and D.1b,
respectively.

Figure D.1: Unfiltered joint velocity, acceleration, and torque waveforms of the third joint
of the 6-DoF JACO robotic. Figure D.1c presents the unfiltered joint torque obtained by
the dual quaternion Newton-Euler formalism considering the unfiltered joint acceleration
given in figure D.1b, which was obtained from the numerical differentiation of the unfiltered
joint velocity shown in figure D.1a.
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Simulation Details

the joint torque shown in figure D.2c would still requires filtering. Thus, this thesis adopted

the first approach described in this appendix, as it only applies the filter once, to the final

results of joint torques/accelerations.
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(a) Filtered joint velocity waveform of the third joint of the 6-DoF JACO
robotic arm obtained from the V-REP.
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(b) Filtered joint acceleration waveform of the third joint of the 6-DoF
JACO robotic arm obtained from the numerical differentiation of the
filtered joint velocity shown in figure D.2a.
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(c) Unfiltered joint torque waveform of the third joint of the 6-DoF JACO
robotic arm obtained by the dqNE considering the filtered joint velocity
and the joint acceleration given in figures D.2a and D.2b, respectively.

Figure D.2: Filtered joint velocity and acceleration and unfiltered torque waveforms of the
third joint of the 6-DoF JACO robotic. Figure D.2c presents the unfiltered joint torque
obtained by the dual quaternion Newton-Euler formalism considering the filtered joint
acceleration given in figure D.2b, which was obtained from the numerical differentiation of
the filtered joint velocity shown in figure D.2a.
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