
Antônio Horta Ribeiro

Learning nonlinear differentiable models for signals and systems:
with applications

Brazil

2020

Antônio Horta Ribeiro

Learning nonlinear differentiable models for signals and systems:
with applications

Thesis presented to the Universidade Federal de Mi-
nas Gerais’ Postgraduate Program in Electrical En-
gineering as requirement for obtaing the Doctoral
degree in Electrical Engineering.

Universidade Federal de Minas Gerais – UFMG

Faculdade de Engenharia

Programa de Pós-Graduação em Engenharia Elétrica – PPGEE

Supervisor: Luis Antonio Aguirre
Co-supervisor: Thomas B. Schön

Brazil

2020

Antônio Horta Ribeiro

Aprendendo modelos não-lineares diferenciáveis para sinais e sistemas:
com aplicações

Tese apresentada ao Programa de Pós-Graduçao em
Engenharia Elétrica da Universidade Federal de Mi-
nas Gerais como requisito para a obtenção do grau
de Doutor em Engenharia Elétrica.

Universidade Federal de Minas Gerais – UFMG

Faculdade de Engenharia

Programa de Pós-Graduação em Engenharia Elétrica – PPGEE

Orientador: Luis Antonio Aguirre
Co-orientador: Thomas B. Schön

Brazil

2020

Acknowledgements

I have learned a great deal during my time as a Ph.D. student, and I would like to acknowledge the
support and encouragement I have received.

To Luis Aguirre, who has been with me since my time as an undergraduate, having introduced me both
to academia and science. Thank you for encouraging my growth and teaching me so much.

To Thomas Schön, who welcomed me to his vibrant research group in Uppsala. It was a pleasure working
on such diverse and exciting projects with you. Thomas had a significant influence on the way I choose
scientific problems to study and the way I organize and communicate my ideas. And, for all these things,
I am very grateful.

To my brother Manoel, who has been such a friend along the way. And whose influence was soo relevant
for the development of this thesis. Ranging from the choice of the group, I would end up spending one
year with, to discussions that would change my mind about so many topics.

To my Dad, for showing me all the love and being a role model for me. It was very exciting working in
the automated analysis of the electrocardiogram with you.

To my friends and colleagues in Uppsala, for making my time in Sweden so great and for making me feel
so welcome. I would like to sincerely thank my co-authors Koen, Jack, Carl Andersson, and Niklas. It
was a pleasure working with all of you. My office mates Carl Jidling, Ludvig, Koen, David, Fredrik, for
creating such a great office environment. And, also, Helena, Anna, Fredrik, Andreas, Johan, Johannes,
Pelle, Riccardo, Bengt, Daniel and all others for the friendship and hospitality. Working in such a vibrant
group was essential for my formation.

To the friends and colleagues from CPH at UFMG: Arthur, Leandro, Leo, Petrus, Felipe, and Joao, thank
you for creating such a friendly workplace.

To my colleagues from the CODE group: Gabi, Paulo, Derick, Jessica, Emily, and all others. I sincerely
thank you all for the collaboration. I was very happy to be part of such a group.

To the entire Scipy community, for introducing me to open source development. A special thanks to Matt,
Nikolay, and Ralf for mentoring me. And to Google for sponsoring me through Google Summer of Code
program.

To the Brazilian taxpayers, for financially supporting me through CAPES and CNPq on which I have
subsisted for the past four years, and which made my staying in Uppsala possible.

To my Mother, for showing me all love and support in the world and for always believing in me.

To my beloved girlfriend, Nicolle, for sweeping me off my feet and for being with me every day, even when
I was far away.

“Someone who breaks a puzzle because they cannot solve it
has left the Lethani. I am not such one.”

The Wise Man’s Fear
Patrick Rothfuss

Abstract

Building empirical models from data is of fundamental importance in engineering, and pushing the
boundaries of current engineering technology requires us to model and understand nonlinear systems.
In this thesis, nonlinear differentiable models and its applications are studied. This class of models has
gained traction in machine learning tasks with the introduction of deep learning. Indeed, deep models
of stacked differentiable components have recently achieved super-human performance on several tasks,
including computer games, image classification, and medical diagnosis. The application of nonlinear
differentiable models is studied for modeling signals and systems both for engineering and machine
learning applications. One central question is the role of recurrence and the pros and cons of recurrent
and feedforward models. The question is approached from more than one angle: 1) by studying the effect
of recurrence in neural networks in terms of robustness to noise, computational cost, and convergence;
2) by analyzing the smoothness of the cost function in nonlinear system identification problems and its
relation to the model internal dynamics – and proposing the use of a technique called multiple shooting
for improving the cost-function smoothness; and, 3) by investigating the interplay between the internal
dynamics, the attractors and the expressiveness of the model in deep recurrent neural networks. The more
applied part of the thesis consists of the use of deep neural networks to solve complex tasks and to model
nonlinear behavior from real data. Data from the Telehealth Center of Minas Gerais is used to train a
deep neural network capable of identifying abnormalities in the electrocardiogram exam with performance
superior to the medical residents in the studied scenario. Also, a deep neural network is used for modeling
an electronic oscillator and an F-16 aircraft using data from ground vibration experiments, obtaining
competitive results in both cases.

Key-words: Nonlinear systems, differentiable models, deep learning, system identification, machine
learning

Resumo
Construir modelos empíricos a partir de dados é de fundamental importância em engenharia e, além disso,
o entendimento e a capacidade de modelar sistemas não lineares são necessários para o desenvolvimento de
tecnologias de fronteira. Nesse trabalho, modelos diferenciáveis não lineares e suas aplicações são estudados.
Esta classe de modelos tem ganhado força na área de aprendizado de máquina com a introdução do
aprendizado profundo. De fato, modelos profundos de componentes diferenciáveis alcançaram, recentemente,
desempenho superior ao humano em diversas tarefas, incluindo a competição em jogos digitais, classificação
de imagens e diagnóstico de exames médicos. A aplicação de modelos não lineares diferenciáveis é estudada
para modelar sinais e sistemas, tanto no contexto de aplicações em engenharia quanto no contexto de
aprendizado de máquina. Uma questão central é o papel da recorrência, e os prós e os contras de modelos
recorrentes. A questão é abordada de mais de um ângulo: 1) estudando o efeito da recorrência em redes
neurais em termos da robustez a ruído, custo computacional e convergência; 2) analisando a suavidade
da função de custo na identificação de sistemas não lineares e a relação com a dinâmica interna do
modelo – e propondo o uso da técnica de múltiplos tiros para melhorar a suavidade da função custo;
e, 3) investigando a relação entre dinâmica interna, atractores e expressividade do modelo em redes
neurais recorrentes. A parte mais aplicada desta tese consiste no uso de redes neurais profundas para
resolver tarefas complexas e modelar comportamento não linear a partir de dados reais. Dados do Centro
de Telessaúde do estado de Minas Gerais são usados para treinar uma rede neural capaz de identificar
abnormalidades no eletrocardiograma com desempenho superior ao de residentes de medicina no cenário
estudado. Além disso, uma rede neural profunda é usada para modelar um oscilador eletrônico e uma
aeronave F-16 usando dados de um ensaio de vibrações, obtendo resultados competitivos nos dois casos.

Palavras-chave: Sistemas não lineares, modelos diferenciáveis, aprendizado profundo, identificação de
sistemas, aprendizado de máquina

List of Figures

Figure 1.1 – (Convergence rate) We show the first 10 points of sequences that converge toward zero. The sequence
(0.7)n converges linearly, n−n converges superlinearly and, (0.7)2n converges quadratically. 38

Figure 1.2 – (Scaling) We show the contour plot and the first iterations of steepest descent algorithm with fixed
step size (in red) . Figures (a) to (c) display the contour plot for the cost function V (θ1, θ2) = θ2

1 + rθ2
2 ,

which has a global minimum at (0, 0). We start the steepest descent algorithm from the initial point
(2, 2) and show the first 10 iterations. Figures (d) to (f) display the contour plot for the cost function
V (θ1, θ2) = (1− θ1)2 + r(θ2 − θ2

1)2, which has a global minimum at (1, 1). The function is a known as
the Rosenbrock function. We start the steepest descent algorithm from the initial point (−1, 1) and show
the first 100 iterations. In both cases, r is used to adjust the scaling of the problem, with large values of
r corresponding to ill-scaled problems. The fixed step size of the optimization algorithm is fixed to 0.1/r
to avoid divergence. 39

Figure 1.3 – (Computational graph) Graph containing the partially ordered elementary operations involved in the
computation of f , defined as in (1.44). The leafs of the computational graphs are the nodes in red and
correspond to the function inputs. 41

Figure 2.1 – (Causal convolutions) Simplified diagram illustrating causal convolutions from Eq. (2.15) for kernel
size n = 3, input vector size nz = 3, output vector size nx = 2. Here the input sequence has length N = 8
and the output sequence has lenght M = N − n+ 1 = 6. The computation is shown for the first 4 output
samples. 51

Figure 2.2 – (Padding) Simplified diagram illustrating the effect of padding in input and outputs for causal convolu-
tions. In (a), no padding is used and the input sequence has lenght N = 8 and the output sequence has
lenght M = N −n+ 1 = 6. In (b), we use padding in order to guarantee inputs (P = 2) and outputs with
the same length: the zero-filled input sequence has lenght N + P = 8 + 2 and the output sequence has
lenght M = N + P − n+ 1 = 8. In both cases, the input vector size is nx = 3 and the output vector size
is nz = 2. The zeros included in the input are shown in black. Output elements that are being computed
using these zeros as input are displayed in gray, considering the convolutional layer as a dynamic system
these elements correspond to the transient response of this system from a zero-state equilibrium. 52

Figure 2.3 – (Strides) Simplified diagram illustrating causal convolutions with strides for kernel size n = 3, input
vector size nx = 3, output vector size nz = 2, and downsampling factor m = 2. Here the input sequence
x has length N = 10 and the output sequence z has lenght M = (N − n+ 1)/2 = 4. The intermediary
sequence y has lenght M = (N − n+ 1) = 8. The computation is shown for the first 4 output samples. 52

Figure 2.4 – (Dilations) Simplified diagram illustrating causal convolutions with dilations for kernel size n = 3, input
vector size nx = 3, output vector size nz = 2, and dilation factor d = 2. Here the input sequence x has
length N = 10 and the output sequence z has lenght M = N − d ∗ (n − 1) = 6. The computation is
shown for the first 4 output samples. 53

Figure 2.5 – (Polyphase decomposition) Simplified diagram illustrating the input and output of causal convolutions
with dilations. Here we show the polyphase components of the input and output for d = 2 in (a) and (b);
and for d = 3 in (c) and (d). In (a) and (c) we show the original signal and in (b) and (d) we show the
signal decomposed into its d polyphase components. Convolutions with dilations aplied to original signal
(a) and (c), can be interpreted as standard convolutions applied to the polyphase components shown in
(b) and (d). 53

Figure 2.6 – (Convolutional network for feature extraction) Simplified diagram illustrating a 3 layer convolu-
tional neural network for extracting information from a sequence. The first layer has length N(1) = 22
and n(1)

x = 1 channels, the second layer has length N(2) = 10 and n(1)
x = 2 channels, the third layer has

length N(3) = 4 and n(1)
x = 4 channels. The elements from the last layer are flattened, and fed into a

fully connected layer. A color code is used to ilustrate how the flattening occurs in the last layer of the
neural network. 54

Figure 2.7 – (Convolutional network modeling input-output relations) Simplified diagram illustrating a 3
layer convolutional neural network for modeling the input-output relation between signals. The dilation
factor for the three layers is 1, 2, 4. All layers use a kernel size n = 2. The input and output have
dimension 1, and the intermediary layers dimension 2 and 4, respectively. The color code in (a) shows
the different polyphase components (cf. Section 2.3.4) in the input, output and intermediary signals, the
same colors are used in (b) to denote the same components. The purpose is to illustrate how the use
of dilations is equivalent to that of downsampling and strides in the convolutional neural network of
Figure 2.6. 56

Figure 3.1 – (Dynamical system) Display a schematic representation of the model used to represent a dynamical
system. 57

Figure 4.1 – (Parallel and series-parallel) Display neural network training modes. In both cases, considers the
dynamic system model y[k] = F(y[k− 1],y[k− 2],u[k− 1],u[k− 2]). The block q−1 holds and delay the
output by one sample period. 68

Figure 4.2 – (Fully connected neural network) Display three-layer feedforward network. 72
Figure 4.3 – (Pilot plant validation) Displays free-run simulation in the validation window for models obtained using

series-parallel (SP) and parallel (P) training. The mean square errors are MSESP = 1144.6; MSEP = 296.2.
The models have ny = nu = 1 and 10 nodes in the hidden layer and were trained on a two hour long
dataset sampled at Ts = 10s. The same initial parameter guess was used for both training methods. The
training was 100 epochs long, which took 3.3 and 3.9 seconds, respectively, for series-parallel and parallel
training. 78

Figure 4.4 – (Series-parallel vs parallel training) Boxplots show the distribution of the free-run simulation MSE
over the validation window for models trained using series-parallel (SP) and parallel (P) methods under
the circumstances specified in Figure 4.3. There are 100 realizations of the training in each boxplot,
in each realization the weights w(n)

i,j are draw from a normal distribution with standard deviation
σ = (Ns(n−1))−0.5 and the bias terms γ(n)

i are initialized with zeros (LeCun et al., 1998). For comparison
purposes, the dashed horizontal line gives the performance of an ARX linear model (ny = 1 and nu = 1)
trained and tested under the same conditions. 78

Figure 4.5 – (Toy problem validation) Displays the first 100 samples of the free-run simulation in the validation
window for models trained using series-parallel (SP) and parallel (P) methods. The mean square errors
are MSESP = 0.39; MSEP = 0.06. The models have ny = nu = 2 and a single hidden layer with 10 nodes.
The training set has N = 1000 samples and was generated with (7.6) for v and w white Gaussian noise
with standard deviations σv = 0.1 and σw = 0.5. The validation window is generated without the noise
effect. For both, the input u is randomly generated with standard Gaussian distribution, each randomly
generated value held for 5 samples. The training was 100 epochs long, which took 5.0 and 6.1 seconds for,
respectively, series-parallel and parallel training. 79

Figure 4.6 – (White noise during training) Free-run simulation MSE on the validation window vs noise levels for
series-parallel and parallel training. The main line indicates the median and the shaded region indicates
interquartile range. These statistics were computed from 12 realizations. In (a) v is a Gaussian white
process and w = 0; and, in (b) w is a Gaussian white process and v = 0. 80

Figure 4.7 – (Colored noise during training) Free-run simulation MSE over the validation window vs standard
deviation of colored equation error. The output error w = 0 and the equation error v is a colored Gaussian
noise obtained by applying a 4th-order lowpass Butterworth filter with cutoff frequency ωc to white
Gaussian noise in both the forward and reverse directions. The figure shows the result for different values
of ωc, where ωc is the normalized frequency (with ωc = 1 the Nyquist frequency). The main line indicates
the median and the shaded region indicates interquartile range. These statistics were computed from 12
realizations. 81

Figure 4.8 – (Computational cost) Running time (in seconds) of training (100 epochs). The average running time
of 5 realizations is displayed for series-parallel training () and for parallel training (). The neural
network has a single hidden layer and a total of NΘ parameters to be estimated. The training set has N
samples and was generated as described in Figure 7.1. In (a), we fix NΘ = 61 and plot the timings as a
function of the number of training samples N , a line is adjusted to illustrate the running time grows
linearly with the training size for both training methods. In (b), we fix N = 10000 and plot the timings
as a function of the number of parameters NΘ, a second order polynomial is adjusted to illustrate the
running time quadratic growth. 83

Figure 5.1 – (Feedforward vs Recurrent) Display feedforward and recurrent structures used by prediction error
method. Prediction error methods estimate the process parameters by minimizing the error e between
the measured output y and the model predicted value ŷ. The input-output pairs (u, y) are measured
values from some dynamic process. In (a) the prediction ŷ depends only on measured values: ARX model;
In (b) the predictor has a recurrent structure: ARMAX and OE models. 84

Figure 5.2 – (Multiple shooting) Comparison between single shooting and multiple shooting in a unidimensional
example (Nx = 1). In black we present the simulation of the dynamic system through the entire window
length using the single initial condition x0 (represented by). The simulated values are represented by
. Dividing the window length into three sub-intervals and simulating the system in each of these, for

initial conditions x1
0, , x2

0, , and x3
0, , results in the three different simulations represented by

, and , respectively. In (a), the end of one simulation does not coincide with the beginning of
the next one (xi−1[mi] 6= xi0). In (b), we show what happens as ‖xi−1[mi]− xi0‖ → 0. And, in (c), we
show that, when xi−1[mi] = xi0, the concatenation of these short simulations is equivalent to a single
one carried out over the entire window length. 88

Figure 5.3 – (Logistic map parameter estimation) Cost function of the optimization problem for xi0 fixed in its
true values (in black) and for disturbed versions of the these initial conditions (in blue). We present
the result for four values of ∆mmax, and omit disturbed initial condition objective functions for the
single shooting case (∆mmax = N) to make it easier to visualize. The green circles, , indicate the pair
(θ, V) corresponding to a solution found by the solver. There are 15 circles in each figure (some of them
overlapping), the circles correspond to solutions for different initial guesses. As initial guesses we picked
values of θ uniformly spaced between 3.2 and 3.9, with xi0 picked from randomly disturbed versions of
the true initial conditions (which are known because we generated the data ourselves). The true value
θ = 3.78 is indicated by the dotted red vertical line. 92

Figure 5.4 – (Neural network multiple shooting estimation) Empirical cumulative distribution of the free-run
simulation MSE over the validation dataset. The results obtained in (Ribeiro and Aguirre, 2018) for an
ARX neural network (NN ARX) and an (single shooting) output error neural network (NN OE - SS)
are displayed together with the result obtained estimating the parameters using multiple shooting (NN
OE - MS). A Linear ARX model is considered as a baseline and is displayed by the dashed line. The
multiple shooting estimation uses ∆mmax = 3 and the training is restricted to 2000 iterations of the
optimization algorithm or until either the gradient or the step size drops below 10−12. The other models
were estimated exactly as in (Ribeiro and Aguirre, 2018). All the neural network models have 10 nodes in
the hidden layer, ny = nu = 1 and were trained with the same training dataset. Each curve is the result
of 100 realizations and, for each realization, the neural network initial weights w(n)

i,j are drawn from a
normal distribution with zero-mean and standard deviation σ = (Ns(n−1))−0.5 and the bias terms γ(n)

i

are initialized with zeros (LeCun et al., 1998). Realizations of NN OE - SS and NN OE - MS that perform
worse than the baseline are indicated respectively as blue, , and red circles, . Confidence intervals
(95%) are displayed as shaded regions around the estimated cumulative distribution, these have been
computed using the Dvoretzky-Kiefer-Wolfowitz inequality (Dvoretzky et al., 1956). 95

Figure 5.5 – (Pendulum and inverted pendulum position data) Display the output signal y[k] for the three
different datasets used for estimating the parameters. The dataset size is N = 1024 samples. (a) The
input applied in this case is a zero-mean Gaussian random input with standard deviation σu = 10, each
random value being hold for 20 samples. The input in this case is unable to drive the system away from
the influence of the stable fixed point (0, 0). (b) The input u[k] in this case is obtained by the control
law: u[k] = 40δe[k − 1]− 78.8δe[k − 2] + 38.808δe[k − 3] + 1.02u[k − 1]− 0.02u[k − 2], where the error is
the difference between the reference and the output: e[k] = r[k]− y[k]. The reference is r[k] = π + ∆r[k]
where ∆r[k] is a zero-mean Gaussian random input with standard deviation σr = 0.2, each random value
being held for 20 samples; and, (c) Same thing as (a) but with the larger standard deviation σu = 50,
which is able to drive the pendulum to complete full rotations. For (a) and (c) zero-mean Gaussian white
noise with standard deviation σr = 0.03 was added to the output. 96

Figure 5.6 – (Pendulum and inverted pendulum parameter estimation) Contour plot of the cost function.
Figures (a), (b) and (c) correspond to the cost function V from single shooting simulation for the datasets
(a), (b) and (c) generated as described in Fig. 5.5 caption; and, in (d), (e) and (f) the cost function for the
same problems is displayed for the multiple shooting formulation with ∆mmax = 16. The true parameter
is indicated by a red circle, , solutions found by the solver are indicated by blue circles, . There are
25 blue circles in each figure (some of them overlapping), each circle corresponds to the solution for a
different initial guess. Some solutions are outside of the displayed region and the corresponding blue dots
are displayed at the edge of the plot. Initial guesses were picked values of θ uniformly spaced on a grid
of points uniformly spaced in the rectangle [20, 50]× [0.5, 6]. It is important to highlight that the plots
show a two dimensional projection of a cost function that is defined on an extended parameter space
that includes the initial conditions xi0, i = 1, · · · ,M as parameters, which were fixed to the true values
when generating the contour plots. 97

Figure 6.1 – (Chaotic LSTM) Display: a) Bifurcation diagram; and b) cost function (mean-square error) for LSTM
models with parameter vectors θ(s) = sθtrue. 100

Figure 6.2 – (Teacher forcing) The figure display the same recurrent neural network in two different modes. In (a),
observed previous values of the output yt are used as input to the model. In (b), the neural network own
outputs are feed back as inputs, instead. 101

Figure 6.3 – (Information in RNNs) Illustrate the lower bound on the entropy Ht obtained in (6.5). Starting from
H0, the entropy Ht can only take values in the shaded region. The entropy: a) may decay over time
(contractive system); b) may remain constant (e.g. for a periodic oscillator); and, c) increases when
Lf > 1 (e.g. for a chaotic system). 103

Figure 6.4 – (Sine wave generator training history) Mean square error per epoch for the sine-wave generation
task during training. The baseline performance is indicated by the dashed line. The final performance of
the LSTM after 4, 000 epochs is 4.8 ∗ 10−3, the final performance of the stable LSTM (sLSTM) is 0.49
and the final performance of the orthogonal RNN (oRNN) is 4.1 ∗ 10−3. 107

Figure 6.5 – (The mechanism for learning oscilations) Bifurcation diagram during training for the sine-wave
generation task showing the steady-state of the output yt and its first difference yt − yt−1. The arrows
point towards the evolution of the number of epochs, that varies from 0 to 1500. The bifurcation diagram
is for a constant input π

8 , other values will yield similar plots. 107
Figure 6.6 – (Symbol classification training history) Accuracy on validation data set for the recurrent models

trained to perform the same symbol classification task for two different sequence lengths. The baseline
performance (always predicting {p, p}) is indicated by the dashed line. In (a) two x-axis scales co-exist in
the same graph, one scale in [0, 250) and other in [250, 15250], with a relation 1:40 between the two scales.108

Figure 6.7 – (The effect of the initial conditions) Accuracy on training and validation data on the symbol
classification task for the LSTM model in identical scenarios but with different initial random
parameter initialization (from different random seeds). In (a), the optimization procedure abruptly finds
a solution that has good accuracy on both training and validation; while, in (b), the convergence is slow
and steady towards a solution that has good accuracy on the training set (above 90%) but is no better
than random guessing on the validation set. 109

Figure 6.8 – (The LSTM mechanism for learning to remember symbols) Bifurcation diagram for the LSTM
model in symbol classification task for sequences of length 100. It shows the steady-state of the output yt
and its first difference yt − yt−1. The arrows point towards the evolution of the number of epochs, that
vary from 0 to 400. 109

Figure 6.9 – (The oRNN mechanism for learning to remember symbols under noise)Bifurcation diagram
for the oRNN model in symbol classification task for sequences of length 100. It shows the steady-state
of the output yt and its first difference yt − yt−1. The arrows point towards the evolution of the number
of epochs, that vary from 0 to 400. 110

Figure 6.10 – (Word-level language model training history) Perplexity on validation data set for word-level
language model. 112

Figure 6.11 – (The LSTM mechanism for learning a language model) Bifurcation diagram for the LSTM
world-level language model. For each epoch, the plot show values visited by the projections of the internal
state p(xt) and its first difference p(xt)− p(xt−1) after a burnout period of 1500 samples. This burnout
period is used to remove the transient reponse and yields a visualization of the system attractors, per
epoch. The arrow point towards the evolution of the number of epochs, that varies from 0 to 150. In (a)
and (b), we have two different realizations of the biffurcation diagram obtained from constant inputs.
In (c) and (d), the diagram is generatad using as input the word predicted with the highest probability
at the previous time instant, and using as first input to the sequence the same input as in (a) and (b),
respectively. The subplots (a) to (d) use the average of internal states as projections, i.e. p(xt) = x̄t. The
second row, (e) to (h), and third row, (i) to (l), show the exact same experiments but for the projections
in the direction of the tokens “is” and “Valkyria”, respectively. 113

Figure 6.12 – (The sLSTM mechanism for learning a language model) Bifurcation diagram for the stable
LSTM world-level language model. For each epoch, the plot show values visited by the projections of the
internal state p(xt) after a burnout period of 1500 samples. This burnout period is used to remove the
transient reponse and yields a visualization of the system attractors, per epoch. In the displays (a) to
(d), the diagram is generated for the same constant input. In (e) to (h), the diagram is generatad using
as input the word predicted with the highest probability at the previous time instant, and using as first
input to the sequence the same input as in the first row. The projections are: the average of internal
states as projections, i.e. p(xt) = x̄t; and, projections into the direction of the tokens “is”, “Valkyria”
and “<unk>”. 114

Figure 6.13 – (The oRNN mechanism for learning a language model) Bifurcation diagram for the orthogonal
RNN world-level language model. For each epoch, the plot show values visited by the projections of the
internal state p(xt) after a burnout period of 1500 samples. This burnout period is used to remove the
transient reponse and yields a visualization of the system attractors, per epoch. In the displays (a) to
(d), the diagram is generated for the same constant input. In (e) to (h), the diagram is generatad using
as input the word predicted with the highest probability at the previous time instant, and using as first
input to the sequence the same input as in the first row. The projections are: the average of internal
states as projections, i.e. p(xt) = x̄t; and, projections into the direction of the tokens “is”, “Valkyria”
and “<unk>”. 115

Figure 7.1 – (Temporal convolution network) Illustrate the temporal convolution network (TCN) with residual
blocks. (a) Temporal convolutional network with dilated causal convolutions with dilation factor d1 = 1,
d2 = 2 and d3 = 4 and kernel size n = 3. (b) A TCN residual block. Each block consists of two dense
layers and an identity (or linear) map on the skip connection. As illustrated in (a) by connection with the
same color, neural network weights are shared within the same layer and invariant to time translations.
This reflects the hypothesis we are modeling a time invariant system. 119

Figure 7.2 – (Toy problem validation) Displays 100 samples of the free-run simulation TCN model vs the simulation
of the true system. The kernel size for the causal convolutions is 2, the dropout rate is 0, it has 5
convolutional layers and a dilation rate of 1. The training set has 20 batches of 100 samples and was
generated with (7.6) for v and w white Gaussian noise with standard deviations σv = 0.3 and σw = 0.3.
The validation set has 2 batches of 100 samples. For both, the input u is randomly generated with a
standard Gaussian distribution, each randomly generated value held for 5 samples. 123

Figure 7.3 – (Ablation study) Box plots showing how different design choices affect the performance of the TCN for
noise standard deviation σ = 0.3 and training data length N = 2 000. On the y-axis the one-step-ahead
RMSE on the validation set is displayed, and on the x-axis we have: in (a) the presence or absence of
dilations; in (b) the dropout rate {0.0, 0.3, 0.5, 0.8}; in (c) the number of residual blocks {1, 2, 4, 8}; and,
in (d) if batch norm, weight norm or nothing is used for normalizing the output of each convolutional
layer. The variation in performance for the box plot quartiles is achieved through the variation for all the
other hyper-parameters not fixed by the hyper-parameter choice indicated on the x-axis. 124

Figure 7.4 – (Silverbox prediction error and data) The true output and the prediction error of the TCN model
in free-run simulation for the Silverbox data. The model needs to extrapolate approximately outside the
region ±0.2 marked by the dashed lines. 125

Figure 7.5 – (TCN depth vs performance) Box plot showing how different depths of the neural network affects
the performance of the TCN in the Example 3. Should be interpreted in the same way as Fig. 7.3. . . 125

Figure 7.6 – (F-16 model main resonance) We plot the model frequency response in the interval [4.7, 11] Hz. The
true output spectrum is in black, the noise distortion, in grey dash-dotted line, the total distortion (=
noise + nonlinear distortions), in grey dotted line, error LSTM, in green, error MLP, in blue, and error
TCN, in red). All tested model structures perform similar andhe error is close to the noise floor around
the main resonance at 7.3 Hz. 127

Figure 8.1 – (Abnormalities examples) A list of all the abnormalities the model classifies. We show only 3
representative leads (DII, V1 and V6). 132

Figure 8.2 – (Precision-recall curve) Show precision-recall curve for our nominal prediction model on the test
set (strong line) with regard to each ECG abnormalities. The shaded region show the range between
maximum and minimum precision for neural networks trained with the same configuration and different
initialization. Points corresponding the performance of resident medical doctors and students are also
displayed, together with the point corresponding to the DNN performance for the same threshold used
for generating Table 8.2. Gray dashed curves in the background correspond to iso-F1 curves (i.e. curves
in the precision-recall plane with constant F1 score). 133

Figure 8.3 – (Bootstrapped scores) Display boxplots of empirical distribution of precision, recall, specificity and
F1 score on the test set. Sampling with replacement (i.e. bootstrapping) from the test set was used
to generate n = 1000 samples. The results are given for the DNN, the medical residents and students.
Source data are provided as a Source Data file. The boxplots should be read as follows: the central line
correspond to the median value of the empirical distribution, the box region correspond to the range
of values between the first and third quartile (also knonw as interquartile range or IQR), the whiskers
extend from 1.5 IQR below and above the firsth and third quartiles, values outside of that range are
considered outliers and show as diamonds. 136

Figure 8.4 – (Heart rate vs DNN predictions) Heart rate measured by the Uni-G software for samples in the
test set is given on the y-axis. The color indicates if the DNN make the correct prediction or not. The
x-axis separates the dataset accordingly to the presence of: SB in (a); and, ST in (b). A horizontal line
show the threshold of 50 bpm for SB in (a); and, of 100 bpm for ST in (b), which delimit the consensus
definition of SB and ST. Notice that most exams for which the neural network fails to get the correct
result are very close to this threshold line and are the borderline cases we mentioned in the discussion. It
should be highlighted that this automatic measurement system is not perfect, and measurements that
may indicate some of the conditions do not necessarily agree with our board of cardiologist (e.g. there
are exams with heart rate above 100 acording to Uni-G that are not classified by our cardiologist as ST).138

Figure 8.5 – (DNN architecture) The uni-dimensional residual neural network architecture used for ECG classification.141

List of Tables

Table 1.1 – (Design choices) Summary of the design choices in the numerical examples. The Levenberg-Marquardt
algorithm is a nonlinear least-squares algorithm proposed by (Marquardt, 1963). The trust-region algorithm
from Chapter 5 was described by (Lalee et al., 1998) and ADAM is a stocastic first-order with momentum
proposed by (Kingma and Ba, 2014). †In Chapter 4 we actually use a mixed approach, where we use
backpropagation (which uses reverse mode automatic differentiation) to compute the derivative of the
neural network, and forward differentiation to propagate the derivatives through the recurrence. ‡We did
the same for Example 2 in Chapter 5. 44

Table 4.1 – (Backpropagation computational cost) Modified backpropagation number of flops for a fully con-
nected network. 74

Table 4.2 – (Computational cost) Levenberg-Marquardt number of flops per iteration for series-parallel training
(SP), parallel training with fixed initial conditions (Pθ) and parallel training with extended parameter
vector (PΦ). A mark 7 signals which calculation is required in each method. 75

Table 4.3 – (Noise in frequency bands during training) Free-run simulation MSE on the validation window for
parallel and series-parallel training. Both the mean and the standard deviation are displayed (30% trimmed
estimation computed from 12 realizations). In situation (a), the training data was generated with zero
output error (w = 0) and v is a Gaussian random process. In (b), the training data was generated with
v = 0 and w is a Gaussian random process. The Gaussian random process has standard deviation σ = 1.0
and power spectral density confined to the given frequency band. In both situations, the rows where
the frequency ranges from 0.0 to 1.0 (the whole spectrum) corresponds to white noise, in the remaining
rows we apply a 4th-order lowpass (or highpass) Butterworth filter to white Gaussian noise (in both the
forward and reverse directions) in order to obtain the signal in the desired frequency band. The cell of the
training method with the best validation results between the two models is colored. Its colored red when
the difference in the MSE is larger than the sum of standard deviations and yellow when it is not. . . 82

Table 5.1 – (Optimization performance in multiple shooting) Number of function evaluations and total running
time to convergence for different values of ∆mmax. We give, the minimum, maximum and median among
15 runs for the situations presented in Figure 5.3. (*)The number of iterations is limited to 1000 and the
solver is interrupted when this number is reached. 93

Table 6.1 – (Symbol classification accuracy) Comparison between the LSTM; stable LSTM (sLSTM); and or-
thogonal RNN (oRNN); for the symbol classification task with different sequence lengths (l). As a
baseline, always predicting {p, p} would yield an accuracy of 0.25. 111

Table 7.1 – (Performance vs dataset size vs noise intensity) One-step-ahead RMSE on the validation set for
the models (MLP, LSTM and TCN) trained on datasets generated with: different noise levels (σ) and
lengths (N). The standard deviation of both the process noise v and the measurement noise w is denoted
by σ. We report only the best results among all hyper-parameters and architecture choices we have tried
out for each entry. 124

Table 7.2 – (Silverbox benchmark with no extrapolation) Free-run simulation results for the Silverbox example
on part of the test data (avoiding extrapolation). 125

Table 7.3 – (Silverbox benchmark) Free-run simulation results for the Silverbox example on the full test data.
(∗Computed from FIT=92.2886%). 126

Table 7.4 – (Performance in F-16 benchmark) RMSE for free-run simulation and one-step-ahead prediction for
the F16 example averaged over the 3 outputs. The average RMS value of the 3 outputs is 1.0046. 127

Table 7.5 – (Toy problem model hyperparameters) Best model hyperparameters in Example 1 for: different
noise levels (σ) and lengths (N). The standard deviation of both the process noise v and the measurement
noise w is denoted by σ. 128

Table 8.1 – (Dataset summary) Patient characteristcs and abnormalities prevalence, n (%). 132
Table 8.2 – (Performance indexes) Scores of our DNN are compared on the test set with the average performance

of: i) 4th year cardiology resident (cardio.); ii) 3rd year emergency resident (emerg.); and, iii) 5th year
medical students (stud.). (PPV = positive predictive value) . 133

Table 8.3 – (Error analysis) Present the analysis of misclassified exams. The errors were classified into the following
categories: i) measurements errors (meas.) were ECG interval measurements preclude the given diagnosis
by its textbook definition ; ii) errors due to noise, were we believe that the analyst or the DNN failed
due to a lower than usual signal quality; and, iii) other type of errors (unexplain.). Those were further
divided, for the medical residents and students, into two categories: conceptual errors (concep.), where our
reviewer suggested that the doctor failed to understand the definitions of each abnormality, and attention
errors (atte.), where we believe the error could be avoided if the reviewer had been more careful. 134

Table 8.4 – (Confusion matrices) Show the absolute number of: i) false posives; ii) false negatives; iii) true positives;
and, iv) true negatives, for each abnormality on the test set. 135

Table 8.5 – (Kappa coefficients) Show the Kappa scores measuring the inter-rater agreement on the test set. In
(a), we compare the DNN, the medical residents and the students two at a time. In (b), we compare the
DNN, and the certified cardiologists that annotated the test set (certif. cardiol.). If the raters are
in complete agreement then it is equal to 1. If there is no agreement among the raters other than what
would be expected by chance it is equal to 0. 135

Table 8.6 – (McNemar test) Display the p-values for the McNemar test comparing the misclassification on the
test set. The DNN, the medical residents and the students were compared two at a time. Entries with
statistical significance (with 0.05 significance level) are displayed in boldface. 136

Contents

Introduction 19

I BACKGROUND 26

1 MACHINE LEARNING FUNDAMENTALS . 27
1.1 Parameter estimation . 27
1.1.1 Maximum likelihood . 28
1.1.2 Normal distribution and the least-squares cost function 29
1.1.3 Multinomial distribution and the softmax layer . 29
1.1.4 Bayes parameter estimation and maximum-a-posteriori . 30
1.1.5 Prior and parameter penalty . 31
1.2 Model complexity . 31
1.2.1 Bias-variance tradeoff . 32
1.2.2 Regularization methods and hyperparameter choice . 33
1.2.3 Model final performance . 34
1.3 Optimization . 34
1.3.1 Global vs local optimization algorithms . 34
1.3.2 Taylor approximations . 35
1.3.3 Convexity . 36
1.3.4 Line-search and trust-region methods . 36
1.3.5 Convergence rate . 37
1.3.6 Scaling . 38
1.3.7 Memory complexity . 38
1.3.8 Stochastic optimization . 39
1.4 Automatic differentiation . 40
1.4.1 Forward-mode automatic differentiation . 42
1.4.2 Reverse-mode automatic differentiation . 42
1.4.3 Computational complexity and applications . 43

2 NEURAL NETWORK MODELS FOR SEQUENCES 45
2.1 Sequence models . 45
2.2 Recurrent neural networks . 47
2.2.1 Training and inference using recurrent neural networks . 47
2.2.2 A short note about attention-based models . 48
2.2.3 Common recurrent neural networks architectures . 48
2.2.4 Bidirectional neural networks . 49
2.2.5 Multi-layer recurrent neural network . 50
2.3 Convolutional neural networks for sequences . 50
2.3.1 The uni-dimensional convolutional layer . 50
2.3.2 Padding and the transient response . 51
2.3.3 Downsampling in convolutional neural networks: strides and pooling 51
2.3.4 Polyphase decomposition and dilations . 53
2.3.5 Deep convolutional neural networks for feature extraction 54

2.3.6 Capturing input-output relation . 55
2.3.7 Skip connections and the residual neural network . 56

3 SYSTEM IDENTIFICATION AND PREDICTION ERROR METHODS 57
3.1 Mathematical representation of dynamical systems 57
3.1.1 Dynamic representation . 58
3.1.2 Approximation function . 59
3.1.3 Noise model . 59
3.2 Prediction error methods . 60
3.2.1 Setup . 60
3.2.2 Nonlinear ARX models . 61
3.2.3 Nonlinear output error models . 61
3.2.4 Nonlinear ARMAX models . 61
3.2.5 General nonlinear state-space framework . 62
3.2.6 Initial conditions . 62
3.2.7 The data generation process . 62
3.2.8 Asymptotic properties . 63
3.2.8.1 Optimal output prediction . 63
3.2.8.2 Optimal cost function . 63
3.2.8.3 Uniform convergence of V . 63
3.2.9 Prediction error and maximum likelihood . 64
3.2.10 Some terminology . 64
3.2.11 Computing the derivatives . 64
3.2.11.1 Sensitivity equations . 64
3.2.11.2 Derivatives of the cost function . 65
3.3 Test design and data collection . 65

II THE TRADE-OFFS OF RECURRENCE 66

4 PARALLEL TRAINING CONSIDERED HARMFUL? 67
4.1 Introduction . 67
4.2 Unifying framework . 69
4.2.1 Parallel vs series-parallel training . 69
4.2.2 Optimal predictor . 70
4.3 Nonlinear least-squares network training . 70
4.3.1 Nonlinear least-squares . 71
4.3.2 Modified backpropagation . 72
4.3.3 Series-parallel training . 73
4.3.4 Parallel training . 73
4.4 Complexity analysis . 74
4.4.1 Neural network output and its partial derivatives . 74
4.4.2 Number of flops for series-parallel and parallel training . 74
4.4.3 Comparing methods . 75
4.4.4 Memory complexity . 75
4.5 Practical aspects . 76
4.5.1 Convergence towards a local minima . 76
4.5.2 Signal unboundedness during training . 76

4.5.3 Time series prediction . 77
4.6 Implementation and test results . 77
4.6.1 Example 1: data from a pilot plant . 77
4.6.2 Example 2: investigating the noise effect . 79
4.6.3 Timings . 80
4.7 Conclusion . 81

5 ON THE SMOOTHNESS OF NONLINEAR SYSTEM IDENTIFICATION 84
5.1 Notation and setup . 85
5.2 Smoothness of prediction error methods . 86
5.3 Multiple shooting . 87
5.3.1 Method formulation . 87
5.3.2 Properties of the objective function . 89
5.3.3 Comparison with other methods . 89
5.4 Implementation . 90
5.5 Numerical examples . 91
5.5.1 Example 1: output error model for chaotic system . 92
5.5.2 Example 2: neural network for modeling pilot plant . 94
5.5.3 Example 3: pendulum and inverted pendulum . 95
5.5.4 Practical considerations . 97
5.6 Conclusion . 98

6 ATTRACTOR AND SMOOTHNESS IN THE ANALYSIS OF RECURRENT NEU-
RAL NETWORKS TRAINING . 99

6.1 Introduction . 99
6.2 Setup and notation . 100
6.3 Information in a recurrent network . 101
6.3.1 Entropy of the internal states . 102
6.3.2 Contractive vs non-contractive systems . 103
6.3.3 Long-term memory . 103
6.4 Smoothness of the cost function . 104
6.4.1 Example: chaotic LSTM . 105
6.4.2 Theoretical results . 105
6.5 Attractors evolution during training . 106
6.5.1 Sine wave generation . 106
6.5.2 Symbol classification . 108
6.5.3 Word-level language model . 111
6.6 Related work . 114
6.7 Discussion . 115

III MODELING SIGNALS AND SYSTEMS: APPLICATIONS TO ENGINEER-
ING AND HEALTH CARE 117

7 DEEP CONVOLUTIONAL NETWORKS IN SYSTEM IDENTIFICATION 118
7.1 Neural networks for temporal modeling . 118
7.1.1 Temporal convolutional network . 119
7.1.2 Regularization . 120

7.1.3 Batch normalization . 120
7.1.4 Optimization algorithms . 121
7.1.5 The residual block . 121
7.2 Connections to system identification . 121
7.2.1 Connection with Volterra series . 121
7.2.2 Connection with block-oriented models . 122
7.2.3 Conclusion . 122
7.3 Numerical results . 122
7.3.1 Example 1: nonlinear toy problem . 123
7.3.2 Example 2: Silverbox . 124
7.3.3 Example 3: F-16 ground vibration test . 125
7.3.4 Hyperparameter search and training time . 126
7.3.4.1 Nonlinear toy problem . 127
7.3.4.2 Silverbox . 127
7.3.4.3 F-16 ground vibration test . 128
7.4 Conclusion and future work . 129

8 AUTOMATIC DIAGNOSIS OF THE 12-LEAD ECG USING A DEEP NEURAL NET-
WORK . 130

8.1 Results . 131
8.1.1 Model specification and training . 131
8.1.2 Testing and perfomance evaluation . 133
8.2 Discussion . 135
8.3 Methods . 139
8.3.1 Dataset acquisition . 139
8.3.2 Labelling training data from text report . 139
8.3.3 Training and validation set annotation . 140
8.3.4 Test set annotation . 141
8.3.5 Neural network architecture and training . 141
8.3.6 Hyperparameter tuning . 142
8.3.7 Statistical and empirical analysis of test results . 142

Conclusion 144

APPENDIX A – SEQUENTIAL QUADRATIC PROGRAMMING SOLVER 147

APPENDIX B – PROOFS . 150

Bibliography . 154

19

Introduction

Nonlinear systems and non-convex problems

Mathematical models of dynamic systems are of fundamental importance for science and engineer-
ing. Linear models of dynamic systems are extremely popular due to the strong theoretical foundations
behind them. They are widely studied and are the standard choice for most engineering applications.
However, pushing the forefront of current engineering technology requires us to better understand, model,
and control nonlinear systems. To cite two examples: using flexible wings open possibilities for significantly
more efficient airplanes (Ifju et al., 2002; He and Zhang, 2017); and, using amplifiers near the saturation
region is required to meet the needs of the future generation of wireless communication networks for
high-data-rate transmission, a large number of users and power-efficient devices (Singya et al., 2017).
These two applications require modeling and controlling nonlinear systems, explicitly taking into account
the nonlinear behavior, and both could have a very high impact on society. More efficient airplanes are
needed to conciliate our need to move around the globe with the enormous impact of aviation on human
emissions. It could also open exciting new possibilities, such as taking us closer to making electric airplanes
commercially viable. Better wireless communication networks could have a significant impact on human
society by allowing simple physical objects to become internet-connected-devices (also known as the
internet of things), which comes with a wide new range of possibilities (Ashton, 2009; Xia et al., 2012).

The basic laws that govern many of the basic electrical, mechanical, and chemical processes
that are of our interest in engineering are well understood. Complex interactions and combinations of
well-understood components, however, often yield processes that cannot be easily modeled using basic
principles. Hence, building simplified empirical models for these complex engineering processes directly
from data recorded during experiments presents an interesting alternative.

Identifying dynamical systems from empirical data caught a lot of interest from the control commu-
nity, and a field named system identification was a mature field by the end of the 20th century (Söderström
and Stoica, 1988; Ljung, 1998). The identification of a dynamic system can be formulated as an opti-
mization problem that tries to adjust the model predictions to a training dataset. One important class
of optimization problems are convex optimization problems: for these problems, it is easier to establish
uniqueness and existence of solutions. There are also efficient algorithms with strong guarantees to solve
this type of problem. When identifying nonlinear models, however, there is a wide range of problems
that fall into non-convex problems. Even for linear models, it is easy to fall into cases for which the
optimization problem is not convex due to the recurrence required to model some types of noise that are
often found in practice.

To tackle the non-convex identification of nonlinear models into its full complexity, however, can be
highly rewarding and could yield powerful tools for the identification of nonlinear systems. One interesting
class of models that encompass several nonlinear models of interest is that of (almost everywhere)
differentiable models. The differentiability of the model translates into a differentiable optimization
problem which can be solved efficiently by using local, low-order, Taylor approximations of the objective
function. And, while there aren’t the same guarantees as in the case of a convex optimization problem,
it is still possible to find a solution that is locally optimal. Interestingly, highly nonlinear differentiable
models yielding non-convex optimization problems have recently had a high impact in another related
field: machine learning.

Introduction 20

Teaching what you cannot explain

Mathematical empirical models have a crucial role in artificial intelligence, and they are at the
core of the sub-field called machine learning. Machine learning is a thriving field that studies how to
create machines capable of learning from examples. The ultimate goal is to enable computers to perform
tasks usually associated with human (or animal) intelligence: such as understanding language, being able
to process visual input, and being able to make decisions under complex situations. While many of these
tasks come naturally to people, some are hard to describe formally, and it has been a challenge to solve
them using traditional techniques.

For instance, it is easy for most of us to distinguish between a cat and a dog or to detect hostility
in someone’s voice. We can do that almost automatically. Nevertheless, it is hard to explain how we are
doing that. Once learned, other tasks such as understanding language and driving also become natural
and automatic. All these tasks are hard to define and traditional programming paradigms usually have a
hard time solving such problems. Machine learning presents itself as a way to enable computers to solve
such tasks. It does so by teaching, by examples, the computer to solve these tasks instead of trying to
create a recipe for it.

Along the last decade, machine learning has had many successes, and there were breakthroughs in
image classification (Krizhevsky et al., 2012), machine translation (Bahdanau et al., 2014; Vaswani et al.,
2017) and speech recognition (Hinton et al., 2012), to cite a few. The driving force behind these recent
achievements is the development of deep neural networks (LeCun et al., 2015) and the pioneer researchers
in the field (Yoshua Bengio, Geoffrey Hinton, Yann LeCun) have been awarded the 2018 Turing Award
recognizing the importance of deep neural networks as components in computing systems. The Turing
Award is recognized as the highest distinction in computer science.

Deep neural networks are models, loosely inspired by neurological processes, composed of many
stacked layers that combine linear and nonlinear transformations. The success of deep neural networks
made popular a machine learning paradigm called end-to-end learning, which is often used together with
these models. This paradigm feeds the raw input into the model, in contrast with the more traditional
machine learning approach of using handcrafted features as inputs to the model. Take image classification
as an example: the more traditional approach was to use image processing techniques to detect corners,
shapes, and other image features, and using the obtained representation of the image as input to the
classifier. In contrast, end-to-end learning uses the raw image as input to the classifier, and the model
learns, by exposition to examples, both to extract the features and to use them to perform the classification.

Part of deep neural networks and end-to-end learning success is due to both the increasing
availability of data and computational power. On the one hand, as our society became connected and
transmission and storage of information became cheaper, extensive records become naturally available
and could be used for training the models. On the other hand, increasing computational power made it
possible to train larger models that make good use of such large datasets.

Great power and great responsibility

For better or for worse, the full development and deployment of current deep learning technology
will be disruptive for our society. For instance, according to the Brazilian statistic and geographic institute
IBGE, the work of more than 3.5 million people in Brazil in 2018 was related to transporting, in a vehicle,
goods or people (Amorim, 2019). This is more than 1 percent of the Brazilian population. The development
of self-driving cars, which use deep neural networks as a critical component, could displace many of these
workers by having them competing with machines that don’t sleep or eat and can perform the same job

Introduction 21

24 hours a day, seven days a week.

Machine learning algorithms also have the potential to immensely improve several aspects of
our lives, and one area where it might benefit society the most is in health care. Deep learning models
have had a lot of success in automatic exams diagnosis. For instance, deep learning algorithms have
recently obtained better performance than a human specialist in routine work-flow of diagnosing breast
cancer (Bejnordi et al., 2017) and in detecting retinal diseases from three-dimensional optical coherence
tomography scans (De Fauw et al., 2018). In Chapter 8, we will describe a model capable of outperforming
cardiologist residents in the automatic diagnosis of electrocardiogram exams.

Such a system for the automatic diagnosis of the electrocardiogram, when fully developed, might
lead to more reliable automatic diagnosis and improved clinical practice. Although the expert review
of complex and borderline cases seems to be necessary even in this future scenario, the development of
such automatic interpretation by an algorithm may expand the access of the population to this essential
diagnostic exam.

The electrocardiogram exam is often performed in settings, such as in primary care centers
and emergency units, where there are no specialists to analyze and interpret the exam. Primary care
and emergency department health professionals have limited diagnostic abilities in interpreting this
exam (Mant et al., 2007; Veronese et al., 2016). The need for an accurate automatic interpretation is most
acute in low and middle-income countries, which are responsible for more than 75% of deaths related to
cardiovascular disease (World Health Organization, 2014), and where the population, often, do not have
access to cardiologists with full expertise in electrocardiogram diagnosis. Improvements in the automatic
diagnosis of other exams might bring similar gains.

The improvement of deep learning in medicine might bring enormous gain for improving clinical
practice by both allowing doctors to take more well-informed decisions with the help of artificial intelligence
systems and also by eliminating time-consuming tasks from doctor schedule, allowing them to focus on
doctor-patient relation (Topol, 2019). The introduction of artificial intelligence in medicine does not offer
a replacement of the physician, but rather a way of improving the patient treatment. As nicely put by the
neurosurgeon Antonio Di Leva: “Machines will not replace physicians, but physicians using AI will soon
replace those not using it”.

Is attention all you need?

When presenting the system we developed for the automatic diagnosis of the electrocardiogram,
one question would often appear: “why were we not using a recurrent neural network?”. And in fact, we
have tried to employ such architecture, but without nearly as much success as we got for the convolutional
architecture.

Recurrent neural networks have been the textbook solution for modeling sequences for a very
long time. Since the introduction of a neural network architecture called long-short term memory, in 1997,
these models gained a lot of popularity and have been successfully used to solve several sequence tasks,
including machine translation (Sutskever et al., 2014), language modeling (Peters et al., 2018) and speech
recognition (Graves et al., 2013), to cite a few. Having been the de facto state-of-the-art architecture to
solve sequence learning tasks until very recently, these models, however, are now being challenged by new,
high-performance, feedforward architectures.

In 2017, a paper called “Attention is All You Need” (Vaswani et al., 2017), introducing a feed-
forward architecture for language translation. The so-called transformer, presented in this very influential
paper, would them become a fundamental component for understanding and generating language. By the

Introduction 22

moment this thesis was written, transformer-based architectures dominated the leaderboards, achieving
top performance in natural language processing and understanding tasks, leaving recurrent architectures
in the second plane for those tasks.

Convolutional architectures for sequences are also gradually occupying a place previously dom-
inated by recurrent models (Bai et al., 2018b) and have matched or even outperformed the recurrent
architectures performance in language and music modelling (Bai et al., 2018b; van den Oord et al., 2016;
Dauphin et al., 2017), text-to-speech conversion (van den Oord et al., 2016), machine translation (Kalch-
brenner et al., 2016; Gehring et al., 2017) and other sequential tasks (Bai et al., 2018b).

The role of recurrence

The role of recurrence and recurrent architectures in learning sequences, signals, and systems
is a central question for machine learning, system identification, and other related fields. And the same
dichotomy between recurrent and feedforward models, take slightly different forms in twin areas of the
literature and have been extensively discussed.

More than three decades ago, Narendra and Parthasarathy (1990) proposed the dichotomy
between parallel and series-parallel training modes. The first training mode uses recurrence during training,
and the second, a feedforward setup. The paper defends training the neural network in the feedforward,
or “series-parallel”, setup. Chapter 4 discusses the arguments presented by them in detail and show that
they are not precise. This recommendation of using “series-parallel” training mode, however, was carried
over to Matlab neural network toolbox 1, which made the choice quite popular among engineers until very
recently. In the system identification literature, the dichotomy between free-run simulation minimization
and one-step-ahead minimization takes a different name, but refer to the same problem. And many papers
in this area show strengths of minimizing free-run simulation, which also results in a recurrent model
during training (Piroddi and Spinelli, 2003; Aguirre et al., 2010; Farina and Piroddi, 2012).

Indeed, the recent success of feedforward architectures (i.e., convolutional and attention-based
architectures) in machine learning, was preceded by a wave of interest in recurrent models, and in 2015, a
leading researcher Karpathy (2015) wrote a blog post named “The Unreasonable Effectiveness of Recurrent
Neural Networks”, defending that recurrent models would “become a pervasive and critical component to
intelligent systems”.

Outline of this work

This work investigates how nonlinear differential models can be used to model sequence, signals,
and systems. The problem is central both for machine learning and systems identification. A fundamental
question, studied from more than one angle in this work, is the role of recurrence and recurrent architecture
in modeling sequences, and how much recurrence is needed, be it during the training or inference. Finally,
we present applications modeling signals and systems. These applications could have a high impact on
society by improving our capability to model nonlinear systems in engineering and to extract information
from non-stationary signals relevant to health care.

The work is divided into three parts. Part I gives the background needed to understand the
subsequent sections. It starts by presenting machine learning fundamentals in Chapter 1. Then, in
Chapter 2, it presents common machine learning tasks related to sequences, i.e. sequence learning, focusing
on neural network architectures that can be used to solve such tasks. Finally, Chapter 3 presents system
1 The new deep learning toolbox does not contain such a suggestion. But up to 2018, it could be found in Matlab

documentation.

Introduction 23

identification methods from a nonlinear perspective and highlights connections between nonlinear system
identification and sequence learning.

Part II presents the theoretical and methodological contributions of this work to nonlinear
system identification and neural networks. We start, in Chapter 4, by studying the effect of recurrence
in training shallow neural networks. We show how recurrence in neural networks can make the neural
network more robust to some types of noise contamination and improve asymptotic properties. We also
study computational aspects and simple examples of neural networks for modeling nonlinear systems. In
Chapter 5, we present the downside of recurrence, from a system identification point of view, showing
how it might negatively affect the optimization procedure. We offer a solution based on a method known
as multiple shooting, which avoids propagating effects for too long. In Chapter 6, we extend the result
from the previous chapter, on the impact of recurrence in the cost function, from a system identification
perspective into a deep recurrent neural network perspective. The results we found for nonlinear system
identification extend a fundamental principle deep and recurrent neural networks: that of exploding
gradients. We also study the expressiveness of recurrent neural networks in terms of the dynamic attractors
they can represent. Orthogonal and stable recurrent neural networks, which have been recently proposed,
are studied in this setup.

Part III studies two applications. In Chapter 7, we study the application of convolutional neural
networks in nonlinear system identification problems. We focus on openly available nonlinear system
identification benchmarks: modeling an F-16 aircraft from its ground vibration test and modeling the
silverbox electronic oscillatory circuit. It also includes the performance comparison between convolutional
and recurrent models. In Chapter 8, we present the automatic diagnosis of the electrocardiogram. Showing
how a convolutional neural network can outperform medical cardiology residents.

Publications related to this thesis

This thesis features content from the following publications:

Beyond exploding and vanishing gradients: analysing RNN training using attrac-
tors and smoothness, Antônio H. Ribeiro, Koen Tiels, Luis A. Aguirre and Thomas B. Schön.
To appear in the Proceedings of the 23rd International Conference on Artificial Intelligence
and Statistics (AISTATS), 2020.

Automatic Diagnosis of the 12-Lead ECG using a Deep Neural Network, Antônio
H. Ribeiro, Manoel Horta Ribeiro, Gabriela M.M. Paixão, Derick M. Oliveira, Paulo R. Gomes,
Jéssica A. Canazart, Milton P. S. Ferreira, Carl R. Andersson, Peter W. Macfarlane, Wagner
Meira Jr., Thomas B. Schön, Antonio Luiz P. Ribeiro. Nature Communications, 2020. v. 11(1)
n. 1760. doi: 10.1038/s41467-020-15432-4

On the Smoothness of Nonlinear System Identification, Antônio H. Ribeiro, Koen Tiels,
Jack Umenberger, Thomas B. Schön, Luis A. Aguirre. Provisionally accepted for publication
in Automatica, 2020.

Deep Convolutional Networks in System Identification, Carl Andersson*, Antonio
H. Ribeiro*, Koen Tiels, Niklas Wahlström and Thomas B. Schön (* Equal contribution).
Proceedings of the 58th IEEE Conference on Decision and Control (CDC), 2019. pp. 3670–3676.
doi: 10.1109/CDC40024.2019.9030219

“Parallel Training Considered Harmful?” : Comparing Series-Parallel and Parallel
Feedforward Network Training, Antônio H. Ribeiro, Luis A. Aguirre. Neurocomputing,
2018. v. 316 (17) pp. 222-231. doi: 10.1016/j.neucom.2018.07.071

Introduction 24

Shooting Methods for Parameter Estimation of Output Error Models, Antonio H.
Ribeiro, L.A. Aguirre. Proceedings of the IFAC World Congress, 2017. IFAC-PapersOnLine v.
50 (1), pp. 13998-14003. doi: 10.1016/j.ifacol.2017.08.2421

To a lesser extent, the thesis was also influenced by and contains some ideas from other publications I
co-authored during my Ph.D.:

SciPy 1.0–Fundamental Algorithms for Scientific Computing in Python, Pauli Vir-
tanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J van der Walt,
Matthew Brett, Joshua Wilson, K Jarrod Millman, Nikolay Mayorov, Andrew RJ Nelson, Eric
Jones, Robert Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W Moore, Jake Vander-
Plas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, EA Quintero, Charles R
Harris, Anne M Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, SciPy
1.0 Contributors. Nature Methods, 2020. v. 17 (3) pp. 261-272. doi: 10.1038/s41592-019-0686-2

Evaluation of mortality in bundle branch block patients from an electronic co-
hort: Clinical Outcomes in Digital Electrocardiography (CODE) study, Gabriela
M.M.Paixão, Emilly M. Lima, Paulo R. Gomes, Milton P. F. Ferreira, Derick M. Oliveira, Ma-
noel H. Ribeiro, Antonio H. Ribeiro, Jamil S. Nascimento, Jéssica A. Canazart, Leonardo
B. Ribeiro, Antonio L. P. Ribeiro. Journal of Electrocardiology, 2019. v. 57 pp. S56-S60. doi:
10.1016/j.jelectrocard.2019.09.004

Tele-electrocardiography and Bigdata: The CODE (Clinical Outcomes in Digi-
tal Electrocardiography) Study, Antonio Luiz P. Ribeiro, Gabriela M.M.Paixão, Paulo
R.Gomes, Manoel Horta Ribeiro, Antônio H. Ribeiro, Jéssica A. Canazart, Derick M.
Oliveira, Milton P. Ferreira, Emilly M. Lima, Jermana Lopes de Moraes, Nathalia Castro,
Leonardo B. Ribeiro, Peter W. Macfarlane. Journal of Electrocardiology, 2019. v. 57 pp.
S75-S78. doi: 10.1016/j.jelectrocard.2019.09.008

Lasso Regularization Paths for NARMAXModels via Coordinate Descent, Antônio
H. Ribeiro, Luis A. Aguirre. Proceedings of the American Control Conference, 2018. pp. 5268-
5273. doi: 10.23919/ACC.2018.8430924

Other appearances

The paper Automatic Diagnosis of the 12-Lead ECG using a Deep Neural Network was presented at the
SciLifeLab Science Summit in Uppsala, Sweden (2019), where it received the best poster award. And
at the Swedish Symposium on Deep Learning - SSDL (2019), also as a poster. It was preceded by the
pre-print:

Automatic Diagnosis of Short-Duration 12-Lead ECG using a Deep Convolutional
Network Antônio H. Ribeiro, Manoel Horta Ribeiro, Gabriela Paixão, Derick Oliveira, Paulo
R. Gomes, Jéssica A. Canazart, Milton Pifano, Wagner Meira Jr., Thomas B. Schön, Antonio
Luiz Ribeiro. 2018. https://arxiv.org/abs/1811.12194

This pre-print was presented as a poster in the peer-reviewed non-archival workshop “Machine Learning
for Health (ML4H)” at NeurIPS 2018, where it received a travel award. Earlier versions were also presented
in the Brasilian Congress of Cardiology in 2018 and in the Brasilian Congress of Informatics in Health in
2018.

Introduction 25

The paper Deep Convolutional Networks in System Identification was presented, as a poster,
at the European Research Network on System Identification, ERNSI, (2019) and at the Nonlinear
System Identification Benchmarks Workshop (2019), as an oral presentation under the name Deep
Convolutional Networks are useful in System Identification. The paper On the Smoothness of Nonlinear
System Identification was also presented as a poster at the European Research Network on System
Identification, ERNSI (2019).

Besides that, the optimization algorithm described in Appendix A was implemented in Python as
part of my Google Summer of Code project and integrated to the SciPy library2. Scipy is one of the core
scientific libraries in Python and is openly available under a permissive free-software license (Virtanen
et al., 2020).

2 scipy.optimize.minimize(..., method=‘trust-constr’)

Part I

Background

27

1 Machine learning fundamentals

Machine learning is a branch of artificial intelligence that studies methods to allow computers
to learn tasks by examples. For these methods, the task is solved not by pre-determined instruction,
but rather, by exposure to examples. There is a significant intersection between machine learning and
statistics, and many machine learning methods have been influenced by existing statistical methods.
Nevertheless, machine learning approaches are usually more performance-driven and inclined toward
black-box approaches. Statistical modeling, on the other hand, often assumes the (stochastic) data
generating process is known and builds methods on top of the underlying assumptions on how the data
was generated (Breiman, 2001). The distinction between two fields, however, is blurry. Another twin
area is system identification, which studies modeling in the context of dynamical systems from a system
theory background (cf. Chapther 3). In the end, the difference between these fields comes down to the
terminology, perspective, and background of the researchers involved.

The focus of this thesis will be on supervised learning. Supervised learning is a branch of machine
learning that studies methods for modeling the relation between a set of inputs (also known as predictors
or independent variables) and outputs (also known as responses or dependent variables). The algorithm
learns this relation by optimizing the distance between predicted and observed outputs in a training set
(for which both the inputs and outputs are known). One example is the problem that will be studied in
Chapter 8, for which we have as input the points of an electrocardiogram signal and as output indicators
of possible abnormalities.

Two relevant branches of machine learning that will not be explored in this thesis are the so-called
unsupervised learning and reinforcement learning. For unsupervised learning algorithms, there is not a
clear distinction between inputs and outputs, and the goal is to find associations and patterns on the
available dataset. Reinforcement learning, on the other hand, does not learn patterns but rather actions
to take. The actions are not pre-specified, and the method must discover the actions that yield the largest
reward by trying them out (Sutton and Barto, 2011). Unlike supervised and unsupervised learning, these
methods learn the task, not by being presented to a dataset, but rather, by being presented to a problem
with well-defined rules with a reward assigned to each possible outcome and multiple trials to solve it.

In this chapter, we present a short introduction to supervised learning. It is not our goal to cover
supervised learning from a broad perspective, and we will restrict our presentation to a somewhat limited
setup, we refer the reader to (Friedman et al., 2001; Bishop, 2006; Murphy, 2012) for a more extensive
treatment of the subject.

1.1 Parameter estimation

Given a training dataset containing input-output pairs (ui,yi) for i = 1, 2, · · · , N and a parame-
terized model, dependent on the parameter vector θ, relating the inputs and outputs. We estimate the
parameters using the following setup: we define a cost function V (θ) ∈ R that provides a measure of
how well the model fits the data. Point estimation of the parameter θ is obtained by optimizing the cost
function in an exact or approximate manner. Some basic frameworks for defining this cost function are
described next.

Chapter 1. Machine learning fundamentals 28

1.1.1 Maximum likelihood

The maximum likelihood estimation finds the parameter vector that maximizes the likelihood
L(θ) of the observations:

L(θ) = pθ(y1,y2, · · · ,yN | u1,u2, · · · ,uN), (1.1)

where pθ(· | u1,u2, · · · ,uN) is the joint probability density of the outputs conditioned on the observed
inputs. This approach is quite natural, as it finds the parameters that make the observed data most likely
to appear within the family of distributions pθ(·) being considered. The cost function is often defined as:

V (θ) = − 1
N

logL(θ), (1.2)

which can be minimized in order to find the parameter vector that maximizes the likelihood.

The likelihood might be decomposed into a chain of conditional distributions:

L(θ) =
N∏
i=1

pθ(yi | y1, · · · ,yi−1,u1, · · · ,uN). (1.3)

This decomposition is not unique and alternative orders would also be possible. One special case occurs
when the output samples are independent and identically distributed (i.i.d.). In this case:

L(θ) =
N∏
i=1

pθ(yi | ui). (1.4)

Hence, in both cases:

V (θ) = − 1
N

N∑
i=1

log pθ(yi | xi), (1.5)

where xi is either equal to ui or to (y1, · · · ,yi−1,u1, · · · ,uN) depending on which case we are dealing
with.

Since very often we choose pθ(·) to belong to an exponential family of distributions, defining
the cost function in terms of the the logarithm of the likelihood (log-likelihood), as we did in (1.2), often
simplifies the computations significantly. Exponential families are sets of distributions pθ(z) that can be
written as:

pθ(z) = 1
Z(θ)A

′(z) exp
(
η(θ)TT(z)

)
, (1.6)

for θ in the convex set Θ. Where T(z) are called sufficient statistics. A set of statistics are sufficient for a
family of probability distributions if the data from which it is calculated gives no additional information
than does the statistic. And Z(θ) is called partition function and it is the normalization constant that
guarantees that the distribution pθ(z) sums to one. Examples of exponential families include the normal,
exponential, multinomial with fixed number of trials, gamma, chi-squared, beta, Dirichlet, Bernoulli and
Poisson family of distributions.

Let z = (yi,xi), we can just write the conditional distribution as:

pθ(yi | xi) = 1
Z(θ)A(z) exp

(
η(θ)TT(z)

)
(1.7)

where: A(z) = A′(z)/pθ(xi).

In this case, the presence of the logarithm allows the the cost function (1.2) to be written as:

V (θ) = 1
N

N∑
i=1

(
log(Z(θ))− η(θ)TT(z)

)
, (1.8)

Chapter 1. Machine learning fundamentals 29

where we ommited the term logA(z), since it does not alter the maximum of V (θ).

Next, we present the two very relevant examples of parameter estimation in the exponential
family, namely the estimation of parameters of normal and multinomial distributions. For simplicity, we
will not put these examples in the canonical form presented above and just work with the most convenient
form.

1.1.2 Normal distribution and the least-squares cost function

Assume that we have a normal distribution with mean µi = f(xi;β) and variance σ2.

pθ(yi | xi) = 1√
2πσn

exp
(
− 1

2σ2 ‖yi − µi‖
2
)
. (1.9)

where f is some linear or nonlinear parametrized function and n is the dimension of y. The maximum
likelihood estimation of θ = [β, σ2] is given by the minimum of:

V (θ) = 1
N

N∑
i=1

(
1

2σ2 ‖yi − f(xi;β)‖2 + n

2 log(σ2)
)

= 1
2σ2V

′(β) + n

2 log(σ2), (1.10)

again, we omitted constant additive terms. The minimizer of V (θ) will be θ̂ = [β̂, σ̂2]. Where the optimal
value β̂ does not depended on the variance and can be computed minimizing the least-square problem:

V ′(β) = 1
N

N∑
i=1
‖yi − f(xi;β)‖2. (1.11)

And the variance can be computed as the minimum of 1
σ2V

′(β̂)+n log(σ2) which occurs at: σ̂2 = 1
nV
′(β̂) =

1
nN

∑N
i=1 ‖yi − f(xi; β̂)‖2.

1.1.3 Multinomial distribution and the softmax layer

Assume the outputis a scalar categorical variable yi ∈ {0, 1, · · · , k} where the probability of the
outcomes 1, 2, · · · , k is given by the elements of pi =

[
p1
i , p

2
i , · · · , pki

]
. Be Ij,y the indicator function,

defined as:

Ij,y =
{

1 j = y;

0 j 6= y.
(1.12)

We can define the probability of the output assuming a given value yi by:

p(yi) = (p1
i)I1,yi (p2

i)I2,yi · · · (pki)Ik,yi . (1.13)

Now assume we will define pi = p(xi;θ). Where p(•;θ) : RNx → S is a parametrized function that maps
into the set S = {p ∈ Rk |∑k

j=1 p
j = 1 and 0 ≤ pji ≤ 1 for all j}. The restrictions that define the set S

are needed so p can be interpreted as a vector of probabilities. The maximum likelihood estimation of θ
is given by the minimum of:

V (θ) = 1
N

N∑
i=1

(
I1,yi log(p1(xi;θ)) + I2,yi log(p2(xi;θ)) + · · ·+ Ik,yi log(pk(xi;θ))

)
. (1.14)

We define p(x;θ) as the composition of two functions: the 1-1 map s : Rk−1 → S and the parametrized
function f(•;θ) : RNx → Rk−1. Such that p(x;θ) = s(f(x;θ)) has domain S. By far the most common

Chapter 1. Machine learning fundamentals 30

option for the map s(•) is:

s1(z) = exp(z1)
1 +

∑k−1
i=1 exp(zj)

s2(z) = exp(z2)
1 +

∑k−1
i=1 exp(zj)

... =
...

sk−1(z) = exp(zk−1)
1 +

∑k−1
i=1 exp(zj)

sk(z) = 1
1 +

∑k−1
i=1 exp(zj)

.

Putting this expression of p back into (1.1.3), we obtain:

V (θ) = 1
N

N∑
i=1

I1,yif1(xi;θ) + I2,yif
2(xi;θ) + · · ·+ Ik−1,yif

k−1(xi;θ)− log

1 +
k−1∑
j=1

exp(f j(xi;θ))

 ,

which can be minimized in order to obtain the maximum likelihood estimation of θ.

The map s, which we have defined above, is related to the so-called softmax layer, which is often used as a
neural network layer. More precisely, we have used s(z) = S([z, 0]) where we have set the last component
of S equal to zero to guarantee that s(z) sums to 1.

Definition 1.1 (Softmax). The softmax layer is a map S : Rk → {p ∈ Rk | 0 ≤ pj ≤ 1,∀j}. For which:

Sj(z) = exp(zj)
1 +

∑k
l=1 exp(zl)

. (1.15)

1.1.4 Bayes parameter estimation and maximum-a-posteriori

An alternative view on the parameter estimation problem is to consider that there is no true
parameter and, rather, that θ is a random variable. The idea is that there is a prior distribution p(θ),
which summarize our knowledge of this parameter θ before any observation. How to decide this prior is a
widely studied problem. Some approaches try to use uninformative priors, that convey as little information
as possible. Other approaches try to reflect a preference for parsimonious and “simpler” solutions.

Assume that we have the training set Z = {(ui,yi) for i = 1, 2, · · · , N} and that the parameter
θ is independent of the input ui for every i, we can compute the probability of θ given the observed data
using the Bayes rule:

p(θ | y1,y2, · · · ,yN ,u1,u2, · · · ,uN) = p(y1,y2, · · · ,yN | u1,u2, · · · ,uN ;θ)p(θ)
p(y1,y2, · · · ,yN | u1,u2, · · · ,uN) , (1.16)

where p(θ | y1,y2, · · · ,yN ,u1,u2, · · · ,uN) is called posterior distribution and the likelihood is denoted
by p(y1,y2, · · · ,yN | u1,u2, · · · ,uN ;θ) (using a notation slightly different from Section 1.1.1). Here, the
posterior distribution gives the updated belief about the parameters after taking into account the observed
data.

In a fully Bayesian approach, we use this posterior distribution in all predictions, which might
be challenging computationally. Even though there are methods for doing this efficiently, we will not
study them here. Instead, we will give a brief description of a method called maximum-a-posteriori,

Chapter 1. Machine learning fundamentals 31

which computes a point estimation θ̂ by maximizing the posterior distribution. Which is equivalent to
minimizing:

V (θ) = − 1
N

log p(θ | y1,y2, · · · ,yN ,u1,u2, · · · ,uN). (1.17)

Using (1.16) and omitting additive constants that do not depend on θ the above cost function simplifies
to:

V (θ) = − 1
N

logL(θ)− 1
N

log p(θ), (1.18)

which is the combination of the cost function in the maximum likelihood plus an penalty term depending
on the prior. Next we study the effect of two priors on the maximum a posteriori estimation: namely a
Gaussian prior and a Laplacian prior.

1.1.5 Prior and parameter penalty

Assume that the prior distribution on θ is a distribution centered at zero with the following form:

p(θ) = K exp (−λ(‖θ‖q)q) . (1.19)

where K is some normalizing constant that does not depend on θ and ‖θ‖q =
(∑

i |θi|q
)1/q is the q-norm

of θ. For this prior, Eq. (1.18) simplifies to:

V (θ) = − 1
N

logL(θ) + λ

N
(‖θ‖q)q. (1.20)

For instance if q = 2, p(θ) is distributed according to a normal distribution, and V (θ) is equal to:

V (θ) = − 1
N

logL(θ) + λ

N
‖θ‖2. (1.21)

Which is basically the minimization of the log-likelihood with an additional l2 parameter penalty. In the
context of linear least-square problems this penalty is called Tikhonov regularization or ridge regression.
And, in the context of neural networks, it is often called weight decay.

Another popular choice is to use q = 1, which yields a Laplacian prior distribution and V (θ)
equals to:

V (θ) = − 1
N

logL(θ) + λ

N
‖θ‖1. (1.22)

Unlike l2 penalization, this formulation produces sparse solutions due to the non-differentiability of the
function being minimized. That is, some of the coefficients will be exactly zero, which may: i) enhance
the model interpretability; ii) yield cheaper computational evaluation of the model, since many of the
coefficients will be zero.

For l1 regularization the number of non-zero terms depends on the value of λ. The larger the
value of λ, the fewer degrees of freedom are allowed to the solution. And again, it becomes possible to tune
the model complexity by adjusting the value of λ. In the context of linear models, this l1 regularization is
often called Lasso regression1 (Tibshirani, 1996).

1.2 Model complexity

A central problem in machine learning is how to obtain a model that does perform well not just
in the training set but also generalize well to new inputs. A model that has too much flexibility may
overfit the training set, by adjusting itself to the random effects from the dataset it was trained; on the
other hand, a model that is not sufficiently flexible may fail to capture essential system characteristics,
which is known as underfitting.
1 Lasso stands for Least absolute shrinkage and selection operator.

Chapter 1. Machine learning fundamentals 32

1.2.1 Bias-variance tradeoff

When creating a model, it is impossible to account for all possible factors that might interfere in
the outcome. For instance, when building a model to predict the orbit of the earth around the sun, the
sun and all planets in the solar systems might be taken into account, but it is unfeasible to account for
the gravitational attraction of all bodies in the universe. It is not very productive either because these
often have a very small effect on what the model is trying to predict.

The approach used in statistics and machine learning to take into account the effects that are not
being directly modeled is to consider the presence of random variables, described by a distribution of
values rather than a single deterministic value. Due to the randomness, there is a model prediction error
that will inevitably arise, even if for the best conceivable model. There are two other error components.
The first is due to the structural inflexibility of the model class being considered. That is, within a model
class, even when the parameters are set to their optimal values, the model might still not be the best
possible choice. In this case, a broader class of models might be able to capture the underlying behavior
better. The second factor that causes errors is the model learning random effects present in the training
data. These two components are some times called bias error and variance error.

The twin goal of reducing these two errors has a conflicting nature. To reduce the bias error, one
should increase the model flexibility, making it possible to better approximate the system. However, this
usually causes the variance error to increase since when more flexibility is given to the model, it becomes
more subject to learning random effects from the training data. The problem of finding a tradeoff between
these conflicting goals is called bias-variance tradeoff.

Under appropriated assumptions, the model error can be decomposed as additive components.
Assume that we have an output Y and an input X, both vectorial random variables. And that we have
used some method to estimate a function f(•), which tries to capture the relation between input and
output. Let us define the expected prediction error (EPE) as:

EPE = EX,Y
{
‖Y− f(X)‖2

}
, (1.23)

where EX,Y {•} is the expectation regarding the joint distribution (X,Y).

EX,Y
{
‖Y− f(X)‖2

}
= EX,Y

{∥∥(Y− EY |X{Y})− (f(X)− EY |X{Y}
)∥∥2
}

= EX,Y

{∥∥Y− EY |X{Y}∥∥2 +
∥∥f(X)− EY |X{Y}

∥∥2 − 2
(
Y− EY |X{Y}

)T (
f(X)− EY |X{Y}

)}
= EX,Y

{
‖Y− EY |X{Y}‖2

}
+ EX

{
‖f(X)− EY |X{Y}‖2

}
− 2EX,Y

{
(Y− EY |X{Y})T (f(X)− EY |X{Y})

}
.

The third term of this decomposition EX,Y
{

(Y− EY |X{Y})T (f(X)− EY |X{Y})
}
can be expanded as:

EXEY |X
{
YT f(X)− EY |X{Y}T f(X)−YTEY |X{Y}+ EY |X{Y}TEY |X{Y}

}
= EX

{
EY |X{Y}T f(X)− EY |X{Y}T f(X)− EY |X{Y}TEY |X{Y}+ EY |X{Y}TEY |X{Y}

}
= 0.

Hence, the expected prediction error simplifies to:

EPE = EX
{
EY |X

{
‖Y− EY |X{Y}‖2

}
+ ‖f(X)− EY |X{Y}‖2

}
. (1.24)

Notice that the first term is independent of f , and, hence, the value of f for which the expected prediction
error is minimum occur for the minimizer of:

EX
{
‖f(X)− EY |X{Y}‖2

}
.

Chapter 1. Machine learning fundamentals 33

Let us define a function f∗(x) = argminc ‖c − EY |X{Y}‖2 = EY |X{Y}. This function minimizes the
prediction error pointwise, and, hence, it will minimize EX

{
‖f(X)− EY |X{Y}‖2

}
and the expected

prediction error. Using this definition of optimal f∗ we can rewrite (1.24) as:

EPE = EX,Y
{
‖Y− f∗(X)‖2

}
+ EX

{
‖f(X)− f∗(X)‖2

}
. (1.25)

Using a procedure entirely analogous to the one we have used to arrive at this expression we can show
that:

EX
{
‖f(X)− f∗(X)‖2

}
= EX

{
‖f(X)− EX{f(X)}‖2

}
+ ‖f∗(X)− EX{f(X)}‖2.

Hence, the expected prediction error can be written as:

EPE = EX,Y
{
‖Y− f∗(X)‖2

}︸ ︷︷ ︸
irreducible error

+EX
{
‖f(X)− EX{f(X)}‖2

}︸ ︷︷ ︸
variance

+‖ f∗(X)− EX{f(X)}︸ ︷︷ ︸
bias

‖2. (1.26)

Hence, for this formulation, the error can be decomposed as the three component mentioned earlier in this
section: the unavoidable error that arise for any model f due to the randomness of the data; the variance
of the model due to random effects in the training dataset being captured by the model and the distance
between the current and the best possible model that could be used.

1.2.2 Regularization methods and hyperparameter choice

Techniques used for controlling the model complexity to make it generalize well for new inputs
are collectively known as regularization methods. One commonly used technique is to include an additive
penalty term that penalizes the norm of the parameter vector:

V (θ) = Vll(θ) + λ

N
‖θ‖pp, (1.27)

where Vll is a cost function measuring the model performance in the training set. And λ can be use to
control the complexity of the model. A large value of λ indicates that complicated models (with large
parameters) will be strongly penalized and the optimization of V will yield simpler models. Such that,
as λ → ∞ the estimated parameter vector tends to zero and as λ → 0 the solution will approach the
minimizer of Vll.

In Section 1.1.5 we have arrived at a cost function very similar to that of (1.27) using a maximum-
a-posteriori formulation. Indeed, prior parameter distributions can be used to infuse knowledge about the
desired model in the estimation. And the choice of priors centered around zero, which decay as we move
away from the center, serves the purpose of specifying that we would prefer to have small parameters
(which usually correspond to simpler models).

An appropriate choice of the factor λ will yield a model that not only optimizes the performance
in the training set but also that gives a good generalization to unseen situations, by optimizing the
performance at the same time it penalizes model complexity. We should highlight that any choice of
λ 6= 0 will result in a model that does not optimize only the performance and, hence, that will have
worse accuracy on the training set than the solution of Vll. That is because evaluating the model
performance on the training set only allows us to assess the bias error (i.e., the inflexibility of the model
class to capture the input-output relation). However, the variance error, which appears due to the model
capturing spurious random effects, will not reflect on the training set performance. Hence, when choosing
the regularization parameter λ, we want to find the value that optimizes both components of the error:
the variance and the bias error.

Hence, one cannot choose λ or other parameters that control model complexity by trying to find
its optimal value on the training set. In a data-rich situation, one may set aside a development dataset

Chapter 1. Machine learning fundamentals 34

and use it for evaluating the performance of models resulting from different choices, choosing the one with
the best performance on this dataset. Cross-validation is an alternative that does not require a separate
development dataset (Friedman et al., 2001), but require extra computational power, since the dataset
will be subdivided into K-folds and the model will be trained multiple times alternating which folds
are used as training and which are used to evaluate the performance, the final choice of regularization
parameters will be the average of the different realizations, which are used in a final stage, for which
the model is trained using the entire set. Alternatives, for linear models are the Akaike’s Information
Criterion (Akaike, 1974) and Bayesian Information Criteria (Schwarz, 1978), which provide an optimal
model complexity under restrictive assumptions.

In the neural network literature, it is usual to call the parameters that cannot be set by optimizing
the training dataset as hyperparameters. A separate development dataset is, currently, the usual choice for
setting these hyperparameters for large neural networks since cross-validation might be too computationally
expensive. Hyperparameters include the regularization parameters (such as λ in the above example), model
structure choices and also the optimization parameters. Optimization parameters might affect the final
result significantly when V (θ) is not convex since the optimizer is not guaranteed to find the optimal
value.

1.2.3 Model final performance

As discussed in the previous section, assessing the model performance on the same set that was
used to estimate its parameters, will not give an accurate estimate of what will be the performance of
the model on unseen data. To a lesser extension, evaluating the performance on the development dataset
will also give an over-optimistic evaluation of the performance since this dataset was used to choose the
hyperparameters. Hence, to properly evaluate the model performance, a separate test set may be set aside
and used to assess the performance on new data.

Hence, in a data-rich situation, one may divide the dataset into three parts: a training set, a
development set and a test set. The parameters are estimated to fit the training set; the development set
is used for model and hyperparameter selection; and, the test set should be set aside and brought out
only for the assessment of the final chosen model, to provide a reliable estimation of the model error.

1.3 Optimization

Here we study some aspects of algorithms for finding the minimum of the cost function V (θ),
V : RNθ → R.

1.3.1 Global vs local optimization algorithms

We make the distinction between local solutions and global solutions of V . A global solution
satisfies:

V (θ∗) ≤ V (θ), (1.28)

for all θ. A local solution, on the other hand, only needs to satisfy the above inequality in a ball with
radius r near the solution, that is it satisfies the above inequality for all values inside the set:

{θ : ‖θ∗ − θ‖ < r}, (1.29)

for some value of r. Hence, all global solutions are also local solutions, but not all local solutions are
global solutions.

Chapter 1. Machine learning fundamentals 35

Local optimization algorithms are those that we considered having converged once a local solution
is found. No matter if this solution is also a global solution or not. Global optimization algorithms are
those that might not have their convergence criteria satisfied even after founding a local solution. It is
usually hard to establish if a global solution has been indeed found in a high dimensional space, though,
so they typically converge to approximate solutions.

Populational algorithms is a class of global optimization algorithms. This class of methods
instantiate a population of solutions θi, i = 1, 2, 3, · · · , n. At each iteration, it computes the value of the
cost function at those points and uses the information to propose a new set of individuals θi. Genetic
algorithms are probably the most famous algorithms within this class Goldberg (2000). Another related
approach is Bayesian optimization Mokus (1974), which sets a prior over the objective function value and
update this prior as the cost function is actually evaluated in points along the parameter space. Both
approaches try to explore the parameter space, while also intensifying around regions where good solutions
are located.

Local algorithms start with an initial solution guess θ0 and update the solution interatively
obtaining a sequence of solutions {θn} that should approach a local solution. At iteration n∗, the algorithm
is considered to have converged when θn∗ is sufficiently close to a local solution. When V is diferentiable
at θn∗ , this criteria can be easily verified by checking if the gradient ∇V (θn∗) is sufficiently close to zero,
i.e. ‖∇V (θ)n∗‖ < 10−8.

1.3.2 Taylor approximations

If V is continuous differentiable, we have that:

V (θ +D) = V (θ) +∇V (θ)TD +O(‖D‖2), (1.30)

further more if V is twice continuous differentiable:

V (θ +D) = V (θ) +∇V (θ)TD + 1
2D

T∇2V (θ)D +O(‖D‖3). (1.31)

Where O(‖D‖n) is a term that is proportional to the norm of D to the power of n. Hence, if ‖D‖ is
sufficiently small, we can ignore the term O(‖D‖2) and approximate the cost function by its first-order
approximation:

V (θ +D) ≈ V (θ) +∇V (θ)TD. (1.32)

Or, more accurately, by its second-order approximation:

V (θ +D) ≈ V (θ) +∇V (θ)TD + 1
2D

T∇2V (θ)D, (1.33)

where ∇V (θ) is the gradient and ∇2V (θ) the Hessian of V evaluated at θ.

Methods that use a first-order Taylor approximation to compute the step direction are called
first-order methods. Second-order methods are those that use the second-order Taylor approximations in
order to compute the step direction. Computing the Hessian might be too expensive or demand too much
memory, and some algorithms use an approximation of the Hessian in the computation the step direction.
We will call this class of methods inexact second-order methods.

The steepest descent algorithm is a first-order method. This algorithm update the solution using
the following rule:

θn+1 = θn − η∇V (θn), (1.34)

where η is called the step size or learning rate. This interative rule follows from simply considering, at
each iteration, a first-order approximation (1.32) around θn and choosing an update D which minimizes
V (θn) +∇V (θn)TD subject to ‖D‖ = η‖∇V (θn)‖.

Chapter 1. Machine learning fundamentals 36

The Newton method algorithm is a second-order method. It use the update rule:

θn+1 = θn −
(
∇2V (θn)

)−1∇V (θn), (1.35)

which follows simply from considering, at each iteration, a second-order approximation (1.33) around θn
and choosing an update D which minimizes V (θn) +∇V (θn)TD + 1

2D
T∇2V (θn)D.

Finaly, quasi-Newton methods are inexact second-order methods. They use an approximation
Bn ≈

(
∇2V (θn)

)−1 and uses the follwing update rule:

θn+1 = θn −Bn∇V (θn). (1.36)

1.3.3 Convexity

The function V is said to be convex if it satisfies the following inequality for every θ, φ, and for
every α ∈ [0, 1]:

V (αθ + (1− α)φ) ≤ αV (θ) + (1− α)V (φ). (1.37)

The function is said to be strictly convex if the equality holds only for α = 0 or α = 1.

The next theorem gives one important property, which immensely simplifies the optimization of
convex functions:

Theorem 1.1. When V is convex, any local minimizer of V is a global minimizer.

Proof. See Nocedal and Wright (2006, Theorem 2.5).

Furthermore, for convex functions for which ∇V is Lipschitz continuous2 with constant L, the
steepest descent method with fixed step size, given by the update rule (1.34), always converge to the
solution if the step size respect the following inequality: η < 2/L (cf. Poljak (1987)). Furthermore, for
convex functions for which ∇2V is Lipschitz continuous, the Newton method (1.35) is also guaranteed to
converge to a solution (Nocedal and Wright, 2006, Theorem 3.5).

1.3.4 Line-search and trust-region methods

For convex and smooth cost functions, the previous section gives conditions to the update rules
(1.34) and (1.35) converge to a solution. When working with non-convex functions, however, these simple
update rules are not guaranteed to converge to a local solution. There are two strategies that can guarantee
the convergence to a local solution in the non-convex case, namely line-search methods and trust-region
methods.

Line-search methods, at each interaction, first choose a direction Dn and then, in a second stage,
choose a step size η(n). This direction is Dn = −∇V (θn) or Dn = −∇2V (θn)∇V (θn) for first and
second-order methods, respectively. The step size η(n) > 0 is chosen in a way that approximately minimizes
V (θn + ηDn). If the step size is choosen in such way that satisfy some basic conditions (such as the Wolf
conditions) the algorithm is guaranteed to converge to a local soluton for first and second-order methods.
(Nocedal and Wright, 2006)

Trust-region methods, at each iteration, construct a local approximation Mn(θ) whose behaviour
near the current point θn is close to that of the function V . The first-order approximation (1.32) or the
second-order approximation (1.33) around the current iterate θn are both examples of local models that
can be used. The next iterate θn+1 = θn +Dn is computed as the minimizer of this local approximation.
2 ∇V is Lipschitz continuous with constant L if and only if there exist a constant L such that ‖∇V (θ)−∇V (φ)‖ < L‖θ−φ‖

Chapter 1. Machine learning fundamentals 37

This local approximation, however, might not be a good approximation far from θn, hence we restrict the
search for minimizers within some region Fn around θn in which we trust our local model. Hence the
update will be computed by, approximately, solving:

min
D

Mn(θn +D) subject to (θn +D) ∈ Fn. (1.38)

If the candidate solution does not provide a sufficient decrease, we conclude that the trust-region is too
large, and we shrink it and re-solve (1.38). It is very common to define the trust-region as a ball centered in
θn, that is: Fn = {(θn +D) : ‖D‖ < ∆n}, for some value of ∆n. Elliptical and box-shaped trust-regions
are also used in some algorithms.

We refer the reader to Nocedal and Wright (2006) for an extensive treatment of both line-search
and trust-region methods.

1.3.5 Convergence rate

Be {θn} a sequence that converges to a point θ∗. The convergence is:

• linear if, there exist 0 < r < 1 and N , such that, for all n > N :

‖θn+1 − θ∗‖
‖θn − θ∗‖

≤ r. (1.39)

• quadratic if, there exist 0 < r < 1 and N , such that, for all n > N :

‖θn+1 − θ∗‖
‖θn − θ∗‖2

≤ r. (1.40)

• superlinear if for all values of r we can always find N , such that, for all n > N :3

‖θn+1 − θ∗‖
‖θn − θ∗‖2

≤ r. (1.42)

We give examples of sequences that converge linearly, superlinearly, and quadratically in Figure 1.1.
Any sequence that converges quadratically also converges superlinearly. And, in turn, every superlinear
convergent sequence also converges linearly.

Consider a sequence of solutions {θn} produced by a first-order, second-order, and inexact
second-order optimization methods. For a large class of methods, the convergence rate of these algorithms
is, respectively, linear, quadratic, and superlinear. We refer the reader to (Nocedal and Wright, 2006) for
a complete description of the algorithms and conditions for this to hold.

The faster convergence rate is one of the strongest advantages of second-order methods over
inexact second-order methods. And, in turn, of inexact second-order methods over linear methods. It
is important to keep in mind, however, that this is an asymptotic convergence rate, and the number of
iteration before achieving this convergence rate is not specified. The asymptotic speed of convergence
also depends on r, whose values depend not only on the algorithm but also on the properties of the
optimization problem being solved. This dependency is weaker for quadratically convergent sequences.
And, while a quadratically convergent sequence will, eventually, always converge faster than a linear, this
might take many iterations.
3 That is equivalent to:

lim
n→∞

‖θn+1 − θ∗‖
‖θn − θ∗‖2

= 0. (1.41)

Chapter 1. Machine learning fundamentals 38

2 4 6 8 10

10 147

10 127

10 107

10 87

10 67

10 47

10 27

10 7

linear
superlinear
quadratic

Figure 1.1 – (Convergence rate) We show the first 10 points of sequences that converge toward zero.
The sequence (0.7)n converges linearly, n−n converges superlinearly and, (0.7)2n converges
quadratically.

1.3.6 Scaling

Figure 1.2 illustrates different cost functions with the same final solution. We also show the first
iterations of the steepest descent algorithm. The performance of the algorithm varies a lot. The difference
in performance is due to problem formulation and scaling. A problem is said to be poorly scaled if a change
in one direction produces a much larger variation in the cost function than changes in another direction.

Scale invariance is the property of an optimization method not being affected by scaling. It is a
much-desired properly that allows the algorithm to be robust and not loose performance, even when faced
with a problem containing effects happening at different scales. While the steepest descent algorithm
is greatly affected by poor scaling, the Newton method is less affected by it, since information about
curvature is being captured by the second-order derivatives. Inexact second-order methods usually fair
better than the first-order methods in this regard as well.

1.3.7 Memory complexity

At each iteration, first-order methods only need to store the gradient while second-order methods
also have to store the Hessian. Hence, be Nθ the number of parameters, while first-order methods require
an storage of O(Nθ), second-order methods have a requirement of O(N2

θ). This quadratic dependence on
the number of parameters might make the use of second-order methods unfeasible for many applications.
In Chapters 4 and 5 we use an inexact second-order method that is based on the nonlinear least-square
structure of the problem, and approximate the Hessian by JJT , where J ∈ RNθ×Nθ is the Jacobian matrix
of the error and hence has a memory requirement O(N ∗Nθ), where Nθ is the number of parameters, and
N is the number of data points.

Particularly, the quadratic memory complexity of exactly second-order methods or even the
complexity of O(N ∗Nθ) from nonlinear least-square methods is not consistent with the needs of deep
learning applications, where it is very usual to use models with a very large number of parameters (For
instance, the high-performance deep-learning-based chatbot Meena has 2.6 billion parameter (Adiwardana
et al., 2020)). There are inexact second-order methods that fare much better in this aspect, though. For
instance, the L-BFGS algorithm approximates the Hessian using the L last values of the gradient and has

Chapter 1. Machine learning fundamentals 39

3 2 1 0 1 2 3
1

3

2

1

0

1

2

3

2

V

0.0

0.6

1.2

1.8

2.4

3.0

3.6

(a) r = 0.7

3 2 1 0 1 2 3
1

3

2

1

0

1

2

3

2

V

0.0

1.2

2.4

3.6

4.8

6.0

7.2

8.4

(b) r = 7

3 2 1 0 1 2 3
1

3

2

1

0

1

2

3

2

V

0

3

6

9

12

15

18

21

24

(c) r = 70

3 2 1 0 1 2 3
1

3

2

1

0

1

2

3

2

V

0.0

1.2

2.4

3.6

4.8

6.0

7.2

8.4

9.6

10.8

(d) r = 0.7

3 2 1 0 1 2 3
1

3

2

1

0

1

2

3

2

V

0

4

8

12

16

20

24

28

32

(e) r = 7

3 2 1 0 1 2 3
1

3

2

1

0

1

2

3

2

V

0

15

30

45

60

75

90

105

(f) r = 70

Figure 1.2 – (Scaling) We show the contour plot and the first iterations of steepest descent algorithm
with fixed step size (in red) . Figures (a) to (c) display the contour plot for the cost function
V (θ1, θ2) = θ2

1 + rθ2
2, which has a global minimum at (0, 0). We start the steepest descent

algorithm from the initial point (2, 2) and show the first 10 iterations. Figures (d) to (f)
display the contour plot for the cost function V (θ1, θ2) = (1− θ1)2 + r(θ2 − θ2

1)2, which has a
global minimum at (1, 1). The function is a known as the Rosenbrock function. We start the
steepest descent algorithm from the initial point (−1, 1) and show the first 100 iterations. In
both cases, r is used to adjust the scaling of the problem, with large values of r corresponding
to ill-scaled problems. The fixed step size of the optimization algorithm is fixed to 0.1/r to
avoid divergence.

a memory requirement of O(LNθ), and might yield good results even for small L (Liu and Nocedal, 1989).

1.3.8 Stochastic optimization

Let the cost function be defined by:

V (θ) = 1
N

N∑
k=1

lk(θ), (1.43)

where lk is the loss function. We assume we have a training dataset containing N samples and that lk is
related to the k-th entry. See Section 1.1.1 to see one examples where such cost function might arise. It is
also possible to easily incorporate a penalty term Ω(θ), for regularization, but we omit such term in the
discussion for simplicity.

The steepest descent algorithm with fixed step size, i.e. (1.34), applied to this cost function could
be implemented as the following sequence of operations:

Algorithm 1.1 (Batch steepest descent). Fix the step-size η. Repeat the following, till
‖∇V (θ)‖ < 1× 10−8:

1. For k = 1 to N compute: dk ← ∇lk(θn);

2. Compute: D ← 1
N

∑N
k=1 dk;

3. Update: θn+1 ← θn − ηD;

Chapter 1. Machine learning fundamentals 40

4. Update: n← n+ 1.

The major drawback of that algorithmic approach is that it requires us to compute the gradient
of all entries (i.e. compute ∇lk(θn) for k = 1, · · · , N) before updating the parameter. This might be
inefficient for large datasets: Few samples might already give a good update direction for a small fraction
of the computational cost and an approach called stochastic gradient descent is a more efficient alternative,
as demonstrated in (Bottou et al., 2018). This approach computes the derivative of a mini-batch containing
nb samples and use it to compute the update direction, doing that for all the samples N of the dataset,
nb samples at a time. The method is summarized in Algorithm 1.2. Another advantage of using small
mini-batches is that the stochastic nature of the algorithm might help escaping sharp local minima and
yield solutions that generalize better in unseen datasets (Keskar et al., 2016).

Algorithm 1.2 (Stochastic gradient descent). Fix the step-size η. Repeat the following, till
‖∇V (θ)‖ < 1× 10−8:

1. Shuffle data samples;

2. for b = 1 to
⌈
N
nb

⌉
:

a) For k = 1 to nb compute: dk ← ∇l(k+b∗nb)(θn);

b) Compute: D ← 1
Nq

∑nb
k=1 dk;

c) Update: θ ← θ − ηD;

3. Update: n← n+ 1.

Stochastic exact and inexact second-order approaches also exist and process the input one mini-
batch at a time. Taking into account both the cost per iteration and convergence rate, stochastic gradient
descent provides a better time-complexity then, stochastic and batch, exact second-order methods (Bous-
quet and Bottou, 2008). Inexact stochastic second-order methods present an interesting alternative that is
still being studied (Bottou et al., 2018), but have not gained much traction in deep learning applications
yet despite the advantages mentioned in Section 1.3.5 and 1.3.6. Reasons range from the popularity
of function that are piecewise differentiable such as retified linear unit (ReLU) and might affect the
performance of second-order methods negatively, to the fact that first-order algorithms are simpler to
implement and understand. To the moment this thesis was written, stochastic gradient descent and its
variations with momentum are still the most popular choice in deep learning applications.

1.4 Automatic differentiation

As discussed above, many optimization methods require us to compute derivatives. Fortunately,
there exist algorithmic approaches that allow the exact computation of the derivatives of an arbitrary
function. These algorithmic approaches are extremely useful when estimating parameters and optimizing a
cost functions V and high-quality libraries implementing such methods were developed to fulfill the needs
of deep learning implementations and are continuously evolving, such as the libraries PyTorch (Paszke
et al., 2017) and Tensorflow (Abadi et al., 2015). Another focus of such libraries is to provide easily
available interfaces to graphical processing units (GPUs) to speed up the computation.

Chapter 1. Machine learning fundamentals 41

∗(−1)
�1

�2

�3

�4

�5

exp

�6

�7

∏

‾‾√ �8

÷

�9

+

�10∗

Figure 1.3 – (Computational graph) Graph containing the partially ordered elementary operations
involved in the computation of f , defined as in (1.44). The leafs of the computational graphs
are the nodes in red and correspond to the function inputs.

Let f be an arbitrary function f : Rn → Rm, the computation of this function can be broken
down into elementary operations. For instance, given the function:

f(x1, x2, x3) = −x1 ∗
(
x1 ∗ ex2 ∗ x3 +

√
x3

x2

)
, (1.44)

we can define intermediary variables containing results from the computations and break down the entire
function evaluation into elementary operations, as follows:

x4 = −x1 (1.45a)

x5 = ex2 (1.45b)

x6 = x1 ∗ x5 ∗ x3 (1.45c)

x7 = √x3 (1.45d)

x8 = x7/x2 (1.45e)

x9 = x6 + x8 (1.45f)

x10 = x4 ∗ x9. (1.45g)

And f = x10. This sequence of partially ordered operations can be put together as a computational graph.
Any dependency xi → xj indicated in the graph corresponds to the dependencies in the computation.
Let us call xj a parent node, the child nodes are all the nodes that point to it in the graph (i.e. all the
elements that are required to compute this intermediary elements). The computational graph for the
example is given in Figure 1.3. The computational graph consists of a directed acyclic graph and a list of
elementary operations. The elementary operations are well defined enough so, given all the child nodes, we
can compute the value for the parent node, that is be xC(j) a vector of child nodes, them xj = oj(xC(j)).

A topological order is an ordering for the nodes in the graph such that if xi → xj than j > i.
Notice that the nodes {x1, x2, · · · , x10} in Figure 1.3 and in Equations (1.46) are indexed acording to a
topological ordering.

Given a computational graph two algorithmic approaches can be used for computing the derivatives:
foward-mode and reverse-mode automatic differentiation. Mixed approaches are also possible. For all
approaches, all the operations must have well defined derivatives, so be a pair of child and parent node
xi → xj . Then ∂xj/∂xi can always be computed given the set of values from the child nodes. For instance,
in the example, x6 = x1 ∗ x2 ∗ x3. Hence, given that (x1, x2, x3) = (3, 6, 12.5), we can compute the partial

Chapter 1. Machine learning fundamentals 42

derivatives:
∂x6
∂x1

= x2 ∗ x3 = 6 ∗ 12.5 = 75 (1.46a)

∂x6
∂x2

= x1 ∗ x3 = 3 ∗ 12.5 = 37.5 (1.46b)

∂x6
∂x3

= x1 ∗ x2 = 3 ∗ 6 = 18. (1.46c)

1.4.1 Forward-mode automatic differentiation

Let xj be any node in the computational graph, let us call the gradient of this intermediary
element, with regard to the inputs x = (x1, · · · , xn), by:

∇xj(x) =
(
∂xj
∂x1

(x), · · · , ∂xj
∂xn

(x)
)
. (1.47)

Forward-mode automatic differentiation associate with each node the value-gradient pair (xj ,∇xj(x)).
This value-gradient pair will be evaluated and carry forward in the computational graph.

Algorithm 1.3 (Forward-mode automatic differentiation). Order the nodes in topological order
{x1, x2, · · · }. Be n the number of inputs. For j = 1, 2, · · · :

1. If j ≤ n, xj is one of the leafs (input of the function), its value is known and the gradient is given
by:

∇xj(x) = ej = (0, · · · , 0, 1, 0, · · · , 0); (1.48)

2. If j > n, be C(j) the set of child nodes of j, and xC(j) = (xi : i ∈ C(j)) a vector containing them.
The value of this node can be computed using the elementary operation xj = oj(xC(j)) and the
gradient can be using the chain rule:

∇xj(x) =
∑
i∈C(j)

∂xj
∂xi

(xC(j))∇xi(x). (1.49)

Notice that since the nodes are indexed in topological order, the values required to carry the
computation, i.e. 1) the values of the child nodes xC(j); and, 2) the gradients ∇xi(x) for i ∈ C(j), will
already have been computed once we arrive at the computation of (xj ,∇xj(x)).

1.4.2 Reverse-mode automatic differentiation

Reverse-mode automatic differentiation does not perform function and gradient evaluations
concurrently. Instead, it performs a two-stage computation. In a forward pass, it computes the values of
all intermediary nodes. In a backward pass, it computes the derivatives.

Let x = (x1, · · · , xn) be the input, in a first pass the algorithm compute the value of all
intermediary nodes xj = oj(xC(j)). Let y = f(x) ∈ Rm be the output and xj any node in the computational
graph. Let us call ∂y

∂xj
(x) the derivative of the output with regard to this intermediary element. The

algorithm proceed as follows

Algorithm 1.4 (Reverse-mode automatic differentiation). Order the nodes in topological order
{x1, x2, · · · }. Be m the number of outputs and N the total number of nodes.

1. For j = 1, 2, · · · , N :

Chapter 1. Machine learning fundamentals 43

a) Compute xj ← oj(xC(j));

2. For i = N,N − 1, · · · , 1:

a) If N − i ≤ m, xi is one of outputs of the function, and the partial derivative is given by:

∂y
∂xi

(x) = ei = (0, · · · , 0, 1, 0, · · · , 0); (1.50)

b) If N − i > m, the partial derivative can be computed using the chain rule:

∂y
∂xi

(x) =
∑
j∈P(i)

∂y
∂xj

(x)∂xj
∂xi

(x). (1.51)

where P(i) are all the parent nodes of the node xi.

1.4.3 Computational complexity and applications

Let f : Rn → Rm be the function to be evaluated, and ne =
∑
j

∑
i∈C(j) 1 =

∑
i

∑
j∈P (j) 1 the

number of edges in its computational graph, n the number of inputs, and m the number of outputs.
Forward-mode automatic differentiation has a computational cost O(nen). Reverse-mode differentiation,
on the other hand, has the computational cost O(nem). Hence, while the forward-mode has a computatinal
complexity that scales with the number of inputs, reverse-mode has a computational complexity that
scales with the number of outputs.

The main appeal of reverse-mode automatic differentiation when optimizing a scalar cost function
V : RNθ → R is its low computational cost. The extra arithmetics associated with the gradient computation
is usually no more than 4 or 5 times the arithmetic needed to evaluate the function alone. This approach
is very popular in neural network applications and is sometimes called backpropagation. The fact that the
computational cost does not scale with the number of parameters allows models with a large number of
parameters to be estimated.

In nonlinear least-squares problems, the Jacobian matrix of an error function can provide a good
approximation of the Hessian of the cost function and speed up the convergence of the optimization
algorithm. This type of optimization problem minimizes ‖e‖2 , where e : RNθ → RN . The major advantage
is that the computational cost will not depend on the number of datapoints N , and this might yield
efficient implementations. The computational cost will still depend on the number of parameters Nθ,
which might be a limitation for problems with a very large number of parameters.

In Chapter 4, we use a mixed approach that uses reverse-mode automatic differentiation for
computing the derivative of the neural network and a forward mode automatic differentiation for prop-
agating the derivative through the recurrence equation, this enables the efficient computation of the
Jacobian matrix of the error vector. In Chapter 5, we used a similar approach for some of the examples.
When dealing with many parameters, however, even this approach might become unfeasible, and in the
implementation of Chapters 6, 7 and 8, we always use reverse-mode automatic differentiation since we are
dealing with large neural networks with many parameters.

Chapter 1. Machine learning fundamentals 44

automatic differentiation optimization method input processing
reverse forward 1st order inex. 2nd order batch stochastic

Chapter 4 7† Levenberg-Marquardt 7

Chapter 5 7‡ trust-region method 7
Chapter 6 7 ADAM 7
Chapter 7 7 ADAM 7
Chapter 8 7 ADAM 7

Table 1.1 – (Design choices) Summary of the design choices in the numerical examples. The Levenberg-
Marquardt algorithm is a nonlinear least-squares algorithm proposed by (Marquardt, 1963).
The trust-region algorithm from Chapter 5 was described by (Lalee et al., 1998) and ADAM
is a stocastic first-order with momentum proposed by (Kingma and Ba, 2014). †In Chapter 4
we actually use a mixed approach, where we use backpropagation (which uses reverse mode
automatic differentiation) to compute the derivative of the neural network, and forward
differentiation to propagate the derivatives through the recurrence. ‡We did the same for
Example 2 in Chapter 5.

45

2 Neural network models for sequences

Machine learning has had many recent successes, achieving great performance in tasks such as
image classification (Krizhevsky et al., 2012), machine translation (Bahdanau et al., 2014; Vaswani et al.,
2017) and speech recognition (Hinton et al., 2012), to cite a few. The driving force behind many of these
recent achievements is the development of deep neural networks (LeCun et al., 2015): models composed of
stacked layers that combine linear and nonlinear transformations. There are great expectations about the
development of this technology, which may help to transform health care and clinical practice (Stead, 2018;
Naylor C, 2018; Hinton, 2018; Topol, 2019), allow the full development of autonomous vehicles (Geiger
et al., 2012) and dramatically improve how computers understand and generate text (Devlin et al., 2018).

Artificial neural network development dates back from the 1940s. Earlier biological inspired models
of neurons with weights set by human operators, such as the McCulloch-Pitts neuron (McCulloch and
Pitts, 1943), served as an inspiration to models that could learn the weights from inputs to solve certain
tasks, such as the perceptron (Rosenblatt, 1958) and the ADALINE (Widrow and Hoff, 1960). These basic
units connected in parallel and stacked in layers would render successful models two decades latter (Hinton,
1986; Rumelhart et al., 1988) and also popularize the estimation of these models by stochastic gradient
descent, with the gradient of the error computed using reverse-mode automatic differentiation, in a
procedure known as backpropagation that is still used in many state-of-the-art recent models.

Technical developments made it possible to train models with a larger number of parameters, and
the digitalization of our society resulted in extensive records that could be organized in large datasets for
training and testing machine learning models. These developments rendered end-to-end models successful
in the last decade. End-to-end models represent a change of paradigm for modeling text, image, and other
types of unstructured data. In this paradigm, raw data is provided as input to the model, in contrast to
the more traditional approach for which the data is pre-processed, features are extracted and used as
input to the machine learning algorithm. And it is in this end-to-end setup that deep neural networks have
been thriving. The impressive results in computer vision (Krizhevsky et al., 2012) and natural language
processing (Devlin et al., 2018), to cite a few, have been driving a new wave of interest in neural networks.
And the applications of these learning methods have been rebranded as deep learning.

In this chapter, we present a short introduction to deep learning and neural networks. Our
presentation will be largely focused on models that use sequences as inputs. Several problems with
relevant applications fall into this category, and the methods discussed here can be used in a large range
of applications, such as processing and automatically analyzing biomedical signals, understanding and
generating text, and modeling industrial processes, aircrafts, and the most diverse dynamical systems.

2.1 Sequence models

A sequence is an enumerated collection of objects which may be finite, {xk}Nk=1, or infinite,
{xk}∞k=1. Sequence models are models that have sequences as inputs or outputs. In practical models,
we will always work with finite sequences, but it might be useful to take into consideration an infinite
sequence to establish asymptotic properties of the method being analyzed. Next, we present relevant
black-box tasks which require sequence models. The tasks are to:

1. capture input-output relations. The model tries to capture the relation between the input
sequence {xk}Nk=1 and the output sequence {yk}Nk=1 given a dataset containing pairs of input-output

Chapter 2. Neural network models for sequences 46

sequences of the same length. In this case, there is a one-to-one correspondence between input and
output entries and the obtained model must be able to produce a prediction of the output yk given
the input and, in some cases, other observed elements from the output sequence. Doing that for
k = 1, · · · , N if required.

2. capture autorregressive relations. Here there is a single sequence: {yk}Nk=1 and the model tries
to predicting the k-th element of the sequence given all the other sequence elements (or a subset of
it). Doing that for all values of k. In some sense, this is the same as the previous task, but without
an input sequence.

3. determine sequence-to-sequence transformation. The model tries to capture the relation
between input and output for sequences of different lengths. It uses data to build a model that takes
as input the sequence {xk}Nk=1 and tries to predict the output sequence {yk}Mk=1, where M 6= N .
There is no direct correspondence between individual sequence elements.

4. extract information from a sequence. The model learns to extract information from a sequence.
It builds a model that has as input a sequence {xk}Nk=1 and as output the element Y containing
information about the given sequence.

The elements xk, yk and Y above are problem-specific. To cite a few examples, they might be
scalars in R; vectors in Rn; a word in a dictionary of possible words; or, a vector of probabilities that
sum to one. Input-output models are fairly common in engineering and system identification deals
almost exclusively with this type of models (cf. Chapter 3). In engineering, many variables of interest
are continuous variables sampled at a fixed rate. In this case, it is common to sample the input and
output at the same rate (or resample the variables at a common rate for modeling the process), hence,
xk = x(kT) and yk = y(kT), where T is the sampling time and x(t) and y(t) are continuous signals at
time t. Examples of models of this type of model are given in Chapter 7, where we model the relation
between the voltage on two different points of an oscillatory circuit and the relation between the force
applied by a shaker and the acceleration at different points of an F-16 aircraft wing during a ground
vibration test.

Input-output models can be causal or noncausal. The model is causal if the output yk depends
only on past or current elements and to predict the sequence at time k the model take into consideration
only {xi}ki=1 and {yi}k−1

i=1 . Otherwise, we will say the model is non-causal. The engineering models
mentioned above, for which k correspond to the temporal evolution of the variables, are examples of
causal models. This definition can be easily extended to autoregressive models. One example of non-causal
autoregressive models is the so-called language models. Assume that the sequence {yk}Nk=1 correspond to
a sentence and yk is the k-th word of this sentence. The language model tries to predict the probability
distribution for the k-th word given the other words in the sentence. Since most languages do not have
a structure where cause necessarily precedes the consequence, non-causal models usually yield the best
performance in this task. Language models are basic blocks for building algorithms for understanding and
generating text.

Another highly relevant task for natural language processing is the so-called machine translation.
Assume an input sequence {xk}Nk=1 representing a phrase in English. The task is to find an adequate
sentence {yk}Mk=1 in Portuguese, which contains the same meaning as the original phrase. In the above
classification, this would be a sequence transformation problem. Notice that unlike input-output
models, there is no need for a one-to-one correspondence between elements of the input sequence and
elements of the output sequence.

Chapter 2. Neural network models for sequences 47

Finally, sometimes it is interesting to extract information from a sequence. That is, we
want to develop a model for which the input is a sequence, and the output is a vector containing relevant
information extracted from this sequence. For instance, if {xk}Nk=1 corresponds to words of an e-mail, it
might be interesting to have as output the probability of this mail is spam. Or, if {xk}Nk=1 correspond
to words in a comment about a movie (or about a product that is for sale), it might be interest to
automatically identify from the text if the comment corresponds to a positive, negative or neutral opinion
about the content: a task known as sentiment analysis. Another example that we will study directly in
this thesis is the problem of automatically diagnosis of the electrocardiogram (cf. Chapter 8). In this case,
assume {xk}Nk=1 is the signal obtained from the electrocardiogram exam, corresponding to the cardiac
electrical activity of a person during a 10 seconds exam. An output of interest is if this exam contains an
abnormality that might indicate some heart disease (and which type of abnormality).

2.2 Recurrent neural networks

Consider the input sequence {zk}Nk=1, the recurrent neural network is a model that generates a
sequence of internal states {xk}Nk=1. It does so by propagating an initial state x0 through the recursive
relation:

xk+1 = f(xk, zk+1;θ), (2.1)

where θ ∈ RNθ is a parameter vector parametrizing the (nonlinear) function f .

2.2.1 Training and inference using recurrent neural networks

Next, we describe how these internal states propagated by the recurrent neural network are used
to solve the most diverse tasks.

Capturing input-output relations: For a given training pair of input-output sequences
{uk}Nk=1 and {yk}Nk=1 (both with the same length), we can define the input zk to the recurrent neural
network either as zk = uk or as zk = (uk,yk). The internal states can be computed according to (2.1)
and the neural network prediction ŷk is computed from the internal states according to:

ŷk+1 = g(xk;θ). (2.2)

The optimization problem tries to make those predictions close (in some sense) to the observed values by
minimizing a cost function V . The cost function can be defined as:

V = 1
N

N∑
k=1

l(yk, ŷk). (2.3)

The parameter vector θ is estimated (i.e. the neural network is trained) by minimizing V or, in the case
of multiple independent training sequences, minimizing a weighted average of many V s defined as in (2.3).
Here, l is the loss function. Common choices for regression and classification problems are the squared
error and cross entropy loss (both follow from the maximum likelihood setup discussed in Section 1.1.1).

Capturing autorregressive relations: Here the recurrent neural network receives as input
previous output values, i.e. zk = yk−1. The internal states at time k are them used to produce a prediction
ŷk:

ŷk+1 = g(xk;θ). (2.4)

We estimate the parameter vector by defining and minimizing a cost function analogous to (2.3). Again
this cost function encodes some notion of proximity between observed and predicted values.

Chapter 2. Neural network models for sequences 48

Extracting information from a series: Given training pairs of input sequences {uk}Nk=1 and
output information vectors Y, we define a model that gives a prediction Ŷ, either from a combination of
all internal states of the neural network Ŷ = φ(x1, · · · ,xN ;θ) or just from the last one Ŷ = φ(xN ;θ).
Be Nseq the number of sequences in the training set, the parameter vector might be estimated (i.e. the
neural network trained) by minimizing:

V = 1
Nseq

Nseq∑
s=1

l(Ys, Ŷs). (2.5)

Determining sequence-to-sequence transformation. Given training pair of input-output
sequences {uk}Nk=1 and {yk}Mk=1 with different lengths there are several ways that have been published
in the literature to solve this same problem using recurrent and feedforward neural networks. Here we
mention a few interesting examples that came from machine translation.

One of the simplest architectures is the so-called encoder-decoder architecture. The encoder is a
recurrent neural network:

xk+1 = fenc(xk,uk;θ), (2.6)

which reads the input sequence {uk}Nk=1 and produces one final state xfinal = xN+1. The decoder is
another recurrent neural network:

hk+1 = fdec(hk,yk;θ), (2.7a)

ŷk = gdec(hk;θ), (2.7b)

which receives the final state from the other recurrent neural network, xfinal, and uses it as initial state.
Producing predictions to the other sequence ŷk. This architecture is used, for instance by (Cho et al.,
2014b; Sutskever et al., 2014).

2.2.2 A short note about attention-based models

In the encoder-decoder architecture from (Cho et al., 2014b; Sutskever et al., 2014), the entire
input sentence is condensed to a single state vector and fed into the decoder. Later, a mechanism called
attention was introduced in order to improve this (Bahdanau et al., 2014; Luong et al., 2015). The basic
idea behind this mechanism is that all internal states of the encoder {xk}Nk=1 are used together with the
decoder state hk−1 to produce a context vector ck that is used as input to the next decoder step. This
attention mechanism helps with the performance of this model for long sentences.

Interestingly, this attention mechanism was so successful that later it was shown that an encoder-
decoder architecture entirely based on attention (without any recurrent component) could achieve
state-of-art-results in machine translation (Vaswani et al., 2017). These impressive results would generate
a lot of interest in attention-based models, and the basic attention unit proposed in (Vaswani et al., 2017)
would later become a basic building block for many language processing tasks (Devlin et al., 2018).

These attention-based models have been receiving a lot of attention from the research community
lately and achieving impressive results in several natural language understanding and generation tasks.
Nevertheless, we will limit ourselves to this short note about this class of model and focus on recurrent
and convolutional models.

2.2.3 Common recurrent neural networks architectures

Next, we give the example of three recurrent neural network architectures that are popular among
deep learning practitioners.

Chapter 2. Neural network models for sequences 49

1. The simplest one is the Elman recurrent neural network. Which (for the single layered case) has the
propagation formula:

xk+1 = tanh(Wxxxk +Wzxzk+1 + b), (2.8)

and have as trainable parameters the concatenation of weights and bias: θ = (Wss,Whh, b).

2. Arguably the most popular architecture at the moment is the long-short term memory (LSTM)
recurrent neural network (Hochreiter and Schmidhuber, 1997). The internal state consist of two
components: xk = (hk, ck), these two components, together with the input are then used to compute
the following intermediary values:

ik+1 = σ(Wzizk+1 +Whihk + bi); (2.9a)

fk+1 = σ(Wzfzk+1 +Whfhk + bf); (2.9b)

gk+1 = tanh(Wzgzk+1 +Whghk + bg); (2.9c)

ok+1 = σ(Wzozk+1 +Whohk + bo), (2.9d)

which are used to compute h and c at the next instant:

ck+1 = fk+1 � ck + ik+1 � gk+1; (2.10a)

hk+1 = ok+1 � tanh(ck+1), (2.10b)

where σ is the sigmoid function, � operator represents the elementwise product between the vectors
and the trainable parameters are: θ = (Wzi,Whi,Wzf ,Whf ,Wzg,Whg,Wzo,Who,bi,bf ,bg,bo).

3. Another architecture that has become popular lately, is the gated recurrent unit (GRU) (Chung
et al., 2014; Cho et al., 2014b), which, at instant k, computes intermediary values:

rk+1 = σ(Wzrzk+1 +Wxrxk + br); (2.11a)

fk+1 = σ(Wzfzk+1 +Wxfxk + bf); (2.11b)

nk+1 = tanh(Wznzk+1 +Wxnxk + bn), (2.11c)

and uses them to compute the state at the next instant k + 1:

xk+1 = (1− fk+1)� nk+1 + zk+1 � xk. (2.12)

This architecture has as trainable parameters the concatenation of weights and bias:
θ = (Wzr,Wxr,Wzf ,Wxf ,Wzn,Wxn,br,bf ,bn).

2.2.4 Bidirectional neural networks

The recurrent neural network defined in (2.1) - and in the architectures defined above - has an
intrinsic causal structure. That is, the output sequence at time k depends only on past values of the input
sequence. For problems where a non-causal structure is needed, that is, we want the internal state at time
k to depend both on past, and future inputs, a commonly used architecture is a bidirectional recurrent
neural network:

x(f)
k+1 = f (f)(x(f)

k , zk;θ); (2.13a)

x(b)
k−1 = f (b)(x(b)

k , zk;θ), (2.13b)

which propagates the set of states x(f)
k in the forward direction (i.e. 1, 2, · · · , N − 1, N) and the set of

states x(b)
k in the backward direction (i.e. N,N − 1, · · · , 2, 1). These two states are then concatenated:

xk = (x(f)
k ,x

(b)
k).

Chapter 2. Neural network models for sequences 50

2.2.5 Multi-layer recurrent neural network

It is common to define multi-layer recurrent neural networks. This multi-layer model uses stacked recurrent
layers: The input {z}Nk=1 is fed to the first layer, which generates a sequence. This sequence produced
by the 1-st layer {x(1)}Nk=1 is the input to the second layer. Which, in turn, produces a new sequence
{x(2)}Nk=1 which is fed into the next layer, and so on. For unidirectional layers, this would result in the
following propagation formula:

x(1)
k+1 = f (1)(x(1)

k , zk+1;θ(1)); (2.14a)

x(2)
k+1 = f (2)(x(2)

k ,x(1)
k+1;θ(2)); (2.14b)

...

x(L)
k+1 = f (L)(x(L)

k ,x(L−1)
k+1 ;θ(L)), (2.14c)

where L is the total number of layers.

The multi-layer model presented above is actually a special case of the more general model
presented by the recursive relation (2.1). The multi-layer model can be put into the more general format
by defining xk = (x(1)

k ,x(2)
k , · · · ,x(L)

k) and θ = (θ(1),θ(2), · · · ,θ(L)).

It is not uncommon to use the same architectures and sizes for all layers: f (1) = f (2) = · · · = f (L).
The architectures described in Section 2.2.3 are common choices for each layer. LSTM architecture, usually
does not propagate the full state xk = (hk, ck), but rather just hk to the next layer. And for non-causal
task a bidirectional structure (cf. Section 2.2.4) might be used in each layer.

2.3 Convolutional neural networks for sequences

Convolutional neural networks (Lecun et al., 1998) had a very strong impact on computer
vision, achieving state-of the-art-results in tasks such as image classification (Krizhevsky et al., 2012),
segmentation (Long et al., 2015) and object detection (Redmon et al., 2016). Interestingly, it has recently
been shown that the architecture is also highly useful also for sequence learning tasks (Bai et al., 2018b).
More specifically, recent results show the architecture can match recurrent architectures in language
and music modelling (Bai et al., 2018b; van den Oord et al., 2016; Dauphin et al., 2017), text-to-speech
conversion (van den Oord et al., 2016), machine translation (Kalchbrenner et al., 2016; Gehring et al., 2017)
and other sequential tasks (Bai et al., 2018b). In this section, we focus on uni-dimensional convolutional
neural networks for sequential tasks, trying to build the basic convolutional neural network blocks from
signal processing and dynamical system theory.

2.3.1 The uni-dimensional convolutional layer

The convolutional layer has as input the sequence {zk}Nk=1, for which z ∈ Rnz , and produces as
output another sequence {xk}Mk=1, with x ∈ Rnx . The relation between output and input sequences is
given by:

xk = fa(W0zk + W1zk−1 + · · ·+ W(n−1)zk−(n−1) + b), (2.15)

where fa : Rnx → Rnx is the activation function and Wi ∈ Rnx×nz are the weight matrices. The number
of terms, n, is usually referred as kernel size. Check Figure 2.1 for a visual explanation of the convolution
operation.

Let WT
i = [w0

i ; w1
i ; · · · ; w(n−1)

i], from a dynamical system theory perspective, each output xjk
can be interpreted as the output of a linear time-invariant dynamical system:

xjk = wj
0zk + wj

1zk−1 + · · ·+ wi
(n−1)zk−(n−1), (2.16)

Chapter 2. Neural network models for sequences 51

��

��

+

��

�2

�1 �0

(a) k = 1

��

��

+

��

�2

�1 �0

(b) k = 2

��

��

+

��

�2

�1 �0

(c) k = 3

��

��

+

��

�2

�1 �0

(d) k = 4

Figure 2.1 – (Causal convolutions) Simplified diagram illustrating causal convolutions from Eq. (2.15)
for kernel size n = 3, input vector size nz = 3, output vector size nx = 2. Here the input
sequence has length N = 8 and the output sequence has lenght M = N − n+ 1 = 6. The
computation is shown for the first 4 output samples.

shifted by an offset bi and followed by a nonlinear static transformation fa. The output of linear time-
invariant systems is equal to the convolution between the impulse response (the dynamical system response
to a unitary impulse) and the input applied to the system. The output of the system (2.16) depends only
on a finite number of past terms and, hence, the system described by (2.16) has finite impulse response
(i.e., if you apply an impulse in this system the response will be zero after a finite number of terms).
This class of systems, it happens, is widely studied in the signal processing literature and known as finite
impulse response filter. It is often applied for removing frequency components from a signal. Hence, each
convolutional layer can be actually interpreted as a bank of finite impulse response filters with trainable
parameters, followed by a nonlinear transformation. This explains why the name convolutional neural
network is appropriate for neural networks that make use of this layer.

The convolution presented above is causal, and the output only depends on its past values. A
non-causal alternative is to include a dependence both on past and future inputs:

xk = fa(W−(n−1
2)zk+(n−1

2) + · · ·+ W−1zk+1 + W0zk + W1zk−1 + · · ·+ W(n−1
2)zk−(n−1

2) + b), (2.17)

where the kernel size n must be an odd number for the above equation to make sense.

2.3.2 Padding and the transient response

In a convolutional layer such as (2.15), input and output sequences do not necessarily have the
same length. Let N be the length of the input sequence; the output sequence has length M = N − n+ 1,
where n is the kernel size. It is usual, however, to fill the input sequence with zeros at the extremity. That
is, we can redefine the input sequence as {0, 0, ..., 0, z1, · · · , zN}. The new, zero-filled, input sequence will
have length N + P , where P is the number of zeros. And the output will have length M = N + P − n+ 1.
This trick, called padding, makes it possible to have N = M by setting P = n − 1, which might be
interesting for many applications. See Figure 2.2 for a visual explanation of the padding.

From a dynamical system theory perspective, by inserting zeros at the beginning of the sequence,
there is a transient response, for which the system is leaving a zero-state equilibrium and adapting to the
input during the first P steps.

2.3.3 Downsampling in convolutional neural networks: strides and pooling

A common operation in signal processing is decimation (or downsampling). Given a sequence
{zk}Nk=1, to decimate this sequence by a factor m means to keep only every m-th sample and discard the
others, obtaining a new sequence with 1

m -th of the length. This new sequence is defined as qk = zkm for

Chapter 2. Neural network models for sequences 52

��

��

(a) no padding

��

��

(b) padding

Figure 2.2 – (Padding) Simplified diagram illustrating the effect of padding in input and outputs for
causal convolutions. In (a), no padding is used and the input sequence has lenght N = 8
and the output sequence has lenght M = N − n+ 1 = 6. In (b), we use padding in order to
guarantee inputs (P = 2) and outputs with the same length: the zero-filled input sequence
has lenght N + P = 8 + 2 and the output sequence has lenght M = N + P − n+ 1 = 8. In
both cases, the input vector size is nx = 3 and the output vector size is nz = 2. The zeros
included in the input are shown in black. Output elements that are being computed using
these zeros as input are displayed in gray, considering the convolutional layer as a dynamic
system these elements correspond to the transient response of this system from a zero-state
equilibrium.

��

��

+

��

�2

�1 �0

��

(a) k = 1

��

��

+

��

�2

�1 �0

��

(b) k = 2

��

��

+

��

�2

�1 �0

��

(c) k = 3

��

��

+

��

�2

�1 �0

��

(d) k = 4

Figure 2.3 – (Strides) Simplified diagram illustrating causal convolutions with strides for kernel size
n = 3, input vector size nx = 3, output vector size nz = 2, and downsampling factor
m = 2. Here the input sequence x has length N = 10 and the output sequence z has lenght
M = (N − n+ 1)/2 = 4. The intermediary sequence y has lenght M = (N − n+ 1) = 8. The
computation is shown for the first 4 output samples.

k = 1, · · · ,
⌊
N
m

⌋
. Different operations that take place in common convolutional neural network architectures

are related to decimation.1

Strides in a convolutional layer could be interpreted as decimation applied to the signal obtained
after convolution. Hence a convolutional layer with stride m can be written as:

yk = fa(W0zk + W1zk−1 + · · ·+ W(n−1)zk−(n−1) + b); (2.18a)

xk = y(km), for k = 1, · · ·
⌊
N

m

⌋
. (2.18b)

A vizualisation of this two step procedure is provided in Figure 2.3.
1 A common concern in signal processing is to avoid aliasing (i.e., the signal distortion that occurs during decimation

where high frequencies appear as low frequencies, preventing the signal from being reconstructed.). Usually, by using
an anti-aliasing filter before decimation. To the best of our knowledge such practice is not common when working with
convolutional neural networks.

Chapter 2. Neural network models for sequences 53

��

��

+

��

�2

�1
�0

(a) k = 1

��

��

+

��

�2

�1
�0

(b) k = 2

��

��

+

��

�2

�1
�0

(c) k = 3

��

��

+

��

�2

�1
�0

(d) k = 4

Figure 2.4 – (Dilations) Simplified diagram illustrating causal convolutions with dilations for kernel
size n = 3, input vector size nx = 3, output vector size nz = 2, and dilation factor d = 2.
Here the input sequence x has length N = 10 and the output sequence z has lenght
M = N − d ∗ (n− 1) = 6. The computation is shown for the first 4 output samples.

��

��

(a) d = 2

��

��

(b) d = 2

��

��

(c) d = 3

��

��

(d) d = 3

Figure 2.5 – (Polyphase decomposition) Simplified diagram illustrating the input and output of causal
convolutions with dilations. Here we show the polyphase components of the input and output
for d = 2 in (a) and (b); and for d = 3 in (c) and (d). In (a) and (c) we show the original
signal and in (b) and (d) we show the signal decomposed into its d polyphase components.
Convolutions with dilations aplied to original signal (a) and (c), can be interpreted as standard
convolutions applied to the polyphase components shown in (b) and (d).

Another common block often used in convolutional neural networks that is also related with
downsampling is the so-called max pooling layer. The max pooling layer also reduces the dimension of the
sequence by a factor m. It does that by picking the maximum of each m consecutive samples:

qk = max(y(km),y(km+1), · · · ,y((k+1)m−1)), for k = 1, · · · ,
⌊
N

m

⌋
. (2.19)

2.3.4 Polyphase decomposition and dilations

Dilations is another operation commonly associated with the convolutional layer. The convolutional
layer (2.15) with dilation d can be expressed as:

xk = fa(W0zk + W1zk−d + W1zk−2d + · · ·+ W(n−1)zk−d(n−1) + b). (2.20)

A vizualisation of this operation is provided in Figure 2.4.

Interestingly, dilations can also be traced back to a signal processing technique. The so-called
polyphase decomposition, commonly used in filter implementations (Oppenheim, 1999), decomposes a
signal {zk} into d components, being the i component given by:

zik = z(kd+i), for k = 1, · · · ,
⌊
N + i

d

⌋
. (2.21)

Given the d polyphase components the above equation can also be used to reconstruct the original
signal. Hence, Equation (2.20) can be understood as the following sequence of operations:

Chapter 2. Neural network models for sequences 54

(�� + �)��
�

�

�
(1)

�
(2)

�

Figure 2.6 – (Convolutional network for feature extraction) Simplified diagram illustrating a 3
layer convolutional neural network for extracting information from a sequence. The first layer
has length N (1) = 22 and n

(1)
x = 1 channels, the second layer has length N (2) = 10 and

n
(1)
x = 2 channels, the third layer has length N (3) = 4 and n(1)

x = 4 channels. The elements
from the last layer are flattened, and fed into a fully connected layer. A color code is used to
ilustrate how the flattening occurs in the last layer of the neural network.

1. Decompose the signal {zk} into d different components using polyphase decomposition;

2. Apply the convolutional layer (2.15) to all polyphase components zik. With the same convolutional
weights for applied all components.2 The result should be d polyphase components xik.

3. Reconstruct the output signal xk from its d polyphase components.

This interpretation is illustrated in Figure 2.5.

2.3.5 Deep convolutional neural networks for feature extraction

To train deep neural networks with many hidden layers is a notoriously hard optimization problem.
The challenges include the risk of getting stuck in bad local minima, exploding or vanishing gradients, and
dealing with large-scale datasets. It is only over the past decade that these challenges have been addressed,
with improved hardware and algorithms, to the extent that training truly deep neural networks became
feasible.

Here we discuss the use of convolutional neural networks with many layers for extracting informa-
tion from a sequence (as in the setup described in Section 2.1). Consider the neural network is fed with an
input sequence {zk}Nk=1 and yields the output vector Ŷ, containing some information about the series.

Image classification was the problem for which convolutional neural networks were originally
proposed (Lecun et al., 1998). And, arguably, an area for which its use is very mature: there is a massive
amount of literature on the subject, openly available datasets (Krizhevsky et al., 2012) and popular
architectures that yield impressive results and have been employed on several related computer vision
problems (He et al., 2016a; Szegedy et al., 2015). Increasing the number of channels, while downsampling,
as we progress in the deep convolutional network is something shared by most of these popular deep
2 It would also be possible to use (2.17) here, when dealing with a noncausal problem.

Chapter 2. Neural network models for sequences 55

convolutional networks. This architecture originally designed for image classification can be directly
translated into convolutional neural networks for unidimensional signals.

In a multi-layer convolutional neural network the input sequence {zk} is used as input to the
first layer, which produces an intermediary sequence {x(1)

k }, which, in turn, is used as input to the next
layer that produces the next sequence {x(2)

k }, and so on. Until the layer immediately before the last one
produces a sequence {x(L−1)

k }. This sequence is put together as a vector X = (x(L−1)
1 ,x(L−1)

2 , · · · ,x(L)
NL

)
and fed to a final, fully connected, neural network layer, which produces the prediction Ŷ. The full network
can be written as:

{x(1)
k } = F (1){zk}

{x(2)
k } = F (2){x(1)

k }.
...

{x(L−1)
k } = F (L−1){x(L−2)

k }
X = (x(L−1)

1 ,x(L−1)
2 , · · · ,x(L−1)

NL
),

Ŷ = fa(WX + b)

where F (l) represents the l-th layer (or block) of the neural network. A convolutional neural network with
L = 3 layers is illustrated in Figure 2.6. For the l-th layer, let us call the sequence length of the N (l) and
the number of channels by n(l)

x , i.e. x(l)
k ∈ Rn(l)

x . As mentioned above, in most architecture, the layers
are chosen in such way that the sequence length N (l) decreases (by downsampling the sequence using
convolutions with strides) and the number of channels n(l)

x increases with the index l.

2.3.6 Capturing input-output relation

Capturing input-output relations, as described in Section 2.1, consists of trying to predict a
sequence {yk} from a input sequence {xk}. Naturally, the architecture described in the previous section,
which predicts a single vector from a given input sequence, could be used here just by using it to predict
every k-th value of the output. If the system is time-invariant, the same weights could be used for predicting
all output samples. Dilations offer an efficient way to implement something that is roughly equivalent to
this.

The neural network for capturing input-output relations uses padding and dilations in order to
have all signals from intermediary layers with exactly the same length, cf. Figure 2.7(a). Hence the input
sequence {zk} is used as input to the first layer, which produces an intermediary sequence {x(1)

k } with the
same length which, in turn, is used as input to the next layer that produces the next sequence {x(2)

k } with
the same length, and so on. Until the last layer produces a sequence {ŷk}, corresponding to the output
prediction. The full network can be written as:

{x(1)
k } = F (1){zk}

{x(2)
k } = F (2){x(1)

k }.
...

{x(L−1)
k } = F (L−1){x(L−2)

k }
{ŷk} = F (L){x(L−1)

k }.

The idea is to increase the dilation factor d as the index l increases, i.e. set the dilation factor of the l-th
layer as d = 2l. And, at the same time, increase the number of channels n(l)

x with the number of layers.

Chapter 2. Neural network models for sequences 56

�
(1)

�
(2) �̂ �

(a)

�̂ �̂ � �
(1)

�
(2)

(b)

Figure 2.7 – (Convolutional network modeling input-output relations) Simplified diagram illus-
trating a 3 layer convolutional neural network for modeling the input-output relation between
signals. The dilation factor for the three layers is 1, 2, 4. All layers use a kernel size n = 2.
The input and output have dimension 1, and the intermediary layers dimension 2 and 4,
respectively. The color code in (a) shows the different polyphase components (cf. Section 2.3.4)
in the input, output and intermediary signals, the same colors are used in (b) to denote the
same components. The purpose is to illustrate how the use of dilations is equivalent to that
of downsampling and strides in the convolutional neural network of Figure 2.6.

The polyphase interpretation of dilations is usefull here: so as we progress through the layers, we increase
the number of polyphase components, and this is, to some extent, equivalent to sucessively downsampling
the signal, this is illustrated in Figure 2.7(b).

2.3.7 Skip connections and the residual neural network

The residual network (He et al., 2016a) is quite popular among practitioners and has the residual
block as its key component. A residual block adds a skip connection to a convolutional layer. Thus:

z(l+p) = F(z(l)) + z(l). (2.24)

This connection adds the value from the input of the block to its output. The purpose of the skip connection
is to let the layers learn deviations from the identity map rather than the whole transformation. This
property is beneficial, especially in deep networks, and allows the information to gradually change from
the input to the output as we proceed through the layers. There is also some evidence that this makes it
easier to train deeper neural networks (He et al., 2016a).

57

3 System identification and prediction error methods

Models of dynamical systems are of fundamental importance in engineering. In some situations,
the model can be obtained exclusively from the basic physical laws describing the process. There are
some situations, however, where this approach may not be possible or may yield unsatisfactory results:
the system may be too complex, or the behavior of some parts of the process may be unknown. The
alternative approach is to collect data and create a model consistent with the observed behavior. Building
empirical mathematical models from data is relevant for the most diverse areas, and akin field of studies
have arisen from the more diverse communities. Machine learning, mentioned in Chapter 1, is one of such
fields.

System identification (Söderström and Stoica, 1988; Ljung, 1998; Aguirre, 2004; Nelles, 2013)
arises from the need of the control community to estimate mathematical models to control and monitor
dynamical processes. It is strongly focused on building mathematical models for dynamic processes. The
model can be built exclusively from data (black-box modeling), or, alternatively, we may try to include
prior knowledge about the process in the model (grey-box modeling) (Aguirre, 2019). In this case, the
observation data may be used to refine a physical model of the process; or, conversely, knowledge about
the process may be used to obtain better models when building a model from data.

In this chapter, we present a short introduction to system identification, covering topics that
are relevant to this thesis. The fundamentals of system identification overlap with the fundamentals of
machine learning in many aspects. Hence almost all the topics presented in Chapter 1 could easily fit here
as well, maybe with different nomenclature. One parameter estimation technique that arises in the context
of system identification is that of prediction error methods. This class of methods can be understood as a
special case of maximum likelihood estimation and has some interesting properties that will be further
discussed in this chapter.

3.1 Mathematical representation of dynamical systems

There are different ways to represent a dynamic system, and it is important to choose a represen-
tation that has the capability of capturing the main features of the process being modeled.

A mathematical model of a system is represented in Figure 3.1. In this figure, the system is
represented as an operator T{•} that relates the inputs u and the outputs y. The model is dynamic if the
output at a given moment depends on its previous values (it has memory) or future values.

Figure 3.1 – (Dynamical system) Display a schematic representation of the model used to represent a
dynamical system.

In Section 3.1.1 the available choices of dynamic representation will be explored; in Section 3.1.2
we explain the use of approximation functions in order to yield flexible models that are capable of fitting
the data; and, how disturbances and uncertainties can be taken into account in the model is explained in
Section 3.1.3.

Chapter 3. System identification and prediction error methods 58

3.1.1 Dynamic representation

There are many different ways to represent a dynamic system. The representations can be classified
into discrete and continuous-time. For discrete-time models the input and output are sequences, {y[k]}
and {u[k]}, defined only at discrete times. For continuous-time models, on the other hand, the input and
output, y(t) and u(t), are defined on a continuum of times.

Continuous-time models may be represented as an explicit ordinary differential equation:
dny(t)
dtn

= f
(
t,u(t), du(t)

dt
,
d2u(t)
dt2

· · · , d
mu(t)
dtm

,y(t), dy(t)
dt

,
d2y(t)
dt2

· · · , d
n−1y(t)
dtn−1

)
, (3.1)

for which u(t) ∈ RNu and y(t) ∈ RNy are vectors containing the system inputs and outputs at a given
time instant t. The first order derivative of u is denoted by du(t)

dt and the m-th order derivative by dmu(t)
dtm .

And f is a function that gives the relation between the derivatives.

Another, commonly used continuous representation is the state-space representation:
dx(t)
dt

= h (x(t),u(t), t) , (3.2)

y(t) = g (x(t),u(t), t) ,

where x(t) ∈ RNx is the so-called state vector.

The explicit dependence of the model with time may make the system identification problem much
more difficult, so it is a common design choice not to take into account this dependence. A state-space
time-invariant model can be written as:

dx(t)
dt

= h (x(t),u(t)) , (3.3)

y(t) = g (x(t),u(t)) .

The discrete-time state-space representation is similar to the continuous one, and maybe written,
for the time-invariant case, as:

x[k] = h (x[k − 1],u[k]) , (3.4)

y[k] = g (x[k],u[k]) .

Another common representation for discrete-time models are the so-called difference equations, which
are the discrete analogous of differential equations. A time-invariant explicit difference equation could be
written as follows:

y[k] = f (y[k − 1], · · · ,y[k − ny],u[k − τ], · · · ,u[k − nu]) , (3.5)

where the positive integer τ is the input-output delay, which is included in the model to reflect that
changes in the input may take some time to affect the output. And nu and ny are the maximum input
and output lags, respectively.

This dissertation is interested mostly in discrete-time models. The data available for system
identification is usually a discrete sequence of sampled values and it is practical to build discrete-time
models (even for inherently continuous systems).

To make it easier to write large difference equations the following convention will be adopted.

Notation 3.1: This dissertation will use the notation:

y
k−i =

[
y[k − i]T y[k − i− 1]T . . .y[k − ny]T

]T ;

uk−i =
[
u[k − i]T u[k − i− 1]T . . .u[k − nu]T

]T
.

Hence, Equation (3.5) may be rewritten as: y[k] = f(y
k−1,uk−τ).

Chapter 3. System identification and prediction error methods 59

3.1.2 Approximation function

In the previously section, the functions f , g and h were left unspecified. Usually, in system
identification, the functions are (partially) unknown, and the problem to be solved is to determine them
in order to fit the training data. They are usually chosen to be functions that, depending on the choice of
parameters, can approximate a large class of behaviors.

A very usual choice is an affine function: f(x) = Ax+b where A is a matrix and b is a vector. This,
linear function, for the right choice of parameters, can approximate locally any differentiable function and
much of the classic theory in system identification is focused in estimating linear representations (Ljung,
1998).

There are, however, several dynamic behaviors that cannot be represented using a linear rep-
resentation (e.g., chaotic behavior, presence of limit cycles and multiple equilibrium points). As stated,
in (Ljung, 2010, Sec. 4.1), the use of nonlinear representations is one of the most active areas of research
in system identification and will be the main focus of this dissertation.

There are several nonlinear functions with approximation capabilities: Polynomials, due to Taylor
theorem, can be used to approximate analytic functions and are widely used in system identification (Chen
et al., 1989; Paduart et al., 2010; Farina and Piroddi, 2010, 2012); Feedforward networks, radial basis
functions networks and fuzzy systems are universal approximators1 and, because of that, are also widely
applicable in system identification (Chen et al., 1990a; Narendra and Parthasarathy, 1990; Nørgaard et al.,
2000; Kayacan et al., 2015). Refer to (Nelles, 2013) for a complete list of nonlinear representations often
used on system identification. Specificities of each approximation function will be detailed when needed,
along with the dissertation.

3.1.3 Noise model

So far, we said nothing about the disturbances and noise interfering with the system. But, usually,
how to take those into account is also a design choice, and different assumptions about the data generation
process will yield different estimation procedures.

For instance, three types of errors are typically considered for the difference equation (3.5): output
error, equation error and error-in-variables. The error-in-variables and the output error are usually related
to noise corrupting the input and output measurements. The equation error, on the other hand, accounts
for unmeasured disturbance and unknown dynamics. More specifically, given the data generator system:

u[k] =u∗[k] + s[k];

y∗[k] =f∗(y∗
k−1,u

∗
k−τ) + v[k];

y[k] =y∗[k] + w[k], (3.6)

the final goal of the identification process is to determine a function f as similar to f∗ as possible within a
set of possibilities, from the noisy measured values, u[k] and y[k]. Here, f∗ is the function that describes the
system, s, v and w are random processes representing, respectively, error-in-variables, equation error and
output error. Noise-free input and output are represented by u∗[k] and y∗[k]. Different assumptions about
the data generation process and the noise processes, however, will yield different estimation procedures.
This will be described in detail in the next section.
1 These function can approximate a certain set of continuous function with arbitrary accuracy ε on compact sets (Hornik

et al., 1989a; Park and Sandberg, 1991; Tikk et al., 2003).

Chapter 3. System identification and prediction error methods 60

3.2 Prediction error methods

Prediction error methods are a class of methods for estimation of parameters of dynamical systems,
and this section complements Section 1.1 with the description of this class of methods. Early works on
prediction error methods formulate these methods in very general terms in a framework that holds both
for linear and nonlinear systems very well, e.g. (Ljung, 1976, 1978; Ljung and Caines, 1980). Due to the
great importance of linear prediction error methods, however, classical textbooks on system identification,
such as (Söderström and Stoica, 1988; Ljung, 1998), choose to present prediction error methods in an
entirely linear framework, mentioning the nonlinear case only as a possible extension, usually by analogy.

This trend was carried on even to identification textbooks that are focused in nonlinear models,
such as (Nørgaard et al., 2000; Nelles, 2013). The nomenclature for prediction error methods also reflects
this. Three linear models within prediction error framework are: ARX (autoregressive with exogenous
input); ARMAX (autoregressive moving average with exogenous input); and, OE (output error) models.
Models for systems that are not necessarily linear are called NARX (nonlinear ARX), NARMAX (nonlinear
ARMAX) and NOE (nonlinear OE). Notice that the names do not follow the more logical structure of
using a name for the more general case, adding qualifiers on the name as more restrictive structures are
chosen, but the opposite, they start with a name for the linear case and add a “N” for the more general
case. In this dissertation, we will try to present prediction error methods in the more general, nonlinear,
framework.

3.2.1 Setup

Consider the dataset ZN = {(u[k],y[k]), k = 1, 2, · · · , N} containing N measured inputs and
outputs of a dynamical system. Prediction error methods assume a prediction model that gives a predicted
output ŷ[k], for each time instant k = 1, 2, · · · , N . A cost function is defined as the distance between the
prediction and the measured value:2

V = 1
N

N∑
k=1
‖y[k]− ŷ[k]‖2. (3.8)

For the prediction model it is usual to employ a parameterized model depending on a parameter vector θ
and, although such a dependence is not made explicit in the notation, ŷ[k] depends upon θ. An estimate
θ̂ of the parameter vector may be obtained by minimizing V .

Next, we give examples of prediction error models. These examples assume the measured input-
output data was generated by a dynamical, stochastic, discrete-time system. Lets:

u[k] = (u[k], · · · ,u[k − nu]),

y[k − 1] = (y[k − 1], · · · ,y[k − ny]),

where ny, nu are the maximum input and output lags. The examples differ in how they take the noise
into the model. But, in a noiseless situation, the data generation model for the three examples correspond
to a difference equation y[k] = f∗(y[k − 1],u[k]). We define the parametrized function fθ and, if our noise
2 Ljung (1978) gives a slightly more general framework, and defines the cost function as:

V = h

(
1
N

N∑
k=1

l (y[k]− ŷ[k])

)
. (3.7)

For any function l that maps a vector into a positive definite matrix (i.e. l(ε) = εεT), and, for a function h that
maps a positive definite matrix into a scalar. For any positive definite matrix Q and any matrix Λ, it must respect
h(Q+ Λ) ≥ h(Q) + h(Λ). Two possible choices of h(·) satisfying this condition are h(Q) = det(Q) and h(Q) = tr(ΣQ) for
any a symmetric positive definite weighting matrix Σ.

Chapter 3. System identification and prediction error methods 61

assumption and model structure is correct, then for the models we describe next the minimization of
the cost function V would yield the estimate θ̂ such that, as N →∞, then fθ̂ → f∗ (or to function with
the same performance in predicting the training dataset). A more precise description of the asymptotic
properties of nonlinear prediction error methods is described in Section 3.2.8.

Choosing the right model structure (one for which there exists θ∗ such that fθ∗ = f∗) might be
impossible in a practical application, nevertheless the assumption is not so restrictive as it might appear,
since there exist families of universal approximator functions (e.g. neural networks and polynomials) for
which the distance ‖fθ − f∗‖ might be made arbitrarily small within a compact set.

3.2.2 Nonlinear ARX models

The nonlinear ARX (autoregressive with exogenous input) model considers the output at instant
k is corrupted by a white process noise. That is, it assumes the data was generated by the stochastic
discrete-time system:

y[k] = f∗(y[k − 1],u[k]) + v[k], (3.9)

where v[k] is a zero-mean white noise. This assumption yields (cf. Appendix 3.2.8) the prediction model:

ŷ[k] = fθ(y[k − 1],u[k]). (3.10)

And the minimization of the cost function in Eq. (3.8) yields an estimator with the desired asymptotic
properties.

3.2.3 Nonlinear output error models

Output error models consider the output at instant k is corrupted by a white measurement noise.
That is, it assume the data was generated by:

ȳ[k] = f∗(ȳ[k − 1], . . . , ȳ[k − ny],u[k]);

y[k] = ȳ[k] + v[k],

where, again, v[k] is a zero-mean white noise and ȳ[k] represents the noiseless output. This assumption
yields the prediction model:

ỹ[k] = fθ(ỹ[k − 1], . . . , ỹ[k − ny],u[k]);

ŷ[k] = ỹ[k]. (3.11)

Here ỹ[k] represents an estimation of the noiseless output ȳ[k], which should approach the true value as
θ → θ∗.

3.2.4 Nonlinear ARMAX models

The ARMAX (autoregressive moving average with exogenous input) models consider the output
at instant k is corrupted by an additive zero-mean process noise. In this case, the propagation equation
allows the noise terms v[k] to be propagated by the dynamics:

y[k] = f∗(y[k − 1],u[k],v[k − 1], . . . ,v[k − nv]) + v[k].

This assumption allows the model to account for some forms of colored process noise and yields the
prediction model:

ṽ[k] = y[k]− fθ(y[k − 1],u[k], ṽ[k − 1], . . . , ṽ[k − nv]);
ŷ[k] = fθ(y[k − 1],u[k], ṽ[k − 1], . . . , ṽ[k − nv]). (3.12)

Chapter 3. System identification and prediction error methods 62

Here ṽ[k] represents an estimation of the noise corrupting the system and should approach the true noise
if the estimated parameter vector approach the true parameter value θ∗.

3.2.5 General nonlinear state-space framework

From now on, we will focus on a more general state-space representation that encompasses all
the three examples we just mentioned (for an appropriate choice of the functions h and g). For this
representation, the predicted output is given by:

x[k] = h(x[k − 1], z[k];θ); (3.13a)

ŷ[k] = g(x[k], z[k];θ), (3.13b)

where x[k] denotes the internal state vector of this model at instant k. For the ARX model we would have
an empty transition state x = ∅; for the output error model we have x[k] = (ȳ[k − 1], · · · , ȳ[k − nv]);
and, for ARMAX model we would have x[k] = (ṽ[k − 1], · · · , ṽ[k − ny]).

Here we define z[k] = (y[k − 1],u[k]). Using both inputs u[k] and autorregressive terms y[k − 1]
is what allows this state-space representation to encompass ARX, ARMAX and output error models, and
also other representations such as the polynomial greybox models proposed in (Noël and Schoukens, 2018).

3.2.6 Initial conditions

In order to guarantee the desirable asymptotic properties, the prediction model needs to be
simulated, starting with appropriate initial conditions x0. Since the true initial condition, x∗0 is unknown.
There are two possible approaches when estimating the parameters.

The first approach is to fix x0, for some x0 ≈ x∗0, and minimize the cost function (3.8). This
approach is based on the idea that, for an asymptotically stable system, the influence of the initial
conditions on the output decreases with time for many cases of interest (Boyd and Chua, 1985a) and,
hence, even if x0 6= x∗0 we can still obtain a good estimate of the parameters. In this case the first
samples may be discarded, to make sure the transient errors are not too large. For the ARMAX model,
an appropriate choice of initial values would be ṽ[k] = 0, k = 1, · · · , nv and, for the output error model,
ỹ[k] = y[k], k = 1, · · · , ny.

The second approach consists of including x0 in the optimization problem, so it converges to x∗0
and improves the quality of the parameter estimates. The optimization problem to be solved in this case
is to minimize V with both θ and x0 as optimization variables:

min
θ,x0

V. (3.14)

3.2.7 The data generation process

Consider y[k] and u[k] to be one realization of the random variables Y[k] and U[k]. And denote:

U[k] = [U[k], · · · ,U[k − nu]],

Y[k − 1] = [Y[k − 1], · · · ,Y[k − ny]],

Hence, rewriting the data generation difference equations for nonlinear ARX, output error and ARMAX
(see Sections 3.2.2, 3.2.3 and 3.2.4) with the new notation yields, respectively:

Chapter 3. System identification and prediction error methods 63

• Y[k] = f∗(Y[k − 1],U[k]) + V[k]; (3.15)

•
{

Ȳ[k] = f∗(Ȳ[k − 1], . . . , Ȳ[k − ny],U[k]);

Y[k] = Ȳ[k] + V[k];
(3.16)

• Y[k] = f∗(Y[k − 1],U[k],V[k − 1], . . . ,V[k − nv]) + V[k]. (3.17)

Here V[k] is a random variable representing the white noise that is injected in the system. Notice that for
the three examples there is a deterministic additive relation between Y[k] and V[k]. Hence, if Y[k] and
U[k] are determined, so is V[k], or, conversely, if V[k] and U[k] are determined, so is Y[k].

3.2.8 Asymptotic properties

3.2.8.1 Optimal output prediction

Lets define the optimal output prediction at time k as the following conditional expectation:

ŷ∗[k] = E
{

Y[k]
∣∣∣ U[k] = u[k], Y[k − 1] = y[k − 1]

}
, (3.18)

which is, in the least square sense, the best prediction for the output given its previous values.3 For the
nonlinear ARX, output error and ARMAX models the optimal output prediction are given, respectively,
by:

• ŷ∗[k] = f∗(y[k − 1],u[k]);

•
{

ṽ[k] = y[k]− f∗(y[k − 1],u[k], ṽ[k − 1], . . . , ṽ[k − nv]);
ŷ∗[k] = f∗(y[k − 1],u[k], ṽ[k − 1], . . . , ṽ[k − nv]);

•
{

ȳ[k] = f∗(ȳ[k − 1], . . . , ȳ[k − ny],u[k]);

ŷ∗[k] = ȳ[k].

which follows from a direct application of the definition (4.3) to the stochastic difference equation that are
assumed for the data generation in each case.

3.2.8.2 Optimal cost function

Ideally the model predicted output ŷ[k] should be as close as possible to the optimal one ŷ∗[k].
The distance is given by the ideal cost function:

V∗ = 1
N

N∑
k=1
‖ŷ∗[k]− ŷ[k]‖2. (3.19)

Now, for nonlinear ARX, ARMAX or output error models, given a parametrized function fθ with the
correct model structure (that is: there exist θ∗ such that fθ∗ = f∗), it follows from Eqs. (3.10), (3.11)
and (3.12) that θ∗ yields V∗ = 0, and hence the optimal parameter θ∗ is the a minimizer of V∗.

3.2.8.3 Uniform convergence of V

The optimal cost function V∗ is not available for optimization. Nevertheless, under some mild
regularity conditions, it has been proved that V → V∗ with probability 1 as N → ∞ and that this
convergence is uniform (Ljung, 1978).
3

This prediction provides the smallest squared conditional expected error between the predicted and observed values:

ŷ∗[k] = argŶ minE
{
‖Y[k]− Ŷ‖2

∣∣∣ U[k],Y[k − 1]
}
.

Chapter 3. System identification and prediction error methods 64

If V∗ has a single minimum θ∗ and V is convex in a convex set containing θ∗ the minimizer of V
converges to the minimizer of V∗ (Newey and McFadden, 1994, Theorem 2.1). Alternative conditions for
this to hold are given in (Ljung, 1978). For our three examples, this would imply fθ → f∗ (convergence in
probability for N →∞). If the conditions are not satisfied, the uniform convergence, at least, guarantee
that the minimizer has an equivalent performance (as N →∞). Additionally, in (Ljung and Caines, 1980)
it is shown that if the solution is unique the estimator has an asymptotic normal distribution.

3.2.9 Prediction error and maximum likelihood

Prediction error estimation methods might be derived from maximum likelihood estimation
under some conditions. We assume that the output y[k] is normally distributed with conditional mean
f(x[k],θ) and constant covariance matrix σI. That is, p(y[k] |x[k]) ∼ N (f(x[k],θ), σI), where x[k] =
(y[1], · · · ,y[k− 1],u[1], · · · ,u[k]) contains past values (See 1.1.1 for a similar construction). Using exactly
the same procedure as in Section 1.1.2, we have that the maximum likelihood estimation of θ is given by
the minimizer of:

V (θ) = 1
N

N∑
k=1
‖y[k]− f(x[k],θ)‖2, (3.20)

and the equivalence with Equation (3.8) follows from defining ŷ[k] = f(x[k],θ). Also, the maximum
likelihood estimator for the variance is given by: σ̂2 = 1

nN

∑N
i=1 ‖yi − f(x[k],θ)‖2.

3.2.10 Some terminology

The sequence of random variables associated with the input values {U[k]}, or the rule used to
define these values, are referred to as the experimental condition.

Let us define the set R as the set of all parameters values θ which yield ŷ[k] = ŷ∗[k] for
k = 1, · · · , N . If the set R is not empty then we say there is system identifiability. That is, we can recover
a system that has the same behavior under the same experimental conditions.

Notice that all elements of R are minimizers of V∗, but not necessarily all minimizers of V∗
belong to R. For this to happen, one must choose an experimental condition that yields a sufficiently
representative picture of how the system behaves.

Assume the model structure matches the one from the data generation process. If R is not-empty
and also consists of a single element, we say there is parameter identifiability, since it is possible to recover
the parameter set that generated the data.

3.2.11 Computing the derivatives

3.2.11.1 Sensitivity equations

Let the Jacobian matrices of h(x, z;θ) with respect to x and to θ evaluated at the point
(x[k], z[k];θ) be denoted, respectively, as Ak and Bk. Similarly, the Jacobian matrices of g(x, z;θ) are
denoted as Ck and Fk. Also, we denote the Jacobian matrices of ŷ[k] with respect to θ and to x0 as Jθ[k]
and Jx0 [k]. And the Jacobian matrices of x[k] are denoted as Dθ[k] and Dx0 [k].

A direct application of the chain rule to (3.13) gives a recursive formula for computing the
derivatives of the predicted output in relation to the parameters in the interval 1 ≤ k ≤ N :

Dθ[k] = AkDθ[k − 1] +Bk for Dθ[0] = 0,

Jθ[k] = CkDθ[k] + Fk. (3.21)

Chapter 3. System identification and prediction error methods 65

A similar recursive formula may be used for computing the derivatives of the predicted output in relation
to the initial conditions:

Dx0 [k] = AkDx0 [k − 1] for Dx0 [0] = I; (3.22)

Jx0 [k] = CkDx0 [k].

Finally, we define D[k] = [Dθ[k], Dx0 [k]] and J [k] = [Jθ[k], Jx0 [k]].

These sensitivity equations will be used both for numerical implementations and in theoretical
derivations. It is important to highlight that, from an implementation point of view, the underlying
procedure used here to propagate the derivatives is entirely equivalent to the forward-mode automatic
differentiation, described in Section 1.4.1.

3.2.11.2 Derivatives of the cost function

For the cost function V defined as in (3.8), its gradient ∇V is given by:

∇V = 2
N

N∑
k=1

J [k]T (ŷ[k]− y[k]). (3.23)

Its Hessian ∇2V is given by:

∇2V = 2
N

N∑
k=1

(
J [k]TJ [k] + S[k]

)
, (3.24)

where S[k] =
∑Ny
j=1 ŷj [k]∇2ŷj [k]. Ignoring S[k] is a common approximation used in nonlinear least-squares

implementations, that will be employe in Chapters 4 and 5.

3.3 Test design and data collection

A dataset containing information about the system behavior in most situations of interest is
necessary to estimate a good model. Hence, several decisions must be made to collect an appropriate
dataset. How the dynamic system is excited has a significant influence on the range of different dynamic
behaviors present in the collected dataset. Classical system identification textbooks offer some practical
guidance in what concerns designing tests for system identification (Ljung, 1998; Aguirre, 2004).

For linear system identification, it is necessary to excite a wide range of system frequencies.
Signals such as the pseudorandom binary sequence (PRBS) or filtered white Gaussian noise are usually
appropriate choices for that purpose. For nonlinear models, there is a need to drive the system over
a wider range of amplitudes, and signals that are appropriate for linear system identification may no
longer be good choices. For instance, Leontaritis and Billings (1987) show that PRBS may be unsuitable
for nonlinear system identification. In other situations, only “routine operation” data is available, and
automatic procedures may be devised to find data windows containing relevant dynamical information, as
in (Ribeiro and Aguirre, 2015).

Furthermore, the user should remove drifts, trends and seasonal variations, pre-filter the data
and deal with missing points and outliers in order to obtain good results (Ljung, 1998, Chapter 14).

Part II

The trade-offs of recurrence

67

4 Parallel training considered harmful?

As discussed in the Introduction, the comparison between recurrent and feedforward structures
takes many shapes and forms in the literature. Narendra and Parthasarathy (1990) have show that neural
network models for dynamic systems can be trained either in parallel or in series-parallel configurations.
The parallel configuration incurs in a recurrent structure and the series-parallel, in a feedforward structure.
Influenced by early arguments given in this landmark paper, several works justify the choice of series-
parallel rather than parallel configuration claiming it has a lower computational cost, better stability
properties during training and provides more accurate results.

Other published results, on the other hand, defend parallel training as being more robust and
capable of yielding more accurate long-term predictions. The main contribution of this chapter is to present
a study comparing both methods under the same unified framework and revisit some of the arguments
presented in this landmark paper. We focus on three aspects: i) robustness of the estimation in the presence
of noise; ii) computational cost; and, iii) convergence. A unifying mathematical framework and simulation
studies show situations where each training method provides better validation results, being parallel
training better in what is believed to be more realistic scenarios. An example using measured data seems
to reinforce such claim. We also show, with a novel complexity analysis and numerical examples, that both
methods have similar computational cost, being series series-parallel training, however, more amenable
to parallelization. Some informal discussion about stability and convergence properties is presented and
explored in the examples.

This material presented in this chapter is related with the following publication:

“Parallel Training Considered Harmful?” : Comparing Series-Parallel and Parallel
Feedforward Network Training, Antônio H. Ribeiro, Luis A. Aguirre. Neurocomputing,
2018. v. 316 (17) pp. 222-231. doi: 10.1016/j.neucom.2018.07.071

The rest of the chapter is organized as follows: Section 4.1 introduces the difference between
parallel and series-parallel training modes and contextualize the contribution of this chapter; Section 4.2
presents both training modes as prediction error methods (Ljung, 1978, 1998) and Section 4.3 formulates
neural network training in both configurations as a nonlinear least-squares problem. It is a secondary
contribution of this chapter to present both training methods under the same framework and the comparison
in subsequent sections is built on top of this formulation. Section 4.4 presents a complexity analysis
comparing the methods and Section 4.5 discusses signal unboundedness and the possibility of convergence
to “bad” local solutions. In Section 4.6, numerical examples with measured and simulated data investigate
the effect of the noise in the estimation and the running time of both methods. Final comments and future
work ideas are presented in Section 4.7.

4.1 Introduction

Neural networks are widely used and studied for modeling nonlinear dynamic systems (Narendra
and Parthasarathy, 1990; Zhang et al., 2006; Singh et al., 2013; Saad et al., 1994; Beale et al., 2017;
Saggar et al., 2007; Petrović et al., 2013; Tijani et al., 2014; Khan et al., 2015; Diaconescu, 2008; Warwick
and Craddock, 1996; Kamińnski et al., 1996; Rahman et al., 2000; Su et al., 1992; Su and McAvoy,
1993; Aguirre et al., 2010; Patan and Korbicz, 2012; Wang et al., 2014, 2016). In the seminal paper by

Chapter 4. Parallel training considered harmful? 68

Narenda and Parthasarathy (Narendra and Parthasarathy, 1990) series-parallel and parallel configurations
are introduced as possible neural network architectures for predicting the output of dynamic systems.
Figure 4.1 illustrates the difference. Parallel configuration feeds the output back to the input of the
network and, hence, uses its own previous values to try to predict the next output of the system being
modeled. Series-parallel configuration, on the other hand, uses the true measured output rather than
feeding back the estimated one.

Hence, when training the neural network in series-parallel configuration measured values from
past instants are used to make one-step-ahead predictions. On the other hand, when training the neural
network in parallel configuration the predicted output is computed by running a free-run simulation of
the system through the entire window length. In both cases the error between predicted and measured
values is minimized in order to estimate the neural network parameters.

(a) Parallel (b) Series-parallel

Figure 4.1 – (Parallel and series-parallel) Display neural network training modes. In both cases,
considers the dynamic system model y[k] = F(y[k− 1],y[k− 2],u[k− 1],u[k− 2]). The block
q−1 holds and delay the output by one sample period.

In (Narendra and Parthasarathy, 1990), training in series-parallel configuration is said to be
preferred than parallel configuration for three main reasons, latter mentioned in several other works: i) all
signals generated in the identification procedure for series-parallel configuration are bounded, while this is
not guaranteed for the parallel configuration (Zhang et al., 2006; Singh et al., 2013); ii) for the parallel
configuration a modified version of backpropagation is needed, resulting in a greater computational cost,
while the standard backpropagation can be used for series-parallel configuration (Saad et al., 1994; Beale
et al., 2017; Saggar et al., 2007); and, iii) assuming that the error tends asymptotically to small values the
simulated output is not so different from the actual one and, therefore, the results obtained from two
configurations would not be significantly different (Warwick and Craddock, 1996; Kamińnski et al., 1996;
Rahman et al., 2000). An additional reason that also appears sometimes in the literature is that: iv) the
series-parallel training provides better results because of more accurate inputs to the neural network
during training (Beale et al., 2017; Saggar et al., 2007; Petrović et al., 2013; Tijani et al., 2014; Khan
et al., 2015; Diaconescu, 2008).

Results presented in other papers, however, show the strengths of parallel training: according
to (Su et al., 1992; Su and McAvoy, 1993) neural network trained in parallel yield more accurate long-term
predictions than the ones trained in series-parallel; (Aguirre et al., 2010) shows for diverse types of models,
including neural networks, that the parallel training can be more robust than series-parallel training in
the presence of some kinds of noise; and, in (Patan and Korbicz, 2012) neural network parallel models
presents better validation results than series-parallel models for modeling a boiler unit. Furthermore, the
free-run simulation error minimization (used in parallel training) seems to be successful when dealing

Chapter 4. Parallel training considered harmful? 69

with other types of models: some state-of-the-art structure selection techniques for polynomial models are
based on it (Piroddi and Spinelli, 2003; Farina and Piroddi, 2008, 2010, 2011, 2012); and, in (Zhang et al.,
2014) it provided the best results when estimating the parameters of a battery.

The main contribution of this chapter is to compare these two training methods. We focus on
three aspects: i) robustness of the estimation in the presence of noise; ii) computational cost; and, iii)
convergence. Our findings suggest that parallel training may provide the most accurate models under
some common circumstances. Furthermore, its computational cost is not significantly different than
series-parallel training. We believe this to be relevant because it contradicts some of the frequently cited
reasons for using series-parallel rather than parallel training.

4.2 Unifying framework

Consider the following data set: Z = {(u[k],y[k]), k = 1, 2, . . . , N}, containing a sequence of
sampled inputs-output pairs. Here u[k] ∈ RNu and y[k] ∈ RNy are vectors containing all the inputs and
outputs of interest at instant k. The output y[k] is correlated with its own past values and with past
input values. This work is trying to find a difference equation model y[k] = f̂(y[k],u[k]; θ̂), for f̂ being a
neural network.

In this section we present parallel and series-parallel training in the prediction error methods
framework (Chapter 3). This analysis provides some insight on the type of situation each model is supposed
to perform better.

4.2.1 Parallel vs series-parallel training

Let us define one-step-ahead prediction and free-run simulation:

Definition 4.1 (One-step-ahead prediction). For a given function f̂ , parameter vector θ̂ and dataset Z,
the one-step-ahead prediction is defined as:

ŷ1[k] = f̂(y[k − 1], . . . ,y[k − ny],u[k − τd], . . . ,u[k − nu]; θ̂). (4.1)

Definition 4.2 (Free-run simulation). For a given function f̂ , parameter vector θ̂, dataset Z, and a set
of initial conditions {y0[k]}nyk=1, the free-run simulation is defined using the recursive formula:

ŷs[k] =

y0[k], 1 ≤ n < ny;

f̂(ŷs[k − 1], . . . , ŷs[k − ny],u[k − τd], . . . ,u[k − nu]; θ̂),

n ≥ ny.
(4.2)

The vector of initial conditions is defined as y0 = [y0[1]T , . . . ,y0[ny − 1]T]T .

Let e = [e[1]T , . . . , e[N]T]T be the prediction error vectors. The parameters are estimated mini-
mizing 1

2‖e‖2. In series-parallel it is used the one-step-ahead error, e1[k] = ŷ1[k]− y[k], while in parallel
training the free-run simulation error is used, es[k] = ŷs[k]− y[k].

This can be put into the framework presented in Chapter 3 easily. Just consider the objective
function defined as in Equation (3.8) for the prediction ŷθ given either by the one-step-ahead prediction
ŷ1[k] or by the free-run simulation ŷs[k]. The minimization of 1

2‖e‖2 is then equivalent to the minimization
of V . In Chapter 3 we used the nomenclature nonlinear ARX to refer to the models obtained using
series-parallel training; and nonlinear output error to refer to the models obtained using and parallel
training.

Chapter 4. Parallel training considered harmful? 70

4.2.2 Optimal predictor

If the measured values of y and u are known at all instants previous to k, the optimal prediction
of y[k] is, as defined in Section 3.2.8.1, given by the following conditional expectation:

ŷ∗[k] = E
{

y[k]
∣∣∣ y[k],u[k]

}
. (4.3)

For the data being generated as in (3.19), consider two situations:

Situation 4.1 (White equation error). The sequence of equation errors {v[k]} is a white noise process
and the output error and error-in-variables are zero (w[k] = 0 and s[k] = 0).

Situation 4.2 (White output error). The sequence of output errors {w[k]} is a white noise process and
the equation error and error-in-variables are zero (v[k] = 0 and s[k] = 0).

For function, parameter vector and initial conditions matching the true ones than: if Situation
4.1 holds then the one-step-ahead prediction is equal to the optimal prediction (ŷ1[k] = ŷ∗[k]); On the
other hand, if Situation 4.2 holds then the free-run simulation is the optimal prediction (ŷs[k] = ŷ∗[k]).

Hence both training methods minimize an error that approaches the optimal predictor error
fie∗[k] = ŷ∗[k]− y[k] as the parameter approaches the true one. Furthermore, in both cases the prediction
model containing the optimal prediction for one of the situations. Series-parallel training does it for
Situation 4.1 and parallel training for Situation 4.2. Hence, each training method is more appropriate for
one type of situation.

4.3 Nonlinear least-squares network training

Unlike other machine learning applications (e.g. natural language processing and computer vision)
where there are enormous datasets available to train neural network models, the datasets available for
system identification are usually of moderate size. The available data is usually obtained through tests
with limited duration because of practical and economical reasons. And, even when there is a long record
of input-output data, it either does not contain meaningful dynamic behavior (Ribeiro and Aguirre, 2015)
or the system cannot be considered time-invariant over the entire record, resulting in the necessity of
selecting smaller portions of this longer dataset for training.

Due to the unavailability of large datasets, the use of neural networks in system identification is
usually restricted to neural networks with few hundred weights. The Levenberg-Marquardt method does
provide a fast convergence rate (Nocedal and Wright, 2006) and has been described as very efficient for
batch training of moderate size problems (Hagan and Menhaj, 1994), where the memory used by this
algorithm is not prohibitive. Hence, it will be the method of choice for training neural networks in this
chapter.

Besides that, recurrent neural networks often present vanishing gradients that may prevent the
progress of the optimization algorithm. The use of second order information (as in the Levenberg-Marquardt
algorithm) help to mitigate this problem (Bengio et al., 1994).

This section presents the parallel and series-parallel training as nonlinear least-squares problems.
Sections 4.3.1 and 4.3.2 give some background in the the Levenberg-Marquardt algorithm and in the
backpropagation algorithm proposed by (Hagan and Menhaj, 1994). Series-parallel and parallel training
are discussed in Sections 4.3.3 and 4.3.4. The backpropagation can be directly applied to series-parallel
training, while for parallel training we introduce a new formula for computing the derivatives. This formula
can be interpreted either as a variation of the dynamic backpropagation (Narendra and Parthasarathy,

Chapter 4. Parallel training considered harmful? 71

1990) adapted to compute the Jacobian instead of the gradient; or, as a specific case of real-time recurrent
learning (Williams and Zipser, 1989) with a special type of recurrent connection.

4.3.1 Nonlinear least-squares

Let θ ∈ RNΘ be a vector of parameters containing all neural network weights and bias and
e(θ) ∈ RNe an error vector. In order to estimate the parameter vector θ the sum of square errors
V (θ) = 1

2‖e(θ)‖2 is minimized. Its gradient vector and Hessian matrix may be computed as: (Nocedal
and Wright, 2006, p. 246)

∂V
∂θ =

[
∂e
∂θ

]T e(θ), (4.4)

∂2V
∂θ2 =

[
∂e
∂θ

]T [∂e
∂θ

]
+

Ne∑
i=1

ei
∂2ei
∂θ2 . (4.5)

where ∂e
∂θ ∈ RNe×NΘ is the Jacobian matrix associated with e(θ). Non-linear least-squares algorithms

usually update the solution iteratively (θn+1 = θn+ ∆θn) and exploit the special structure of the gradient
and Hessian of V (θ), in order to compute the parameter update ∆θn.

The Levenberg-Marquardt algorithm considers a parameter update (Marquardt, 1963):

∆θn = −
[
∂e
∂θ

∣∣T
n

∂e
∂θ

∣∣
n

+ λnDn
]−1 [

∂e
∂θ

∣∣
n

]T en, (4.6)

for which λn is a non-negative scalar and Dn is a non negative diagonal matrix. Furthermore, en and
∂e
∂θ

∣∣
n
are the error and its Jacobian matrix evaluated at θn

There are different ways of updating λn and Dn. The update strategy presented here is similar
to (Fletcher et al., 1971). The elements of the diagonal matrix Dn are chosen equal to the elements in
the diagonal of ∂e

∂θ

∣∣T
n

∂e
∂θ

∣∣
n
. And λn is increased or decreased according to the agreement between the

local model
(
φn(∆θn) = 1

2
∥∥en +

[
∂e
∂θ

∣∣
n

]
∆θn

∥∥2) and the real objective function V (θn). The degree of
agreement is measured using the following ratio:

ρn = V (θn)− V (θn + ∆θn)
φn(0)− φn(∆θn) . (4.7)

One iteration of the algorithm is summarized next:

Algorithm 4.1 (Levenberg-Marquardt Iteration). For a given θn and λn:

1. Compute e(θn) and ∂e
∂θ (θn), if not already computed.

2. diag(Dn)← diag
(
∂e
∂θ

∣∣T
n

∂e
∂θ

∣∣
n

)
.

3. Solve (4.6) and compute ∆θn .

4. Compute ρn as in (4.7).

5. λn+1 ← 4λn if ρn > 3
4 ; λn+1 ← 1

2λ
n if ρn < 1

4 ; otherwise, λn+1 ← λn .

6. θn+1 ← θn + ∆θn if ρn > 10−3; otherwise, θn+1 ← θn.

7. n = n+ 1.

Chapter 4. Parallel training considered harmful? 72

4.3.2 Modified backpropagation

Consider a multi-layer feedforward network, such as the three-layer network in Figure 4.2. This
network can be seen as a function that relates the input x ∈ RNx to the output z ∈ RNz . The parameter
vector θ contains all weights w(n)

i,j and bias γ(n)
i of the network. This subsection presents a modified

version of backpropagation (Hagan and Menhaj, 1994) for computing the neural network output z and its
Jacobian matrix for a given input x. The notation used is the one displayed in Figure 4.2.

Figure 4.2 – (Fully connected neural network) Display three-layer feedforward network.

1. Forward Stage: For an L layer network the output nodes can be computed using the following
recursive matrix relation:

α(n) =

x n = 0;

h(n)(W (n)α(n−1) + γ(n)) n = 1, . . . ,L,
(4.8)

where, for the n-th layer, W (n) is a matrix containing the weights w(n)
i,j , γ(n) is a vector containing

the the bias γ(n)
i and h(n) applies the nonlinear function h(n) element-wise. The output z is given

by:
z = α(L). (4.9)

2. Backward Stage: The follow recurrence relation can be used to compute ∂z
∂β(n) for every n:

∂z
∂β(n) =

Ḣ(L)(β(L)) n = L;
∂z

∂β(n+1) ·W (n+1) · Ḣ(n)(β(n)) n = L − 1, . . . , 1,
(4.10)

where Ḣ(n) is given by the following diagonal matrix:

Ḣ(n)(β(n)) = diag
(
ḣ(n)(β(n)

1
)
, · · · , ḣ(n)(β(n)

Nsk

))
.

The recursive expression (4.10) follows from applying the chain rule(
∂z

∂β(n) = ∂z
∂β(n+1)

∂β(n+1)

∂α(n)
∂α(n)

∂β(n)

)
, and considering ∂β(n+1)

∂α(n) = W (n+1) and ∂α(n)

∂β(n) = Ḣ(n).

3. Computing Derivatives: The derivatives of z in relation to the weights w(n)
i,j and the bias γ(n)

i

can be used to form the Jacobian matrix ∂z
∂θ and can be computed using the following expressions:

∂z
∂w

(n)
i,j

= ∂z
∂β

(n)
i

∂β
(n)
i

∂w
(n)
i,j

= ∂z
∂β

(n)
i

α
(n−1)
j ; (4.11)

∂z
∂γ

(n)
i

= ∂z
∂β

(n)
i

∂β
(n)
i

∂γ
(n)
i

= ∂z
∂β

(n)
i

. (4.12)

Chapter 4. Parallel training considered harmful? 73

Furthermore, the derivatives of z in relation to the inputs x are:

∂z
∂x = ∂z

∂β(1)
∂β(1)

∂α(0) = ∂z
∂β(1)W

(1). (4.13)

4.3.3 Series-parallel training

In the series-parallel configuration the parameters are estimated by minimizing 1
2‖e1‖2, what

can be done using the algorithm described in Section 4.3.1. The required Jacobian matrix ∂e1
∂θ can be

computed according to the following well known result.

Lemma 4.1. The Jacobian matrix of e1 in relation to θ is ∂e1
∂θ =

[
∂e1[1]
∂θ

T
, · · · , ∂e1[N]

∂θ

T]T
, where

∂e1[k]
∂θ = ∂ŷ1[k]

∂θ = ∂ f̂
∂θ (y[k],u[k]; θ̂) that can be computed using the backpropagation described at Section 4.3.2.

Proof. Results from differentiating (4.1).

4.3.4 Parallel training

In the parallel configuration the parameters are estimated by minimizing 1
2‖es‖2. There are two

different ways to take into account the initial conditions y0, they are: (i) to fix the initial conditions y0
and estimate the model parameters θ; and, (ii) to define an extended parameter vector Φ = [θT ,yT0]T

and estimate y0 simultaneously with θ.

When using formulation (i), a suitable choice is to set the initial conditions equal to the measured
outputs (y0[k] = y[k], k = 1, . . . , ny − 1). When using formulation (ii) the measured outputs may be used
as an initial guess to be refined by the optimization algorithm.

The optimal choice for the initial condition would be y0[k] = y∗[k] for n = 1, · · · , ny − 1. For-
mulation (i) uses the non-optimal choice y0[k] = y[k] 6= y∗[k]. Formulation (ii) goes one step further
and include the initial conditions y0[k] in the optimization problem, so it converges to y∗[k] and hence
improves the parameter estimation.

The Jacobian matrices ∂es
∂θ and ∂es

∂y
0
can be computed according to the following lemma.

Lemma 4.2. The Jacobian matrices of e1 in relation to θ and y0 are ∂es
∂θ =

[
∂es[1]
∂θ

T
, · · · , ∂es[N]

∂θ

T]T
and

∂es
∂y

0
=
[
∂es[1]
∂y

0

T
, · · · , ∂es[N]

∂y
0

T]T
where ∂es[k]

∂θ = ∂ŷs[k]
∂θ and ∂es[k]

∂y
0

= ∂ŷs[k]
∂y

0
can be computed according to the

following recursive formulas:

∂ŷs[k]
∂θ

=

0, 1 ≤ k ≤ ny − 1;

∂ f̂
∂θ

(ŷ[k],u[k]; θ̂) +
ny∑
i=1

∂ f̂
∂y[k − i] (ŷ[k],u[k]; θ̂)∂ŷs[k − i]

∂θ
, n ≥ ny,

(4.14)

∂ŷs[k]
∂y0

=

D(n), 1 ≤ k ≤ ny − 1;
ny∑
i=1

∂ f̂
∂y[k − i] (ŷ[k],u[k]; θ̂)∂ŷs[k − i]

∂y0
, n ≥ ny,

(4.15)

where D(n) ∈ RNy×nyNy is defined as:

{
D(n)}

i,j
=
{

1, if j = (n− 1) ·Ny + i,

0, otherwise.
(4.16)

Proof. Results from differentiating (4.2) and applying the chain rule.

Chapter 4. Parallel training considered harmful? 74

4.4 Complexity analysis

In this section we present a novel complexity analysis comparing series-parallel training (SP),
parallel training with fixed initial conditions (Pθ) and parallel training with extended parameter vector
(PΦ). We show that the training methods have similar computational cost for the nonlinear least-squares
formulation. The number of floating point operations (flops) is estimated based on (Golub and Van Loan,
2012, Table 1.1.2). Low order terms, as usual, are neglected in the analysis.

4.4.1 Neural network output and its partial derivatives

The backpropagation algorithm described in Section 4.3.2 can be used for training both fully or
partially connected networks. What would have to change is the internal representation of the weight
matricesW (n): for a partially connected network the matrices would be stored using a sparse representation,
e.g. compressed sparse column (CSC) representation.

The total number of flops required to evaluate the output and to compute its partial derivatives
for the feedforward network is summarized in Table 4.1 considering a fully connected network. The
total number of network weights is denoted as Nw and the total number of bias terms as Nγ , such that
Nw +Nγ = NΘ. For this fully connected network:

Nw = Nx ·Ns1 +Ns1 ·Ns2 + · · ·+Ns(L−1) ·NsL,
Nγ = Ns1 +Ns2 + · · ·+NsL. (4.17)

Table 4.1 – (Backpropagation computational cost) Modified backpropagation number of flops for a
fully connected network.

Computing Neural Network Output
i) Compute f̂(x;θ) — Eq. (4.8)-(4.9) 2Nw

Computing Partial Derivatives
ii) Backward Stage — Eq. (4.10) (2Nz + 1)(Nw −NxNs1)
iii) Compute ∂ f̂

∂θ — Eq. (4.11)-(4.12) Nw ·Nz
iv) Compute ∂ f̂

∂x — Eq. (4.13) 2Nx ·Ns1 ·Nz

Since the more relevant terms of the complexity analysis in Table 4.1 are being expressed in terms
of Nw and Nz the results for a fully connected network are similar to the ones that would be obtained for
a partially connected network using a sparse representation.

4.4.2 Number of flops for series-parallel and parallel training

The number of flops of each iteration of the Levenberg-Marquardt algorithm is summarized
in Table 4.2. Entries (i) to (iv) in Table 4.2 follow directly from Table 4.1, considering Nz = Ny and
multiplying the costs by N because of the number of different inputs being evaluated. Furthermore, in
entries (v) and (vi), it is considered that the evaluation of (4.14) and (4.15) is done, not by recomputing
the entire summation each time, but by storing each computed values and computing only one new
matrix-matrix product per evaluation.

The cost of solving (4.6) is about 2 · N · N2
Θ + 1

3 · N3
Θ where the cost 2N · N2

Θ is due to the
multiplication of the Jacobian matrix by its transpose and 1

3N
3
Θ is due to the needed Cholesky factorization.

For an extended parameter vector NΘ is replaced by NΦ in the analysis.

Chapter 4. Parallel training considered harmful? 75

Table 4.2 – (Computational cost) Levenberg-Marquardt number of flops per iteration for series-parallel
training (SP), parallel training with fixed initial conditions (Pθ) and parallel training with
extended parameter vector (PΦ). A mark 7 signals which calculation is required in each
method.

SP Pθ PΦ
Computing Error

i) Compute f̂(x;θ) 2N ·Nw 7 7 7

Computing Partial Derivatives
ii) Backward Stage N(2Ny + 1)(Nw −NxNs1) 7 7 7

iii) Compute ∂ f̂
∂θ N ·Nw ·Ny 7 7 7

iv) Compute ∂ f̂
∂x 2N ·Nx ·Ns1 ·Ny 7 7

v) Equation (4.14) 2N ·NΘ · (N2
y +Ny) 7 7

vi) Equation (4.15) 2N · ny ·Ny · (N2
y +Ny) 7

Solving Equation (4.6)
vii) Solve (4.6) — θ 2N ·N2

Θ + 1
3N

3
Θ 7 7

viii) Solve (4.6) — Φ 2N ·N2
Φ + 1

3N
3
Φ 7

4.4.3 Comparing methods

Assuming the number of nodes in the last hidden layer is greater than the number of outputs
(Ny < Ns(L−1)), the inequalities follow directly from this chapter definitions:

ny ·Ny ≤ Nx < Nx ·Ns1 ≤ Nw < NΘ; (4.18)

Ny < N2
y < Ny ·Ns(L−1) ≤ Nw < NΘ.

From Table 4.2 and from the above inequalities it follows that the cost of each Levenberg-Marquardt
iteration is dominated by the cost of solving Equation (4.6). Furthermore, NΦ = NΘ + ny ·Ny < 2NΘ,
therefore, PΦ training method has the same asymptotic computational cost of SP and Sθ methods:
O(N ·N2

Θ +N3
Θ).

From Table 4.2 it is also possible to analyze the cost of each of the major steps needed in each
full iteration of the algorithm:

• Computing Error: The cost of computing the error is the same for all of the training methods.

• Computing Partial Derivative: The computation of partial derivatives has a cost of O(N ·Nw ·Ny)
for the SP training method and a costO(N ·NΘ·N2

y) for both PΦ and Pθ. For many cases of interest in
system identification, the number of model outputs Ny is small. Furthermore, NΘ = Nw +Nγ ≈ Nw
(see Eq. (4.17)). That is why the cost of computing the partial derivatives for parallel training is
comparable to the cost for series-parallel training.

• Solving Equation (4.6): It already has been established that the cost of this step O(N ·N2
Θ +N3

Θ)
dominates the computational cost for all the training methods. Furthermore ny ·Ny is usually much
smaller than NΘ such that NΦ ≈ NΘ and the number of flops of this stage is basically the same for
all the training methods.

4.4.4 Memory complexity

Considering that N is significantly larger than ny, it follows that, for the three training methods,
the storage capacity is dominated by the storage of the Jacobian matrix ∂e

∂θ or of the matrix resulting from

Chapter 4. Parallel training considered harmful? 76

the product
[
∂e
∂θ

]T [∂e
∂θ

]
. Therefore the size of the memory used by the algorithm is about O(max(N ·Ny ·

NΘ, N
2
Θ)).

For very large datasets and a large number of parameters, this storage requirements may be
prohibitive and others methods should be used (e.g. stochastic gradient descent or variations). Nevertheless,
for datasets of moderate size and networks with few hundred parameters, as it is usually the case for
system identification, the use of nonlinear least-squares is a viable option.

4.5 Practical aspects

4.5.1 Convergence towards a local minima

The optimization problem that results from both series-parallel and parallel training of neural
networks are non-convex and may have multiple local minima. The solution of the Levenberg-Marquardt
algorithm discussed in this chapter, as well as most algorithms of interest for training neural networks (e.g.
stochastic gradient descent, L-BFGS1, conjugate gradient), converges towards a local minima2. However,
there is no guarantee for neither series-parallel nor parallel training that solution found is the global
optimum. The convergence to “bad” local solutions may happen for both training methods, however, as
illustrated in the numerical examples, it seems to happen more often for parallel training.

4.5.2 Signal unboundedness during training

Signals obtained in intermediary steps of parallel identification may become unbounded. The
one-step-ahead predictor, used in series-parallel training, is always bounded since the prediction depends
only on measured values – it has a FIR (Finite Impulse Response) structure – while, for the parallel training,
the free-run simulation could be unbounded for some choice of parameters because of its dependence on
its own past simulation values.

This is a potential problem because during an intermediary stage of parallel training a choice
of θk that results in unbounded values of ŷs[k] may need to be evaluated, resulting in overflows. Hence,
optimization algorithms that may work well minimizing one-step-ahead prediction errors e1, may fail
when minimizing simulation errors es.

For instance, steepest descent algorithms with a fixed step size may, for a poor choice of step size,
fall into a region in the parameter space for which the signals are unbounded and the computation of the
gradient will suffer from overflow and prevent the algorithm from continuing (since it does not have a
direction to follow). This may also happen in more practical line search algorithms (e.g. the one described
in (Nocedal and Wright, 2006, Sec. 3.5)).

The Levenberg-Marquardt algorithm, on the other hand, is robust against this kind of problem
because every step θn + ∆θn that causes overflow in the objective function computation yields a negative
ρn

3, hence the step is rejected by the algorithm and λn is increased. The increase in λn causes the length
of ∆θn to decrease4. Therefore, the step length is decreased until a point is find close enough to the
current iteration such that overflow does not occur. Hence, the Levenberg-Marquardt algorithm does
not fail or stall due to overflows. Similar reasoning could be used for any trust-region method or for
backtracking line-search.
1 The Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm.
2 It is proved in (Moré, 1978) that the Levenberg-Marquardt (not exactly the one discussed here) converges towards a local

minima or a stationary point under simple assumptions.
3 Programming languages as Matlab, C, C++ and Julia returns the floating point value encoded for infinity when an

overflow occur. In this case formula (4.7) yields a negative ρn.
4 This inverse relation between λn and ‖∆θn‖ is explained in (Nocedal and Wright, 2006).

Chapter 4. Parallel training considered harmful? 77

Regardless of the optimization algorithm, signal unboundedness is not a problem for feedforward
networks with bounded activation functions (e.g. Logistic or Hyperbolic Tangent) in the hidden layers,
because its output is always bounded. Hence parallel training of these particular neural networks is not
affected by the previously mentioned difficulties.

4.5.3 Time series prediction

It is important to highlight that parallel training is inappropriate to train neural networks for
predicting time series in general. That is, parallel configuration is generally inadequate for the case when
there are no inputs (Nu = 0).

For any asymptotically stable system in parallel configuration, the absence of inputs would make
the free-run simulation converge towards an equilibrium, and even models that should be capable of
providing good predictions for a few steps-ahead in the time series, may present poor performance for the
entire training window. Hence, minimizing ‖es‖2 will not provide good results.

It still makes sense to use series-parallel training for time series models. That is because, feeding
real outputs from the systems into the neural network keeps it from converging towards zero (for
asymptotically stable systems) and makes the estimation robust against unknown disturbances affecting
the time series. An interesting approach that mixes parallel and series-parallel training for time series
prediction is given in (Menezes and Barreto, 2008).

4.6 Implementation and test results

The implementation is in Julia and runs on a computer with a processor Intel(R) Core(TM)
i7-4790K CPU @ 4.00GHz. For all examples in this chapter, the activation function used in hidden
layers is the hyperbolic tangent, the weights w(n)

i,j initial values are drawn from a normal distribution
with standard deviation σ = (Ns(n))−0.5 and the bias terms γ(n)

i are initialized with zeros (LeCun et al.,
1998). Furthermore, in all parallel training examples we include the initial conditions as parameters of the
optimization process (PΦ training).

The free run simulation mean square error (MSE =
∑
n(y[k]− ŷs[k])2) is used as a goodness of

fit measure to compare the models in the validation window.

The first example compares the training method using data from a real process and the second one
investigates different noise configurations on computer generated data. The code and data used in the numer-
ical examples are available in the GitHub repository: https://github.com/antonior92/ParallelTrainingNN.jl.

4.6.1 Example 1: data from a pilot plant

In this example, input-output signals were collected from LabVolt Level Process Station (model
3503-MO (LabVolt, 2015)). This plant consists of a tank that is filled with water from a reservoir. The
water is pumped at fixed speed, while the flow is regulated using a pneumatically operated control valve
driven by a voltage u. The water column height y is indirectly measured using a pressure sensor at the
bottom of the tank. Figure 4.3 shows the free-run simulation in the validation window of models obtained
for this process using parallel and series-parallel training.

Since the parameters initial guess are randomly initialized, different realizations will yield different
results. Figure 4.4 shows the validation errors for both training methods for randomly drawn initial guesses.
While parallel training consistently provides models with better validation results than series-parallel
training, it also has some outliers with very bad validation results. We interpret these outliers in the

https://github.com/antonior92/ParallelTrainingNN.jl

Chapter 4. Parallel training considered harmful? 78

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 110
15
20
25
30
35
40
45
50
55
60
65
70

t (hours)

y
(c

m
)

y
SP
P

Figure 4.3 – (Pilot plant validation) Displays free-run simulation in the validation window for models
obtained using series-parallel (SP) and parallel (P) training. The mean square errors are
MSESP = 1144.6; MSEP = 296.2. The models have ny = nu = 1 and 10 nodes in the hidden
layer and were trained on a two hour long dataset sampled at Ts = 10s. The same initial
parameter guess was used for both training methods. The training was 100 epochs long,
which took 3.3 and 3.9 seconds, respectively, for series-parallel and parallel training.

SP P102

103

104

105

M
SE

Figure 4.4 – (Series-parallel vs parallel training) Boxplots show the distribution of the free-run
simulation MSE over the validation window for models trained using series-parallel (SP)
and parallel (P) methods under the circumstances specified in Figure 4.3. There are 100
realizations of the training in each boxplot, in each realization the weights w(n)

i,j are draw
from a normal distribution with standard deviation σ = (Ns(n−1))−0.5 and the bias terms
γ

(n)
i are initialized with zeros (LeCun et al., 1998). For comparison purposes, the dashed

horizontal line gives the performance of an ARX linear model (ny = 1 and nu = 1) trained
and tested under the same conditions.

Chapter 4. Parallel training considered harmful? 79

boxplot as consequence of the parallel training getting trapped in “bad” local minima, as mentioned in
Section 4.5.

The training of the neural network was performed using normalized data. However, if unscaled
data were used instead, parallel training would yield models with MSE > 10000 over the validation
window while series-parallel training can still yield solutions with a reasonable fit to the validation data.
We understand this as another indicator of parallel training greater sensitivity to the initial parameter
guess: for unscaled data, the initial guess is far away from meaningful solutions of the problem, and,
while series-parallel training converges to acceptable results, parallel training gets trapped in “bad” local
solutions.

4.6.2 Example 2: investigating the noise effect

The non-linear system: (Chen et al., 1990b)

y∗[k] = (0.8− 0.5e−y
∗[k−1]2)y∗[k − 1]− (0.3 + 0.9e−y

∗[k−1]2)y∗[k − 2] + u[k − 1] +

0.2u[k − 2] + 0.1u[k − 1]u[k − 2] + v[k]

y[k] = y∗[k] + w[k], (4.19)

was simulated and the generated dataset was used to build neural network models. Figure 4.5 shows the
validation results for models obtained for a training set generated with white Gaussian equation and
output errors v and w. In this section, we repeat this same experiment for diverse random processes applied
to v and w in order to investigate how different noise configurations affect parallel and series-parallel
training.

0 10 20 30 40 50 60 70 80 90 100
−5
−4
−3
−2
−1

0
1
2
3
4
5

k

y

y
SP
P

Figure 4.5 – (Toy problem validation) Displays the first 100 samples of the free-run simulation in the
validation window for models trained using series-parallel (SP) and parallel (P) methods.
The mean square errors are MSESP = 0.39; MSEP = 0.06. The models have ny = nu = 2
and a single hidden layer with 10 nodes. The training set has N = 1000 samples and was
generated with (7.6) for v and w white Gaussian noise with standard deviations σv = 0.1 and
σw = 0.5. The validation window is generated without the noise effect. For both, the input u
is randomly generated with standard Gaussian distribution, each randomly generated value
held for 5 samples. The training was 100 epochs long, which took 5.0 and 6.1 seconds for,
respectively, series-parallel and parallel training.

Let v be white Gaussian noise with standard deviation σv and let w be zero. Figure 4.6 (a)
shows the free-run simulation error on the validation window using parallel or series-parallel training for

Chapter 4. Parallel training considered harmful? 80

increasing values of σv. Figure 4.6 (b) shows the complementary experiment, for which v is zero and w is
white Gaussian noise with increasing larger values of σw being tried out.

In Section 4.2, series-parallel training was derived considering only the presence of white equation
error and, in this situation, the numerical results illustrate the model using this training method presents
the best validation results (Figure 4.6 (a)). On the other hand, parallel training was derived considering
only the presence of white output error and is significantly better in this alternative situation (Figure 4.6
(b)).

0.0 0.4 0.8 1.2 1.6 2.00.0

0.5

1.0

1.5

2.0

σv

M
SE

SP
P

(a)

0.0 0.4 0.8 1.2 1.6 2.00.0

0.2

0.4

0.6

0.8

1.0

σw

(b)

Figure 4.6 – (White noise during training) Free-run simulation MSE on the validation window vs
noise levels for series-parallel and parallel training. The main line indicates the median and
the shaded region indicates interquartile range. These statistics were computed from 12
realizations. In (a) v is a Gaussian white process and w = 0; and, in (b) w is a Gaussian
white process and v = 0.

Consider w = 0 and v a white Gaussian noise filtered by a low pass filter with cutoff frequency ωc.
Figure 4.7 shows the free-run simulation error in the validation window for both parallel and series-parallel
training for a sequence of values of ωc and different noise intensities. The result indicates parallel training
provides the best results unless the equation error has a very large bandwidth.

More extensive tests are summarized in Table 4.3, which shows the validation errors for a training
set with colored Gaussian errors in different frequency bands. Again, except for white or large bandwidth
equation error, parallel training seems to provide the smallest validation errors.

Equation error can be interpreted as the effect of unaccounted inputs and unmodeled dynamics,
hence situations where this error is not auto-correlated are very unlikely. Therefore, the only situations we
found series-parallel training to perform better (when the equation error power spectral density occupy
almost the whole frequency spectrum) seem unlikely to appear in practice. This may justify parallel
training to produce better models for real application problems as the pilot plant in Example 1, the
battery modeling described in (Zhang et al., 2014), or the boiler unit in (Patan and Korbicz, 2012).

4.6.3 Timings

In Section 4.4 we find out the computational complexity of O(N · N2
Θ + N3

Θ). The first term
O(N ·N2

Θ) seems to dominate and in Figure 4.8 we show that the running time grows linearly with the
number of training samples N and quadratically with the number of parameters NΘ.

Chapter 4. Parallel training considered harmful? 81

0

2

4

6

8
M

SE
SP
P

(a) ωc = 0.8 (b) ωc = 0.6

0 0.5 1 1.5 20

2

4

6

8

σv

M
SE

(c) ωc = 0.4

0 0.5 1 1.5 2
σv

(d) ωc = 0.2

Figure 4.7 – (Colored noise during training) Free-run simulation MSE over the validation window vs
standard deviation of colored equation error. The output error w = 0 and the equation error
v is a colored Gaussian noise obtained by applying a 4th-order lowpass Butterworth filter
with cutoff frequency ωc to white Gaussian noise in both the forward and reverse directions.
The figure shows the result for different values of ωc, where ωc is the normalized frequency
(with ωc = 1 the Nyquist frequency). The main line indicates the median and the shaded
region indicates interquartile range. These statistics were computed from 12 realizations.

The running time growing with the same rate for both training methods implies that the ratio
between series-parallel and parallel training running time is bounded by a constant. For the examples we
presented in this chapter the parallel training takes about 20% more than series-parallel training. Hence
the difference of running times for sequential execution does not justify the use of one method over the
other. Parallel training is, however, much less amenable to parallelization because of the dependencies
introduced by the recursive relations used for computing its error and Jacobian matrix. We propose a
possible solution to this problem in the final remarks.

4.7 Conclusion

In this chapter we have studied different aspects of parallel training under a nonlinear least
squares formulation. Due to the results presented in the numerical examples we have reasons to believe
parallel training can provide models with smaller generalization error than series-parallel training under
more realistic noise assumptions. Furthermore, for sequential execution both the complexity analysis and
the numerical examples suggest the computational cost is not significantly different for both methods.

Chapter 4. Parallel training considered harmful? 82

Table 4.3 – (Noise in frequency bands during training) Free-run simulation MSE on the validation
window for parallel and series-parallel training. Both the mean and the standard deviation
are displayed (30% trimmed estimation computed from 12 realizations). In situation (a), the
training data was generated with zero output error (w = 0) and v is a Gaussian random
process. In (b), the training data was generated with v = 0 and w is a Gaussian random
process. The Gaussian random process has standard deviation σ = 1.0 and power spectral
density confined to the given frequency band. In both situations, the rows where the frequency
ranges from 0.0 to 1.0 (the whole spectrum) corresponds to white noise, in the remaining rows
we apply a 4th-order lowpass (or highpass) Butterworth filter to white Gaussian noise (in
both the forward and reverse directions) in order to obtain the signal in the desired frequency
band. The cell of the training method with the best validation results between the two models
is colored. Its colored red when the difference in the MSE is larger than the sum of standard
deviations and yellow when it is not.

(a) v 6= 0, w = 0 (b) w 6= 0, v = 0
ω range SP P SP P

0.0→ 1.0 0.36± 0.09 0.78± 0.18 0.58± 0.03 0.13± 0.03
0.0→ 0.8 0.53± 0.13 0.58± 0.10 0.44± 0.02 0.12± 0.03
0.0→ 0.6 0.94± 0.13 0.75± 0.23 0.30± 0.05 0.15± 0.05
0.0→ 0.4 1.86± 0.20 1.07± 0.38 0.46± 0.05 0.15± 0.02
0.0→ 0.2 2.60± 0.26 1.16± 0.44 0.71± 0.05 0.18± 0.04
0.0→ 1.0 0.36± 0.09 0.78± 0.18 0.58± 0.03 0.13± 0.03
0.2→ 1.0 0.52± 0.07 0.57± 0.12 0.59± 0.03 0.09± 0.02
0.4→ 1.0 0.57± 0.08 0.22± 0.05 0.63± 0.05 0.05± 0.01
0.6→ 1.0 0.54± 0.07 0.21± 0.01 0.68± 0.03 0.03± 0.02
0.8→ 1.0 0.58± 0.05 0.17± 0.04 0.78± 0.09 0.03± 0.01

Some other reasons mentioned in the literature to avoid parallel training, as the possibility of signal
unboundedness (Narendra and Parthasarathy, 1990; Zhang et al., 2006; Singh et al., 2013), are also easy
to circumvent (see Section 4.5).

We have based our analysis on batch training. However, instead of using all the available samples
for training at once we could have fed samples one-by-one or chunk-by-chunk to the training algorithm
(online training). The choice of parallel or series-parallel training, however, is orthogonal to the choice
between online and batch training. And most of the ideas presented in this chapter, including: 1) the
unified framework; 2) the discussion about bad local minima; and 3) the study of how colored noise affects
the parameter estimation; are all applicable to the case of online training.

Several published works take for granted that series-parallel training always provide better results
with lower computational cost (Narendra and Parthasarathy, 1990; Saad et al., 1994; Beale et al., 2017;
Saggar et al., 2007; Petrović et al., 2013; Tijani et al., 2014; Khan et al., 2015; Diaconescu, 2008; Warwick
and Craddock, 1996; Kamińnski et al., 1996; Rahman et al., 2000). The results presented in this chapter
show this is not always the case and that parallel training does provide advantages that justify its use for
training neural networks in several situations (see the numerical examples).

Series-parallel training, however, has two advantages over parallel training: i) it seems less likely to
be trapped in “bad” local solutions; ii) it is more amenable to parallelization. For the examples presented
in this chapter the possibility of being trapped in “bad” local solutions is only a small inconvenience,
requiring the data to be carefully normalized and, in some rare situations, the model to be retrained. We
believe this to be the case in many situations. An exception are chaotic systems for which small variations
in the parameters may cause great variations in the free-run simulation trajectory, causing the parallel
training objective function to be very intricate and full of undesirable local minima.

In the following chapter, a technique called multiple shooting is introduced in the prediction error

Chapter 4. Parallel training considered harmful? 83

5000 10000 15000 20000

20

40

60

N

Ru
nn

in
g

tim
e

(s
)

(a)

2400 3600 4800 6000

300

600

900

1200

NΘ

(b)

Figure 4.8 – (Computational cost) Running time (in seconds) of training (100 epochs). The average
running time of 5 realizations is displayed for series-parallel training () and for parallel
training (). The neural network has a single hidden layer and a total of NΘ parameters to
be estimated. The training set has N samples and was generated as described in Figure 7.1.
In (a), we fix NΘ = 61 and plot the timings as a function of the number of training samples
N , a line is adjusted to illustrate the running time grows linearly with the training size for
both training methods. In (b), we fix N = 10000 and plot the timings as a function of the
number of parameters NΘ, a second order polynomial is adjusted to illustrate the running
time quadratic growth.

methods framework as a way of reducing the possibility of recurrent structures getting trapped in “bad”
local minima. Multiple shooting can also make the algorithm much more amenable to parallelization and
seems to be a promising way to solve the shortcomings of parallel training we have just described.

84

5 On the smoothness of nonlinear system identification

The principle behind prediction error methods, detailed in Chapter 3, is to estimate the parameters
of dynamic models by minimizing the error between predicted and measured values. ARX models estimate
the output using a feedforward structure, for which the predicted output depends only on measured values.
Output error and ARMAX models, on the other hand, have a recurrent structure, where the output
prediction depends on its own past values. This distinction is illustrated in Fig. 5.1.

(a) (b)

Figure 5.1 – (Feedforward vs Recurrent) Display feedforward and recurrent structures used by predic-
tion error method. Prediction error methods estimate the process parameters by minimizing
the error e between the measured output y and the model predicted value ŷ. The input-output
pairs (u, y) are measured values from some dynamic process. In (a) the prediction ŷ depends
only on measured values: ARX model; In (b) the predictor has a recurrent structure: ARMAX
and OE models.

Models with a recurrent structure might yield more accurate models than their feedforward
counterpart: ARMAX models are more flexible than ARX models because they include an error model
that is estimated together with the process model, which allows them to yield consistent results even in the
presence of colored equation errors (Nelles, 2013); and, OE models are often described as having smaller
generalization error (Patan and Korbicz, 2012; Zhang et al., 2014) and better capability of long-term
prediction (Su et al., 1992; Su and McAvoy, 1993) than ARX models.

It is common knowledge among practitioners that the optimization problem resulting from a
recurrent model structure is harder to solve (Piroddi and Spinelli, 2003). For linearly parametrized models
and convex loss functions, minimization of one-step-ahead prediction error leads to a convex optimization
problem; for recurrent model structures, the ensuing optimization is, in general, non-convex, complicating
the search for global optima. Even during local optimization, recurrent model structures can lead to cost
functions with poor smoothness properties, including many ‘jagged’ local minima, cf. Figure 5.3 for an
illustration. Understanding of the relationship between model structure and smoothness properties of
the cost function is, however, imprecise and provides little insight into ways to circumvent the problem.
Furthermore, the few studies that investigate the objective function properties in this context are focused
on linear systems (Eckhard et al., 2017).

The purpose of this chapter is twofold. First, we aim to provide insight into the properties of the
objective function arising in prediction error estimation problems in a general nonlinear setup. Specifically,
we show how the smoothness of the objective function depends on two factors: the simulation length and
the decay rate of the recurrent part of the prediction model. Second, we illustrate how this theoretical
insight might be leveraged for the design and analysis of new methods.

Chapter 5. On the smoothness of nonlinear system identification 85

We study the use of multiple shooting for prediction error methods. This technique reformulate
the optimization problem that arises from minimizing the error between a prediction model and observed
values. Rather than running the prediction model in the entire dataset, multiple shooting formulation
splits the dataset into smaller ones and runs the prediction model in each subdivision. The equivalence
with the original problem is obtained by including equality constraints in the optimization problem. This
method yield a smoother objective function since it avoids long simulations, not giving the opportunity to
trajectories to diverge too much.

The multiple shooting formulation has reportedly provided improvements in the parameter
estimation of ordinary differential equations (Bock, 1983; Baake et al., 1992; Timmer et al., 2000; Horbelt
et al., 2001; Peifer and Timmer, 2007; Sarode et al., 2015), in the solution of optimal control (Bock and Plitt,
1984; Carraro et al., 2014; Geisert and Mansard, 2016) and two-point boundary value problems (Osborne,
1969). In a system identification setting, multiple shooting has been used for estimating polynomial
nonlinear space-state models (Van Mulders et al., 2010) and output error models (Ribeiro and Aguirre,
2017) in settings where conventional methods fail to provide good solutions. And, here, we extend the
class of system identification problems for which multiple shooting can be applied to the entire class of
prediction error methods. In addition, theoretical arguments are put forward to help understand why and
when the proposed method is useful.

An early version of the results from this chapter was presented at the 2017 IFAC World Congress
and appear in the proceedings:

Shooting Methods for Parameter Estimation of Output Error Models, Antonio H.
Ribeiro, L.A. Aguirre. Proocedings of the IFAC World Congress, 2017. IFAC-PapersOnLine v.
50 (1), pp. 13998-14003. doi: 10.1016/j.ifacol.2017.08.2421

A more mature version, much closer to what we will be presented in this Chapter, is now
provisionally accepted for publication in the journal Automatica:

On the Smoothness of Nonlinear System Identification, Antônio H. Ribeiro, Koen Tiels,
Jack Umenberger, Thomas B. Schön, Luis A. Aguirre. Provisionally accepted for publication
in Automatica, 2020.

This more mature version was also presented as a poster at the European Research Network on System
Identification, ERNSI (2019).

Section 5.1 gives some notes about the notation and setup used in this chapter. Section 5.2 provides
results about the objective function’s Lipschitzness and β-smoothness for problems with a recurrent
prediction model. Section 5.3 presents a multiple shooting formulation for prediction error methods and
analyzes its objective function properties. Section 5.4 describes a multiple shooting implementation and
Section 5.5 gives numerical examples. Final comments are provided in Section 5.6.

5.1 Notation and setup

We use the exactly same notation and setup from Chapter 3. Hence, we consider a training
dataset ZN = {(u[k],y[k]), k = 1, 2, · · · , N} containing N measured inputs and outputs of a dynamical
system. We define the cost function based on the distance between the predicted and measured values:

V = 1
N

N∑
k=1
‖y[k]− ŷ[k]‖2. (5.1)

Chapter 5. On the smoothness of nonlinear system identification 86

And we use the same general nonlinear space state representation:

x[k] = h(x[k − 1], z[k];θ); (5.2a)

ŷ[k] = g(x[k], z[k];θ), (5.2b)

where x[k] denotes the internal state vector of this model at instant k. As mentioned in Section 3.2.5 this
representation is general enought to encompass linear and nonlinear ARX, output error and ARMAX
models.

5.2 Smoothness of prediction error methods

The theorem below relates the Lipschitz constant of V , and its gradient (i.e. β-smoothness), to
the simulation length N . The Lipschitz constant of the cost function and the β-smoothness both play a
crucial role in optimization (Nesterov, 1998). Lower values imply that local (Taylor) expansions of the
cost function are more predictive of the cost function, and that optimization algorithms can still converge
while taking larger steps. It also gives an upper bound on how distinct in performance two close local
minima may be.

The first part of the theorem below can indeed be seen as a formalization of the exploding
gradient problem, often studied in the context of neural networks (Pascanu et al., 2013). The second part
gives information about the explosion of second order derivatives and curvature and, to the best of our
knowledge, is novel. As a result of our analysis we have that not only walls (resulting from large first
order derivatives) might be formed in the non-contractive regions of the parameter space, but also regions
with exploding curvature with multiple close local minima (cf. Figure 5.3(a))

Theorem 5.1. Let h(x, z;θ) and g(x, z;θ) in (5.2) be Lipschitz in (x,θ) with constants Lh and Lg on a
compact and convex set Ω = (Ωx,Ωz,Ωθ). With {z[k]}Nk=1 ⊆ Ωz and (Ωx,Ωθ) ⊆ RNx ×RNθ . If there exist
at least one choice of (x0,θ) for which there is an invariant set contained in Ω, then, for trajectories and
parameters confined within Ω:

1. The cost function V defined in (5.1) is Lipschitz with constant:1

LV =

O(L2N

h) if Lh > 1,

O(N) if Lh = 1,

O(1) if Lh < 1.

(5.3)

2. If the Jacobian matrices of h and g are also Lipschitz with respect to (x,θ) on Ω, then the gradient
of the cost function ∇V is also Lipschitz with constant:

L′V =

O(L3N

h) if Lh > 1,

O
(
N3) if Lh = 1,

O (1) if Lh < 1.

(5.4)

Proof. See Appendix B.

For contractive models2, under certain regular conditions, we have Lh < 1 and, accordingly to the
above theorem, both the Lipschitz constant and the β-smoothness of the cost function can be bounded by
1 Where O denotes the big O notation. It should be read as: L(N) = O(g(N)) if and only if there exists positive integers

M and N0 such that |L(N)| ≤ Mg(N) for all N ≥ N0.
2 We say a dynamical system x[k + 1] = h(x[k]) is contractive if, for all x and w, it satisfies ‖h(x)− h(w)‖ < L‖x−w‖,

for L < 1.

Chapter 5. On the smoothness of nonlinear system identification 87

a constant that, asymptotically, does not depend on the simulation length. All contractive systems have a
unique fixed point inside the contractive region, and all trajectories converge to such a fixed point (Rudin,
1964, Theorem 9.23). Systems with richer nonlinear dynamic behaviours, such as limit cycles and chaotic
attractors, and also unstable systems, are non-contractive and will always have Lh ≥ 1. The Lipschitz
constants and β-smoothness for these systems may, according to Theorem 5.1, blow up exponentially (or
polynomially for some limit cases) with the maximum simulation length.

In a less formal way, for models that have infinitely long dependencies (i.e. are non-contractive)
the distance between trajectories that are close in the parameter space might become progressively larger
along the simulation length because errors will accumulate. This might yield very intricate objective
functions in some parts of the parameter space making the optimization problem either very dependent
on the initial point or very hard to optimize using nonlinear programming methods.

For example, consider the estimation of the linear system y[k] = θy[k − 1]. For θ > 1 the system
is unstable and the distance between trajectories grows exponentially with N . For two close points θ1

and θ2 = θ1 + ε and the same initial condition, the trajectory y1[k] = θ1y1[k − 1] will diverge from the
trajectory y2[k] = θ2y2[k − 1] by a factor θN1 − (θ1 + ε)N = O(εθN−1

1).

5.3 Multiple shooting

The theoretical results from the previous section suggest that long simulation lengths might yield
regions of the parameter space where the cost function is intricate and hard for the optimization algorithm
to navigate in. In this section, we propose the application, in the context of prediction error methods, of a
technique called multiple shooting for which the maximum simulation length is a design parameter. This
enables solving problems that would be impossible or very hard to solve in the setup of Section 5.1. This
conventional setup for which a singla set of initial conditions is used will be named single shooting from
now on.

5.3.1 Method formulation

For the multiple shooting formulation, rather than simulating the prediction model (3.13)
through the entire dataset from a single initial condition vector x0, the data is split into M inter-
vals {[mi + 1,mi+1] | i = 1, · · · ,M}, 0 = m1 < m2 < · · · < mM < mM+1 = N , each one with its own
set of initial conditions xi0 ∈ RNx . The i-th vector of initial conditions xi0 is used in the computation of
the prediction ŷi[k] in the interval mi + 1 ≤ k ≤ mi+1:

xi[k] = h(xi[k − 1], z[k];θ), for xi[mi] = xi0,

ŷi[k] = g(xi[k], z[k];θ). (5.5)

Since the length of the simulation is limited to the smaller interval [mi + 1, mi+1], the trajectory is less
likely to strongly diverge and this typically helps the optimization procedure by making the objective
function smoother.

Let, ∆ mi = mi+1 − mi, we define:

Vi = 1
∆ mi

mi+1∑
k= mi+1

‖y[k]− ŷi[k]‖2, | i = 1, · · · ,M, (5.6)

to be the cost function associated with the i-th interval. Where the prediction ŷi[k] depends upon θ and

Chapter 5. On the smoothness of nonlinear system identification 88

x0

x1
0

x2
0

x3
0

k

x
[k
]

(a)

x0

x1
0

x2
0

x3
0

k

(b)

x1
0

x2
0

x3
0

k

(c)

Figure 5.2 – (Multiple shooting) Comparison between single shooting and multiple shooting in a
unidimensional example (Nx = 1). In black we present the simulation of the dynamic system
through the entire window length using the single initial condition x0 (represented by). The
simulated values are represented by . Dividing the window length into three sub-intervals
and simulating the system in each of these, for initial conditions x1

0, , x2
0, , and x3

0, ,
results in the three different simulations represented by , and , respectively. In (a), the
end of one simulation does not coincide with the beginning of the next one (xi−1[mi] 6= xi0).
In (b), we show what happens as ‖xi−1[mi] − xi0‖ → 0. And, in (c), we show that, when
xi−1[mi] = xi0, the concatenation of these short simulations is equivalent to a single one
carried out over the entire window length.

xi0, according to (3.13). The multiple shooting formulation has as objective function:

VM =
M∑
i=1

∆ mi
N Vi. (5.7)

This objective function includes states x1
0, · · · ,xM0 as free variables in the optimization. Hence, rather

than reinforcing the cohesion of the states x[k] by defining them through a recurrence relation that casts
a dependency of x[k] all the way back to the initial condition x0, as in the single shooting formulation,
the cohesion between subsequent states is achieved through optimization constraints, resulting in the
following problem:

min
θ,x1

0,··· ,xM0
VM , (5.8)

subject to: xi−1[mi] = xi0,

for i = 2, 3, · · · ,M.

The next theorem gives the equivalence between (3.14) and (5.7). The theorem and its corollary are a
formalization of the intuition provided in Fig. 5.2 and they give further insight into how the constraints in
the multiple shooting formulation are used to imitate a single simulation throughout the entire dataset.

Theorem 5.2. If xi−1[mi] = xi0, for i = 2, 3, · · · ,M and x1
0 = x0, then V = VM .

Proof. Let us call x[k], ŷ[k] and xi[k], ŷi[k] the states and predictions, respectively, in the single shooting
simulation and in the i-th multiple shooting interval. For a fixed i, if x[mi] = xi0 then x[k] = xi[k] for all
k ∈ [mi + 1, mi+1]. Hence, inside this same interval ŷ[k] = ŷi[k]. Applying this for every i it follows from
the respective definitions that: V =

∑M
i=1

∆mi
N Vi = VM .

Chapter 5. On the smoothness of nonlinear system identification 89

Corollary 5.1. The pair (θ∗,x∗0) is a global solution of (3.14) if and only if there exist (x2
0, · · · ,xM0)

such that (θ∗,x∗0,x2
0, · · · ,xM0) is a global solution of the optimization problem (5.8).

The cost function that arises in the multiple shooting formulation has some nice properties that
will be investigated in the next section. Multiple shooting has some other advantages that will not be
the focus of this work: namely, it is more amenable to parallelization, since each cost function Vi and the
respective derivatives can be computed independently and, possibly, in parallel. Also, longer simulations
usually yield larger numerical error due to finite precision errors that accumulate along the simulation, so
that having shorter simulations helps attenuating the problem.

Finally, multiple shooting can be understood as a generalization of the single shooting case. That
is because, if M = 1 and ∆ m1 = N , multiple and single shooting result in the same optimization problem.

5.3.2 Properties of the objective function

The next theorem follows from basic inequality manipulation and relates the Lipschitzness and
β-smoothness of the cost function VM with that of its components Vi.

Theorem 5.3. Define VM as in (5.7), if each component Vi is Lipschitz continuous with constant LVi
then VM is also Lipschitz with constant equal to or smaller than LVM = max(LV1 , · · · , LVM). Additionally,
if the gradient of each component ∇Vi is Lipschitz continuous with constant L′Vi then ∇VM is also
Lipschitz with constant equal to or smaller than L′VM = max(L′V1

, · · · , L′VM).

Proof. For θext = (θ,x1
0, · · · ,xM0) and φext = (φ,w1

0, · · · ,wM
0) we have that:

|VM (θext)− VM (φext)| ≤
M∑
i=1

∆ mi
N |Vi(θ,xi0)− Vi(φ,wi

0)| ≤

M∑
i=1

∆ mi
N LVi‖[θ,xi0]T − [φ,wi

0]T ‖ ≤ LVM ‖θext − φext‖,

where LVM = max(LV1 , · · · , LVM). And similarly, L′VM = max(L′V1
, · · · , L′VM), which yields the second

result.

Putting together Theorems 5.1 and 5.3 we have that LVM and L′VM depend asymptotically on
∆mmax = max1≤i≤M ∆mi and not on N . For instance, if Lh > 1:

LVM = O(L2∆mmax
h); L′VM = O(L3∆mmax

h). (5.9)

Since ∆mmax is a design parameter, we can actually have some control over the Lipschitzness and
β-smoothness of the objective function for models where Lh ≥ 1. Hence multiple shooting might help
considerably when estimating parameters of non-contractive models (Lh ≥ 1).

5.3.3 Comparison with other methods

Multiple-shooting is presented here as a possible way of limiting the maximum simulation
length ∆mmax. A method that appears in the system identification literature that also has a similar effect
is the minimization of the multi-step-ahead prediction error (Farina and Piroddi, 2008; Rossiter and
Kouvaritakis, 2001; Farina and Piroddi, 2011; Zhao et al., 2014; Terzi et al., 2018). For those methods, the
simulation is truncated by a fixed number K of steps backwards. That is, given k, we define an auxiliary
variable x̃k[i] and use the state equations: x̃k[i] = h(x̃k[k − 1], z[k];θ) to simulate the evolution of this

Chapter 5. On the smoothness of nonlinear system identification 90

auxiliary state variable for i = k −K, · · · , k, starting from a fixed initial condition x̃k[k −K] = x̃0,k. The
prediction is then computed using ŷ[k] = g(x̃k[k], z[k];θ). The parameters are obtained by minimizing a
cost function similar to (5.1).

The use of multi-step-ahead prediction is equivalent to the original single shooting formulation
only if K = N . Hence, it imposes a trade-off between: i) the benefits of using a recursive model (such
as better properties for non-white process noise) for larger values of K; and, ii) the benefits of having a
smaller simulation length (such as smother cost function for non-contractive models, by Theorem 5.1) for
smaller values of K. Multiple shooting, on the other hand, has an exact equivalence with the original
single shooting problem regardless of the simulation length (see Theorem 5.2 and Corollary 5.1), so both
desirable characteristics are obtained at once.

The computational cost for computing V and its derivatives is K times greater for multi-step-
ahead than for the multiple shooting method, because of the need to propagate the auxiliary variables x̃k.
On the other hand, multi-step-ahead prediction yields an unconstrained problem, rather than a constrained
one, for which more efficient solvers might be available. Also, it does not include initial state variables
in the optimization problem, what results in a lower dimensional problem. While the larger number of
parameters in the multiple-shooting does not increase the computational cost so much, because of the
underlying sparse structure of the problem, it does require a careful implementation with smart use of
those properties.

The limitations of such methods in the fully nonlinear setting presented in this work might be
avoided in some special cases. Currently, to the best of our knowledge, multi-step-ahead prediction has
been studied primarily in a linear model setting (Farina and Piroddi, 2008; Rossiter and Kouvaritakis,
2001; Farina and Piroddi, 2011; Zhao et al., 2014; Terzi et al., 2018), for which these methods might result
in convex optimization problems. They are most popular for system identification in model predictive
control problems, for which the multi-step-ahead prediction usually fits well into the moving horizon
framework and allows for more efficient implementations (Rossiter and Kouvaritakis, 2001; Zhao et al.,
2014; Terzi et al., 2018).

5.4 Implementation

The equality constraint problem (5.7), which arises from the multiple shooting formulation, is
solved using an implementation of the sequential quadratic programming solver originally described
in (Lalee et al., 1998) and available in the SciPy library (Virtanen et al., 2020). The method is described
in Appendix A.3 At each iteration of this algorithm, the following values are required i) The cost
function VM ; ii) its gradient ∇VM ; iii) the constraints; iv) the Jacobian matrix of the constraints (which
can be represented using a sparse representation); and, v) for any given vector p, the product of the
Lagrangian4 Hessian and the vector p (the full Lagrangian Hessian matrix does not need to be computed).
The following sequence provides a way of computing all derivatives required by the optimizer.

3 SciPy is a open source scientific library written in Python. The optimization method used might be called as
scipy.optimize.minimize(..., method=‘trust-constr’) and is available since Scipy 1.1. It was implemented as part
of my Google Summer of Code project.

4 The Lagrangian is given by: L(φ,λ) = V (φ) + λT c(φ).

Chapter 5. On the smoothness of nonlinear system identification 91

Algorithm 5.1 (Derivatives). For a given parameter θ and set of initial conditions:

1. For i = 1, · · · ,M , do:

a) For k = mi + 1, · · · ,mi+1:

i. Compute xi[k] and ŷi[k] with (3.13);
ii. Compute Ak, Bk, Ck and Fk (as defined in Section 3.2.11.1);
iii. Compute Di[k] and J i[k] with the sensitivity equations;

b) Compute Vi using Eq. (5.6);

c) Compute ∇Vi using a formula equivalent to (B.2);

d) Approximate the product of the Hessian with a given vector, ∇2Vip, using the first terms from
a expression equivalent to (3.24).

2. Compute VM with (5.7);

3. Compute ∇VM =
∑M
i=1

∆mi
N ∇Vi;

4. Compute the value of the constraint from the values of xi[mi+1], i = 1, · · · ,M ;

5. Compute the Jacobian matrix of the constraints from J i[mi+1], i = 1, · · · ,M ;

6. Compute ∇2VMp =
∑M
i=1

∆mi
N ∇2Vip;

7. Compute the product of the Hessian λT c(φ) with a vector p using 2-point finite differences;

8. Compute the product of the Lagrangian Hessian and a vector ∇2L(φ,λ)p, summing the Hessians
computed in steps 6 and 7.

Some approximations were used for computing the second derivatives: 1) for computing the
Hessian of the objective function, the standard least-squares approximation for the Hessian is used; and,
2) for computing the Hessian of the constraint we use finite-difference approximation. The use of finite
differences here comes inexpensively because we only need to evaluate the Hessian times a vector, and not
the full matrix. Hence, it can be done at the cost of an extra Jacobian matrix evaluation.

Notice that step (1) from the above algorithm can be parallelized, with different processes (or
threads) performing the computation for different values of i.

5.5 Numerical examples

In this section, we provide numerical examples to illustrate the ideas from the previous sections.
The focus here is to study both the cost function of the identification problem and the behaviour of the op-
timization solver for simple examples through the lens of the theoretical results in Section 5.2 and, also, to
illustrate how multiple-shooting might help mitigate some of the discussed problems. The code for reproduc-
ing the examples is available in the GitHub repository: github.com/antonior92/MultipleShootingPEM.jl.

https://github.com/antonior92/MultipleShootingPEM.jl

Chapter 5. On the smoothness of nonlinear system identification 92

2 2.5 3 3.5 4
0

5

10

15

20

V

(a) ∆mmax = N (Single Shooting)

2 2.5 3 3.5 4
0

3

6

9

12

(b) ∆mmax = 10

2 2.5 3 3.5 4
0

3

6

9

12

θ

V

(c) ∆mmax = 5

2 2.5 3 3.5 4
0

3

6

9

12

θ

(d) ∆mmax = 2

Figure 5.3 – (Logistic map parameter estimation) Cost function of the optimization problem for xi0
fixed in its true values (in black) and for disturbed versions of the these initial conditions (in
blue). We present the result for four values of ∆mmax, and omit disturbed initial condition
objective functions for the single shooting case (∆mmax = N) to make it easier to visualize.
The green circles, , indicate the pair (θ, V) corresponding to a solution found by the
solver. There are 15 circles in each figure (some of them overlapping), the circles correspond
to solutions for different initial guesses. As initial guesses we picked values of θ uniformly
spaced between 3.2 and 3.9, with xi0 picked from randomly disturbed versions of the true
initial conditions (which are known because we generated the data ourselves). The true value
θ = 3.78 is indicated by the dotted red vertical line.

5.5.1 Example 1: output error model for chaotic system

This example illustrates how multiple shooting makes prediction error methods more robust
against the choice of initial conditions for the optimization. A dataset with N = 200 samples is generated
using the logistic map (May, 1976):

y[k] = θy[k − 1](1− y[k − 1]), (5.10)

with θ = 3.78. From the generated dataset we try to estimate an output error model with the same
structure.

Figure 5.3 (a) illustrates the objective function for the single shooting case. The model that is
being fitted to the data presents a chaotic behavior for θ ∈ [3.57, 4], which justifies the very intricate
objective function in this region. For chaotic systems, small variations in the parameters may cause large
variations in the system trajectory and, hence, abrupt changes in the free-run simulation error. This is
the reason why the estimation of an output error model has many local solutions in this problem.

The solutions found by the solver, for different initial guesses, are also displayed in Figure 5.3 (a).
Notice that the solver fails to find the true solution because it always gets trapped at a local stationary
point near its initial guess. Even in the noise-free situation we are considering, the identification procedure

Chapter 5. On the smoothness of nonlinear system identification 93

is made very challenging by the chaotic nature of the system, that, for a long enough simulation, yields
large trajectory differences even for small parameter variations.

Multiple shooting makes the problem easier by limiting the total simulation length. Figures 5.3
(b), (c) and (d) display the objective function and the solutions found by the solver starting from different
initial guesses. Each figure displays the result for a different choice of ∆mmax: For (b) the maximum
simulation length is ∆mmax = 10; for (c), ∆mmax = 5; and, for (d), ∆mmax = 2.

The identification procedure becomes easier as ∆mmax is made smaller. For Figures (b) and (c)
the solver converges to the true parameter for some initial guesses but, also, to undesirable local solutions
for other initializations. For Figure (d) the solver converges to the true solution regardless of the initial
guess.

For the multiple shooting case, besides θ, the initial conditions are also optimization parameters.
To help with the visualization of this multidimensional problem, Figures 5.3 (b), (c) and (d) display
the main curve corresponding to the objective function for the true initial conditions and faded lines
corresponding to the objective function for perturbed initial conditions. Another consequence of the
problem having more parameters than displayed in the figure is that the cost function found by the solver
does not need to lie on any of the objective function curves displayed in the figure, since it may have a
different set of initial conditions xi0.

It is important to highlight that the mechanism used here is not to take the system outside of the
chaotic regime, but rather avoid simulating the system for too long. By doing that, we avoid the major
problem that arises in the identification of chaotic systems, i.e. the high sensitivity to parameters and
initial conditions. This results in a better behaved objective functions (cf. Figure 5.3). The constrains allow
the equivalence with the original prediction error problem (according to Theorem 5.2 and Corollary 5.1).

Table 5.1 gives the number of function evaluations and the running time for the four situations
displayed in Figure 5.3. The convergence happens within just a few iterations for ∆mmax = N (single
shooting) because any initial point is probably very close to some optimal local solution. As we reduce
∆mmax the objective function becomes less intricate and this is reflected in the convergence of the solver.
For ∆mmax = 10 the solver takes much longer to converge. We believe this happens because the local
solution is not so close in the parameter space to the initial guess anymore. As we further decrease ∆mmax,
however, the convergence becomes faster, because it is dealing with, what we believe to be, a smoother
problem that can be more accurately approximated by low order approximations.

Table 5.1 – (Optimization performance in multiple shooting) Number of function evaluations and
total running time to convergence for different values of ∆mmax. We give, the minimum,
maximum and median among 15 runs for the situations presented in Figure 5.3. (*)The
number of iterations is limited to 1000 and the solver is interrupted when this number is
reached.

function evaluations run time (s)
∆mmax min median max min median max
N 1 15 23 0.01 0.2 1.1
10 43 1000* 1000* 0.7 24.7 27.3
5 29 115 645 1.0 2.9 26.9
2 21 50 65 1.7 2.9 3.8

——————————————————-

Chapter 5. On the smoothness of nonlinear system identification 94

5.5.2 Example 2: neural network for modeling pilot plant

This example uses data from the level process station described in Example 1 from (Ribeiro and
Aguirre, 2018). As in the original paper, we use a neural network to model the water column height as
a function of the voltage applied to a control valve that modulates the water flow. We compare three
different training methods: i) minimizing the one-step-ahead prediction error (NN ARX) ii) minimizing the
free-run simulation error using single shooting method (NN OE - SS); and, iii) minimizing the free-run
simulation error using multiple shooting method (NN OE - MS).

The neural network (NN) training depends on the weight initialization, hence the performance of
the neural network can be regarded as a random variable and is displayed in Figure 5.4, which compares
the empirical cumulative distribution of the mean square error (MSE) over the validation dataset for
the three methods. A linear ARX model (ny = 1 and nu = 1) was trained and tested under the same
conditions to serve as the baseline. Methods (i) and (ii) and the linear ARX baseline were described
in (Ribeiro and Aguirre, 2018). Method (iii) is introduced here.

The cumulative distribution function gives, for each x-axis value, the probability of the method
to yield a validation MSE smaller or equal to this value. It was estimated from 100 realizations of the
neural network training procedure. Figure 5.4 shows that for more than 90% of the realizations, estimating
the parameters by minimizing the free-run simulation (NN OE) offers significant advantages over the
minimization of the one-step-ahead error (NN ARX). When using a standard single shooting formulation,
however, it also makes the parameter estimation procedure more sensitive to the initial conditions, with the
algorithm yielding some really bad results for some initial choices (Ribeiro and Aguirre, 2018). This results
in a long-tailed distribution for the MSE (Fig. 5.4). More precisely, in 10 out of 100 realizations the NN

OE - SS model yields a performance that is inferior to the linear ARX baseline, some of the realizations
worse than the linear baseline by a factor of 100. The performance of the NN OE - SS and NN OE - MS

is very similar for 90% of the realizations, the tail of the distribution, however, is very different, with
the multiple shooting procedure rarely producing very bad results. In order to highlight the differences,
results where NN OE - SS and NN OE - MS are worse than the baseline are presented, respectively, as
blue and red circles in Fig. 5.4.

This example illustrates how the use of multiple shooting alleviates the problem of high sensitivity
to initial conditions, making it possible to estimate output error models with extra robustness against
variations of the initial conditions and lower probability of getting trapped at local minima with very bad
performance.

This example also shows the limitations of the multiple shooting formulation. The training time
for NN OE - MS model is 282 seconds, for NN OE - SS model is 3.9 seconds, and for NN ARX model is 3.3
seconds. This means that the single shooting parameter estimation could be repeated, roughly, 70 times
for each multiple shooting run. Hence solving the single shooting problem several times and choosing the
best result would also avoid very bad solutions and could, still, be computationally less expensive than
solving the multiple shooting problem. The longer training time is due to two factors: i) per iteration
the multiple shooting approach takes, roughly, 3.5 times more than the single shooting approach; and, ii)
it takes, approximately, 20 times more iterations to converge. Both are consequences of the fact that a
higher dimensional constrained optimization problem is being solved.

Chapter 5. On the smoothness of nonlinear system identification 95

102.5 103.0 103.5 104.0 104.5 105.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

MSE

NN ARX

NN OE - SS

NN OE - MS

Linear ARX

Figure 5.4 – (Neural network multiple shooting estimation) Empirical cumulative distribution of
the free-run simulation MSE over the validation dataset. The results obtained in (Ribeiro and
Aguirre, 2018) for an ARX neural network (NN ARX) and an (single shooting) output error
neural network (NN OE - SS) are displayed together with the result obtained estimating
the parameters using multiple shooting (NN OE - MS). A Linear ARX model is considered
as a baseline and is displayed by the dashed line. The multiple shooting estimation uses
∆mmax = 3 and the training is restricted to 2000 iterations of the optimization algorithm
or until either the gradient or the step size drops below 10−12. The other models were
estimated exactly as in (Ribeiro and Aguirre, 2018). All the neural network models have
10 nodes in the hidden layer, ny = nu = 1 and were trained with the same training dataset.
Each curve is the result of 100 realizations and, for each realization, the neural network
initial weights w(n)

i,j are drawn from a normal distribution with zero-mean and standard
deviation σ = (Ns(n−1))−0.5 and the bias terms γ(n)

i are initialized with zeros (LeCun et al.,
1998). Realizations of NN OE - SS and NN OE - MS that perform worse than the baseline
are indicated respectively as blue, , and red circles, . Confidence intervals (95%) are
displayed as shaded regions around the estimated cumulative distribution, these have been
computed using the Dvoretzky-Kiefer-Wolfowitz inequality (Dvoretzky et al., 1956).

5.5.3 Example 3: pendulum and inverted pendulum

Consider the following discrete-time nonlinear system:{
x1[k + 1] = x1[k] + δx2[k];
x2[k + 1] = −δ gl sin x1[k] + (1− δ kam)x2[k] + δ 1

mu[k];
y[k] = x1[k], (5.11)

which corresponds to a pendulum model, discretized using the Euler approximation ẋ(t) ≈ x((k+1)δ)−x(kδ)
δ .

Where g is the gravity acceleration, m is the mass connected to the extremity of the pendulum, l is the
length of the (massless) rod connecting the mass to the pivot point, and ka is the linear friction constant.
It has two states: the angle of the mass (x1) and the angular velocity (x2). The input u[k] is the force
applied to the mass.

This system has multiple equilibrium points, namely, (x1, x2) = (±πi, 0) for i = 0, 1, 2, 3, · · · . The
equilibrium points at (x1, x2) = (±2πi, 0) are stable and the equilibrium points at (x1, x2) = (π ± 2πi, 0)
are unstable. For this system, with g = 9.8, L = 0.3, m = 3, ka = 2 and δ = 0.01, we define three different
datasets: (a) A dataset for which small inputs are applied to the system, that stays under the influence of
the stable point (x1, x2) = (0, 0) and y[k] stays, approximately, inside the range

[
−π2 ,+π

2
]
; (b) A dataset

for which the system is maintained close to the unstable point (x1, x2) = (π, 0) by a linear controller ;
and, (c) A dataset for which the input is large enough to drive the pendulum to full rotations around its
center. The output corresponding to those three situations are displayed in Figure 5.5.

Fixing m = 3 and δ = 0.01 parameters g
l and ka of an output error model with the structure

Chapter 5. On the smoothness of nonlinear system identification 96

0 250 500 750 1000

−0.4

−0.2

0.0

0.2

0.4

k

y/π

(a)

0 250 500 750 1000

0.8

0.9

1.0

1.1

1.2

1.3

k

(b)

0 250 500 750 1000

−6

−4

−2

0

k

(c)

Figure 5.5 – (Pendulum and inverted pendulum position data) Display the output signal y[k]
for the three different datasets used for estimating the parameters. The dataset size is
N = 1024 samples. (a) The input applied in this case is a zero-mean Gaussian random
input with standard deviation σu = 10, each random value being hold for 20 samples.
The input in this case is unable to drive the system away from the influence of the stable
fixed point (0, 0). (b) The input u[k] in this case is obtained by the control law: u[k] =
40δe[k − 1]− 78.8δe[k − 2] + 38.808δe[k − 3] + 1.02u[k − 1]− 0.02u[k − 2], where the error
is the difference between the reference and the output: e[k] = r[k]− y[k]. The reference is
r[k] = π+ ∆r[k] where ∆r[k] is a zero-mean Gaussian random input with standard deviation
σr = 0.2, each random value being held for 20 samples; and, (c) Same thing as (a) but with
the larger standard deviation σu = 50, which is able to drive the pendulum to complete full
rotations. For (a) and (c) zero-mean Gaussian white noise with standard deviation σr = 0.03
was added to the output.

presented in (5.11) were estimated from the data. A visualization of the cost function is presented in
Figure 5.6 together with numerical solutions found by means of the single shooting and multiple shooting
formulation starting from different initial conditions.

For dataset (a), the single shooting formulation is able to recover the true parameters from data
for most of the initial conditions. Some exceptions occur when initialized far away from the correct initial
conditions. For datasets (b) and (c), for which the system needs, respectively, to operate close to the
unstable dynamics or to account for the existence of multiple fixed points, the cost function is highly
intricate, very non-convex and full of local minima. In this case, the optimization algorithm, even when
initialized close to the local solution, fails to converge to reasonable solutions. This result is consistent
with Theorem 5.1 and how the smoothness of the objective function degenerates (exponentially) on sets
of the parameter space for which the prediction model is non-contractive, such as the trajectories close to
the unstable fixed point of the system (5.11). The use of multiple shooting yields an objective function
that looks similar to a paraboloid in the region of interest for the three cases, which suggests that local
approximations might be valid over a large region. The solutions converge to the true parameter regardless
of the initialization point in this formulation.

In Figure 5.6(a), it is shown that even though the model we are trying to estimate is contractive,
for some initial guesses the optimization algorithm gets stuck in undesirable regions of the parameter space.
Figure 5.6(d) shows how multiple shooting helps the optimization algorithm escaping from these regions.
Nevertheless, we can also notice from this example that the optimization problem is harder when we are
trying to estimate a parameter in a region of the parameter space where the model is non-contractive.
Indeed, in this case the optimization algorithm will necessarily have to navigate in a region where the cost
function might be highly intricate.

Chapter 5. On the smoothness of nonlinear system identification 97

20 30 40 50

2

4

6
k
a

(a)

20 30 40 50

2

4

6

(b)

20 30 40 50

2

4

6

100
101
102
103
104
105
106
107

(c)

20 30 40 50

2

4

6

g/l

k
a

(d)

20 30 40 50

2

4

6

g/l

(e)

20 30 40 50

2

4

6

g/l

10−4

10−3

10−2

10−1

100

101

102

(f)

Figure 5.6 – (Pendulum and inverted pendulum parameter estimation) Contour plot of the cost
function. Figures (a), (b) and (c) correspond to the cost function V from single shooting
simulation for the datasets (a), (b) and (c) generated as described in Fig. 5.5 caption; and, in
(d), (e) and (f) the cost function for the same problems is displayed for the multiple shooting
formulation with ∆mmax = 16. The true parameter is indicated by a red circle, , solutions
found by the solver are indicated by blue circles, . There are 25 blue circles in each figure
(some of them overlapping), each circle corresponds to the solution for a different initial
guess. Some solutions are outside of the displayed region and the corresponding blue dots are
displayed at the edge of the plot. Initial guesses were picked values of θ uniformly spaced
on a grid of points uniformly spaced in the rectangle [20, 50] × [0.5, 6]. It is important to
highlight that the plots show a two dimensional projection of a cost function that is defined
on an extended parameter space that includes the initial conditions xi0, i = 1, · · · ,M as
parameters, which were fixed to the true values when generating the contour plots.

5.5.4 Practical considerations

The main benefits, studied in this work, of using smaller ∆mmax is to have a smoother cost
function and make the algorithm less sensitive to the initialization of the optimization algorithm. In
Example 3, this is accomplished for ∆mmax = 16 (cf. Fig. 5.6). For this example, further reductions on
the maximum simulation length don’t improve these two aforementioned aspects. For other examples
∆mmax = 16 might not be the most appropriate choice. For instance, in Example 1, as the simulation
length suffer consecutive reductions, i.e. ∆mmax = {N, 10, 5, 2}, it yields a smoother cost functions, it
helps the optimization algorithm to avoid local minimums (see Fig. 5.3) and it also improve the algorithm
convergence (cf. Table 5.1). Reducing the maximum simulation length, however, also has the undesirable
effect of increasing the dimensionality of the problem (both in number of variables and in number of
constraints). Hence, ∆mmax is a design parameter that encompass the trade-off between smoothness and
dimension of the optimization problem. Reducing the simulation length might also increase the number of
independent operations that might be run in parallel, although this effect is not the focus of this work.

Chapter 5. On the smoothness of nonlinear system identification 98

The choice of initial state conditions xi0 follows very naturally for nonlinear ARX, ARMAX or
output error models for which the states are, maybe with some noise contamination, directly measured.
Hence, the choice of initial guess for the states in Example 1 and 2 follow the guidelines described in
Section 3.2.6. Example 3 is one example that has unmeasured state variables. However, the unmeasured
state variable x2 has the interpretation of the derivative of x1, so we have used a finite difference
approximation of the derivative of x1, which was available to us. While the high-pass behaviour of the
derivative amplifies the noise, this choice was still better than a completely arbitrary one.

5.6 Conclusion

The relevance of this work lies in the very general setting for which the proposed methods and
results hold. The major technical contribution is to show that for dynamic prediction models that are
non-contractive (i.e. do not converge asymptotically to a single stable point) in the region of interest, the
upper bound for the Lipschitz constant and the β-smoothness blows up exponentially with the simulation
length, and this can make the optimization problem very hard to solve. This was illustrated with numerical
examples with systems that are not contractive due to the presence of chaotic regions and non-stable
equilibrium points. Because of these regimes, the objective function becomes very intricate in some regions
of the parameter space and the optimization algorithm fails to find a good solution. Even for problems
that are contractive in the region of interest multiple shooting might help preventing the solver from
getting stuck in undesirable regions of the parameter space (cf. Section 5.5.3).

Multiple shooting makes the simulation length a design parameter and hence allows one to
actually solve optimization problems that would be unfeasible in a single shooting setting. The price
paid compared to single shooting methods is that a nonlinear constrained optimization problem must
be solved instead of an unconstrained one. It also makes it harder to generalize to situations other than
batch training, such as online training.

One advantage of multiple shooting, that is not thoroughly explored in this work, is the possibility
of parallelization that comes from creating independent simulation executions. The recent advances of
high quality automatic differentiation libraries with easily available interfaces to graphical processing units
(GPUs), i.e. PyTorch (Paszke et al., 2017) and Tensorflow (Abadi et al., 2015), might be an interesting path
for future implementations that can fully explore this possibility using all the parallelization capabilities
offered by GPUs.

We believe understanding the estimation of parameters for problems with recurrent structures in a
fully nonlinear and non-convex setting is both very challenging and highly relevant for system identification
and machine learning fields and that this work is a step in the direction of a better understanding of this
type of problems.

99

6 Attractor and smoothness in the analysis of recurrent
neural networks training

The exploding and vanishing gradient problem has been the major conceptual principle to drive
the development and to motivate changes in the recurrent neural network (RNN) architectures during the
last decade. In this chapter, we argue that this principle, while powerful, might need some refinement to
explain recent developments. We refine the concept of exploding gradients by reformulating the problem in
terms of the cost function’s smoothness, which gives insight into higher-order derivatives and the existence
of regions with many close local minima. On the other hand, we clarify the distinction between vanishing
gradients and the need for the RNN to learn attractors to fully use its expressive power. Through the lens
of these refinements, we shed new light onto recent developments in the RNN field, namely stable RNN
and unitary (or orthogonal) RNNs.

The content of this chapter is featured in the following publication:

Beyond exploding and vanishing gradients: analysing RNN training using attrac-
tors and smoothness, Antônio H. Ribeiro, Koen Tiels, Luis A. Aguirre and Thomas B. Schön.
To appear in the Proceedings of the 23rd International Conference on Artificial Intelligence
and Statistics (AISTATS), 2020.

The outline of this chapter is the following: Section 6.1 motivates and introduces the importance
of this work. Section 6.2 gives the setup and notation used along the chapter. Section 6.3 study the
mechanism used to store information in a recurrent neural network. Section 6.4 revisit some of the results
from Chapter 5 in the context of RNNs. Section 6.5 study and visualize attractors during training, for the
LSTMs, stable and unitary RNNs. Section 6.6 draw some connections with previous work. Section 6.7
give final comments.

6.1 Introduction

Training recurrent neural networks can be challenging. The problem in training these recurrent
models is usually stated in terms of the so-called exploding and vanishing gradient problem (Hochreiter and
Schmidhuber, 1997; Pascanu et al., 2013; Bengio et al., 1994). This problem is easy to understand and has
motivated many techniques, including the use of gating mechanisms (Hochreiter and Schmidhuber, 1997;
Cho et al., 2014a), gradient clipping (Pascanu et al., 2013), non-saturating activation functions (Chandar
et al., 2019) and the manipulation of the propagation path of gradients (Kanuparthi et al., 2019).

A recently proposed family of methods based on the same principle are the so-called unitary and
orthogonal RNNs (Mhammedi et al., 2017; Vorontsov et al., 2017; Lezcano-Casado and Martínez-Rubio,
2019; Helfrich et al., 2018; Arjovsky et al., 2016; Jing et al., 2017; Maduranga et al., 2019; Wisdom et al.,
2016; Lezcano-Casado, 2019). In these architectures, the eigenvalues of the hidden-to-hidden weight matrix
are fixed to one to simultaneously avoid exploding gradients (that might appear when the eigenvalues
are larger than one) and vanishing gradients (that might appear when they are less than one). Similar,
but less strict constraints were proposed by Zhang et al. (2018); Kerg et al. (2019). A different line of
study goes in the opposite direction and suggests that using RNNs constrained to be stable can provide
as good performance as unconstrained RNNs on many tasks. Miller and Hardt (2018) discuss examples
for which projecting all eigenvalues to values less than one does not affect the performance. In this

Chapter 6. Attractor and smoothness in the analysis of recurrent neural networks training 100

0.5 1 1.5 2

0

0.2

0.4

0.6

s

F
ir
st

ou
tp
u
t

(a)

0.5 1 1.5 2

0

0.05

0.1

s

M
S
E

L
os
s

(b)

Figure 6.1 – (Chaotic LSTM) Display: a) Bifurcation diagram; and b) cost function (mean-square error)
for LSTM models with parameter vectors θ(s) = sθtrue.

case, RNNs can be truncated with arbitrarily small error and hence could be replaced by feedforward
structures. Indeed, feedforward structures, such as transformer-based architectures (Vaswani et al., 2017)
and convolutional networks (Bai et al., 2018b), have recently matched or outperformed RNNs in many
tasks. These feedforward architectures yield impressive results in language and music modeling (Bai
et al., 2018b; van den Oord et al., 2016; Dauphin et al., 2017; Radford et al., 2018, 2019), text-to-speech
conversion (van den Oord et al., 2016), machine translation (Kalchbrenner et al., 2016; Gehring et al.,
2017) and other sequential learning tasks for which RNNs have been the default choice until recently (Bai
et al., 2018b).

This work proposes to build and improve on the present understanding of recurrent neural
networks. We believe the moment is propitious for such analysis, and it might help to explain this shift of
winning paradigm for sequence modeling and the lack of consensus on how to deal with the eigenvalues.
On the one hand, we complement the vanishing gradient interpretation with an analysis of the attractors
of the RNN for storing long-term information. While the condition for dynamic attractors (other than a
single fixed point) to appear is the same for the gradients to vanish, these two notions are distinct. The
effect of teachers forcing and the differences between training and inference modes are also highlighted.
And the numerical examples explore the training mechanism and the attractors of the stable (Miller and
Hardt, 2018) and orthogonal RNNs (Lezcano-Casado and Martínez-Rubio, 2019). On the other hand, we
study the smoothness of the cost function, which builds on and improves the notion of exploding gradients,
since it also takes into account higher-order derivatives. As a result of our analysis we have that not only
“walls” might be formed in the cost function (as suggested by Pascanu et al. (2013)), but also regions with
very intricate behavior, full of local minima and very hard for the optimization algorithm to navigate on
(cf. Figure 6.1).

6.2 Setup and notation

For a given training sequence ZN = {((ut,yt), t = 1, 2, · · · , N}, be ŷt the model predicted output
at instant t. A cost function quantifying the performance of this model can be defined as:

V = 1
N

N∑
t=1

l(yt, ŷt). (6.1)

If the prediction model is parametrized and ŷt depends on the parameter vector θ, this parameter vector
θ can be estimated (i.e. the neural network is trained) by minimizing V or, in the case of multiple
independent training sequences, minimizing a weighted average of many V s defined as in (6.1). Here, l is
the loss function. Common choices for regression and classification problems are the squared error and
cross entropy loss, respectively.

Here we assume the predicted output ŷt is the output of an RNNs. RNNs are nonlinear discrete-time

Chapter 6. Attractor and smoothness in the analysis of recurrent neural networks training 101

�̂
1

�0

�̂
2

�1

�0 �1

�̂
3

�2

�2

�̂
4

�3

�3

�4

(a) Training

�̂
1

�0

�̂
2

�1

�0

�̂
3

�2

�̂
4

�3
�4

(b) Inference

Figure 6.2 – (Teacher forcing) The figure display the same recurrent neural network in two different
modes. In (a), observed previous values of the output yt are used as input to the model. In
(b), the neural network own outputs are feed back as inputs, instead.

dynamical systems that can be expressed as:

xt+1 = f(xt, zt;θ); (6.2a)

ŷt = g(xt, zt;θ), (6.2b)

with hidden state xt ∈ RNx , predicted output ŷt ∈ RNy , and parameters θ. This formula is sufficiently
general to capture vanilla RNNs, LSTM (Hochreiter and Schmidhuber, 1997), GRU (Cho et al., 2014a),
and stacked layers of these units. Here the input zt to the neural network varies depending on the problem
and usage. And, it might be different during training and inference. During training, in some problems
such as language modeling (Peters et al., 2018), what is used as input to the model are previously observed
outputs, i.e. zt = yt−1, see Figure 6.2(a). For problems where there is a well-defined input to the problem,
this input will be fed to the neural network and zt = ut, see the examples in Section 6.5.1 and 6.5.2. Since
we strive for generality here, we consider that zt = (ut,yt−1). And this technique of using previously
observed outputs during training is sometimes called teacher forcing. The mode that is used during
training, however, does not need to be used during inference. And, after training, instead of the observed
values yt−1, we can use the last predicted value from the neural network. And, redefine zt = (ut−1, ŷt−1).
For instance, in language models, this makes it possible to use the model that was trained to predict only
the next word to generate an entire phrase, see Figure 6.2(b).

Notice that the representation (6.2) is general enough to account for this inference mode that
feeds the output back into the input channel. Let xit+1 = (xt, ŷt) be the new definition of hidden state,
and redefine the transition and output functions as bellow:(

xt+1

ŷt

)
=
(

f(xt+1, (ut, ŷt−1);θ)
g(xt, (ut, ŷt−1);θ)

)
; (6.3a)

ŷt = (0, I)
(

xt+1

ŷt

)
, (6.3b)

where I is the identity matrix. Hence, a different way of understanding teacher forcing is that it introduces
the possibility of a new trasition and output functions f i and gi, defined as above, to be used during
inference.

6.3 Information in a recurrent network

It is common to associate the difficulty of training recurrent neural networks to store information
for long periods with the vanishing gradients problem (Hochreiter and Schmidhuber, 1997; Pascanu
et al., 2013). That is, as the error gradients are backpropagated through the RNN, they might shrink
exponentially to zero, making it harder to learn long dependencies.

Chapter 6. Attractor and smoothness in the analysis of recurrent neural networks training 102

This interpretation has motivated successful strategies for training recurrent neural networks,
such as the LSTM unit (Hochreiter and Schmidhuber, 1997). While useful, this notion alone does not give
the whole picture, and one also needs to consider the presence or absence of dynamic attractors of an
RNN to fully evaluate its capability of storing information.

6.3.1 Entropy of the internal states

We start our analysis by studying the amount of information stored by an RNN and how this
amount of information changes over time. The initial discussion applies both to (f ,g,x) used during
training or to (f i,gi,xi) which is used during inference. We specify the consequences to the different cases
latter on.

Assume that at time t the system state xt is distributed according to pt(xt). The entropy
associated with this probability distribution provides a way of quantifying how much information we
would obtain in measuring the state. For the set Ωx, the entropy Ht at time t can be computed as:

Ht = −
∫

Ωx
pt(xt) log pt(xt) dxt. (6.4)

The next theorem gives a lower bound on the entropy, based on the dimension of xt and on the the
Lipschitz constant of f .

Theorem 6.1. Let f(·,ut;θ) in Eq. (3.13) be a one-to-one continuous differentiable map, and let f(x,u;θ)
be Lipschitz in (x,θ) with constant Lf on a compact and convex set Ω = (Ωx,Ωu,Ωθ). Then the entropy
Ht in Eq. (6.4) with xt ∈ RNx satisfies:

Ht +Nx logLf ≤ Ht+1. (6.5)

Proof. Under the assumption that f(·,ut;θ) is a 1-1 continuous differentiable map (cf. Theorems 3-13
and 3-14 by Spivak (1998)), applying the change of variable xt+1 = f(xt,ut;θ) we get:

Ht = −
∫

f(Ωx,ut;θ)
pt+1(xt+1) log

(
pt+1(xt+1)

∣∣∣∣det ∂xt+1
∂xt

∣∣∣∣)dxt+1

= Ht+1 −
∫

f(Ωx,ut;θ)
pt+1(xt+1) log

(∣∣∣∣det ∂xt+1
∂xt

∣∣∣∣) dxt+1,

where ∂xt+1
∂xt is the Jacobian matrix of f(·,ut;θ). Using Hadamard’s inequality:

log
∣∣∣∣det ∂xt+1

∂xt

∣∣∣∣ ≤ Nx∑
i=1

log ‖vi‖2, (6.6)

where vi is the i-th column of the Jacobian matrix and log ‖vi‖2 ≤ log
∥∥∥∂xt+1

∂xt

∥∥∥
2
≤ logLf . Equation (6.5)

The bounds are illustrated in Figure 6.3, and:

• for a system with Lf < 1, the entropy might decay over time towards zero. The larger Lf is, the
slower the decay of information retention can be.

• for a system with Lf = 1, the entropy can stay constant if the bound in (6.5) is tight. This means
that such a system might retain the information;

Chapter 6. Attractor and smoothness in the analysis of recurrent neural networks training 103

t

Ht

H0

(a) Lf < 1

t

Ht

H0

(b) Lf = 1

t

Ht

H0

(c) Lf > 1

Figure 6.3 – (Information in RNNs) Illustrate the lower bound on the entropy Ht obtained in (6.5).
Starting from H0, the entropy Ht can only take values in the shaded region. The entropy:
a) may decay over time (contractive system); b) may remain constant (e.g. for a periodic
oscillator); and, c) increases when Lf > 1 (e.g. for a chaotic system).

• for a system with Lf > 1, the amount of entropy increases with time. This is the case for chaotic
systems, for instance.

This notion is complementary to the concept of vanishing gradients. On the one hand, Lf < 1 is a
sufficient condition for gradients to vanish, making it harder for the model to escape from the corresponding
regions of the parameter space during training. On the other hand, these are also the regions where the
model may not be able to retain information indefinitely.

6.3.2 Contractive vs non-contractive systems

There is a deep connection between systems for which Lf < 1 and the definition of contractive
systems:

Definition 6.1 (contractive system). A dynamical system (6.8) is said to be contractive in Ωx if it
satisfies

‖f(x, ū;θ)− f(w, ū;θ)‖ < Lū‖x−w‖, (6.7)

for Lū < 1 and for all x and w in Ωx.

All contractive systems have a unique fixed point inside the contractive region Ωx, and all
trajectories converge to such a fixed point (Rudin, 1964, Theorem 9.23). In this case the distribution
pt(xt) will tend towards a discrete distribution with only one point mass at the fixed point, and thus zero
entropy. If the function f is Lipschitz and the system is non-contractive we have Lf ≥ 11. Systems with
richer nonlinear dynamic behaviors, such as multiple fixed points, limit cycles and chaotic attractors, and
also unstable systems, are all non-contractive.

6.3.3 Long-term memory

In what follows, the concept of long-term memory will be closely related to the definition of an
attractor of a dynamical system.

Definition 6.2 (attractor of a dynamical system). Let ut be equal to a constant ū for every t. An
attractor of a dynamical system:

xt+1 = f(xt, ū;θ), (6.8)

is a subset A ⊂ RNx for which:

1. if xt0 ∈ A then xt ∈ A for all t ≥ t0;
1 If ū ∈ Ωu it follows that Lf ≥ Lū, hence if the system is not contractive Lf ≥ Lū ≥ 1.

Chapter 6. Attractor and smoothness in the analysis of recurrent neural networks training 104

2. there exists a neighborhood of A, called the basin of attraction B(A), such that for any open
neighborhood of A, say N , there is a positive integer T ≥ t0 such that if xt0 ∈ B(A) then xt ∈ N
for all real t > T ;

3. there is no proper (non-empty) subset of A having the first two properties.

Property 1 is related to the concept of long-term memory. If at a given time instant t0, xt0 ∈ A,
the system state will still be in A at any point in the future, that is, it will “remember” this set A. Systems
that do not respect this property will just leave (i.e. “forget”) set A for some t > t0.

Property 2 is related to the robustness of long-term memory. If a given state xt belongs to B(A)
then xt → A as t → ∞. If we apply a finite non-zero input sequence u sufficiently small such that the
state remains in B(A), then for f continuous in u the system will converge to A. In order words, the
system will not “forget” A even in the presence of some (sufficiently small) disturbance.

The idea of defining long-term memory as attractors of a dynamical system is not new. Similar
approaches have been pursued in (Bengio et al., 1993, 1994). Examples of attractors of after-training
RNNs are studied by Sussillo and Barak (2013) and by Maheswaranathan et al. (2019), for toy problems
and sentiment analysis, respectively.

In this work, we will build on this idea and show the RNN may go through bifurcations during
training for tasks that require long-term memory and learn attractors to solve the problem. We will also
show how stable RNNs and orthogonal RNNs use different mechanisms. For doing this analysis, we will
use the bifurcation diagram for visualizing the attractors of the RNN. These diagrams show the values
visited in steady-state behavior (when a constant input is applied to the system) as a function of some
bifurcation parameter s. See Figure 6.1(a).

As mentioned before, it is possible to have different state transition and output functions for
training and inference, respectively. See Figure 6.2 and Equation (6.3). Hence, the attractors of a recurrent
model might be different during training and inference. This is the case for the numerical example in
Section 6.5.3, where we include the analysis of the attractor and bifurcation diagram in both scenarios.
Before this analysis, however, we will study the influence of the internal dynamics on the smoothness of
the cost function.

6.4 Smoothness of the cost function

In this section, we extend the concept of exploding gradient with the analysis of the smoothness
of the cost function. We do that by establishing connections between the smoothness of the cost function
and the internal dynamics of the RNN during training. Our analysis is based on the Lipschitz constant of
the cost function and of its gradient (sometimes called β-smoothness). Both constants play a crucial role
in optimization, see (Nesterov, 1998), and can be understood as qualitative measurements of how smooth
the cost function is. Lower values imply that the cost function is less intricate and that optimization
algorithms can still converge while taking larger steps. It also provides an upper bound on how distinct in
performance two close local minima may be.

This smoothness analysis will suggest that higher-order derivatives (which contain information
about the curvature) might also explode in some regions of the parameter space. This indicates that not
only walls are formed, but also entire regions of the parameter space with intricate behavior and full of
undesirable local minima. This goes beyond what many papers suggest about exploding gradients. For

Chapter 6. Attractor and smoothness in the analysis of recurrent neural networks training 105

instance, Pascanu et al. (2013) formulate the hypothesis that when gradients explode, they do so in some
specific direction, creating walls of high curvature. Doya (1993) speculates that bifurcations might cause
the jumps in the cost function.

6.4.1 Example: chaotic LSTM

We consider an LSTM model of dimension 2 without the bias terms. In Figure 6.1(a) we show
the bifurcation diagram and, in Figure 6.1(b), the cost function. These two are given as a function of s:
the weights of the RNN are θ(s) = sθtrue and θtrue is the true data generating weights.

The bifurcation diagram depicts, for each parameter, the steady-state behavior of the system.
It was generated using a simulation of 200 samples for which the first 100 samples were discarded to
remove the transient. In this bifurcation diagram, we can observe a region with rich nonlinear and chaotic
behavior for 0.9 . s . 1.45. This region corresponds to the region where the cost function (Figure 6.1(b))
is intricate and full of local minima. This connection between internal dynamics and smoothness of the
cost function is formalized in the next subsection.

6.4.2 Theoretical results

The theorem that will be presented in this section relates the Lipschitz constant of the cost
function V and of its gradient (i.e. β-smoothness) to the simulation length N and the Lipschitz constant
Lf of the state-transition function f .

In this work, we phrase the exploding gradient problem in terms of the smoothness and Lipschitz
constants. The formulation is quite natural and allows us to include higher-order derivatives in the analysis.

The Lipschitz constant of V and of its gradient provide upper bounds, respectively, on ‖∇V ‖ and
‖∇2V ‖, cf. Khalil (2002, Lemma 3.1). Hence, the first part of the theorem below can indeed be seen as a
formalization of the exploding gradient problem. The second part gives information about the explosion
of second-order derivatives and curvature and, to the best of our knowledge, is novel. For the case Lf < 1,
similar results have been presented by Miller and Hardt (2018), but not for the case that interests us the
most: Lf > 1, for which there might be an explosion in the curvature.

Theorem 6.2 (Lipschitz constants of V and ∇V). Let f(x,u;θ) and g(x,u;θ) in Eq. (6.2) be
Lipschitz in (x,θ) with constants Lf and Lg on a compact and convex set Ω = (Ωx,Ωu,Ωθ). Assume
the loss function is either l(ŷ,y) = ‖y − ŷ‖2 or l(ŷ,y) = −yT log(σ(ŷ)) − (1 − y)T log(1 − σ(ŷ)). Let
{ut}Nk=1 ⊆ Ωu and (Ωx,Ωθ) ⊆ RNθ . If there exists at least one choice of (x0,θ) for which there is an
invariant set contained in Ω, then, for trajectories and parameters confined within Ω:

1. The cost function V defined in (6.1) is Lipschitz with constant:2

LV =

O(L2N

f) if Lf > 1,

O(N) if Lf = 1,

O(1) if Lf < 1.

(6.9)

2. If the Jacobian matrices of f and g are also Lipschitz with respect to (x,θ) on Ω, then the gradient
2 Here O is the big O notation. It should be read as: L(N) = O(g(N)) if and only if there exist positive integers M and

N0 such that |L(N)| ≤ Mg(N) for all N ≥ N0.

Chapter 6. Attractor and smoothness in the analysis of recurrent neural networks training 106

of the cost function ∇V is also Lipschitz with constant:

L′V =

O(L3N

f) if Lf > 1,

O
(
N3) if Lf = 1,

O (1) if Lf < 1.

(6.10)

Proof. In Appendix B.

Observation 6.1 (other loss functions): The above theorem was stated for two different loss functions
(squared error and average cross-entropy preceded by the sigmoid function). The theorem still holds for
any loss function for which the equivalent of Lemma B.2 (see Appendix B) remains true.

It is important to highlight that the proof of this more general result follows a different approach
than a standard proof of the exploding gradient problem (such as in Pascanu et al. (2013)). Rather than
backpropagating the derivatives (which is more natural in the context of neural networks), we use forward
propagation (similarly to what is done by Williams and Zipser (1989)) which allows us to arrive at this
more general result. The result was studied by us in (Ribeiro et al., 2019) in the context of control theory
and is generalized here to RNNs.

If the function f is Lipschitz and the system is non-contractive we have Lf ≥ 13. According to
Theorem 6.2, the Lipschitz constants and β-smoothness for all these systems might blow up exponentially
(or polynomially for some limit cases) with the maximum simulation length. This results in very intricate
cost functions, see Figure 6.1 (b).

Observation 6.2 (relation between Lf and eigenvalues): Let A be the Jacobian matrix of f with
respect to x for a fixed input ū. The constant Lū in the set Ω is equal to the largest eigenvalue of A at
its maximum inside the set. Furthermore, Lū is a lower bound on Lf , hence the necessary condition for
exploding gradients to appear given in Pascanu et al. (2013) (i.e. largest eigenvalue bigger than 1) also
follows from Theorem 6.2. The necessary condition for the second derivative to explode could also be
stated in terms of the largest eigenvalue: it needs to be bigger than 1.

6.5 Attractors evolution during training

In this section, we study the mechanism RNNs use to learn a task that requires long-term memory.
We focus on the LSTM (Hochreiter and Schmidhuber, 1997); on the LSTM constrained to the contractive
region of the parameter space, as proposed by Miller and Hardt (2018); and on the orthogonal RNN
proposed by Lezcano-Casado and Martínez-Rubio (2019), also known as expRNN.

6.5.1 Sine wave generation

We study the use of RNNs for the generation of sine waves with varying frequencies. The
input is a constant, and the output is a sine wave with unitary amplitude and the frequency specified by
the constant input. This artificial task is described in Sussillo and Barak (2013). We have 100 sequences of
length 400, each sequence consisting of a sine wave with the given constant frequency. The 100 sequences
are uniformly picked in the interval

[
π
16 ,

π
8
]
. We use those sequences for training.

For all models, we use the same configurations: Adam optimization algorithm (Kingma and Ba,
2014) with initial learning rate 10−3 and default parameters. For the stable model, we decrease the learning
3 If ū ∈ Ωu it follows that Lf ≥ Lū, hence if the system is not contractive Lf ≥ Lū ≥ 1.

Chapter 6. Attractor and smoothness in the analysis of recurrent neural networks training 107

Figure 6.4 – (Sine wave generator training history) Mean square error per epoch for the sine-wave
generation task during training. The baseline performance is indicated by the dashed line.
The final performance of the LSTM after 4, 000 epochs is 4.8 ∗ 10−3, the final performance of
the stable LSTM (sLSTM) is 0.49 and the final performance of the orthogonal RNN (oRNN)
is 4.1 ∗ 10−3.

(a) LSTM (b) sLSTM (c) oRNN

Figure 6.5 – (The mechanism for learning oscilations) Bifurcation diagram during training for the
sine-wave generation task showing the steady-state of the output yt and its first difference
yt − yt−1. The arrows point towards the evolution of the number of epochs, that varies from
0 to 1500. The bifurcation diagram is for a constant input π

8 , other values will yield similar
plots.

rate by 10 at epochs {500, 1000, 2000}. We use a hidden size of 200 and a single layer for the RNN, which
is followed by a linear layer for the output. The gradient is clipped when its norm exceeds 0.25.

The training history for the three models is displayed in Figure 6.4. The stable LSTM fails to
perform well in the sine-generation task. Figure 6.5 shows the bifurcation diagram for the three models
during training. Here we are using a two-dimensional bifurcation diagram containing both the output yt
and its first difference yt − yt−1 to facilitate the visualization of periodic attractors.

For the LSTM, during training, a stable fixed point undergoes a bifurcation at which the fixed
point stability switches, and a periodic solution arises. The stable LSTM is constrained to stay in the
region of the parameter space for which the system is contractive and, hence has a single stable attractor
point (cf. discussion on Section 6.4). Since the system needs to sustain the oscillations, this is a significant
limitation that prevents the model from performing the task well.

The bifurcation that the fixed point needs to undergo to oscillate is called Hopf (for the continuous
case) or Neimark-Sacker bifurcation (for the discrete case). During this bifurcation, a single stable fixed
point changes stability and becomes unstable as a pair of complex eigenvalues (of the Jacobian matrix) go
into the unstable region. The orthogonal constraint in the orthogonal RNN prevents the occurrence of
these bifurcations since all eigenvalues are fixed to one. Nevertheless, orthogonal RNNs still manage to
solve the problem and learn the periodic attractor.

Since most real-world sequence tasks have stochastic elements, the deterministic nature of the

Chapter 6. Attractor and smoothness in the analysis of recurrent neural networks training 108

0 125 250 5000 10000 15000
0

0.2

0.4

0.6

0.8

1

epochs

ac
cu

ra
cy

(a) Sequence length 100

0 250 500 750 1,000

epochs

LSTM
sLSTM
oRNN

(b) Sequence length 200

Figure 6.6 – (Symbol classification training history) Accuracy on validation data set for the recurrent
models trained to perform the same symbol classification task for two different sequence
lengths. The baseline performance (always predicting {p, p}) is indicated by the dashed line.
In (a) two x-axis scales co-exist in the same graph, one scale in [0, 250) and other in [250,
15250], with a relation 1:40 between the two scales.

sine wave generation is a limitation of this task to be representative of real-world problems. Nevertheless,
this example illustrates the challenges of learning steady-state behavior using RNNs. Stable models will
not be able to store information in the form of attractors, unless other training mechanisms, such as
teacher forcing, are used (see Figure 6.2). Orthogonal models, do not have this restriction, but, even so,
the orthogonal constraints can also prevent some bifurcations, and require different learning mechanisms.
For instance, another type of bifurcation that this model will fail to capture is the supercritical pitch-fork
bifurcation, where a single stable fixed point loses stability, and two stable fixed points are created.

6.5.2 Symbol classification

We study the classification according to a few relevant, widely separated, symbols. This artificial
task was originally described by Hochreiter and Schmidhuber (1997) and requires the neural network to
retain information for long periods. For this problem, the sequence contains categorical values {p, q, a, b, c, d}.
The symbols {a, b, c, d} act as distractors and are not relevant to the task. Instead, the relevant symbols
are picked from {p, q} appearing only twice in the sequence, at positions t1 and t2. The task of the neural
network is to classify the sequence according to the order of a few relevant symbols. The four possible
classes are {(p, p), (p, q), (q, p), (q, q)}. Both training and validation sequences have the same length.

For all models, we use the same configurations: Adam optimization algorithm with an initial
learning rate 10−2 and default parameters. We decrease the learning rate by 10 at epochs {500, 1000, 2000},
and run the optimization for a total of 4000 epochs. We use a hidden size of 200 and a single layer for
the RNN, which is followed by a linear layer with a single output. The gradient is clipped when its norm
exceeds 0.25. The batch size is 100.

Figure 6.6 shows the training history for the different models in the symbol classification task.
In Figure 6.6(a), the sLSTM eventually manages to solve the task, the accuracy, however, increases at a
very slow linear rate between epochs [1000, 10000]. The linear rate is quite characteristic of first-order
optimization methods in a basin of attraction (Nocedal and Wright, 2006), and it is very slow because of the
vanishing gradient problem. On the other hand, the standard LSTM converges quickly. The convergence,
however, is quite dependent on the initial condition. See Figure 6.7 to see how, for a different random
seed and identical setup, the model may fail to converge completely.

For length 200, the LSTM converges, but very unsteadily and with many bumps. The strong
dependency with the initial conditions and hard to navigate landscape is in agreement with the considera-
tions about smoothness and multiple close local minima that might affect this model (cf. Section 6.4).
The orthogonal RNN manages to avoid this hard to navigate landscape by fixing the eigenvalues equal to

Chapter 6. Attractor and smoothness in the analysis of recurrent neural networks training 109

0 100 200 300 400 500
0

20

40

60

80

100

epochs

ac
cu

ra
cy

(%
)

train
valid.

(a) good performance solution

0 2,000 4,000 6,000 8,000

epochs

(b) bad performance solution

Figure 6.7 – (The effect of the initial conditions) Accuracy on training and validation data on the
symbol classification task for the LSTM model in identical scenarios but with different
initial random parameter initialization (from different random seeds). In (a), the optimization
procedure abruptly finds a solution that has good accuracy on both training and validation;
while, in (b), the convergence is slow and steady towards a solution that has good accuracy
on the training set (above 90%) but is no better than random guessing on the validation set.

{p, p} {p, q} {q, p} {q, q}

p

q

a

b

c

d

Figure 6.8 – (The LSTM mechanism for learning to remember symbols) Bifurcation diagram
for the LSTM model in symbol classification task for sequences of length 100. It shows the
steady-state of the output yt and its first difference yt − yt−1. The arrows point towards the
evolution of the number of epochs, that vary from 0 to 400.

Chapter 6. Attractor and smoothness in the analysis of recurrent neural networks training 110

{p, p} {p, q} {q, p} {q, q}

p

q

a

b

c

d

Figure 6.9 – (The oRNN mechanism for learning to remember symbols under noise)Bifurcation
diagram for the oRNN model in symbol classification task for sequences of length 100. It
shows the steady-state of the output yt and its first difference yt − yt−1. The arrows point
towards the evolution of the number of epochs, that vary from 0 to 400.

Chapter 6. Attractor and smoothness in the analysis of recurrent neural networks training 111

Table 6.1 – (Symbol classification accuracy) Comparison between the LSTM; stable LSTM (sLSTM);
and orthogonal RNN (oRNN); for the symbol classification task with different sequence
lengths (l). As a baseline, always predicting {p, p} would yield an accuracy of 0.25.

l LSTM sLSTM oRNN
50 1.00 1.00 1.000
100 1.00 1.00 1.000
200 1.00 0.27 0.999
300 0.25 0.26 0.995
500 0.27 0.26 0.970

one, and it does have a much smoother convergence than the LSTM. It is also the model that manages to
solve the problem for the longest sequences (see Table 6.1). The stable LSTM model, on the other hand,
fails to solve the task for the length of 200 or longer.

To analyze the attractors during training, we apply a constant unitary input to one of the six
input channels (keeping the others at zero) and measure one of the four possible outputs. Bifurcation
diagrams for all 6× 4 possible combinations of input/output pairs are displayed, for the LSTM and the
orthogonal RNN respectively, in Figures 6.8 and 6.9.

The LSTM goes through bifurcations, for instance: in q → {q, p}, the number of fixed points
increases, and, in a→ {q, p}, they transition to periodic behavior. We understand the ability to undergo
bifurcations is useful, and having multiple fixed points helps the LSTM solving the task for longer sequences
than it would be able to only within the contractive region. The comparison between LSTM and stable
LSTM in Table 6.1 seems to corroborate such a hypothesis. The periodic behavior in a → {q, p}, on
the other hand, is spurious, since a and the other distractor symbols do not influence the outcome. The
mechanism the orthogonal RNN uses to solve the task is quite distinct: they create a cloud of fixed points
and, without suffering any bifurcation, during training, these fixed points change position in the state
space. These fixed points do not disappear during training, and we believe the last layer learns to weigh
them differently and use the information to solve the task.

6.5.3 Word-level language model

We train a language model on the openly available dataset Wikitext-2. This dataset contains
600 Wikipedia articles for training (2,088,628 tokens), 60 articles for validation (217,646 tokens), and 60
articles for testing (245,569 tokens) (Merity et al., 2016). The dataset has a vocabulary of 33,278 distinct
tokens. The goal is to predict the next token in the article given the previous tokens. The state-of-the-art
result for the Wikitext-2 data set when not extending the training set is a perplexity (lower is better) on
the test set of 39.14 (Gong et al., 2018).

Since our implementation of orthogonal RNN is restricted to a single layer, we restrict all the
models to a single layer. Even so, with our LSTM model implementation, we achieve a perplexity of 99.2
in the test set, which is close to other results reported in the literature (i.e. 99.3 obtained for a standard
LSTM model in (Edouard Grave, 2017)). The stable LSTM has a perplexity of 118.8 (which is close
to Miller and Hardt (2018), where they achieve a perplexity of 113.2) and the orthogonal LSTM has a
perplexity of 185.3.

We trained a model that consists of an embedding layer outputting a size 800 vector to a recurrent
unit (LSTM, stable LSTM, or orthogonal RNN) with hidden size 800, followed by a softmax decoder layer
that outputs probabilities for each token in the vocabulary. The last layer and the embedding have tied
layers. A dropout layer is included before and after the LSTM layer with dropout rate 0.5. The models
are trained and evaluated using a cross-entropy loss. The model is trained using ADAM with betas (0.9,
0.999). The learning rate starts at 10−3 and is reduced by a factor 10 when the cost function plateaus

Chapter 6. Attractor and smoothness in the analysis of recurrent neural networks training 112

0 50 100 150 200
0

200

400

epochs

pe
rp

le
xi

ty

LSTM
sLSTM
oRNN

Figure 6.10 – (Word-level language model training history) Perplexity on validation data set for
word-level language model.

for more than 7 epochs. And the training stops when the learning rate drops below 10−7. The gradient
norm is clipped when it exceeds 0.25. The batch size is 100, and the gradient is not backpropagated for a
sequence length larger than 80.

The training history is displayed in Figure 6.10. It is interesting to contrast this training curve
with the training curve of the two previous examples: in the two previous examples the LSTM training
was unsteady and full of jumps (and also highly sensitive to initial conditions); here, the curve is very
smooth.

Figures 6.11, 6.12 and 6.13 show the bifurcation diagram for the LSTM, stable LSTM and the
orthogonal RNN, respectively. We do the bifurcation diagram for different random initial states and
different constant inputs. This problem has a high-dimensional output, hence we consider diferent types
of projections into one dimension: i) The average of all outputs, i.e. x̄t = 1

n outputs

∑n outputs
i=1 xit; and, ii)

projections in the direction of some specific tokens in the embedding space. More specifically we consider
the tokens “is”, “<unk>”, and “Valkyria”, which are representative of both frequent and infrequent tokens.
In Figure 6.11 we also extend the projections into two dimensions by including the first difference as the
second dimension. We also consider two different situations: a) We apply a constant input; and, b) We
apply a feedback conection similar to that in Figure 6.3(b) using as input, at instant t, the word predicted
with the highest probability at the previous time instant, t− 1. We show representative samples in the
Figures.

When fed with constant input, LSTM presents a wide range of different qualitative behavior:
from converging to a single fixed point, as in Figure 6.11(a), to going through bifurcations that result in
chaotic or periodic behavior, as in Figure 6.11(b). When fed with constant input, orthogonal RNNs, on
the other hand, converge to a single fixed point. This was verified for several random seeds, and we show
a representative example in Figure 6.13(a) to (d). In this example, the qualitative behavior of the oRNN
model is quite similar to the stable LSTM, which also has single fixed-point (by construction).

Chaotic and periodic attractors in the constant input scenario suggest that training the LSTM
goes into region of the parameters space that yield non-contractive models. An experiment presented
by Laurent and von Brecht (2016, sec. 2.1) shows that this chaotic behavior, however, has limited influence
in the output. This might help explain why the training of the LSTM model progresses so smoothly and
not bumpy and unsteady as the scenario presented in Figure 6.1 (for chaotic behavior) would suggest.

We also show the attractors for when the input, at instant t, is the word predicted with the
highest probability at the previous time instant, t − 1. This scenario corresponds to using the model
for sentence generation. LSTM present, again, chaotic attractors, which are quite desirable here, since
periodic behavior or a single attractor correspond to repeating a few words or only a single word after
sufficient interactions, which would not generate interesting sentences. Both orthogonal RNNs and stable

Chapter 6. Attractor and smoothness in the analysis of recurrent neural networks training 113

(a) average (b) average (c) average, with feedback (d) average, with feedback

(e) “is” (f) “is” (g) “is”, with feedback (h) “is”, with feedback

(i) “Valkyria” (j) “Valkyria” (k) “Valkyria”, with feedback (l) “Valkyria”, with feedback

Figure 6.11 – (The LSTM mechanism for learning a language model) Bifurcation diagram for
the LSTM world-level language model. For each epoch, the plot show values visited by the
projections of the internal state p(xt) and its first difference p(xt)− p(xt−1) after a burnout
period of 1500 samples. This burnout period is used to remove the transient reponse and
yields a visualization of the system attractors, per epoch. The arrow point towards the
evolution of the number of epochs, that varies from 0 to 150. In (a) and (b), we have two
different realizations of the biffurcation diagram obtained from constant inputs. In (c) and
(d), the diagram is generatad using as input the word predicted with the highest probability
at the previous time instant, and using as first input to the sequence the same input as
in (a) and (b), respectively. The subplots (a) to (d) use the average of internal states as
projections, i.e. p(xt) = x̄t. The second row, (e) to (h), and third row, (i) to (l), show
the exact same experiments but for the projections in the direction of the tokens “is” and
“Valkyria”, respectively.

Chapter 6. Attractor and smoothness in the analysis of recurrent neural networks training 114

(a) average (b) “is” (c) “Valkyria” (d) “<unk>”

(e) average, with feedback (f) “is”, with feedback (g) “Valkyria”, with feedback (h) “<unk>”, with feedback

Figure 6.12 – (The sLSTM mechanism for learning a language model) Bifurcation diagram for
the stable LSTM world-level language model. For each epoch, the plot show values visited
by the projections of the internal state p(xt) after a burnout period of 1500 samples. This
burnout period is used to remove the transient reponse and yields a visualization of the
system attractors, per epoch. In the displays (a) to (d), the diagram is generated for the same
constant input. In (e) to (h), the diagram is generatad using as input the word predicted
with the highest probability at the previous time instant, and using as first input to the
sequence the same input as in the first row. The projections are: the average of internal
states as projections, i.e. p(xt) = x̄t; and, projections into the direction of the tokens “is”,
“Valkyria” and “<unk>”.

LSTMs present this type of undesirable behavior. Not to say they are the same, in our experiments,
sLSTM usually takes more than 600 tokens to reach this steady-state periodic behavior (after <eos> most
of the time) while for the oRNN this sometimes happens before 100 tokens. Also, sLSTM converges to a
richer periodic behavior, which oscillates between more points. This example shows how the stable LSTM,
during inference, might present richer steady-state behavior due to the feedback connections.

6.6 Related work

Analyzing attractors in an RNN is not new. Both Sussillo and Barak (2013) and Maheswaranathan
et al. (2019) give examples where they analyze the attractors of the RNN. While we try to use the attractors
for the analysis of the training procedure, these two works are heavily focused on the after-training.

The understanding of exploding and vanishing gradients is usually attributed to (Hochreiter and
Schmidhuber, 1997; Pascanu et al., 2013; Bengio et al., 1994). Pascanu et al. (2013) formulate exploding
and vanishing gradients in terms of the eigenvalues of the hidden-to-hidden weight matrix. Neither of
these two works, however, explicitly considers the importance of attractors in retaining the information.
This is done in (Bengio et al., 1994), who explicitly consider attractors and present a trade-off between
vanishing gradients and retaining information robustly in the presence of noise, using single fixed points
in this analysis. We generalize the analysis in terms of any nonlinear attractor (including chaotic and
periodic).

Doya (1993) suggests that bifurcations might be a problem in RNN training. Pascanu et al. (2013)
presents the hypothesis that bifurcations are the origin of walls in the cost function. In our examples, we

Chapter 6. Attractor and smoothness in the analysis of recurrent neural networks training 115

(a) average (b) “is” (c) “Valkyria” (d) “<unk>”

(e) average, with feedback (f) “is”, with feedback (g) “Valkyria”, with feedback (h) “<unk>”, with feedback

Figure 6.13 – (The oRNN mechanism for learning a language model) Bifurcation diagram for the
orthogonal RNN world-level language model. For each epoch, the plot show values visited
by the projections of the internal state p(xt) after a burnout period of 1500 samples. This
burnout period is used to remove the transient reponse and yields a visualization of the
system attractors, per epoch. In the displays (a) to (d), the diagram is generated for the same
constant input. In (e) to (h), the diagram is generatad using as input the word predicted
with the highest probability at the previous time instant, and using as first input to the
sequence the same input as in the first row. The projections are: the average of internal
states as projections, i.e. p(xt) = x̄t; and, projections into the direction of the tokens “is”,
“Valkyria” and “<unk>”.

do not observe this connection between bifurcations and jumps in performance.

The work in (Laurent and von Brecht, 2016) presents a neural network without chaotic behavior.
The results presented in Section 6.4, for which the chaotic behavior of LSTMs yield regions in parameter
space where the cost function is highly intricate, is a strong suggestion that this is indeed an interesting
line of research that deserves to be further explored. Also, (Laurent and von Brecht, 2016) is one of the
first papers to propose an architecture based on the properties of the attractors.

The notion of using entropy for a dynamical system (as in Section 6.3) is not new. One classical
definition is that of the Kolmogorov-Sinai entropy (Sinai, 1959), which is related to how uncertainty (and
information) increases with time in a chaotic attractor. However, this definition cannot be applied for
regions of the parameter space that do not preserve volume. The definition presented in Section 6.3 serves
our purpose better since it does not introduce such restrictions.

6.7 Discussion

We believe the refinements presented here in the classical concept of exploding and vanishing
gradient might be highly relevant to the development of new optimization and regularization methods for
RNNs and to understand the limitations and strengths of many techniques already in use.

Constraining the RNN eigenvalues to be smaller than one has the effect of yielding exponentially
decreasing transient behavior that gives rise to vanishing gradients. When the training and inference mode
are exactly the same, this constraint also has the effect of not allowing attractors to appear. Much of the
current RNN literature does not distinguish between the two effects. And, as shown in the experiments,

Chapter 6. Attractor and smoothness in the analysis of recurrent neural networks training 116

this distinction can allow for richer analysis and improved understanding of the training mechanism.

It is also important to draw a clear distinction between the RNN behavior during training and
inference. As discussed in Section 6.3, attractors are needed to store information in a non-volatile way.
When the training and inference mode are exactly the same, learning attractors (other than a single fixed
point) require the optimization procedure to explore regions of the parameter space where the model is
non-contractive, and this is hard because the objective function might have poor smoothness properties
and be ill-suited for traditional optimization procedures (see Section 6.4).

The symbol classification task studied in this work is very similar to other artificial benchmarks
used to assess the ability of recurrent models remembering information seen many times steps before.
Other popular examples include the adding and multiplication problems (Hochreiter and Schmidhuber,
1997) and the copy memory task (Arjovsky et al., 2016). All these problems are quite effective benchmarks
for assessing the ability of the model to learn attractors and explore regions of the parameter space where
the model is non-contractive. The results in this work seem to reinforce the effectiveness of oRNN model
in solving this class of problems.

This class of artificial benchmark is usually formulated in a way that makes it hard or impossible
to use teacher forcing. This contrasts with many relevant tasks and real-world problems, such as word
language modeling, for which state-of-the-art solutions usually employ such a mechanism. Teacher forcing
introduces the appealing possibility of having different modes for training and inference, and even if the
training is limited to regions of the parameter space where the dynamic system is contractive, it might
still be possible to have attractors (and hence long-term memory) during inference, since the system
output is fed back into its input, creating new possibilities for the dynamical behavior. Different training
and inference behavior might help explain why the stable model by Miller and Hardt (2018) is successful
in many tasks: on the one hand, training the model in the unstable region is challenging, so ruling out
this region of the parameter space from the optimization procedure might not be so impactful; on the
other hand, the model is not necessarily stable during inference (because the output might be fed back
into the input).

Part III

Modeling signals and systems: applications to
engineering and health care

118

7 Deep convolutional networks in system identification

In Section 2.3 we presented convolutional neural networks for sequences. Our presentation focused
on making explicit the connections between signal processing concepts and convolutional neural networks.
Here, we focus on presenting convolutional networks from a system identification perspective, relating the
architecture with traditional system identification terminology and concepts. Exploring the relationships
between the convolutional neural networs, NARX models, Volterra series and block-oriented models.
Here we focus on temporal convolutional neural networks (TCNs) which is a terminology introduced
by (Bai et al., 2018a) to refer to unidimensional and causal convolutional neural networks. We also present
an experimental study where we provide results on two real-world problems, the well-known Silverbox
dataset (Wigren and Schoukens, 2013) and dataset originated from ground vibration experiments on an
F-16 fighter aircraft (Schoukens and Noël, 2017).

The content of this chapter was presented at the 2019 Conference on Decision and Control (CDC)
and should appear in the proceedings of the conference:

Deep Convolutional Networks in System Identification, Carl Andersson*, Antonio
H. Ribeiro*, Koen Tiels, Niklas Wahlström and Thomas B. Schön (* Equal contribution).
Proceedings of the 58th IEEE Conference on Decision and Control (CDC), 2019. pp. 3670–3676.
doi: 10.1109/CDC40024.2019.9030219

The paper was also presented, as a poster, at the European Research Network on System
Identification, ERNSI, (2019) and at the Nonlinear System Identification Benchmarks Workshop (2019),
as an oral presentation under the name Deep Convolutional Networks are useful in System Identification.

The outline of the chapter is the following: We will describe the new TCN model from a system
identification point of view in Section 7.1, focusing in highlighting the connections with NARX models.
Additionally, in Section 7.2, we will show that there are indeed interesting connections between the deep
TCN structure and the Volterra series and the block-oriented model structures commonly used within
system identification. Perhaps most importantly, in Section 7.3 we will provide experimental results on
two real-world problems and on a toy problem. Final remarks are provided in 7.4

7.1 Neural networks for temporal modeling

The neural network is a universal function approximator (Hornik et al., 1989b) with a sequential
model structure of the form:

ŷ = g(L)(z(L−1)), (7.1a)

z(l) = g(l)(z(l−1)), l = 1, . . . , L− 1, (7.1b)

z(0) = x, (7.1c)

where x, z(l), ŷ denotes the input, the hidden variables and the output, respectively. The transformation
within each layer is of the form g(l)(z) = σ(W (l)z + b(l)) consisting of a linear transformation W (l)z + b(l)

followed by a scalar nonlinear mapping, σ, that acts element-wise. In the final (output) layer the nonlinearity
is usually omitted, i.e. g(L)(z) = W (L)z + b(L).

Chapter 7. Deep convolutional networks in system identification 119

The neural network parameters {W (l), b(l)}Ll=1 are usually referred to as the weights W (l) and
the bias terms b(l) and they are estimated by minimizing the prediction error 1

N

∑N
k=1 ‖ŷ[k]− y[k]‖2 for

some training dataset {x[k], y[k]}Nk=1.

To train deep neural networks with many hidden layers (large L) have been proved to be a
notoriously hard optimization problem. The challenges includes the risk of getting stuck in bad local
minimas, exploding and/or vanishing gradients, and dealing with large-scale datasets. It is only over the
past decade that these challenges have been addressed, with improved hardware and algorithms, to the
extent that training truly deep neural networks has become feasible. We will very briefly review some of
these developments below. Additional information can be found in Appendix A.

7.1.1 Temporal convolutional network

(a) (b)

Figure 7.1 – (Temporal convolution network) Illustrate the temporal convolution network (TCN)
with residual blocks. (a) Temporal convolutional network with dilated causal convolutions
with dilation factor d1 = 1, d2 = 2 and d3 = 4 and kernel size n = 3. (b) A TCN residual
block. Each block consists of two dense layers and an identity (or linear) map on the skip
connection. As illustrated in (a) by connection with the same color, neural network weights are
shared within the same layer and invariant to time translations. This reflects the hypothesis
we are modeling a time invariant system.

As the name suggests, the temporal convolutional network (TCN) is based on convolutions (Bai
et al., 2018a). The use of TCNs within a system identification setting can in fact be interpreted as using
the nonlinear ARX model as the basic model component:

ŷ[k + 1] = g(x[k], . . . x[k − (n− 1)]), (7.2)

with x[k] = (u[k], y[k]). We will proceed with this interpretation, where (7.2) would correspond to a
one-layer TCN model.

A full TCN can be understood as a sequential construction of several nonlinear ARX models
stacked on top of each other:

ŷ[k + 1] = g(L)(Z(L−1)[k]), (7.3a)

z(l)[k] = g(l)(Z(l−1)[k]), l = 1, . . . , L− 1, (7.3b)

z(0)[k] = x[k], (7.3c)

where:

Z(l−1)[k] =
(
z(l−1)[k], z(l−1)[k−dl], . . . , z(l−1)[k−(n−1)dl]

)
.

The number of layers L, the size of each intermediate layer z(l)[k], and the model order n, are all design
choices determined by the user. This will also determine the number of parameters included in the model.

Chapter 7. Deep convolutional networks in system identification 120

For each layer, we optionally introduce a dilation factor dl. With dl = 1 we recover the standard
nonlinear ARX model in each layer. With dl > 1 the corresponding output of that layer can represent a
wider range of past time instances. The effective memory of that layer will be (n− 1)dl. Typically the
dilation factor is chosen to increase exponentially with the number of layers, for example dl = 2(l−1),
see Fig. 7.1a. If we assume that we have the same number of parameters in each layer, the memory will
increase exponentially, not only with the number of layers, but also with the number of parameters in the
model. This is a very attractive but yet uncommon property for system identification models present in
the literature.

Each layer in a TCN can also be seen as dilated causal convolution where n would be the kernel
size and dim(z(l)[k]) the number of channels in layer l. These convolutions can be efficiently implemented
in a vectorized manner where many computations are reused across the different time steps k. Analogously
to what is done in convolutional neural networks we use zero-padding for z(l)[k] where k < 1. We refer to
(Bai et al., 2018a) for a presentation of TCN based on convolutions.

7.1.2 Regularization

Similar to other approaches within system identification, L2- and L1-regularization are commonly
used to reduce the flexibility of a model and hence avoid overfitting. A number of other regularization
techniques have also appeared more specialized to neural networks. One of them is the dropout (Srivastava
et al., 2014) which is a technique where a random subset of the hidden units in each layer is set to zero
during training. New random subsets are drawn and set to zero in each optimization step which effectively
means that a random subnetwork is trained during each iteration.

Data augmentation is very common in classification problems and it can also be interpreted as a
regularization technique. It is used to artificially increase the training dataset by utilizing the fact that the
class is invariant under some transformation of the input (e.g. translation for image) or in the presence of
some low intensity noise (e.g. salt pepper noise for images).

Finally, early stopping is a pragmatic approach in which, as the name suggests, the optimization
algorithm is interrupted before convergence. The stopping point is chosen as the point where a validation
error is minimized. Hence, it avoids overfitting and can as such also be interpreted as a regularization
technique.

7.1.3 Batch normalization

Before training a neural network, the inputs are commonly normalized by subtracting the mean
and dividing by the variance. The purpose of this is to avoid early saturation of the activation function
and assuring that values in the proceeding layers are within the same dynamic range. In deep networks
it is beneficial to not only normalize the input layer, but also the intermediate hidden layers. This idea
is exploited in batch normalization (Ioffe and Szegedy, 2015) which, in addition to this normalization,
introduces scaling parameters γ and a shift β to be learned during training. The output of the layer is
then:

z̃(l)[k] = γz̄(l)[k] + β, (7.4)

where z̄(l)[k] is normalized version of layer l output. The parameters γ and β will be trained jointly with all
other parameters of the network. Batch normalization has become very popular in deep learning models.

An alternative to batch normalization is weight normalization which is, essentially, a reparametriza-
tion of the weight matrix, decoupling the magnitude and direction of the weights (Salimans and Kingma,
2016).

Chapter 7. Deep convolutional networks in system identification 121

7.1.4 Optimization algorithms

Neural networks are trained using gradient-based optimization methods. At each iteration only a
random subset of the training data is used to compute the gradient and update the parameters. This is
called mini-batch gradient descent and is a crucial component for efficient training of a neural network
when the dataset is large.

Multiple extensions to mini-batch gradient descent have been proposed to make the learning
more efficient. Momentum (Qian, 1999) applies a first order low-pass filter to the stochastic gradients to
compensate for the noise introduced by the random sub-sampling. RMSprop (Tieleman and Hinton, 2012)
uses a low-passed version of the squared gradients to scale the learning rate in the different dimensions.
One of the most popular optimization method today is referred to as Adam (Kingma and Ba, 2014) which
basically amounts to using RMSprop with momentum.

7.1.5 The residual block

A residual block is a combination of possibly several layers together with a skip connection

z(l+p) = F(z(l)) + z(l), (7.5)

where the skip connection adds the value from the input of the block to its output. The purpose of
the residual block is to let the layers learn deviations from the identity map rather than the whole
transformation. This property is beneficial, especially in deep networks where we want the information
to gradually change from the input to the output as we proceed through the layers. There is also some
evidence that this makes it easier to train deeper neural networks (He et al., 2016a).

We employ residual blocks in our models by following the model structure in (Bai et al., 2018a).
Each block consist of one skip connection and two linear mappings, each of them followed by batch
normalization (Ioffe and Szegedy, 2015), activation function and dropout regularization (Srivastava et al.,
2014). See Fig. 7.1b for a visual description and Appendix A for a brief explanation of batch normalization
and regularization methods. For both mappings a common dilation factor is used and hence the whole
block can be seen as one of the layers g(l)(z) in the TCN model (7.3). Note that the skip connection only
passes z(l−1)[k] to the next layer and not the whole Z(l−1)[k] for each time instance k. In cases where
z(l−1)[k] and z(l)[k] are of different dimensions, a linear mapping is used between them. The coefficients of
this linear mapping are also learned during training.

7.2 Connections to system identification

This section describes equivalences between the basic TCN architecture (i.e. without dilated
convolutions and skip connections) and models in the system identification community, namely Volterra
series and block-oriented models. The discussion is limited to the nonlinear FIR case (where x = u) instead
of the more general NARX case (x = (u, y)) considered in (7.2), and to single input single output systems.

7.2.1 Connection with Volterra series

A Volterra series Schetzen (2006) can be considered as a Taylor series with memory. It is essentially
a polynomial in (delayed) inputs u[k], u[k − 1], Alternatively, a Volterra series can be considered as a
nonlinear generalization of the impulse response h1[τ]. The output of a Volterra series is obtained using
higher-order convolutions of the input with the Volterra kernels hd[τ1, . . . , τd] for d = 0, 1, . . . , D. These
kernels are the polynomial coefficients in the Taylor series.

Chapter 7. Deep convolutional networks in system identification 122

The basic TCN architecture is essentially the same as the time delay neural network (TDNN)
in Waibel et al. (1989), except for the zero padding Bai et al. (2018a) and the use of ReLU activations
instead of sigmoids. The TDNN has been shown to be equivalent to an infinite-degree (D →∞) Volterra
series in Wray and Green (1994). This connection is made explicit in Wray and Green (1994) by showing
how to compute the Volterra kernels from the estimated network weights W . The key ingredient is to
use a Taylor series expansion of the activation functions σ either around zero (the bias term b is then
considered part of the activation function) or alternatively around the bias values if the Taylor series
around zero does not converge for example.

7.2.2 Connection with block-oriented models

Block-oriented models Giri and Bai (2010); Schoukens and Tiels (2017) combine linear time-
invariant (LTI) subsystems (or blocks) and nonlinear static (i.e. memoryless) blocks. For example, a Wiener
model consists of the cascade of an LTI block and a nonlinear static block. For a Hammerstein model,
the order is reversed: it is a nonlinear block followed by an LTI block. Generalizations of these simple
structures are obtained by putting more blocks in series (as in Wills and Ninness (2012) for Hammerstein
systems) or in parallel branches (as in Schoukens et al. (2015) for Wiener-Hammerstein systems) and/or
to consider multivariate nonlinear blocks.

A multi-layer basic TCN can be considered as cascading parallel Wiener models, one for each hidden
layer, that have multivariate nonlinear blocks consisting of the activation functions (including the bias). The
linear output layer corresponds to adding FIR filters at the end of each parallel branch. The layers can be
squeezed together to form less but larger layers (cf. squeezing together the sandwich model discussed in Palm
(1979)). This is so since the dynamics consist of time delays and time delays can be placed before or after
a static nonlinear function without changing the resulting output (q−1σ(z[k]) = σ(q−1z[k]) = σ(z[k − 1])).
The TCN model could be squeezed down to a parallel Wiener model.

7.2.3 Conclusion

The basic TCN architecture is equivalent to Volterra series and parallel Wiener models. They
are thus all universal approximators for time-invariant systems with fading memory Boyd and Chua
(1985b). This equivalence does not mean that all these model structures can be trained with equal ease
and will perform equally well in all identification tasks. For example, a Volterra series uses polynomial
basis functions, whereas TDNNs use sigmoids and TCNs use ReLU activation functions. Depending on
the system at hand, one basis function might be better suited than another to avoid bad local minima
and/or to obtain both an accurate and sparse representation.

7.3 Numerical results

We now present the performance of the TCN model on three system identification problems. We
compare this model with the classical NARX Multilayer Perceptron (MLP) network with two layers and
with the Long Short-Term Memory (LSTM) network. When available, results from other papers on the
same problem are also presented.

We make a distinction between training, validation and test datasets. The training dataset is
used for estimating the parameters. The performance in the validation data is used as the early stopping
criteria for the optimization algorithm and for choosing the best hyper-parameters (i.e. neural network
number of layers, number of hidden nodes, optimization parameter, and so on). The test data allows us

Chapter 7. Deep convolutional networks in system identification 123

to asses the model performance on unseen data. Since the major goal of the first example is to compare
different hyper-parameter choices we do not use a test set.

In all the cases, the neural network parameters are estimated by minimizing the mean square
error using the Adam optimizer Kingma and Ba (2014) with default parameters and an initial learning
rate of lr = 0.001. The learning rate is reduced whenever the validation loss does not improve for 10
consecutive epochs.

We use the Root Mean Square Error (RMSE =
√

1
N

∑N
k=1 ‖ŷ[k]− y[k]‖2) as metric for comparing

the different methods in the validation and test data. Throughout the text we will make clear when the
predicted output ŷ is computed through the free-run simulation of the model and when it is computed
through the one-step-ahead prediction.

The code for reproducing the examples is available at https://github.com/antonior92/sysid-
neuralnet. Additional information about the hyperparameters and training time can be found in Appendix
B.

7.3.1 Example 1: nonlinear toy problem

The nonlinear system Chen et al. (1990b):

y∗[k] = (0.8− 0.5e−y
∗[k−1]2)y∗[k − 1]−

(0.3 + 0.9e−y
∗[k−1]2)y∗[k − 2] + u[k − 1] +

0.2u[k − 2] + 0.1u[k − 1]u[k − 2] + v[k],

y[k] = y∗[k] + w[k], (7.6)

was simulated and the generated dataset was used to build neural network models. Fig. 7.2 shows the
validation results for a model obtained for a training and validation set generated with white Gaussian
process noise v and measurement noise w. In this section, we repeat this same experiment for different
neural network architectures, with different noise levels and different training set sizes N .

Figure 7.2 – (Toy problem validation) Displays 100 samples of the free-run simulation TCN model
vs the simulation of the true system. The kernel size for the causal convolutions is 2, the
dropout rate is 0, it has 5 convolutional layers and a dilation rate of 1. The training set has
20 batches of 100 samples and was generated with (7.6) for v and w white Gaussian noise
with standard deviations σv = 0.3 and σw = 0.3. The validation set has 2 batches of 100
samples. For both, the input u is randomly generated with a standard Gaussian distribution,
each randomly generated value held for 5 samples.

The best results for each neural network architecture on the validation set are compared in
Table 7.1. It is interesting to see that when few samples (N = 500) are available for training, the TCN
performs the best among the different architectures. On the other hand, when there is more data
(N = 8 000) the other architectures gives the best performance.

https://github.com/antonior92/sysid-neuralnet
https://github.com/antonior92/sysid-neuralnet

Chapter 7. Deep convolutional networks in system identification 124

Table 7.1 – (Performance vs dataset size vs noise intensity) One-step-ahead RMSE on the val-
idation set for the models (MLP, LSTM and TCN) trained on datasets generated with:
different noise levels (σ) and lengths (N). The standard deviation of both the process noise v
and the measurement noise w is denoted by σ. We report only the best results among all
hyper-parameters and architecture choices we have tried out for each entry.

N=500 N=2 000 N=8 000
σ LSTM MLP TCN LSTM MLP TCN LSTM MLP TCN

0.0 0.362 0.270 0.254 0.245 0.204 0.196 0.165 0.154 0.159
0.3 0.712 0.645 0.607 0.602 0.586 0.558 0.549 0.561 0.551
0.6 1.183 1.160 1.094 1.105 1.070 1.066 1.038 1.052 1.043

(a) (b) (c) (d)

Figure 7.3 – (Ablation study) Box plots showing how different design choices affect the performance
of the TCN for noise standard deviation σ = 0.3 and training data length N = 2 000. On
the y-axis the one-step-ahead RMSE on the validation set is displayed, and on the x-axis
we have: in (a) the presence or absence of dilations; in (b) the dropout rate {0.0, 0.3, 0.5,
0.8}; in (c) the number of residual blocks {1, 2, 4, 8}; and, in (d) if batch norm, weight norm
or nothing is used for normalizing the output of each convolutional layer. The variation in
performance for the box plot quartiles is achieved through the variation for all the other
hyper-parameters not fixed by the hyper-parameter choice indicated on the x-axis.

Fig. 7.3 shows how different hyper-parameter choices impact the performance of the TCN. We note
that standard deep learning techniques such as dropout, batch normalization and weight normalization
did not improve performance. The use of dropout actually hurts the model performance on the validation
set. Furthermore, increasing the depth of the neural network does not actually improve its performance
and the TCN yields better results in the training set without the use of dilations, which makes sense
considering that this model does not require a long memory since the data were generated by a system of
order 2.

7.3.2 Example 2: Silverbox

The Silverbox is an electronic circuit that mimics the input/output behavior of a mass-spring-
damper with a cubic hardening spring. A benchmark dataset is available through Wigren and Schoukens
(2013).1

The training and validation input consists of 10 realizations of a random-phase multisine. Since
the process noise and measurement noise is almost nonexistent in this system, we use all the multisine
realizations for training data, simply training until convergence.

The test input consists of 40 400 samples of a Gaussian noise with a linearly increasing amplitude.
This leads to the variance of the test output being larger than the variance seen in the training and
validation dataset in the last third of the test data, hence the model needs to extrapolate in this region.
1 Data available for download at:

http://www.nonlinearbenchmark.org/#Silverbox

http://www.nonlinearbenchmark.org/#Silverbox

Chapter 7. Deep convolutional networks in system identification 125

Table 7.2 – (Silverbox benchmark with no extrapolation) Free-run simulation results for the Sil-
verbox example on part of the test data (avoiding extrapolation).

RMSE (mV) Which samples Approach Reference
0.7 first 25 000 Local Linear State Space Verdult (2004)
0.24 first 30 000 NLSS with sigmoids Marconato et al. (2012)
1.9 400 to 30 000 Wiener-Schetzen Tiels (2015)
0.31 first 25 000 LSTM this work
0.58 first 30 000 LSTM this work
0.75 first 25 000 MLP this work
0.95 first 30 000 MLP this work
0.75 first 25 000 TCN this work
1.16 first 30 000 TCN this work

Fig. 7.4 visualizes this extrapolation problem and Table 7.2 shows the RMSE only in the region where no
extrapolation is needed. The corresponding RMSE for the full dataset is presented in Table 7.3. Similarly
to Section 7.3.1 we found that the TCN did not benefit from the standard deep learning techniques such
as dropout and batch normalization. We also see that the LSTM outperforms the MLP and the TCN
suggesting the Silverbox data is large enough to benefit of the increased complexity of the LSTM.

Figure 7.4 – (Silverbox prediction error and data) The true output and the prediction error of the
TCN model in free-run simulation for the Silverbox data. The model needs to extrapolate
approximately outside the region ±0.2 marked by the dashed lines.

7.3.3 Example 3: F-16 ground vibration test

The F-16 vibration test was conducted on a real F-16 fighter equipped with dummy ordnances
and accelerometers to measure the structural dynamics of the interface between the aircraft and the
ordnance. A shaker mounted on the wing was used to generate multisine inputs to measure this dynamics.

Figure 7.5 – (TCN depth vs performance) Box plot showing how different depths of the neural
network affects the performance of the TCN in the Example 3. Should be interpreted in the
same way as Fig. 7.3.

Chapter 7. Deep convolutional networks in system identification 126

Table 7.3 – (Silverbox benchmark) Free-run simulation results for the Silverbox example on the full
test data. (∗Computed from FIT=92.2886%).

RMSE (mV) Approach Reference
0.96 Physical block-oriented Hjalmarsson and Schoukens (2004)
0.38 Physical block-oriented Paduart et al. (2004)
0.30 Nonlinear ARX Ljung et al. (2004)
0.32 LSSVM with NARX Espinoza et al. (2004)
1.3 Local Linear State Space Verdult (2004)
0.26 PNLSS Paduart (2008)
13.7 Best Linear Approximation Paduart (2008)
0.35 Poly-LFR Van Mulders et al. (2013)
0.34 NLSS with sigmoids Marconato et al. (2012)
0.27 PWL-LSSVM with PWL-NARX Espinoza et al. (2005)
7.8 MLP-ANN Sragner et al. (2004)
4.08∗ Piece-wise affine LFR Pepona et al. (2011)
9.1 Extended fuzzy logic Sabahi and Akbarzadeh-T (2016)
9.2 Wiener-Schetzen Tiels (2015)
3.98 LSTM this work
4.08 MLP this work
4.88 TCN this work

We used the multisine realizations with random frequency grid with 49.0 N RMS amplitude Schoukens
and Noël (2017) for training, validating and testing the model.2

We trained the TCN, MLP and LSTM networks for all the same configurations used in Example 1.
The analysis of the different architecture choices for the TCN in the validation set again reveals that
common deep learning techniques such as dropout, batch normalization, weight normalization or the use
of dilations do not improve performance. The major difference here is that the use of a deeper neural
network actually outperforms shallow neural networks (Fig. 7.5).

The best results for each neural network architecture are compared in Table 7.4 for free-run
simulation and one-step-ahead prediction. The results are averaged over the 3 outputs. The TCN performs
similar to the LSTM and the MLP.

An earlier attempt on this dataset with a polynomial nonlinear state-space (PNLSS) model is
reported in Tiels (2017). Due to the large amount of data and the large model order, the complexity of the
PNLSS model had to be reduced and the optimization had to be focused in a limited frequency band (4.7
to 11 Hz). That PNLSS model only slightly improved on a linear model. Compared to that, the LSTM,
MLP, and TCN perform better, also in the frequency band 4.7 to 11 Hz. This can be observed in Fig. 7.6,
which compare the errors of these models with the noise floor and the total distortion level (= noise +
nonlinear distortions), computed using the robust method Pintelon and Schoukens (2012). Around the
main resonance at 7.3 Hz (the wing-torsion mode Schoukens and Noël (2017)), the errors of the neural
networks are significantly smaller than the total distortion level, indicating that the models do capture
significant nonlinear behavior. Similar results are obtained in free-run simulation (not shown here). In
contrast to the PNLSS models, the neural networks did not have to be reduced in complexity. Due to the
mini-batch gradient descent, it is possible to train complex models on large amounts of data.

7.3.4 Hyperparameter search and training time

All examples run with hardware acceleration provided by a single graphical processing unit
(GPU). We run different experiments in machines with different configurations so the times are not directly
comparable. Some of these machines have a NVIDIA Titan V and others a NVIDIA GTX 1080TI.
2 Data available for download at:

http://www.nonlinearbenchmark.org/#F16

http://www.nonlinearbenchmark.org/#F16

Chapter 7. Deep convolutional networks in system identification 127

Table 7.4 – (Performance in F-16 benchmark) RMSE for free-run simulation and one-step-ahead
prediction for the F16 example averaged over the 3 outputs. The average RMS value of the 3
outputs is 1.0046.

Mode LSTM MLP TCN
Free-run simulation 0.74 0.48 0.63
One-step-ahead prediction 0.023 0.045 0.034

(a) one-step-ahead prediction (b) free-run simulation

Figure 7.6 – (F-16 model main resonance) We plot the model frequency response in the interval
[4.7, 11] Hz. The true output spectrum is in black, the noise distortion, in grey dash-dotted
line, the total distortion (= noise + nonlinear distortions), in grey dotted line, error LSTM,
in green, error MLP, in blue, and error TCN, in red). All tested model structures perform
similar andhe error is close to the noise floor around the main resonance at 7.3 Hz.

A in depth analysis of the training time is beyond the scope of this chapter. The idea is to provide
some basic notion of how much time is needed to run the neural network and the computational cost of
doing hyperparameter search. For example 2, we provide the total time needed to do the hyperparameter
search. It should be noticed, however, that grid search is an inefficient procedure. We choose to use it in
order to study the effect of hyperparameters, rather than because of its efficiency. And, for example 3, we
provide the total time for training the neural network with the best possible configuration.

7.3.4.1 Nonlinear toy problem

We used grid search for finding the hyperparameters. In each possible training configuration, we
have trained the TCN for all possible combinations of: number of hidden layers in {16, 32, 64, 128, 256};
dropout rate in {0.0, 0.3, 0.5, 0.8}; number of residual blocks in {1, 2, 4, 8}; for the kernel size in {2, 4, 8,
16}; for the presence or absence of dilations; and, for the use of batch norm, weight norm or nothing after
each convolutional layer. We have trained the MLP for all combination of: number of hidden layers in
{16, 32, 64, 128, 256}; model order n in {2, 4, 8, 16, 32, 64, 128}; activation function in {ReLU, sigmoid}.
Finally, we trained the LSTM for all combinations of: number of hidden layers in {16, 32, 64, 128}; number
of stacked LSTM layers in {1, 2, 3}; dropout rate in {0.0, 0.3, 0.5, 0.8}. The best hyperparameters for
each configuration are described in Table 7.5. For the TCN, it is better (in all configurations) to use no
dilation, no normalization and kernel size equals to 2, hence these hyperparameters are omitted from the
table.

7.3.4.2 Silverbox

Some hyperparameters were just experienced with manually to find good values and did not effect
the results in any major fashion. For LSTM and MLP, dropout was disabled this way.

Chapter 7. Deep convolutional networks in system identification 128

Table 7.5 – (Toy problem model hyperparameters) Best model hyperparameters in Example 1 for:
different noise levels (σ) and lengths (N). The standard deviation of both the process noise v
and the measurement noise w is denoted by σ.

(a) TCN: The hyperparameters are the dropout rate (drop.), the number of layers (n. layers and the number
of hidden layers (h. size).

N=500 N=2 000 N=8 000
σ drop. n. layers h. size drop. n. layers h. size drop. n. layers h. size

0.0 0.0 2 256 0.0 2 64 0.0 4 32
0.3 0.3 8 128 0.0 2 128 0.0 8 16
0.6 0.0 8 256 0.0 1 64 0.0 8 16

(b) MLP: The hyperparameters are the activation function (activ. fun.), the number of hidden layers
(h. size) and the model order n.

N=500 N=2 000 N=8 000
σ activ. fun. h. size n activ. fun. h. size n activ. fun. h. size n

0.0 relu 128 2 relu 128 3 relu 256 3
0.3 relu 256 2 sigmoid 64 3 relu 128 3
0.6 relu 256 2 sigmoid 128 4 relu 128 3

(c) LSTM: The hyperparameters are the dropout rate (drop.), the number of hidden layers (h. size) and the
number of stacked layers (n. layers).

N=500 N=2 000 N=8 000
σ drop. h. size n. layers drop. h. size n. layers drop. h. size n. layers

0.0 0.0 128 2 0.0 32 1 0.0 32 2
0.3 0.3 128 2 0.0 64 3 0.0 64 2
0.6 0.0 128 3 0.0 128 3 0.3 64 2

For the TCN, the kernel size was set to 2 after initial experimentation. The number of layers
(range {2, 3}), the number of hidden units (range {4, 8, 16, 32}) and dropout (range {0, 0.05, 0.1, 0.2})
were optimized using grid search. Similarly to the other experiments dropout yielded no gain and the
best network had 2 layers with 8 units per layer. Total time consumption for this optimization and hyper
parameter search was 33 hours.

The MLP was implemented as a single hidden layer neural network with ReLU as activa-
tion function. The model order (range {1, 2, 4, 8, 16, 32, 64}) and the number of hidden units (range
{4, 8, 16, 32, 64, 128, 256}) were optimized using grid search and the best hyper parameters were 4 and 32
respectively. Total time consumption for this optimization and hyperparameter search was 7 hours.

In the LSTM case, the hyperparameters for batch size (range {1, 2, 4, 8, 16, 32}) and the number
hidden units (range {4, 16, 36, 64}) were optimized using grid search and the best hyper parameters were
8 and 36 respectively. Total time consumption for this optimization and hyperparameter search was 40
hours.

7.3.4.3 F-16 ground vibration test

Again, we used grid search for finding the hyperparameters. In each possible training configuration,
we have trained the TCN for all possible combinations of: number of hidden layers in {16, 32, 64, 128};
dropout rate in {0.0, 0.3, 0.5, 0.8}; number of residual blocks in {1, 2, 4, 8}; for the kernel size in {2, 4,
8, 16}; for the presence or absence of dilations; and, for the use of batch norm, weight norm or nothing
after each convolutional layer. The best result in this case, is to use batch norm, no dilation, kernel size

Chapter 7. Deep convolutional networks in system identification 129

equals to 8, dropout rate equals to 0.3, and 8 layers. Training the network with this configuration took
approximately 40 minutes.

We have trained the MLP for all combination of: number of hidden layers in {16, 32, 64, 128,
256}; model order n in {2, 4, 8, 16, 32, 64, 128}; activation function in {ReLU, sigmoid}. Use sigmoid,
model order equals to 64 and 256 hidden units yields the best results. Training the network with this
configuration took 4 minutes. Training the network with this configuration took approximately 5 minutes.

Finally, we trained the LSTM for all combinations of: number of hidden layers in {16, 32, 64,
128}; number of stacked LSTM layers in {1, 2}; dropout rate in {0.0, 0.3, 0.5, 0.8}. The best configuration
is 2 stacked LSTM layers, dropout rate equals to 0 and hidden size equals to 128. Training the network
with this configuration took approximately 50 minutes.

7.4 Conclusion and future work

In this work we applied recent deep learning methods to standard system identification benchmarks.
Our initial results indicate that these models have potential to provide good results in system identification
problems, even if this requires us to rethink how to train and regularize these models. Indeed, methods
which are used in traditional deep learning settings do not always improve the performance. For example,
dropout did not yield better results in any of the problems. Neither did the long memory offered by the
dilation factor in TCNs offer any improvement, which is most likely due to the fact that these problems
have a relatively short and exponentially decaying memory, as most dynamical systems do. Other findings
are that TCNs work well also for small datasets and that LSTMs did show a good overall performance
despite being very rarely applied to system identification problems.

Causal convolutions are effectively similar to NARX models and share statistical properties with
this class of models. Hence, they are also expected to be biased for settings where the noise is not white.
This could justify the limitations of TCNs observed in our experiments. Extending TCNs to handle
situations where the data is contaminated with non-white noise seems to be a promising direction in
improving the performance of these models. Furthermore, both LSTMs and the dilated TCNs are designed
to work well for data with long memory dependencies. Therefore it would be interesting to apply these
models to system identification problems where such long term memory is actually needed, e.g. switched
systems, or to study if the long-term memory can be translated into accurate long-term predictions, which
could have interesting applications in a model predictive control setting.

130

8 Automatic diagnosis of the 12-Lead ECG using a
deep neural network

Cardiovascular diseases are the leading cause of death worldwide (Roth et al., 2018) and the
electrocardiogram (ECG) is a major tool in their diagnoses. As ECGs transitioned from analog to digital,
automated computer analysis of standard 12-lead electrocardiograms gained importance in the process
of medical diagnosis (Willems et al., 1987; Schläpfer and Wellens, 2017). However, limited performance
of classical algorithms (Willems et al., 1991; Shah and Rubin, Oct) precludes its usage as a standalone
diagnostic tool and relegates them to an ancillary role (Estes, 2013; Schläpfer and Wellens, 2017).

There are great expectations when it comes to how Deep Neural Networks (DNNs) may improve
health care and clinical practice (Stead, 2018; Naylor C, 2018; Hinton, 2018). So far, the most successful
applications used a supervised learning setup to automate diagnosis from exams. Supervised learning
models, which learn to map an input to an output based on example input-output pairs, have achieved better
performance than a human specialist on their routine work-flow in diagnosing breast cancer (Bejnordi et al.,
2017) and detecting retinal diseases from three-dimensional optical coherence tomography scans (De Fauw
et al., 2018). While efficient, training DNNs in this setup introduces the need for large quantities of labeled
data which, for medical applications, introduce several challenges, including those related to confidentiality
and security of personal health information (Beck et al., 2016).

A convincing preliminary study of the use of DNNs in ECG analysis was recently presented
in (Hannun et al., 2019). For single-lead ECGs, DNNs could match state-of-the-art algorithms when
trained in openly available datasets (e.g. 2017 PhysioNet Challenge data (Clifford et al., 2017)) and, for a
large enough training dataset, present superior performance when compared to practicing cardiologists.
However, as pointed out by the authors, it is still an open question if the application of this technology
would be useful in a realistic clinical setting, where 12-lead ECGs are the standard technique (Hannun
et al., 2019).

The short-duration, standard, 12-lead ECG (S12L-ECG) is the most commonly used complemen-
tary exam for the evaluation of the heart, being employed across all clinical settings, from the primary
care centers to the intensive care units. While long-term cardiac monitoring, such as in the Holter exam,
provides information mostly about cardiac rhythm and repolarization, the S12L-ECG can provide a
full evaluation of the cardiac electrical activity. This includes arrhythmias, conduction disturbances,
acute coronary syndromes, cardiac chamber hypertrophy and enlargement and even the effects of drugs
and electrolyte disturbances. Thus, a deep learning approach that allows for accurate interpretation of
S12L-ECGs would have the greatest impact.

S12L-ECGs are often performed in settings, such as in primary care centers and emergency units,
where there are no specialists to analyze and interpret the ECG tracings. Primary care and emergency
department health professionals have limited diagnostic abilities in interpreting S12-ECGs (Mant et al.,
2007; Veronese et al., 2016). The need for an accurate automatic interpretation is most acute in low and
middle-income countries, which are responsible for more than 75% of deaths related to cardiovascular
disease (World Health Organization, 2014), and where the population, often, do not have access to
cardiologists with full expertise in ECG diagnosis.

The use of DNNs for S12L-ECG is less explored than its usage in the single-lead setup. A
contributing factor for this is the shortage of full digital S12L-ECG databases, since most recordings

Chapter 8. Automatic diagnosis of the 12-Lead ECG using a deep neural network 131

are still registered only on paper, archived as images, or stored in PDF format (Sassi et al., Dec). Most
available databases comprise a few hundreds of tracings and no systematic annotation of the full list of
ECG diagnoses (Lyon et al., 2018), limiting their usefulness as training datasets in a supervised learning
setting. This lack of systematically annotated data is unfortunate, as training an accurate automatic
method of diagnosis from S12L-ECG would be greatly beneficial.

In this chapter, we demonstrate the effectiveness of DNNs for automatic S12L-ECG classification.
We build a large-scale dataset of labelled S12L-ECG exams for clinical and prognostic studies (the CODE
- Clinical Outcomes in Digital Electrocardiology study) and use it to develop a DNN to classify 6 types of
ECG abnormalities considered representative of both rhythmic and morphologic ECG abnormalities.

The content here is largely influenced by the content from the following publication:

Automatic Diagnosis of the 12-Lead ECG using a Deep Neural Network, Antônio
H. Ribeiro, Manoel Horta Ribeiro, Gabriela M.M. Paixão, Derick M. Oliveira, Paulo R. Gomes,
Jéssica A. Canazart, Milton P. S. Ferreira, Carl R. Andersson, Peter W. Macfarlane, Wagner
Meira Jr., Thomas B. Schön, Antonio Luiz P. Ribeiro. Nature Communications, 2020. v. 11(1)
n. 1760. doi: 10.1038/s41467-020-15432-4

This work was also presented at the SciLifeLab Science Summit in Uppsala, Sweden (2019), where it
received the best poster award. And at the Swedish Symposium on Deep Learning - SSDL (2019), also as
a poster. It was preceeded by the pre-print:

Automatic Diagnosis of Short-Duration 12-Lead ECG using a Deep Convolutional
Network Antônio H. Ribeiro, Manoel Horta Ribeiro, Gabriela Paixão, Derick Oliveira, Paulo
R. Gomes, Jéssica A. Canazart, Milton Pifano, Wagner Meira Jr., Thomas B. Schön, Antonio
Luiz Ribeiro. 2018. https://arxiv.org/abs/1811.12194

This pre-print was presented as a poster in the peer-reviewed non-archival workshop “Machine Learning
for Health (ML4H)” at NeurIPS 2018, where it received a travel award. Earlier versions were also presented
at the Brasilian Congress of Cardiology in 2018 and in the Brasilian Congress of Informatics in Health in
2018.

The outline of the chapter is the following: we present our findings in Section 8.1, which are then
discussed in Section 8.2. The architecture choice, data colection and statistical analysis are detailed in
Section 8.3.

8.1 Results

8.1.1 Model specification and training

We collected a dataset consisting of 2,322,513 ECG records from 1,676,384 different patients of 811
counties in the state of Minas Gerais/Brazil from the Telehealth Network of Minas Gerais (TNMG) (Alkmim
et al., 2012). The dataset characteristics are summarized in Table 8.1. The acquisition and annotation
procedures of this dataset are described in Methods. We split this dataset into a training set and a
validation set. The training set contains 98% of the data. The validation set consists of the remaining 2%
(~50,000 exams) of the dataset and it was used for hyperparameter tuning.

We train a DNN to detect: 1st degree AV block (1dAVb), right bundle branch block (RBBB),
left bundle branch block (LBBB), sinus bradycardia (SB), atrial fibrillation (AF) and sinus tachycardia
(ST). These 6 abnormalities are displayed in Figure 8.1.

Chapter 8. Automatic diagnosis of the 12-Lead ECG using a deep neural network 132

Abnormality Train+Val (n = 2,322,513) Test (n = 827)
1dAVb 35,759 (1.5 %) 28 (3.4 %)
RBBB 63,528 (2.7%) 34 (4.1 %)
LBBB 39,842 (1.7%) 30 (3.6 %)
SB 37,949 (1.6%) 16 (1.9 %)
AF 41,862 (1.8%) 13 (1.6 %)
ST 49,872 (2.1%) 36 (4.4 %)

Age group
16-25 155,531 (6.7 %) 43 (5.2 %)
26-40 406,239 (17.5 %) 122 (14.8 %)
41-60 901.456 (38.8 %) 340 (41.1 %)
61-80 729,300 (31.4 %) 278 (33.6 %)
≥81 129,987 (5.6 %) 44 (5.3 %)
Sex
Male 922,780 (39.7 %) 321 (38.8 %)
Female 1,399,733 (60.3 %) 506 (61.2 %)

Table 8.1 – (Dataset summary) Patient characteristcs and abnormalities prevalence, n (%).

Figure 8.1 – (Abnormalities examples) A list of all the abnormalities the model classifies. We show
only 3 representative leads (DII, V1 and V6).

We used a DNN architecture known as the residual network (He et al., 2016a), commonly used for
images, which we here have adapted to unidimensional signals. A similar architecture has been successfully
employed for detecting abnormalities in single-lead ECG signals (Hannun et al., 2019). Furthermore, in
the 2017 Physionet challenge (Clifford et al., 2017), algorithms for detecting AF have been compared in
an open dataset of single lead ECGs and, both the architecture described in (Hannun et al., 2019) and
other convolutional architectures (Hong et al., 2017; Kamaleswaran et al., 2018) have achieved top scores.

The DNN parameters were learned using the training dataset and our design choices were made
in order to maximize the performance on the validation dataset. We should highlight that, despite using a
significantly larger training dataset, we got the best validation results with an architecture with, roughly,
one quarter the number of layers and parameters of the network employed in (Hannun et al., 2019).

Chapter 8. Automatic diagnosis of the 12-Lead ECG using a deep neural network 133

Precision (PPV) Recall (Sensitivity) Specificity F1 Score
DNN cardio. emerg. stud. DNN cardio. emerg. stud. DNN cardio. emerg. stud. DNN cardio. emerg. stud.

1dAVb 0.867 0.905 0.639 0.605 0.929 0.679 0.821 0.929 0.995 0.997 0.984 0.979 0.897 0.776 0.719 0.732
RBBB 0.895 0.868 0.963 0.914 1.000 0.971 0.765 0.941 0.995 0.994 0.999 0.996 0.944 0.917 0.852 0.928
LBBB 1.000 1.000 0.963 0.931 1.000 0.900 0.867 0.900 1.000 1.000 0.999 0.997 1.000 0.947 0.912 0.915
SB 0.833 0.833 0.824 0.750 0.938 0.938 0.875 0.750 0.996 0.996 0.996 0.995 0.882 0.882 0.848 0.750
AF 1.000 0.769 0.800 0.571 0.769 0.769 0.615 0.923 1.000 0.996 0.998 0.989 0.870 0.769 0.696 0.706
ST 0.947 0.968 0.946 0.912 0.973 0.811 0.946 0.838 0.997 0.999 0.997 0.996 0.960 0.882 0.946 0.873

Table 8.2 – (Performance indexes) Scores of our DNN are compared on the test set with the average
performance of: i) 4th year cardiology resident (cardio.); ii) 3rd year emergency resident
(emerg.); and, iii) 5th year medical students (stud.). (PPV = positive predictive value)

8.1.2 Testing and perfomance evaluation

For testing the model we employed a dataset consisting of 827 tracings from distinct patients
annotated by 3 different cardiologists with experience in electrocardiography (see Methods). The test
dataset characteristics are summarized in Table 8.1. Table 8.2 shows the performance of the DNN on
the test set. High-performance measures were obtained for all ECG abnormalities, with F1 scores above
80% and specificity indexes over 99%. We consider our model to have predicted the abnormality when its
output — a number between 0 and 1 — is above a threshold. Figure 8.2 shows the precision-recall curve
for our model, for different values of this threshold.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 (P
PV

)

DNN
cardio.
emerg.
stud.

(a) 1dAVb

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

(b) RBBB

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

(c) LBBB

0.0 0.2 0.4 0.6 0.8 1.0
Recall (Sensitivity)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 (P
PV

)

(d) SB

0.0 0.2 0.4 0.6 0.8 1.0
Recall (Sensitivity)

0.0

0.2

0.4

0.6

0.8

1.0

(e) AF

0.0 0.2 0.4 0.6 0.8 1.0
Recall (Sensitivity)

0.0

0.2

0.4

0.6

0.8

1.0

(f) ST

Figure 8.2 – (Precision-recall curve) Show precision-recall curve for our nominal prediction model on
the test set (strong line) with regard to each ECG abnormalities. The shaded region show the
range between maximum and minimum precision for neural networks trained with the same
configuration and different initialization. Points corresponding the performance of resident
medical doctors and students are also displayed, together with the point corresponding to
the DNN performance for the same threshold used for generating Table 8.2. Gray dashed
curves in the background correspond to iso-F1 curves (i.e. curves in the precision-recall plane
with constant F1 score).

Neural networks are initialized randomly, and different initialization usually yield different results.
In order to show the stability of the method, we have trained 10 neural networks with the same set of

Chapter 8. Automatic diagnosis of the 12-Lead ECG using a deep neural network 134

DNN cardio. emerg. stud.
meas. noise unexplain. meas. noise concep. atte. meas. noise concep. atte. meas. noise concep. atte.

1dAVb 3 2 1 8 3 15 3 13 3 3
RBBB 3 1 4 2 1 8 3 2
LBBB 1 1 1 1 4 2 3
SB 4 4 4 1 5 2 1
AF 2 1 4 2 2 5 3 7
ST 2 1 2 1 5 1 1 1 1 1 2 1 5

Table 8.3 – (Error analysis) Present the analysis of misclassified exams. The errors were classified into
the following categories: i) measurements errors (meas.) were ECG interval measurements
preclude the given diagnosis by its textbook definition ; ii) errors due to noise, were we believe
that the analyst or the DNN failed due to a lower than usual signal quality; and, iii) other
type of errors (unexplain.). Those were further divided, for the medical residents and students,
into two categories: conceptual errors (concep.), where our reviewer suggested that the doctor
failed to understand the definitions of each abnormality, and attention errors (atte.), where
we believe the error could be avoided if the reviewer had been more careful.

hyperparameters and different initializations. The range between the maximum and minimum precision
among these realizations, for different values of thereshold, are the shaded regions displayed in Figure 8.2.
These realizations have micro average precision (mAP) between 0.946 and 0.961, we choose the one with
mAP imediatly above the median value of all executions (the one with mAP = 0.951)1. All the analysis
from now on will be for this realization of the neural network, which correspond both to the strong
line in Figure 8.2 and to the scores presented in Table 8.2. For this model, Figure 8.2 shows the point
corresponding to the maximum F1 score for each abnormality. The threshold corresponding to this point
is used for producing the DNN scores displayed in Table 8.2.

The same dataset was evaluated by: i) two 4th year cardiology residents; ii) two 3rd year emergency
residents; and, iii) two 5th year medical students. Each one annotated half of the exams in the test set.
Their average performances are given, together with the DNN results, in the Table 8.2 and their precision-
recall scores are plotted on Figure 8.2. Considering the F1 score, the DNN matches or outperforms the
medical residents and students for all abnormalities. The confusion matrices and the inter-rater agreement
(kappa coefficients) for the DNN, the resident medical doctors and students are provided, respectively, in
Tables 8.4 and 8.5(a). Additionally, in Table 8.5(b) we compare the inter-rater agreement between the
neural network and the certified cardiologists that annotated the test set.

A trained cardiologist reviewed all the mistakes made by the DNN, the medical residents and the
students, trying to explain the source of the error. The cardiologist had meetings with the residents and
students where they together agreed on which was the source of the error. The results of this analysis are
given in Table 8.3.

In order to compare of the performance difference between the DNN and resident medical doctors
and students, we compute empirical distributions for the precision (PPV), recall (sensitivity), specificity
and F1 score using bootstraping (Efron and Tibshirani, 1994). The boxplots corresponding to these
bootstrapped distributions are presented in Figure 8.3. We have also applied the McNemar test (McNemar,
1947) to compare the misclassification distribution of the DNN, the medical residents and the students.
Table 8.6 show the p-values of the statistical test. Both analyses do not indicate a statistically significant
difference in performance among the DNN and the medical residents and students for most of the classes.
1 We couldn’t choose the model with mAP equal to the median value because 10 is even number, hence there is no single

middle value.

Chapter 8. Automatic diagnosis of the 12-Lead ECG using a deep neural network 135

predicted label
DNN cardio. emerg. stud.

true label not present present not present present not present present not present present
1dAVb not present 795 4 797 2 786 13 782 17

present 2 26 9 19 5 23 2 26
RBBB not present 789 4 788 5 792 1 790 3

present 0 34 1 33 8 26 2 32
LBBB not present 797 0 797 0 796 1 795 2

present 0 30 3 27 4 26 3 27
SB not present 808 3 808 3 808 3 807 4

present 1 15 1 15 2 14 4 12
AF not present 814 0 811 3 812 2 805 9

present 3 10 3 10 5 8 1 12
ST not present 788 2 789 1 788 2 787 3

present 1 36 7 30 2 35 6 31

Table 8.4 – (Confusion matrices) Show the absolute number of: i) false posives; ii) false negatives; iii)
true positives; and, iv) true negatives, for each abnormality on the test set.

1dAVb RBBB LBBB SB AF ST
DNN vs cardio. 0.656 0.917 0.945 0.830 0.780 0.864
DNN vs emerg. 0.684 0.792 0.909 0.796 0.595 0.930
DNN vs stud. 0.642 0.928 0.912 0.760 0.574 0.855

cardio. vs emerg. 0.656 0.824 0.923 0.912 0.515 0.847
cardio. vs stud. 0.612 0.871 0.889 0.880 0.700 0.792
emerg. vs stud. 0.615 0.799 0.852 0.907 0.508 0.897

(a)

1dAVb RBBB LBBB SB AF ST
DNN vs Cert. cardiol. 1 0.758 0.928 0.964 0.770 0.696 0.847
DNN vs Certif. cardiol. 2 0.852 0.942 1.000 0.770 0.746 0.884

Cert. cardiol. 1 vs Certif. cardiol. 2 0.741 0.955 0.964 0.844 0.831 0.902
(b)

Table 8.5 – (Kappa coefficients) Show the Kappa scores measuring the inter-rater agreement on the
test set. In (a), we compare the DNN, the medical residents and the students two at a time.
In (b), we compare the DNN, and the certified cardiologists that annotated the test set
(certif. cardiol.). If the raters are in complete agreement then it is equal to 1. If there is
no agreement among the raters other than what would be expected by chance it is equal to 0.

8.2 Discussion

This work demonstrates the effectiveness of "end-to-end" automatic S12L-ECG classification. This
presents a paradigm shift from the classical ECG automatic analysis methods (Jambukia et al., 2015).
These classical methods, such as the University of Glasgow ECG analysis program (Macfarlane et al.,
2005), first extract the main features of the ECG signal using traditional signal processing techniques
and then use these features as inputs to a classifier. End-to-end learning presents an alternative to these
two-step approaches, where the raw signal itself is used as an input to the classifier which learns, by itself,
to extract the features. This approach have presented, in a emergency room setting, performance superior
to commercial ECG software based on traditional signal processing techniques (Smith et al., 2019)

Neural networks have previously been used for classification of ECGs both in a classical —
feature-based — setup (CUBANSKI et al., 1994; Tripathy et al., 2019) and in an end-to-end learn

Chapter 8. Automatic diagnosis of the 12-Lead ECG using a deep neural network 136

1dAVb RBBB LBBB SB AF ST
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Precision (PPV)

1dAVb RBBB LBBB SB AF ST

0.2

0.4

0.6

0.8

1.0

(b) Recall (Sensitivity)

1dAVb RBBB LBBB SB AF ST

0.96

0.97

0.98

0.99

1.00

(c) Specificity

1dAVb RBBB LBBB SB AF ST
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

DNN
cardio.
emerg.
stud.

(d) F1 score

Figure 8.3 – (Bootstrapped scores) Display boxplots of empirical distribution of precision, recall,
specificity and F1 score on the test set. Sampling with replacement (i.e. bootstrapping) from
the test set was used to generate n = 1000 samples. The results are given for the DNN, the
medical residents and students. Source data are provided as a Source Data file. The boxplots
should be read as follows: the central line correspond to the median value of the empirical
distribution, the box region correspond to the range of values between the first and third
quartile (also knonw as interquartile range or IQR), the whiskers extend from 1.5 IQR below
and above the firsth and third quartiles, values outside of that range are considered outliers
and show as diamonds.

1dAVb RBBB LBBB SB AF ST
DNN vs cardio. 0.225 0.414 0.083 1.000 0.180 0.096
DNN vs emerg. 0.007 0.166 0.025 0.705 0.157 0.655
DNN vs stud. 0.009 0.655 0.025 0.157 0.052 0.058

cardio. vs emerg. 0.108 0.366 0.317 0.564 0.763 0.206
cardio. vs stud. 0.102 0.739 0.414 0.046 0.206 0.782
emerg. vs stud. 0.853 0.248 1.000 0.083 0.439 0.059

Table 8.6 – (McNemar test) Display the p-values for the McNemar test comparing the misclassification
on the test set. The DNN, the medical residents and the students were compared two at a time.
Entries with statistical significance (with 0.05 significance level) are displayed in boldface.

setup (Rubin et al., 2017; Acharya et al., 2017; Hannun et al., 2019). Hybrid methods combining the
two paradigms are also available: the classification may be done using a combination of handcrafted and
learned features (Shashikumar et al., 2018) or by using a two-stage training, obtaining one neural network
to learn the features and another to classify the exam according to these learned features (Rahhal et al.,
2016).

The paradigm shift towards end-to-end learning had a significant impact on the size of the datasets
used for training the models. Many results using classical methods (Jambukia et al., 2015; Acharya et al.,

Chapter 8. Automatic diagnosis of the 12-Lead ECG using a deep neural network 137

2017; Rahhal et al., 2016) train their models on datasets with few examples, such as the MIT-BIH
arrhythmia database (Goldberger et al., 2000), with only 47 unique patients. The most convincing papers
using end-to-end deep learning or mixed approaches, on the other hand, have constructed large datasets,
ranging from 3,000 to 100,000 unique patients, for training their models (Shashikumar et al., 2018; Clifford
et al., 2017; Hannun et al., 2019; Smith et al., 2019).

Large datasets from previous work (Shashikumar et al., 2018; Clifford et al., 2017; Hannun et al.,
2019), however either were obtained from cardiac monitors and Holter exams, where patients are usually
monitored for several hours and the recordings are restricted to one or two leads. Or, consist of 12-lead
ECGs obtained in a emergency room setting (Goto et al., 2019; Smith et al., 2019). Our dataset with well
over 2 million entries, on the other hand, consists of short duration (7 to 10 seconds) S12L-ECG tracings
obtained from in-clinic exams and is orders of magnitude larger than those used in previous studies. It
encompasses not only rhythm disorders, like AF, SB and ST, as in previous studies (Hannun et al., 2019),
but also conduction disturbances, such as 1dAVb, RBBB and LBBB. Instead of beat to beat classification,
as in the MIT-BIH arrhythmia database, our dataset provides annotation for S12L-ECG exams, which
are the most common in clinical practice.

The availability of such a large database of S12L-ECG tracings, with annotation for the whole
spectrum of ECG abnormalities, opens up the possibility of extending initial results of end-to-end DNN
in ECG automatic analysis (Hannun et al., 2019) to a system with applicability in a wide range of clinical
settings. The development of such technologies may yield high-accuracy automatic ECG classification
systems that could save clinicians considerable time and prevent wrong diagnoses. Millions of S12L-ECGs
are performed every year, many times in places where there is a shortage of qualified medical doctors to
interpret them. An accurate classification system could help to detect wrong diagnoses and improve the
access of patients from deprived and remote locations to this essential diagnostic tool of cardiovascular
diseases.

The error analysis shows that most of the DNN mistakes were related to measurements of ECG
intervals. Most of those were borderline cases, where the diagnosis relies on a consensus definitions
(Rautaharju et al., 2009) that can only be ascertained when a measurement is above a sharp cutoff point.
The mistakes can be explained by the DNN failing to encode these very sharp thresholds. For example, the
DNN wrongly detecting a SB with a heart rate slightly above 50 bpm or a ST with a heart rate slightly
below 100 bpm. Figure 8.4 illustrate this effect. Noise and interference in the baseline are established
causes of error (Luo and Johnston, 2010) and affected both automatic and manual diagnosis of ECG
abnormalities. Nevertheless, the DNN seems to be more robust to noise and it made fewer mistakes of this
type compared to the medical residents and students. Conceptual errors (where our reviewer suggested
that the doctor failed to understand the definitions of each abnormality) were more frequent for emergency
residents and medical students than for cardiology residents. Attention errors (where we believe that the
error could have been avoided if the manual reviewer were more careful) were present at a similar ratio
for cardiology residents, emergency residents and medical students.

Interestingly, the performance of the emergency residents is worse than medical students for many
abnormalities. This might seem counter-intuitive because they do have less years of medical training. It
might, however, be justified by the fact that emergency residents, unlike cardiology residents, do not have
to interpret these exams on a daily basis, while medical students still have these concepts fresh from their
studies.

Our work is perhaps best understood in the context of its limitations. While we obtained the
highest F1 scores for the DNN, the McNemar statistical test and bootstrapping suggest that we do not
have confidence enough to assert that the DNN is actually better than the medical residents and students

Chapter 8. Automatic diagnosis of the 12-Lead ECG using a deep neural network 138

False True
SB

0

25

50

75

100

125

150

175

200

he
ar

t r
at

e

correct prediction
False
True

(a)

False True
ST

0

25

50

75

100

125

150

175

200

he
ar

t r
at

e

correct prediction
False
True

(b)

Figure 8.4 – (Heart rate vs DNN predictions) Heart rate measured by the Uni-G software for samples
in the test set is given on the y-axis. The color indicates if the DNN make the correct prediction
or not. The x-axis separates the dataset accordingly to the presence of: SB in (a); and, ST in
(b). A horizontal line show the threshold of 50 bpm for SB in (a); and, of 100 bpm for ST in
(b), which delimit the consensus definition of SB and ST. Notice that most exams for which
the neural network fails to get the correct result are very close to this threshold line and
are the borderline cases we mentioned in the discussion. It should be highlighted that this
automatic measurement system is not perfect, and measurements that may indicate some of
the conditions do not necessarily agree with our board of cardiologist (e.g. there are exams
with heart rate above 100 acording to Uni-G that are not classified by our cardiologist as
ST).

with statistical significance. We attribute this lack of confidence in the comparison to the presence of
relatively infrequent classes, where a few erroneous classifications may significantly affect the scores.
Furthermore, we did not test the accuracy of the DNN in the diagnosis of other classes of abnormalities,
like those related to acute coronary syndromes or cardiac chamber enlargements and we cannot extend
our results to these untested clinical situations. Indeed, the real clinical setting is more complex than the
experimental situation tested in this study and, in complex and borderline situations, ECG interpretation
can be extremely difficult and may demand the input of highly specialized personnel. Thus, even if a DNN
is able to recognize typical ECG abnormalities, further analysis by an experienced specialist will continue
to be necessary to these complex exams.

This proof-of-concept study, showing that a DNN can accurately recognize ECG rhythm and
morphological abnormalities in clinical S12L-ECG exams, opens a series of perspectives for future research
and clinical applications. A next step would be to prove that a DNN can effectively diagnose multiple
and complex ECG abnormalities, including myocardial infarction, cardiac chamber enlargement and
hypertrophy and less common forms of arrhythmia, and to recognize a normal ECG. Subsequently, the
algorithm should be tested in a controlled real-life situation, showing that accurate diagnosis could be
achieved in real-time, to be reviewed by clinical specialists with solid experience in ECG diagnosis. This
real-time, continuous evaluation of the algorithm, would provide rapid feedback that could be incorporated
as further improvements of the DNN, making it even more reliable.

The TNMG, the large telehealth service from which the dataset used was obtained (Alkmim
et al., 2012), is a natural laboratory for these next steps, since it performs more than 2,000 ECGs a
day and it is currently expanding its geographical coverage over a large part of a continental country
(Brazil). An optimized system for ECG interpretation, where most of the classification decisions are made

Chapter 8. Automatic diagnosis of the 12-Lead ECG using a deep neural network 139

automatically would imply that the cardiologists would only be needed for the more complex cases. If
such a system is made widely available, it could be of striking utility to improve access to health care
in low and middle-income countries, where cardiovascular diseases are the leading cause of death and
systems of care for cardiac diseases are lacking or not working well (Nascimento et al., 2019).

In conclusion, we developed an end-to-end DNN capable of accurately recognizing six ECG
abnormalities in S12L-ECG exams, with a diagnostic performance at least as good as medical residents
and students. This study shows the potential of this technology, which, when fully developed, might lead
to more reliable automatic diagnosis and improved clinical practice. Although expert review of complex
and borderline cases seems to be necessary even in this future scenario, the development of such automatic
interpretation by a DNN algorithm may expand the access of the population to this basic and useful
diagnostic exam.

8.3 Methods

8.3.1 Dataset acquisition

All S12L-ECGs analyzed in this study were obtained by the Telehealth Network of Minas Gerais
(TNMG), a public telehealth system assisting 811 out of the 853 municipalities in the state of Minas
Gerais, Brazil (Alkmim et al., 2012). Since September 2017, the TNMG has also provided telediagnostic
services to other Brazilian states in the Amazonian and Northeast regions. The S12L-ECG exam was
performed mostly in primary care facilities using a tele-electrocardiograph manufactured by Tecnologia
Eletrônica Brasileira (São Paulo, Brazil) – model TEB ECGPC - or Micromed Biotecnologia (Brasilia,
Brazil) - model ErgoPC 13. The duration of the ECG recordings is between 7 and 10 seconds sampled at
frequencies ranging from 300 to 600 Hz. A specific software developed in-house was used to capture ECG
tracings, to upload the exam together with the patient’s clinical history and to send it electronically to the
TNMG analysis center. Once there, one cardiologist from the TNMG experienced team analyzes the exam
and a report is made available to the health service that requested the exam through an online platform.

We have incorporated the University of Glasgow (Uni-G) ECG analysis program (release 28.5,
issued in January 2014) in the in-house software since December 2017. The analysis program was used
to automatically identify waves and to calculate axes, durations, amplitudes and intervals, to perform
rhythm analysis and to give diagnostic interpretation (Macfarlane et al., 1990, 2005). The Uni-G analysis
program also provides Minnesota codes (Macfarlane and Latif, 1996), a standard ECG classification used
in epidemiological studies (Prineas et al., 2009). Since April 2018 the automatic measurements are being
shown to the cardiologists that give the medical report. All clinical information, digital ECGs tracings
and the cardiologist report were stored in a database. All previously stored data was also analyzed by
Uni-G software in order to have measurements and automatic diagnosis for all exams available in the
database, since the first recordings. The CODE study was established to standardize and consolidate this
database for clinical and epidemiological studies. In the present study, the data (for patients above 16
years old) obtained between 2010 and 2016 was used in the training and validation set and, from April to
September 2018, in the test set.

8.3.2 Labelling training data from text report

For the training and validation sets, the cardiologist report is available only as a textual description
of the abnormalities in the exam. We extract the label from this textual report using a three-step procedure.
First, the text is pre-processed by removing stop-words and generating n-grams from the medical report.
Then, the Lazy Associative Classifier (LAC) (Veloso et al., 2006), trained on a 2800-sample dictionary

Chapter 8. Automatic diagnosis of the 12-Lead ECG using a deep neural network 140

created from real diagnoses text reports, is applied to the n-grams. Finally, the text label is obtained using
the LAC result in a rule-based classifier for class disambiguation. The classification model reported above
was tested on 4557 medical reports manually labeled by a certified cardiologist who was presented with
the free-text and was required to choose among the pre-specified classes. The classification step recovered
the true medical label with good results, the macro F1 score achieved were: 0.729 for 1dAVb; 0.849 for
RBBB; 0.838 for LBBB; 0.991 for SB; 0.993 for AF; 0.974 for ST.

8.3.3 Training and validation set annotation

To annotate the training and validation datasets, we used: i) the Uni-G statements and Minnesota
codes obtained by the Uni-G automatic analysis (automatic diagnosis); ii) automatic measurements
provided by the Uni-G software; and, iii) the text labels extracted from the expert text reports using
the semi-supervised methodology (medical diagnosis). Both the automatic and medical diagnosis are
subject to errors: automatic classification has limited accuracy (Willems et al., 1991; Shah and Rubin,
Oct; Schläpfer and Wellens, 2017; Estes, 2013) and text labels are subject both to errors of the practicing
expert cardiologists and the labeling methodology. Hence, we combine the expert annotation with the
automatic analysis to improve the quality of the dataset. The following procedure is used for obtaining
the ground truth annotation:

1. We:

a) Accept a diagnosis (consider an abnormality to be present) if both the expert and either the
Uni-G statement or the Minnesota code provided by the automatic analysis indicated the same
abnormality.

b) Reject a diagnosis (consider an abnormality to be absent) if only one automatic classifier
indicates the abnormality in disagreement with both the doctor and the other automatic
classifier.

After this initial step, there are two scenarios where we still need to accept or reject diagnoses.
They are: i) both classifiers indicate the abnormality, but the expert does not; or ii) only the expert
indicates the abnormality, whereas none of the classifiers indicates anything.

2. We used the following rules to reject some of the remaining diagnoses:

a) Diagnoses of ST where the heart rate was below 100 (8376 medical diagnoses and 2 automatic
diagnoses) were rejected.

b) Diagnoses of SB where the heart rate was above 50 (7361 medical diagnoses and 16427 automatic
diagnosis) were rejected.

c) Diagnoses of LBBB or RBBB where the duration of the QRS interval was below 115 ms (9313
medical diagnoses for RBBB and 8260 for LBBB) were rejected.

d) Diagnoses of 1dAVb where the duration of the PR interval was below 190 ms (3987 automatic
diagnoses) were rejected.

3. Then, using the sensitivity analysis of 100 manually reviewed exams per abnormality, we came up
with the following rules to accept some of the remaining diagnoses:

a) For RBBB, d1AVb, SB and ST, we accepted all medical diagnoses. 26033, 13645, 12200 and
14604 diagnoses were accepted in this fashion, respectively.

Chapter 8. Automatic diagnosis of the 12-Lead ECG using a deep neural network 141

b) For AF, we required not only that the exam was classified by the doctors as true, but also that
the standard deviation of the NN intervals was higher than 646. 14604 diagnoses were accepted
using this rule.

According to the sensitivity analysis, the number of false positives that would be introduced by this
procedure was smaller than 3% of the total number of exams.

4. After this process, we were still left with 34512 exams where the corresponding diagnoses could
neither be accepted nor rejected. These were manually reviewed by medical students using the
Telehealth ECG diagnostic system, under the supervision of a certified cardiologist with experience
in ECG interpretation. The process of manually reviewing these ECGs took several months.

It should be stressed that information from previous medical reports and automatic measurements
were used only for obtaining the ground truth for training and validation sets and not on later stages of
the DNN training.

8.3.4 Test set annotation

The dataset used for testing the DNN was also obtained from TNMG’s ECG system. It was
independently annotated by two certified cardiologists with experience in electrocardiography. The kappa
coefficients (Cohen, 1960) indicate the inter-rater agreement for the two cardiologist and are: 0.741 for
1dAVb; 0.955 for RBBB; 0.964 for LBBB; 0.844 for SB; 0.831 for AF; 0.902 for ST. When they agreed,
the common diagnosis was considered as ground truth. In cases where there was any disagreement, a third
senior specialist, aware of the annotations from the other two, decided the diagnosis. The American Heart
Association standardization (Kligfield et al., 2007) was used as the guideline for the classification.

It should be highlighted that the annotation was performed in an upgraded version of the TNMG
software, in which the automatic measurements obtained by the Uni-G program are presented to the
specialist, that has to choose the ECG diagnosis among a number of pre-specified classes of abnormalities.
Thus, the diagnosis was codified directly into our classes and there was no need to extract the label from
a textual report, as it was done for the training and validation sets.

8.3.5 Neural network architecture and training

We used a convolutional neural network similar to the residual network (He et al., 2016a), but
adapted to unidimensional signals. This architecture allows deep neural networks to be efficiently trained
by including skip connections. We have adopted the modification in the residual block proposed in (He
et al., 2016b), which place the skip connection in the position displayed in Figure 8.5.

Figure 8.5 – (DNN architecture) The uni-dimensional residual neural network architecture used for
ECG classification.

Chapter 8. Automatic diagnosis of the 12-Lead ECG using a deep neural network 142

All ECG recordings are re-sampled to a 400 Hz sampling rate. The ECG recordings, which have
between 7 and 10 seconds, are zero-padded resulting in a signal with 4096 samples for each lead. This
signal is the input for the neural network.

The network consists of a convolutional layer (Conv) followed by 4 residual blocks with two
convolutional layers per block. The output of the last block is fed into a fully connected layer (Dense)
with a sigmoid activation function, σ, which was used because the classes are not mutually exclusive (i.e.
two or more classes may occur in the same exam). The output of each convolutional layer is rescaled using
batch normalization, (BN), (Ioffe and Szegedy, 2015) and fed into a rectified linear activation unit (ReLU).
Dropout (Srivastava et al., 2014) is applied after the nonlinearity.

The convolutional layers have filter length 16, starting with 4096 samples and 64 filters for the
first layer and residual block and increasing the number of filters by 64 every second residual block and
subsampling by a factor of 4 every residual block. Max Pooling (Hutchison et al., 2010) and convolutional
layers with filter length 1 (1x1 Conv) are included in the skip connections to make the dimensions match
those from the signals in the main branch.

The average cross-entropy is minimized using the Adam optimizer (Kingma and Ba, 2014) with
default parameters and learning rate lr = 0.001. The learning rate is reduced by a factor of 10 whenever
the validation loss does not present any improvement for 7 consecutive epochs. The neural network weights
was initialized as in (He et al., 2015) and the bias were initialized with zeros. The training runs for 50
epochs with the final model being the one with the best validation results during the optimization process.

8.3.6 Hyperparameter tuning

This final architecture and configuration of hyperparameters was obtained after approximately 30
iterations of the procedure: i) find the neural network weights in the training set; ii) check the performance
in the validation set; and, iii) manually chose new hyperparameters and architecture using insight
from previous iterations. We started this procedure from the set of hyperparameters and architecture
used in (Hannun et al., 2019). It is also important to highlight that the choice of architecture and
hyperparameters was done together with improvements in the dataset. Expert knowledge was used to
take decision about how to incorporate, on the manual tuning procedure , information about previous
iteration that were evaluated on slightly different versions of the dataset.

The hyperparameters were choosen among the following options: residual neural networks
with {2, 4, 8, 16} residual blocks, kernel size {8, 16, 32}, batch size {16, 32, 64}, initial learning rate
{0.01, 0.001, 0.0001}, optimization algorithms {SGD, ADAM}, activation functions {ReLU, ELU}, dropout
rate {0, 0.5, 0.8}, number of epochs without improvement in plateus between 5 and 10, that would result in
a reduction in the learning rate between 0.1 and 0.5. Besides that, we also tried to: i) use vectorcardiogram
linear transformation to reduce the dimensionality of the input; ii) include LSTM layer before convolutional
layers; iii) use residual network without the preactivation architecture proposed in (He et al., 2016b);
iv) Use the convolutional architecture known as VGG; v) swiching the order of activation and batch
normalization layer.

8.3.7 Statistical and empirical analysis of test results

We computed the precision-recall curve to assess the model discrimination of each rhythm class.
This curve shows the relationship between precision (PPV) and recall (sensitivity), calculated using binary
decision thresholds for each rhythm class. For imbalanced classes, such as our test set, this plot is more
informative than the ROC plot (Saito and Rehmsmeier, 2015). For the remaining analyses we fixed the
DNN threshold to the value that maximized the F1 score, which is the harmonic mean between precision

Chapter 8. Automatic diagnosis of the 12-Lead ECG using a deep neural network 143

and recall. The F1 score was chosen here due to its robustness to class imbalance (Saito and Rehmsmeier,
2015).

For the DNN with a fixed threshold, and for the medical residents and students, we computed
the precision, the recall, the specificity, the F1 score and, also, the confusion matrix. This was done for
each class. Bootstrapping (Efron and Tibshirani, 1994) was used to analyze the empirical distribution of
each of the scores: we generated 1000 different sets by sampling with replacement from the test set, each
set with the same number samples as in the test set, and computed the precision, the recall, the specificity
and the F1 score for each. The resulting distributions are presented as a boxplot. We used the McNemar
test (McNemar, 1947) to compare the misclassification distribution of the DNN and the medical residents
and students on the test set and the kappa coefficient (Cohen, 1960) to compare the inter-rater agreement.

All the misclassified exams were reviewed by an experienced cardiologist and, after an interview
with the ECG reviewers, the errors were classified into: measurement errors, noise errors and unexplained
errors (for the DNN only) and conceptual and attention errors (for medical residents and students only).

Data availability

The test dataset used in this study is openly available, and can be downloaded at
https://doi.org/10.5281/zenodo.3625006. The weights of all deep neural network models we developed
for this work are available at https://doi.org/10.5281/zenodo.3625017. Restrictions apply to the
availability of the training set. Requests to access the training data will be considered on an individual
basis by the Telehealth Network of Minas Gerais.

Code availability

The code for training and evaluating the DNN model, and, also, for generating figures and tables
in this work, is available at: https://github.com/antonior92/automatic-ecg-diagnosis.

Research ethics statement

This study complies with with all relevant ethical regulations and was approved by the Research
Ethics Committee of the Universidade Federal de Minas Gerais, protocol 49368496317.7.0000.5149. Since
this is a study with secondary data, informed consent was not required by the Research Ethics Committee.

144

Conclusion

The enormous success deep learning had in the last decade in solving hard problems generates
interest in applying it to the most diverse areas. Exciting new findings might come out of the interplay
between deep learning, signal processing, control theory, and system identification. Pitfalls, however,
must be avoided so all the fields might benefit the most from the cross-fertilization. On the one hand,
it is fundamental not to let the eagerness and excitement with deep neural networks result in naive
one-size-fits-all solutions that ignore previous theory and knowledge. On the other hand, the wariness
of researches from other communities concerning deep learning might not get in the way of trying to
understand it from different perspectives and apply it to the most diverse application.

In this work, we hope not only to have avoided these pitfalls but also provided knowledge for
helping others to avoid them as well. Translating deep learning concepts into familiar concepts from signal
processing and system identification is an important step toward the dissemination of these ideas into
these communities. We tried to do that to some extent, for instance in Section 2.3 and Chapter 7. On
the other hand, systems, control, and signal processing theories are very rich. They can be quite useful
in trying to better understand ideas that have arisen in deep learning applications. One example is the
content of Chapter 6, which explores concepts from system theory to help better understand recurrent
neural networks.

Table 1.1 summarize the design choices we made during the implementations of the numerical
examples. The tradeoffs involved are extensively discussed in Section 1.3. Chapters 6 and 8 deal with large
models, large datasets or both. The choices we take are the default for deep learning applications (Good-
fellow et al., 2016) and are appropriate for the type of problems and models this community is interested
in. Chapters 4 and 5, on the other hand, are focused on smaller problems and make choices that are
common for system identification practitioners. In Chapter 7, we use choices that are default in the deep
learning community in system identification benchmarks. We believe this diversity of design choices is one
of the strong points of this work and shows that the findings in this thesis translate well into different
domains of knowledge.

We dedicate a significant portion of this thesis to analyze the advantages of recurrence in models
and also its limitations. Despite of that, we are far from a simple and definitive answer to the questions:
“should I use a recurrent or feedforward models? One-step-ahead or free-run simulation minimization?
Parallel or series-parallel configurations?” All of which reflect different angles on the same problem.
Nevertheless, we provide insight into various aspects that should be taken into consideration.

On the one hand, recurrent models offer a richer representation, which might yield better
asymptotic properties in the presence of noise (cf. Section 3.2 and Chapter 4) and more flexibility when
learning attractors of a dynamical system (see Chapter 6). On the other hand, feedforward models are
easier to parallelize and yield more stable training since its objective function has better smoothness
properties, as studied in Chapters 5 and 6. Mixed approaches combining advantages of feedforward and
recurrent models are also possible, and the multiple shooting method presented in Chapter 5 is one
example of such an approach. Mixed approaches also introduce new challenges; for instance, when using
multiple shooting, we have to deal with extra dimensions and constraints in the optimization.

Conclusion 145

Better techniques for modeling signals, systems, and sequences can yield huge technological gains.
Be by better diagnosing diseases from biomedical signals by allowing computers to better understand
and generate language; or, by making current engineering technology for aviation, communication, and
industry more precise and efficient, unlocking a wide new range of possibilities. We believe nonlinear
differentiable models are a powerfull tool, and we hope to have shown some of the strengths of such models
and addressed some of the challenges for their usage.

Appendix

147

APPENDIX A – Sequential quadratic programming
solver

This appendix describe the implementation of the solver described in (Lalee et al., 1998). The
algorithm was implemented in Python (together with an extension by Byrd et al. (1999) that allows
the inclusion of inequality constraints) as part of my Google Summer of Code project and have been
integrated to SciPy as scipy.optimize.minimize(..., method=‘trust-constr’).

The method is able to solve large equality-constrained nonlinear programming problems:

min
θ
V (θ), (A.1)

subject to c(θ) = 0,

where V : Rn → R and c: Rn → Rm are twice continuously differentiable functions.

The algorithm solves a sequence of Taylor approximations in order to gradually converge towards
a local solution of (A.1). At the k-th interation, the algorithm builds a local model around the current
interate θk, computes the update pk by solving the resulting quadratic programing problem and them
update the solution
(θk+1 = θk + pk).

At each interation the algorithm computes ∆k, which should reflects the trust the algorithm has
on the local approximation, and them imposes that the step size respect ‖pk‖ < ∆k. Hence, if the current
local approximation is not a good one, the methods does not allow a very large step to be taken. Methods
that use this strategy are known as trust-region methods (Conn et al., 2000).

Quadratic programming subproblem

At the k-th iteration this method would solve the following trust-region quadratic programming
(QP) subproblem in order to compute the step update pk:

min
p

∇V (θk)Tp + 1
2pT∇2

xxL(θk,λk)Tp, (A.2)

subject to: J(θk)p + c(θk) = 0;

‖p‖ ≤ ∆k,

where ∇V (θk)T is the function gradient, ∇2
xxL(θk,λk)T is the Hessian (in relation to the variable θ) of

the Lagrangian1, c(θk) is the constraint and J(θk) is the Jacobian of the constraint. Besides that, θk is
the current iterate and λk is the current approximation of lagrange multipliers.

This problem may not be feasible since the linear constraints J(θk)p + c(θk) = 0 may not be
compatible with the trust-region constraint ‖p‖ ≤ ∆k. Nocedal and Wright book comments on how to
appropriately deal with this incompatibility:

To resolve the possible conflict between the linear constraints and the trust-region constraints, it is
not appropriate simply to increase the trust-region until the step satisfying the linear constraints intersects
the trust region. This approach would defeat the purpose of using the trust region in the first place as a
1 The Lagrangian is given by: L(θk,λk) = V (θk) + λTk c(θk).

APPENDIX A. Sequential quadratic programming solver 148

way to define a region within which we trust the model to accurately reflect the behavior of the objective
and constraint functions. Analytically, it would harm the convergence properties of the algorithm.

A more appropriate viewpoint is that there is no reason to satisfy the linearized constraints exactly
at every step; rather, we should aim to improve the feasibility of these constraints at each step and to
satisfy them exactly only if the trust-region constraint permits it. (Nocedal and Wright, 2006)

The implemented algorithm approach solves, rather than (A.2), the subproblem:

min
p

∇V (θk)Tp + 1
2pT∇2

xxL(θk,λk)p, (A.3)

subject to J(θk)p + c(θk) = rk;

‖p‖ ≤ ∆k,

where rk is adjusted such that the constraints are always compatible. This problem is solved in a two
steps procedure:

1. First it solves:

min
v

‖J(θk)v + c(θk)‖2, (A.4)

subject to ‖v‖ ≤ η∆k, (A.5)

for 0 < η < 1 (In our implementation η = 0.8 is being used). And then defines rk as:

rk = J(θk)vk + c(θk). (A.6)

Where vk is the solution of (A.4). Note that for this choice of rk the linear constraints J(θk)p + c(θk) = rk
are always compatible with trust-region constraints ‖p‖ ≤ ∆k.

2. Next it solves (A.3) for the value of rk computed at the last step.

Both substeps are solved in rather economical fashion using efficient methods to get an inexact
solution to each of the subproblems. The first step is solved using a variation of the dogleg procedure
(described in (Byrd et al., 1999), p.886) and the second step using the projected conjugate gradient (CG)
algorithm (Gould et al., 2001).

Implementation details

There are a few points about this algorithm that deserve some attention. The first of them is
that while the solution of the trust-region QP subproblem doesn’t gives a way of calculating the Lagrange
multipliers λk, these Lagrange multipliers are still needed in order to compute ∇2

xxL(θk,λk).

An approximation of the Lagrange multipliers is obtained by solving the least squares problem:

min
λ
‖∇xL(θk,λk)‖2 ⇒ min

λ
‖∇V (θk) + J(θk)λ‖2. (A.7)

Another important element of the algorithm is the merit function:

φ(θ;µ) = V (θ) + µ‖c(θ)‖. (A.8)

It combines the constraints and the objective function into a single number that can be used to compare
two points and to reject or accept a given step. The penalty parameter µ is usually update through the
iterations and it is important for the global convergence of the algorithm it to be monotonically increasing.
Some guidelines about how to choose it are provided on (Byrd et al., 1999), p.891.

APPENDIX A. Sequential quadratic programming solver 149

The trust region radius selection and the step rejection mechanism are both based on the ratio
ρk. This ratio measures the agreement between the model and the obtained results. It is computed as:

ρk = actual reduction
predicted reduction , (A.9)

where:
actual reduction = φ(θk;µ)− φ(θk + pk;µ), (A.10)

is the reduction on the merit function. And:

predicted reduction = qµ(0)− qµ(pk), (A.11)

is the reduction of the local model:

qµ(p) = ∇V (θk)T p+ 1
2p

T∇2
xxL(θk,λk)p+ µ‖c(θk) + J(θk)p‖. (A.12)

Algorithm overview

The trust-region sequential quadratic programming (SQP) basic steps for a single iteration are
summarized next.

Algorithm A.1 (Trust-region SQP). At each interation, until some stop criteria is met (e.g.
‖∇xL(θk,λk)‖∞ < 10−8), repeat:

1. Compute V (θk), ∇V (θk), c(θk) and J(θk);

2. Compute least squares Lagrange multipliers λk;

3. Compute ∇2
xxL(θk,λk);

4. Apply dogleg method in order to compute vk and rk (such that the resulting problem is feasible);

5. Compute pk using the projected CG method;

6. Choose penalty parameter µk;

7. Compute reduction ratio ρk;

8. Accept or reject step pk depending on reduction ratio ρk;

9. Enlarge or reduce trust-radius depending on reduction ratio ρk;

150

APPENDIX B – Proofs

Theorem 6.2 is a slightly more general version of Theorem 5.1. The consequences of this theorem
are extensively studied in Chapters 5 and 6. Its proof is provided next

Notation and setup

We use the same notation sued in Section 6.2. Let the Jacobian matrices of f(x,u;θ) with
respect to x and to θ evaluated at the point (xt,ut;θ) be denoted, respectively, as At and Bt. Similarly,
the Jacobian matrices of g(x,ut;θ) are denoted as Ct and Ft. A direct application of the chain rule
to (6.2) gives a recursive formula for computing the derivatives of the predicted output in relation to the
parameters in the interval 1 ≤ t ≤ N :

Dt+1 = AtDt +Bt for D0 = 0,

Jt = CtDt + Ft, (B.1)

where we denote the Jacobian matrices of ŷt and xt with respect to θ respectively as Jt and Dt.

For the cost function V defined as in (6.1), its gradient ∇V is given by:

∇V = 1
N

N∑
t=1

Jt l
′(ŷt,yt), (B.2)

where l′(ŷt,yt) denotes the gradient of the loss function regarding its first argument, evaluated at (ŷt,yt).

Preliminary results

Lemma B.1. For i = 1, · · · , n, let fi be a Lipschitz function on Ω with constants Li. Then,

1.
∑n
i=1 fi is also a Lipschitz function on Ω with Lipschitz constant upper bounded by

∑n
i=1 Li;

2. if, additionally, fi are bounded by Mi on Ω, then
∏n
i=1 fi is also a Lipschitz function on Ω with

Lipschitz constant upper bounded by (
∑n
i=1M1 · · ·Mi−1LiMi+1 · · ·Mn).

Lemma B.2. Let us define the properties:

1. |l(ŷ,y)− l(ẑ,y)| < (K1‖y‖+K2 max(‖ŷ‖, ‖ẑ‖)) ‖ŷ− ẑ‖;

2. l′(ŷ,y) = Ψ(ŷ)−K3y,

where l′(ŷ,y) denotes the first derivative of the loss function regarding its first argument, evaluated
at (ŷ,y). There exist constants K1, K2, and K3 and a function Ψ that is Lipschitz continuous with
constant K4 and for which Ψ such that these properties hold for both: a) l(ŷ,y) = ‖ŷ− y‖2; b) l(ŷ,y) =
−yT log(σ(ŷ))− (1−y)T log(1− σ(ŷ)). In (b), the sigmoid function, σ(x) = 1

1+exp(−x) , and the logarithm
are evaluated element-wise. We assume in (b) that the elements in y are either 0 or 1.

Proof. For (a) and (b), property 2 follows from differentiating l(ŷ,y) with regard to its first argument.
For (a), φ(ŷ) = 2ŷ and K3 = 2; for (b), φ(ŷ) = σ(ŷ) and K3 = 1.

APPENDIX B. Proofs 151

For loss function (a), property 1 holds because of the following reasoning:∣∣‖ŷ− y‖2 − ‖ẑ− y‖2
∣∣ =

∣∣‖ŷ‖2 − ‖ẑ‖2 − 2yT (ŷ− ẑ)
∣∣ ≤

≤
∣∣(‖ŷ‖ − ‖ẑ‖) (‖ŷ‖+ ‖ẑ‖)− 2yT (ŷ− ẑ)

∣∣ ≤
≤ (2‖y‖+ 2 max (‖ŷ‖, ‖ẑ‖)) ‖ŷ− ẑ‖.

For loss function (b), let ŷ and ẑ be two scalar values. Furthermore, consider, without loss of generality,
that ŷ ≥ ẑ. Then:

0 ≤ log(σ(ŷ))− log(σ(ẑ)) = (ŷ − ẑ)− log
(

exp(ŷ) + 1
exp(ẑ) + 1

)
≤ (ŷ − ẑ). (B.3)

The first inequality follows from the fact that log(σ(·)) is a monotonically increasing function. The last
inequality holds because log

(
exp(ŷ)+1
exp(ẑ)+1

)
≥ 0. Analogously,

0 ≤ log(1− σ(ẑ))− log(1− σ(ŷ))

= (ŷ − ẑ)− log
(

exp(−ẑ) + 1
exp(−ŷ) + 1

)
≤ (ŷ − ẑ).

(B.4)

For l(y, ŷ) defined as in (b), it follows from (B.3), (B.4), and the fact that y contains only values
in the set {0, 1}, that:

|l(ŷ,y)− l(ẑ,y)| ≤ ‖ŷ− ẑ‖1 ≤
√
Ny‖ŷ− ẑ‖2, (B.5)

where ‖ · ‖1 and ‖ · ‖2 denote l1 and l2 norm of a vector and Ny is the number of outputs.

Proof of Theorem 6.2.1

Assume two different trajectories resulting from simulating the system (6.2) with parameters and
initial conditions (x0,θ) and (w0,φ), respectively. We denote the corresponding trajectories by x and w.
Let us call:

‖∆ŷt‖ = ‖g(xt,ut;θ)− g(wt,ut;φ)‖. (B.6)

Because f and g are Lipschitz in (x,θ) we have:

‖f(x,ut,θ)− f(w,ut,φ)‖2 ≤ L2
f

(
‖x−w‖2 + ‖θ − φ‖2

)
,

‖g(x,ut,θ)− g(w,ut,φ)‖2 ≤ L2
g

(
‖x−w‖2 + ‖θ − φ‖2

)
,

for all (x,ut,θ) and (w,ut,φ) in (Ωx,Ωu,Ωθ). Applying these relations recursively we get that:

‖∆ŷt‖2 ≤ L2
gL

2t
f ‖x0 −w0‖2 + L2

g

(
t∑
`=0

L2`
f

)
‖θ − φ‖2.

Since Lf is positive, the constant multiplying the second term in the above equation is always larger
than the constant multiplying the first term. Hence, taking the square root on both sides of the above
inequality and after simple manipulations, we get:

‖∆ŷt‖ ≤ LgS(t)‖[θ,x0]T − [φ,w0]T ‖. (B.7)

where:

S(t) =

√√√√ t∑
`=0

L2`
f =

√
t+ 1 if Lf = 1;√
L2t+2
f
−1

L2
f
−1 if Lf 6= 1.

(B.8)

APPENDIX B. Proofs 152

Since Ω is compact and ŷt is a (Lipschitz) continuous function of the parameters and initial
conditions, then ŷt is bounded in Ω, i.e. ‖ŷt‖ ≤M(t). And, it follows from (B.7) and from the existence
of an invariant set1 in Ω that M(t) = O(S(t)).

The following inequality follows from (6.1), and from property 1 from Lemma B.2:

|V (θ,x0)− V (φ,w0)| ≤ 1
N

N∑
t=1

(K1Ly +K2M(t))‖∆ŷt‖, (B.9)

where Ly = max1≤t≤N ‖yt‖. And, by putting together (B.9) and (B.7):

|V (θ,x0)− V (φ,w0)| ≤ LV1

∥∥[x0,θ]T − [w0,φ]T
∥∥ ,

for LV =
(
Lg
N

∑N
t=1(K1Ly +K2M(t))S(t)

)
. The asymptotic analysis of this expression with regard to N

yields (6.9).

Proof of Theorem 6.2.2

It follows from (B.2), and from property 2 from Lemma B.2, that:

‖∇V (θ,x0)−∇V (φ,w0)‖ ≤ 1
N

N∑
t=1

K3Ly‖∆Jt‖+ ‖∆(JtΨ (ŷt)) ‖, (B.10)

where we have used the notation ∆Jt to denote the difference between Jt evaluated at (θ,x0) and (φ,w0).
Analogously, ∆(JtΨ(ŷt)) denotes the difference between JtΨ(ŷt) evaluated at the two distinct points,
where Ψ is the Lipschitz continuous function with constant K4 defined in Lemma B.2.

From equation (B.1) it follows that:

Jt = Ct

t∑
`=1

(
t−∏̀
j=1

At−j+1

)
B` + Ft. (B.11)

Since the Jacobian of f is Lipschitz with Lipschitz constant L′f , it follows that:

‖∆Aj‖2 ≤ (L′f)2 (‖xj −wj‖2 + ‖θ − φ‖2
)
. (B.12)

Using a procedure analogous to the one used to get Equation (B.7), it follows that:

‖∆Aj‖ ≤ L′fS(j) ‖[θ,x0]T − [φ,w0]T ‖, (B.13)

where S(j) is defined as in (B.8). An identical formula holds for Bj and a similar formula, replacing L′f
with L′g, holds for Cj and Fj .

Since f and g are Lipschitz with Lipschitz constants Lf and Lg it follows that ‖Aj‖ ≤ Lf ,
‖Bj‖ ≤ Lf , ‖Cj‖ ≤ Lg and ‖Fj‖ ≤ Lg. Hence, it follows from (B.7), (B.11), (B.13) and the repetitive
application of Lemma B.1 that ‖∆Jt‖ and ‖∆(JtΨ(ŷt))‖ are upper bounded by ‖[θ,x0]T − [φ,w0]T ‖
multiplied by the following constants:

LJ,t =
t∑
`=1

P (t, `) + L′gS(t);

LJŷ,t =
t∑
`=1

Q(t, `) + T (t)S(t),

1 There are multiple ways to guarantee the invariant set premise will hold, but a very simple way is to just choose f such
that f(0,ut; 0) = 0. In this case, {0} is an invariant set and if Ωθ contains this point the premise is satisfied. For this
specific case, one can just choose [φ,w0] = 0 and it follows from (B.7) that ‖ŷt‖ ≤ LgS(t)‖[θ,x0]‖ = O(S(t)). The more
general case, for any invariant set, follows from a similar deduction.

APPENDIX B. Proofs 153

where T (t) = K4(L′gM(t) + L2
g) and:

P (t, `) = Lt−`f

LgL′f t∑
j=`

S(j) + LfL
′
gS(t)

 ;

Q(t, `) = Lt−`f

K4M(t)LgL′f
t∑
j=`

S(j) + LfT (t)S(t)

 .

Hence,
‖∇V (θ,x0)−∇V (φ,w0)‖ ≤ L′V ‖[θ,x0]T − [φ,w0]T ‖,

where:

L′V = 1
N

N∑
t=1

(K3LyLJ,t + LJŷ,t) .

Putting everything together, the asymptotic analysis of L′V results in (6.10).

154

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R.,
Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster,
M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas,
F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems. Technical report. Software available from
tensorflow.org. Cited 2 times on pages 40 and 98.

Acharya, U. R., Fujita, H., Oh, S. L., Hagiwara, Y., Tan, J. H., and Adam, M. (2017). Application of
deep convolutional neural network for automated detection of myocardial infarction using ECG signals.
Information Sciences, 415-416:190–198. Cited on page 136.

Adiwardana, D., Luong, M.-T., So, D. R., Hall, J., Fiedel, N., Thoppilan, R., Yang, Z., Kulshreshtha, A., Ne-
made, G., Lu, Y., and Le, Q. V. (2020). Towards a Human-like Open-Domain Chatbot. arXiv:2001.09977.
Cited on page 38.

Aguirre, L. A. (2004). Introdução à Identificação de Sistemas–Técnicas Lineares e Não-Lineares Aplicadas
a Sistemas Reais. Editora UFMG. 00654. Cited 2 times on pages 57 and 65.

Aguirre, L. A., Barbosa, B. H., and Braga, A. P. (2010). Prediction and simulation errors in parameter
estimation for nonlinear systems. Mechanical Systems and Signal Processing, 24(8):2855–2867. Cited 3
times on pages 22, 67, and 68.

Aguirre, L. A. (2019). A Bird’s Eye View of Nonlinear System Identification arXiv:1907.06803. Cited on
page 57.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic
Control, 19(6):716–723. Cited on page 34.

Alkmim, M. B., Figueira, R. M., Marcolino, M. S., Cardoso, C. S., Pena de Abreu, M., Cunha, L. R.,
da Cunha, D. F., Antunes, A. P., Resende, A. G. d. A., Resende, E. S., and Ribeiro, A. L. P. (2012).
Improving patient access to specialized health care: The Telehealth Network of Minas Gerais, Brazil.
Bulletin of the World Health Organization, 90(5):373–378. Cited 3 times on pages 131, 138, and 139.

Amorim, D. (2019). Mais 1 milhão de brasileiros passaram a trabalhar como motorista de aplicativo ou
ambulante em 2018. O Estado de S. Paulo. Cited on page 20.

Arjovsky, M., Shah, A., and Bengio, Y. (2016). Unitary evolution recurrent neural networks. In Proceedings
of the 33rd International Conference on International Conference on Machine Learning - Volume 48,
ICML’16, pages 1120–1128, New York, NY, USA. JMLR.org. Cited 2 times on pages 99 and 116.

Ashton, K. (2009). That ‘internet of things’ thing. RFID journal, 22(7):97–114. Cited on page 19.

Baake, E., Baake, M., Bock, H., and Briggs, K. (1992). Fitting ordinary differential equations to chaotic
data. Physical Review A, 45(8):5524. Cited on page 85.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural Machine Translation by Jointly Learning to Align
and Translate. arXiv:1409.0473. Cited 3 times on pages 20, 45, and 48.

Bibliography 155

Bai, S., Kolter, J. Z., and Koltun, V. (2018a). An Empirical Evaluation of Generic Convolutional and
Recurrent Networks for Sequence Modeling. Cited 5 times on pages 118, 119, 120, 121, and 122.

Bai, S., Kolter, J. Z., and Koltun, V. (2018b). An Empirical Evaluation of Generic Convolutional and
Recurrent Networks for Sequence Modeling. page 14. Cited 3 times on pages 22, 50, and 100.

Beale, M. H., Hagan, M. T., and Demuth, H. B. (2017). Neural network toolbox for use with MATLAB.
Technical report, Mathworks. Cited 3 times on pages 67, 68, and 82.

Beck, E. J., Gill, W., and De Lay, P. R. (2016). Protecting the confidentiality and security of personal
health information in low- and middle-income countries in the era of SDGs and Big Data. Global Health
Action, 9:32089. Cited on page 130.

Bejnordi, B. E., Veta, M., Johannes van Diest, P., van Ginneken, B., Karssemeijer, N., Litjens, G., van
der Laak, J. A. W. M., and the CAMELYON16 Consortium, Hermsen, M., Manson, Q. F., Balkenhol,
M., Geessink, O., Stathonikos, N., van Dijk, M. C., Bult, P., Beca, F., Beck, A. H., Wang, D., Khosla,
A., Gargeya, R., Irshad, H., Zhong, A., Dou, Q., Li, Q., Chen, H., Lin, H.-J., Heng, P.-A., Haß, C.,
Bruni, E., Wong, Q., Halici, U., Öner, M. Ü., Cetin-Atalay, R., Berseth, M., Khvatkov, V., Vylegzhanin,
A., Kraus, O., Shaban, M., Rajpoot, N., Awan, R., Sirinukunwattana, K., Qaiser, T., Tsang, Y.-W.,
Tellez, D., Annuscheit, J., Hufnagl, P., Valkonen, M., Kartasalo, K., Latonen, L., Ruusuvuori, P.,
Liimatainen, K., Albarqouni, S., Mungal, B., George, A., Demirci, S., Navab, N., Watanabe, S., Seno,
S., Takenaka, Y., Matsuda, H., Ahmady Phoulady, H., Kovalev, V., Kalinovsky, A., Liauchuk, V.,
Bueno, G., Fernandez-Carrobles, M. M., Serrano, I., Deniz, O., Racoceanu, D., and Venâncio, R. (2017).
Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women
With Breast Cancer. JAMA, 318(22):2199. Cited 2 times on pages 21 and 130.

Bengio, Y., Frasconi, P., and Simard, P. (1993). The problem of learning long-term dependencies in
recurrent networks. In IEEE International Conference on Neural Networks, pages 1183–1188 vol.3.
Cited on page 104.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with gradient descent is
difficult. IEEE Transactions on Neural Networks, 5(2):157–166. Cited 4 times on pages 70, 99, 104,
and 114.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Information Science and Statistics.
Springer, New York. Cited on page 27.

Bock, H. (1983). Recent Advances in Parameter Identification Problems for ODE. Numerical Treatment
of Inverse Problems in Differential and Integral Equations, pages 95–121. Cited on page 85.

Bock, H. G. and Plitt, K.-J. (1984). A multiple shooting algorithm for direct solution of optimal control
problems. IFAC Proceedings Volumes, 17(2):1603–1608. Cited on page 85.

Bottou, L., Curtis, F. E., and Nocedal, J. (2018). Optimization Methods for Large-Scale Machine Learning.
SIAM Review, 60(2):223–311. Cited on page 40.

Bousquet, O. and Bottou, L. (2008). The tradeoffs of large scale learning. In Advances in Neural
Information Processing Systems, pages 161–168. Cited on page 40.

Boyd, S. and Chua, L. (1985a). Fading memory and the problem of approximating nonlinear operators
with Volterra series. IEEE Transactions on Circuits and Systems, 32(11):1150–1161. Cited on page 62.

Bibliography 156

Boyd, S. and Chua, L. O. (1985b). Fading memory and the problem of approximating nonlinear operators
with Volterra series. IEEE Transactions on Circuits and Systems, CAS-32(11):1150–1161. Cited on
page 122.

Breiman, L. (2001). Statistical modeling: The two cultures (with comments and a rejoinder by the author).
Statistical science, 16(3):199–231. Cited on page 27.

Byrd, R. H., Hribar, M. E., and Nocedal, J. (1999). An interior point algorithm for large-scale nonlinear
programming. SIAM Journal on Optimization, 9(4):877–900. Cited 2 times on pages 147 and 148.

Carraro, T., Geiger, M., and Rannacher, R. (2014). Indirect Multiple Shooting for Nonlinear Parabolic
Optimal Control Problems with Control Constraints. SIAM Journal on Scientific Computing, 36(2):A452–
A481. Cited on page 85.

Chandar, S., Sankar, C., Vorontsov, E., Kahou, S. E., and Bengio, Y. (2019). Towards Non-Saturating
Recurrent Units for Modelling Long-Term Dependencies. Proceedings of the AAAI Conference on
Artificial Intelligence, 33:3280–3287. Cited on page 99.

Chen, S., Billings, S. A., Cowan, C. F. N., and Grant, P. M. (1990a). Practical identification of NARMAX
models using radial basis functions. International Journal of Control, 52(6):1327–1350. Cited on page
59.

Chen, S., Billings, S. A., and Grant, P. M. (1990b). Non-linear system identification using neural networks.
International Journal of Control, 51(6):1191–1214. Cited 2 times on pages 79 and 123.

Chen, S., Billings, S. A., and Luo, W. (1989). Orthogonal Least Squares Methods and Their Application
to Non-Linear System Identification. International Journal of Control, 50(5):1873–1896. 01591. Cited
on page 59.

Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y. (2014a). On the Properties of Neural Machine
Translation: Encoder-Decoder Approaches. arXiv:1409.1259. Cited 2 times on pages 99 and 101.

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio,
Y. (2014b). Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine
Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1724–1734, Doha, Qatar. Association for Computational Linguistics. Cited 2 times
on pages 48 and 49.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical Evaluation of Gated Recurrent Neural
Networks on Sequence Modeling. arXiv:1412.3555 . Cited on page 49.

Clifford, G. D., Liu, C., Moody, B., Lehman, L.-w. H., Silva, I., Li, Q., Johnson, A. E., and Mark, R. G.
(2017). AF Classification from a Short Single Lead ECG Recording: The PhysioNet/Computing in
Cardiology Challenge 2017. Computing in Cardiology, 44. Cited 3 times on pages 130, 132, and 137.

Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Educational and Psychological
Measurement, 20(1):37–46. Cited 2 times on pages 141 and 143.

Conn, A. R., Gould, N. I. M., and Toint, P. L. (2000). Trust-Region Methods. MPS-SIAM Series on
Optimization. Society for Industrial and Applied Mathematics, Philadelphia, PA. Cited on page 147.

CUBANSKI, D., CYGANSKI, D., ANTMAN, E. M., and FELDMAN, C. L. (1994). A Neural Network
System for Detection of Atrial Fibrillation in Ambulatory Electrocardiograms. Journal of Cardiovascular
Electrophysiology, 5(7):602–608. Cited on page 135.

Bibliography 157

Dauphin, Y. N., Fan, A., Auli, M., and Grangier, D. (2017). Language modeling with gated convolutional
networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
933–941. JMLR. org. Cited 3 times on pages 22, 50, and 100.

De Fauw, J., Ledsam, J. R., Romera-Paredes, B., Nikolov, S., Tomasev, N., Blackwell, S., Askham, H.,
Glorot, X., O’Donoghue, B., Visentin, D., van den Driessche, G., Lakshminarayanan, B., Meyer, C.,
Mackinder, F., Bouton, S., Ayoub, K., Chopra, R., King, D., Karthikesalingam, A., Hughes, C. O.,
Raine, R., Hughes, J., Sim, D. A., Egan, C., Tufail, A., Montgomery, H., Hassabis, D., Rees, G., Back,
T., Khaw, P. T., Suleyman, M., Cornebise, J., Keane, P. A., and Ronneberger, O. (2018). Clinically
applicable deep learning for diagnosis and referral in retinal disease. Nature Medicine, 24(9):1342–1350.
Cited 2 times on pages 21 and 130.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. arXiv:1810.04805 . Cited 2 times on pages 45 and 48.

Diaconescu, E. (2008). The use of NARX neural networks to predict chaotic time series. WSEAS
Transactions on Computer Research, 3(3):182–191. Cited 3 times on pages 67, 68, and 82.

Doya, K. (1993). Bifurcations of Recurrent Neural Networks in Gradient Descent Learning. Cited 2 times
on pages 105 and 114.

Dvoretzky, A., Kiefer, J., and Wolfowitz, J. (1956). Asymptotic Minimax Character of the Sample
Distribution Function and of the Classical Multinomial Estimator. The Annals of Mathematical
Statistics, 27(3):642–669. Cited 2 times on pages 9 and 95.

Eckhard, D., Bazanella, A. S., Rojas, C. R., and Hjalmarsson, H. (2017). Cost function shaping of the
output error criterion. Automatica, 76:53–60. Cited on page 84.

Edouard Grave, Armand Joulin, N. U. (2017). Improving neural language models with a continuous cache.
In International Conference on Learning Representations. Cited on page 111.

Efron, B. and Tibshirani, R. J. (1994). An Introduction to the Bootstrap. CRC press. Cited 2 times on
pages 134 and 143.

Espinoza, M., Pelckmans, K., Hoegaerts, L., Suykens, J. A., and De Moor, B. (2004). A comparative
study of LS-SVM’s applied to the Silver Box identification problem. IFAC Proceedings Volumes,
37(13):369–374. Cited on page 126.

Espinoza, M., Suykens, J. A., and De Moor, B. (2005). Kernel based partially linear models and nonlinear
identification. IEEE Trans. Autom. Control, 50(10):1602–1606. Cited on page 126.

Estes, N. A. M. (2013). Computerized interpretation of ECGs: Supplement not a substitute. Circulation.
Arrhythmia and Electrophysiology, 6(1):2–4. Cited 2 times on pages 130 and 140.

Farina, M. and Piroddi, L. (2008). Some convergence properties of multi-step prediction error identification
criteria. In 2008 47th IEEE Conference on Decision and Control, pages 756–761. Cited 3 times on
pages 69, 89, and 90.

Farina, M. and Piroddi, L. (2010). An iterative algorithm for simulation error based identification
of polynomial input–output models using multi-step prediction. International Journal of Control,
83(7):1442–1456. Cited 2 times on pages 59 and 69.

Farina, M. and Piroddi, L. (2011). Simulation error minimization identification based on multi-stage
prediction. International Journal of Adaptive Control and Signal Processing, 25(5):389–406. Cited 3
times on pages 69, 89, and 90.

Bibliography 158

Farina, M. and Piroddi, L. (2012). Identification of polynomial input/output recursive models with
simulation error minimisation methods. International Journal of Systems Science, 43(2):319–333. Cited
3 times on pages 22, 59, and 69.

Fletcher, R., Authority, U. K. A. E., and H.M.S.O. (1971). A Modified Marquardt Subroutine for Non-Linear
Least Squares. AERE Report. Theoretical Physics Division, Atomic Energy Research Establishment.
00003. Cited on page 71.

Friedman, J., Hastie, T., and Tibshirani, R. (2001). The Elements of Statistical Learning, volume 1.
Springer series in statistics New York. Cited 2 times on pages 27 and 34.

Gehring, J., Auli, M., Grangier, D., and Dauphin, Y. (2017). A Convolutional Encoder Model for Neural
Machine Translation. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1, pages 123–135. Cited 3 times on pages 22, 50, and 100.

Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready for autonomous driving? The KITTI vision
benchmark suite. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages
3354–3361, Providence, RI. IEEE. Cited on page 45.

Geisert, M. and Mansard, N. (2016). Trajectory Generation for Quadrotor Based Systems Using Numerical
Optimal Control. In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages
2958–2964. IEEE. Cited on page 85.

Giri, F. and Bai, E.-W., editors (2010). Block-oriented Nonlinear System Identification. Springer London.
Cited on page 122.

Goldberg, D. E. (2000). Genetic Algorithms–In Search, Optimization & Machine Learning, Revised Ed.
Addison Wesley, New Delhi. Cited on page 35.

Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E.,
Moody, G. B., Peng, C.-K., and Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet:
Components of a New Research Resource for Complex Physiologic Signals. Circulation, 101(23). Cited
on page 137.

Golub, G. H. and Van Loan, C. F. (2012). Matrix Computations, volume 3. JHU Press. Cited on page 74.

Gong, C., He, D., Tan, X., Qin, T., Wang, L., and Liu, T.-Y. (2018). Frage: Frequency-agnostic word
representation. arXiv:1809.06858. Cited on page 111.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. Cited on page 144.

Goto, S., Kimura, M., Katsumata, Y., Goto, S., Kamatani, T., Ichihara, G., Ko, S., Sasaki, J., Fukuda, K.,
and Sano, M. (2019). Artificial intelligence to predict needs for urgent revascularization from 12-leads
electrocardiography in emergency patients. PLOS ONE, 14(1):e0210103. Cited on page 137.

Gould, N. I., Hribar, M. E., and Nocedal, J. (2001). On the solution of equality constrained quadratic
programming problems arising in optimization. SIAM Journal on Scientific Computing, 23(4):1376–1395.
Cited on page 148.

Graves, A., Jaitly, N., and Mohamed, A.-r. (2013). Hybrid speech recognition with Deep Bidirectional
LSTM. In 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, pages 273–278,
Olomouc, Czech Republic. IEEE. Cited on page 21.

Hagan, M. T. and Menhaj, M. B. (1994). Training feedforward networks with the Marquardt algorithm.
Neural Networks, IEEE Transactions on, 5(6):989–993. Cited 2 times on pages 70 and 72.

Bibliography 159

Hannun, A. Y., Rajpurkar, P., Haghpanahi, M., Tison, G. H., Bourn, C., Turakhia, M. P., and Ng, A. Y.
(2019). Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms
using a deep neural network. Nature Medicine, 25(1):65–69. Cited 5 times on pages 130, 132, 136, 137,
and 142.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification. arXiv:1502.01852 . Cited on page 142.

He, K., Zhang, X., Ren, S., and Sun, J. (2016a). Deep Residual Learning for Image Recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
770–778. Cited 5 times on pages 54, 56, 121, 132, and 141.

He, K., Zhang, X., Ren, S., and Sun, J. (2016b). Identity Mappings in Deep Residual Networks. In
Leibe, B., Matas, J., Sebe, N., and Welling, M., editors, Computer Vision – ECCV 2016, pages 630–645.
Springer International Publishing. Cited 2 times on pages 141 and 142.

He, W. and Zhang, S. (2017). Control Design for Nonlinear Flexible Wings of a Robotic Aircraft. IEEE
Transactions on Control Systems Technology, 25(1):351–357. Cited on page 19.

Helfrich, K., Willmott, D., and Ye, Q. (2018). Orthogonal recurrent neural networks with scaled Cayley
transform. In Dy, J. and Krause, A., editors, Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 1969–1978, Stockholmsmässan,
Stockholm Sweden. PMLR. Cited on page 99.

Hinton, G. (2018). Deep learning—a technology with the potential to transform health care. JAMA,
320(11):1101–1102. Cited 2 times on pages 45 and 130.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen,
P., Sainath, T. N., and Kingsbury, B. (2012). Deep Neural Networks for Acoustic Modeling in Speech
Recognition: The Shared Views of Four Research Groups. IEEE Signal Processing Magazine, 29(6):82–97.
Cited 2 times on pages 20 and 45.

Hinton, G. E. (1986). Learning distributed representations of concepts. In Proceedings of the Eighth
Annual Conference of the Cognitive Science Society, volume 1, page 12. Amherst, MA. Cited on page
45.

Hjalmarsson, H. and Schoukens, J. (2004). On direct identification of physical parameters in non-linear
models. IFAC Proceedings Volumes, 37(13):375–380. Cited on page 126.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8):1735–1780.
Cited 8 times on pages 49, 99, 101, 102, 106, 108, 114, and 116.

Hong, S., Wu, M., Zhou, Y., Wang, Q., Shang, J., Li, H., and Xie, J. (2017). ENCASE: An ENsemble
ClASsifiEr for ECG Classification Using Expert Features and Deep Neural Networks. In 2017 Computing
in Cardiology Conference. Cited on page 132.

Horbelt, W., Timmer, J., Bünner, M., Meucci, R., and Ciofini, M. (2001). Identifying physical properties
of a CO2 LASER by dynamical modeling of measured time series. Physical Review E, 64(1):016222.
Cited on page 85.

Hornik, K., Stinchcombe, M., and White, H. (1989a). Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5):359–366. Cited on page 59.

Bibliography 160

Hornik, K., Stinchcombe, M., and White, H. (1989b). Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5):359–366. Cited on page 118.

Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J. M., Mattern, F., Mitchell, J. C., Naor, M., Nierstrasz,
O., Pandu Rangan, C., Steffen, B., Sudan, M., Terzopoulos, D., Tygar, D., Vardi, M. Y., Weikum, G.,
Scherer, D., Müller, A., and Behnke, S. (2010). Evaluation of Pooling Operations in Convolutional
Architectures for Object Recognition. In Diamantaras, K., Duch, W., and Iliadis, L. S., editors, Artificial
Neural Networks – ICANN 2010, volume 6354, pages 92–101. Springer Berlin Heidelberg. Cited on
page 142.

Ifju, P., Jenkins, D., Ettinger, S., Lian, Y., Shyy, W., and Waszak, M. (2002). Flexible-wing-based micro
air vehicles. In 40th AIAA Aerospace Sciences Meeting & Exhibit, page 705. Cited on page 19.

Ioffe, S. and Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift. In Proceedings of the 32nd International Conference on Machine Learning,
pages 448–456. PMLR. Cited 3 times on pages 120, 121, and 142.

Jambukia, S. H., Dabhi, V. K., and Prajapati, H. B. (2015). Classification of ECG signals using machine
learning techniques: A survey. In Proceedings of the International Conference on Advances in Computer
Engineering and Applications (ICACEA), pages 714–721. IEEE. Cited 2 times on pages 135 and 136.

Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., and Soljacic, M. (2017).
Tunable Efficient Unitary Neural Networks (EUNN) and their application to RNNs. Proceedings of the
34 th International Conference on Machine Learning, page 9. Cited on page 99.

Kalchbrenner, N., Espeholt, L., Simonyan, K., van den Oord, A., Graves, A., and Kavukcuoglu, K. (2016).
Neural Machine Translation in Linear Time. arXiv:1610.10099 . Cited 3 times on pages 22, 50, and 100.

Kamaleswaran, R., Mahajan, R., and Akbilgic, O. (2018). A robust deep convolutional neural network for
the classification of abnormal cardiac rhythm using single lead electrocardiograms of variable length.
Physiological Measurement, 39(3):035006. Cited on page 132.

Kamińnski, W., Strumitto, P., and Tomczak, E. (1996). Genetic algorithms and artificial neural networks
for description of thermal deterioration processes. Drying Technology, 14(9):2117–2133. Cited 3 times
on pages 67, 68, and 82.

Kanuparthi, B., Arpit, D., Kerg, G., Ke, N. R., Mitliagkas, I., and Bengio, Y. (2019). H-DETACH:
Modifying the LSTM Gradient Towards Better Optimization. Proceedings of the International Conference
for Learning Representations (ICLR), page 19. Cited on page 99.

Karpathy, A. (2015). The Unreasonable Effectiveness of Recurrent Neural Networks. Cited on page 22.

Kayacan, E., Kayacan, E., and Khanesar, M. A. (2015). Identification of nonlinear dynamic systems using
type-2 fuzzy neural networks—A novel learning algorithm and a comparative study. IEEE Transactions
on Industrial Electronics, 62(3):1716–1724. Cited on page 59.

Kerg, G., Goyette, K., Touzel, M. P., Gidel, G., Vorontsov, E., Bengio, Y., and Lajoie, G. (2019).
Non-normal Recurrent Neural Network (nnRNN): Learning long time dependencies while improving
expressivity with transient dynamics. arXiv:1905.12080. Cited on page 99.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., and Tang, P. T. P. (2016). On Large-Batch
Training for Deep Learning: Generalization Gap and Sharp Minima. arXiv:1609.04836. Cited on page
40.

Bibliography 161

Khalil, H. K. (2002). Nonlinear Systems. Upper Saddle River, third edition. Cited on page 105.

Khan, E. A., Elgamal, M. A., and Shaarawy, S. M. (2015). Forecasting the Number of Muslim Pilgrims
Using NARX Neural Networks with a Comparison Study with Other Modern Methods. British Journal
of Mathematics & Computer Science, 6(5):394. Cited 3 times on pages 67, 68, and 82.

Kingma, D. P. and Ba, J. (2014). Adam: A Method for Stochastic Optimization. In Proceedings of the
3rd International Conference for Learning Representations (ICLR). Cited 6 times on pages 13, 44, 106,
121, 123, and 142.

Kligfield, P., Gettes, L. S., Bailey, J. J., Childers, R., Deal, B. J., Hancock, E. W., van Herpen, G.,
Kors, J. A., Macfarlane, P., Mirvis, D. M., Pahlm, O., Rautaharju, P., and Wagner, G. S. (2007).
Recommendations for the Standardization and Interpretation of the Electrocardiogram. Journal of the
American College of Cardiology, 49(10):1109. Cited on page 141.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems, pages 1097–1105. Cited 4
times on pages 20, 45, 50, and 54.

LabVolt (2015). Mobile Instrumentation and Process Control Training Systems. Technical report, Festo.
00000. Cited on page 77.

Lalee, M., Nocedal, J., and Plantenga, T. (1998). On the implementation of an algorithm for large-scale
equality constrained optimization. SIAM Journal on Optimization, 8(3):682–706. Cited 4 times on
pages 13, 44, 90, and 147.

Laurent, T. and von Brecht, J. (2016). A recurrent neural network without chaos. arXiv:1612.06212 .
Cited 2 times on pages 112 and 115.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436–444. Cited 2 times
on pages 20 and 45.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324. 14818. Cited 2 times on pages 50 and 54.

LeCun, Y., Bottou, L., Orr, G. B., and Müller, K.-R. (1998). Efficient BackProp. In Neural Networks:
Tricks of the Trade, Lecture Notes in Computer Science, pages 9–50. Springer, Berlin, Heidelberg. Cited
5 times on pages 8, 9, 77, 78, and 95.

Leontaritis, I. J. and Billings, S. A. (1987). Experimental design and identifiability for non-linear systems.
International Journal of Systems Science, 18(1):189–202. Cited on page 65.

Lezcano-Casado, M. (2019). Trivializations for Gradient-Based Optimization on Manifolds. Advances in
Neural Information Processing Systems. Cited on page 99.

Lezcano-Casado, M. and Martínez-Rubio, D. (2019). Cheap Orthogonal Constraints in Neural Networks: A
Simple Parametrization of the Orthogonal and Unitary Group. In International Conference on Machine
Learning, pages 3794–3803. Cited 3 times on pages 99, 100, and 106.

Liu, D. C. and Nocedal, J. (1989). On the limited memory BFGS method for large scale optimization.
Mathematical programming, 45(1-3):503–528. Cited on page 39.

Ljung, L. (1976). On The Consistency of Prediction Error Identification Methods. In Mehra, R. K. and
Lainiotis, D. G., editors, Mathematics in Science and Engineering, volume 126 of System Identification
Advances and Case Studies, pages 121–164. Elsevier. Cited on page 60.

Bibliography 162

Ljung, L. (1978). Convergence analysis of parametric identification methods. IEEE Transactions on
Automatic Control, 23(5):770–783. Cited 4 times on pages 60, 63, 64, and 67.

Ljung, L. (1998). System Identification. Springer. Cited 6 times on pages 19, 57, 59, 60, 65, and 67.

Ljung, L. (2010). Perspectives on system identification. Annual Reviews in Control, 34(1):1–12. Cited on
page 59.

Ljung, L. and Caines, P. E. (1980). Asymptotic normality of prediction error estimators for approximate
system models. Stochastics, 3(1-4):29–46. Cited 2 times on pages 60 and 64.

Ljung, L., Zhang, Q., Lindskog, P., and Juditski, A. (2004). Estimation of grey box and black box models
for non-linear circuit data. IFAC Proceedings Volumes, 37(13):399–404. Cited on page 126.

Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3431–3440.
Cited on page 50.

Luo, S. and Johnston, P. (2010). A review of electrocardiogram filtering. Journal of Electrocardiology,
43(6):486–496. Cited on page 137.

Luong, T., Pham, H., and Manning, C. D. (2015). Effective Approaches to Attention-based Neural
Machine Translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 1412–1421, Lisbon, Portugal. Association for Computational Linguistics. Cited on
page 48.

Lyon, A., Mincholé, A., Martínez, J. P., Laguna, P., and Rodriguez, B. (2018). Computational techniques
for ECG analysis and interpretation in light of their contribution to medical advances. Journal of the
Royal Society Interface, 15(138). Cited on page 131.

Macfarlane, P., Devine, B., Latif, S., McLaughlin, S., Shoat, D., and Watts, M. (1990). Methodology
of ECG interpretation in the Glasgow program. Methods of information in medicine, 29(04):354–361.
Cited on page 139.

Macfarlane, P. W., Devine, B., and Clark, E. (2005). The university of glasgow (Uni-G) ECG analysis
program. In Computers in Cardiology, pages 451–454. Cited 2 times on pages 135 and 139.

Macfarlane, P. W. and Latif, S. (1996). Automated serial ECG comparison based on the Minnesota code.
Journal of Electrocardiology, 29:29–34. Cited on page 139.

Maduranga, K. D., Helfrich, K. E., and Ye, Q. (2019). Complex unitary recurrent neural networks using
scaled cayley transform. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 4528–4535. Cited on page 99.

Maheswaranathan, N., Williams, A., Golub, M. D., Ganguli, S., and Sussillo, D. (2019). Reverse engineering
recurrent networks for sentiment classification reveals line attractor dynamics. arXiv:1906.10720. Cited
2 times on pages 104 and 114.

Mant, J., Fitzmaurice, D. A., Hobbs, F. D. R., Jowett, S., Murray, E. T., Holder, R., Davies, M., and
Lip, G. Y. H. (2007). Accuracy of diagnosing atrial fibrillation on electrocardiogram by primary care
practitioners and interpretative diagnostic software: Analysis of data from screening for atrial fibrillation
in the elderly (SAFE) trial. BMJ (Clinical research ed.), 335(7616):380. Cited 2 times on pages 21
and 130.

Bibliography 163

Marconato, A., Sjöberg, J., Suykens, J., and Schoukens, J. (2012). Identification of the Silverbox benchmark
using nonlinear state-space models. IFAC Proceedings Volumes, 45(16):632–637. Cited 2 times on
pages 125 and 126.

Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal
of the Society for Industrial and Applied Mathematics, 11(2):431–441. Cited 3 times on pages 13, 44,
and 71.

May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature, 261(5560):459–
467. Cited on page 92.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The
bulletin of mathematical biophysics, 5(4):115–133. Cited on page 45.

McNemar, Q. (1947). Note on the sampling error of the difference between correlated proportions or
percentages. Psychometrika, 12(2):153–157. Cited 2 times on pages 134 and 143.

Menezes, J. M. P. and Barreto, G. A. (2008). Long-term time series prediction with the NARX network:
An empirical evaluation. Neurocomputing, 71(16):3335–3343. Cited on page 77.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. (2016). Pointer sentinel mixture models.
arXiv:1609.07843. Cited on page 111.

Mhammedi, Z., Hellicar, A., Rahman, A., and Bailey, J. (2017). Efficient orthogonal parametrisation
of recurrent neural networks using householder reflections. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 2401–2409. JMLR. org. Cited on page 99.

Miller, J. and Hardt, M. (2018). Stable Recurrent Models. arXiv:1805.10369. Cited 6 times on pages 99,
100, 105, 106, 111, and 116.

Mokus, J. (1974). On Bayesian Methods for Seeking the Extremum. Optimization Techniques, pages
400–404. Cited on page 35.

Moré, J. J. (1978). The Levenberg-Marquardt algorithm: Implementation and theory. In Numerical
Analysis, pages 105–116. Springer. Cited on page 76.

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. Adaptive Computation and Machine
Learning Series. MIT Press, Cambridge, MA. Cited on page 27.

Narendra, K. S. and Parthasarathy, K. (1990). Identification and control of dynamical systems using
neural networks. IEEE Transactions on Neural Networks, 1(1):4–27. Cited 6 times on pages 22, 59, 67,
68, 70, and 82.

Nascimento, B. R., Brant, L. C. C., Marino, B. C. A., Passaglia, L. G., and Ribeiro, A. L. P. (2019).
Implementing myocardial infarction systems of care in low/middle-income countries. Heart, 105(1):20.
Cited on page 139.

Naylor C (2018). On the prospects for a (deep) learning health care system. JAMA, 320(11):1099–1100.
Cited 2 times on pages 45 and 130.

Nelles, O. (2013). Nonlinear System Identification: From Classical Approaches to Neural Networks and
Fuzzy Models. Springer Science & Business Media. Cited 4 times on pages 57, 59, 60, and 84.

Nesterov, Y. (1998). Introductory Lectures On Convex Programming. Springer Science & Business Media.
Cited 2 times on pages 86 and 104.

Bibliography 164

Newey, W. K. and McFadden, D. (1994). Large sample estimation and hypothesis testing. Handbook of
econometrics, 4:2111–2245. Cited on page 64.

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer Series in Operations Research.
Springer, New York, 2nd ed edition. OCLC: ocm68629100. Cited 7 times on pages 36, 37, 70, 71, 76,
108, and 148.

Noël, J. P. and Schoukens, J. (2018). Grey-box state-space identification of nonlinear mechanical vibrations.
International Journal of Control, 91(5):1118–1139. Cited on page 62.

Nørgaard, P. M., Ravn, O., Poulsen, N. K., and Hansen, L. K. (2000). Neural Networks for Modelling and
Control of Dynamic Systems-A Practitioner’s Handbook. Springer-London. Cited 2 times on pages 59
and 60.

Oppenheim, A. V. (1999). Discrete-Time Signal Processing. Pearson Education India. Cited on page 53.

Osborne, M. R. (1969). On Shooting Methods for Boundary Value Problems. Journal of Mathematical
Analysis and Applications, 27(2):417–433. Cited on page 85.

Paduart, J. (2008). Identification of Nonlinear Systems using Polynomial Nonlinear State Space Models.
PhD thesis, Vrije Universiteit Brussel. Cited on page 126.

Paduart, J., Horváth, G., and Schoukens, J. (2004). Fast identification of systems with nonlinear feedback.
IFAC Proceedings Volumes, 37(13):381–385. Cited on page 126.

Paduart, J., Lauwers, L., Swevers, J., Smolders, K., Schoukens, J., and Pintelon, R. (2010). Identification
of nonlinear systems using Polynomial Nonlinear State Space models. Automatica, 46(4):647–656. 00000.
Cited on page 59.

Palm, G. (1979). On representation and approximation of nonlinear systems. Biological Cybernetics,
34(1):49–52. Cited on page 122.

Park, J. and Sandberg, I. W. (1991). Universal Approximation Using Radial-Basis-Function Networks.
Neural computation, 3(2):246–257. 03486. Cited on page 59.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the Difficulty of Training Recurrent Neural Networks.
In Proceedings of the 30th International Conference on International Conference on Machine Learning -
Volume 28, ICML’13, pages III–1310–III–1318, Atlanta, GA, USA. JMLR.org. Cited 7 times on pages
86, 99, 100, 101, 105, 106, and 114.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L.,
and Lerer, A. (2017). Automatic differentiation in PyTorch. Technical report. Cited 2 times on pages
40 and 98.

Patan, K. and Korbicz, J. (2012). Nonlinear Model Predictive Control of a Boiler Unit: A Fault Tolerant
Control Study. International Journal of Applied Mathematics and Computer Science, 22(1):225–237.
Cited 4 times on pages 67, 68, 80, and 84.

Peifer, M. and Timmer, J. (2007). Parameter estimation in ordinary differential equations for biochemical
processes using the method of multiple shooting. IET Systems Biology, 1(2):78–88. 00000. Cited on
page 85.

Pepona, E., Paoletti, S., Garulli, A., and Date, P. (2011). Identification of piecewise affine LFR models of
interconnected systems. IEEE Trans. Control Syst. Technol., 19(1):148–155. Cited on page 126.

Bibliography 165

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer, L. (2018). Deep
contextualized word representations. arXiv:1802.05365 . Cited 2 times on pages 21 and 101.

Petrović, E., Ćojbašić, Ž., Ristić-Durrant, D., Nikolić, V., Ćirić, I., and jan Matić, S. (2013). Kalman
Filter and NARX Neural Network for Robot Vision Based Human Tracking. Facta Universitatis, Series:
Automatic Control And Robotics, 12(1):43–51. 00009. Cited 3 times on pages 67, 68, and 82.

Pintelon, R. and Schoukens, J. (2012). System identification: A frequency domain approach. Wiley-IEEE
Press, 2 edition. Cited on page 126.

Piroddi, L. and Spinelli, W. (2003). An identification algorithm for polynomial NARX models based on
simulation error minimization. International Journal of Control, 76(17):1767–1781. Cited 3 times on
pages 22, 69, and 84.

Poljak, B. T. (1987). Introduction to Optimization. Optimization Software. Cited on page 36.

Prineas, R. J., Crow, R. S., and Zhang, Z.-M. (2009). The Minnesota Code Manual of Electrocardiographic
Findings. Springer Science & Business Media. Cited on page 139.

Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural networks,
12(1):145–151. Cited on page 121.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improving Language Understanding
by Generative Pre-Training. page 12. Cited on page 100.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language Models are
Unsupervised Multitask Learners. page 24. Cited on page 100.

Rahhal, M. A., Bazi, Y., AlHichri, H., Alajlan, N., Melgani, F., and Yager, R. (2016). Deep learning
approach for active classification of electrocardiogram signals. Information Sciences, 345:340–354. Cited
2 times on pages 136 and 137.

Rahman, M. F., Devanathan, R., and Kuanyi, Z. (2000). Neural Network Approach for Linearizing Control
of Nonlinear Process Plants. IEEE Transactions on Industrial Electronics, 47(2):470–477. 00030. Cited
3 times on pages 67, 68, and 82.

Rautaharju, P. M., Surawicz, B., and Gettes, L. S. (2009). AHA/ACCF/HRS Recommendations for the
Standardization and Interpretation of the Electrocardiogram: Part IV: The ST Segment, T and U Waves,
and the QT Interval A Scientific Statement From the American Heart Association Electrocardiography
and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology
Foundation; and the Heart Rhythm Society Endorsed by the International Society for Computerized
Electrocardiology. Journal of the American College of Cardiology, 53(11):982–991. Cited on page 137.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Unified, real-time
object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 779–788. 00000. Cited on page 50.

Ribeiro, A. H. and Aguirre, L. A. (2015). Selecting transients automatically for the identification of
models for an oil well. IFAC-PapersOnLine, 48(6):154–158. Cited 2 times on pages 65 and 70.

Ribeiro, A. H. and Aguirre, L. A. (2017). Shooting Methods for Parameter Estimation of Output Error
Models. IFAC-PapersOnLine, 50(1):13998–14003. Cited on page 85.

Bibliography 166

Ribeiro, A. H. and Aguirre, L. A. (2018). “Parallel Training Considered Harmful?”: Comparing series-
parallel and parallel feedforward network training. Neurocomputing, 316:222–231. Cited 3 times on
pages 9, 94, and 95.

Ribeiro, A. H., Tiels, K., Umenberger, J., Schön, T. B., and Aguirre, L. A. (2019). On the Smoothness of
Nonlinear System Identification. Provisionally accepted at Automatica. Cited on page 106.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in
the brain. Psychological review, 65(6):386. Cited on page 45.

Rossiter, J. A. and Kouvaritakis, B. (2001). Modelling and implicit modelling for predictive control.
International Journal of Control, 74(11):1085–1095. Cited 2 times on pages 89 and 90.

Roth, G. A., Abate, D., Abate, K. H., Abay, S. M., Abbafati, C., Abbasi, N., Abbastabar, H., Abd-Allah,
F., Abdela, J., Abdelalim, A., Abdollahpour, I., Abdulkader, R. S., Abebe, H. T., Abebe, M., Abebe,
Z., Abejie, A. N., Abera, ... and Murray, C. J. L. (2018). Global, regional, and national age-sex-specific
mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for
the Global Burden of Disease Study 2017. The Lancet, 392(10159):1736–1788. Cited on page 130.

Rubin, J., Parvaneh, S., Rahman, A., Conroy, B., and Babaeizadeh, S. (2017). Densely Connected
Convolutional Networks and Signal Quality Analysis to Detect Atrial Fibrillation Using Short Single-
Lead ECG Recordings. arXiv:1710.05817. Cited on page 136.

Rudin, W. (1964). Principles of Mathematical Analysis. International Series in Pure and Applied
Mathematics. McGraw-Hill. 00000. Cited 2 times on pages 87 and 103.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1988). Learning representations by back-propagating
errors. Cognitive modeling, 5(3):1. Cited on page 45.

Saad, M., Bigras, P., Dessaint, L.-A., and Al-Haddad, K. (1994). Adaptive robot control using neural
networks. IEEE Transactions on Industrial Electronics, 41(2):173–181. 00000. Cited 3 times on pages
67, 68, and 82.

Sabahi, F. and Akbarzadeh-T, M. R. (2016). Extended fuzzy logic: Sets and systems. IEEE Trans. Fuzzy
Syst., 24(3):530–543. Cited on page 126.

Saggar, M., Meriçli, T., Andoni, S., and Miikkulainen, R. (2007). System Identification for the Hodgkin-
Huxley Model Using Artificial Neural Networks. In Neural Networks, 2007. IJCNN 2007. International
Joint Conference On, pages 2239–2244. IEEE. 00016. Cited 3 times on pages 67, 68, and 82.

Saito, T. and Rehmsmeier, M. (2015). The Precision-Recall Plot Is More Informative than the ROC Plot
When Evaluating Binary Classifiers on Imbalanced Datasets. PLOS ONE, 10(3):e0118432. Cited 2
times on pages 142 and 143.

Salimans, T. and Kingma, D. P. (2016). Weight Normalization: A Simple Reparameterization to Accelerate
Training of Deep Neural Networks. Cited on page 120.

Sarode, K. D., Kumar, V. R., and Kulkarni, B. (2015). Embedded Multiple Shooting Methodology in a
Genetic Algorithm Framework for Parameter Estimation and State Identification of Complex Systems.
Chemical Engineering Science, 134:605–618. Cited on page 85.

Sassi, R., Bond, R. R., Cairns, A., Finlay, D. D., Guldenring, D., Libretti, G., Isola, L., Vaglio, M., Poeta,
R., Campana, M., Cuccia, C., and Badilini, F. (2017 Nov - Dec). PDF-ECG in clinical practice: A model
for long-term preservation of digital 12-lead ECG data. Journal of Electrocardiology, 50(6):776–780.
Cited on page 131.

Bibliography 167

Schetzen, M. (2006). The Volterra & Wiener Theories of Nonlinear Systems. Krieger Publishing Company,
Malabar, Florida. Cited on page 121.

Schläpfer, J. and Wellens, H. J. (2017). Computer-Interpreted Electrocardiograms: Benefits and Limitations.
Journal of the American College of Cardiology, 70(9):1183. Cited 2 times on pages 130 and 140.

Schoukens, M., Marconato, A., Pintelon, R., Vandersteen, G., and Rolain, Y. (2015). Parametric
identification of parallel Wiener-Hammerstein systems. Automatica, 51:111–122. Cited on page 122.

Schoukens, M. and Noël, J.-P. (2017). F-16 aircraft benchmark based on ground vibration test data. In
Workshop on Nonlinear System Identification Benchmarks, Brussels, Belgium. Cited 2 times on pages
118 and 126.

Schoukens, M. and Tiels, K. (2017). Identification of block-oriented nonlinear systems starting from linear
approximations: A survey. Automatica, 85:272–292. Cited on page 122.

Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics, 6(2):461–464. 00000.
Cited on page 34.

Shah, A. P. and Rubin, S. A. (2007 Sep-Oct). Errors in the computerized electrocardiogram interpretation
of cardiac rhythm. Journal of Electrocardiology, 40(5):385–390. Cited 2 times on pages 130 and 140.

Shashikumar, S. P., Shah, A. J., Clifford, G. D., and Nemati, S. (2018). Detection of Paroxysmal Atrial
Fibrillation Using Attention-based Bidirectional Recurrent Neural Networks. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’18, pages
715–723, New York, NY, USA. ACM. Cited 2 times on pages 136 and 137.

Sinai, Y. G. (1959). On the notion of entropy of a dynamical system. In Dokl. Akad. Nauk. SSSR, volume
124, page 768. Cited on page 115.

Singh, M., Singh, I., and Verma, A. (2013). Identification on non linear series-parallel model using neural
network. MIT Int. J. Electr. Instrumen. Eng, 3(1):21–23. 00000. Cited 3 times on pages 67, 68, and 82.

Singya, P. K., Kumar, N., and Bhatia, V. (2017). Mitigating NLD for Wireless Networks: Effect of
Nonlinear Power Amplifiers on Future Wireless Communication Networks. IEEE Microwave Magazine,
18(5):73–90. Cited on page 19.

Smith, S. W., Walsh, B., Grauer, K., Wang, K., Rapin, J., Li, J., Fennell, W., and Taboulet, P. (2019). A
deep neural network learning algorithm outperforms a conventional algorithm for emergency department
electrocardiogram interpretation. Journal of Electrocardiology, 52:88–95. Cited 2 times on pages 135
and 137.

Söderström, T. and Stoica, P. (1988). System Identification. Prentice-Hall, Inc. 00000. Cited 3 times on
pages 19, 57, and 60.

Spivak, M. (1998). Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced
Calculus. Mathematics Monograph Series. Perseus Books, Cambridge, Mass. Cited on page 102.

Sragner, L., Schoukens, J., and Horváth, G. (2004). Modelling of a slightly nonlinear system: a neural
network approach. IFAC Proceedings Volumes, 37(13):387–392. Cited on page 126.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout:
A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research,
15(1):1929–1958. Cited 3 times on pages 120, 121, and 142.

Bibliography 168

Stead, W. W. (2018). Clinical implications and challenges of artificial intelligence and deep learning.
JAMA, 320(11):1107–1108. Cited 2 times on pages 45 and 130.

Su, H.-T. and McAvoy, T. J. (1993). Neural Model Predictive Control of Nonlinear Chemical Processes. In
Intelligent Control, 1993., Proceedings of the 1993 IEEE International Symposium On, pages 358–363.
IEEE. Cited 3 times on pages 67, 68, and 84.

Su, H. T., McAvoy, T. J., and Werbos, P. (1992). Long-term predictions of chemical processes using
recurrent neural networks: A parallel training approach. Industrial & Engineering Chemistry Research,
31(5):1338–1352. 00000. Cited 3 times on pages 67, 68, and 84.

Sussillo, D. and Barak, O. (2013). Opening the Black Box: Low-Dimensional Dynamics in High-Dimensional
Recurrent Neural Networks. Neural Computation, 25(3):626–649. Cited 3 times on pages 104, 106,
and 114.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural networks. In
Advances in Neural Information Processing Systems, pages 3104–3112. 00000. Cited 2 times on pages
21 and 48.

Sutton, R. S. and Barto, A. G. (2011). Reinforcement learning: An introduction. Cited on page 27.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and
Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–9. 00000. Cited on page 54.

Terzi, E., Fagiano, L., Farina, M., and Scattolini, R. (2018). Learning multi-step prediction models for
receding horizon control. In 2018 European Control Conference (ECC), pages 1335–1340. Cited 2
times on pages 89 and 90.

Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical
Society. Series B (Methodological), pages 267–288. 00000. Cited on page 31.

Tieleman, T. and Hinton, G. (2012). Lecture 6.5—RmsProp: Divide the gradient by a running average of
its recent magnitude. COURSERA: Neural Networks for Machine Learning. Cited on page 121.

Tiels, K. (2015). Wiener system identification with generalized orthonormal basis functions. PhD thesis,
Vrije Universiteit Brussel. Cited 2 times on pages 125 and 126.

Tiels, K. (2017). Polynomial nonlinear state-space modeling of the F-16 aircraft benchmark. In Workshop
on Nonlinear System Identification Benchmarks, Brussels, Belgium. Cited on page 126.

Tijani, I. B., Akmeliawati, R., Legowo, A., and Budiyono, A. (2014). Nonlinear Identification of a Small
Scale Unmanned Helicopter Using Optimized NARX Network with Multiobjective Differential Evolution.
Engineering Applications of Artificial Intelligence, 33:99–115. Cited 3 times on pages 67, 68, and 82.

Tikk, D., Kóczy, L. T., and Gedeon, T. D. (2003). A survey on universal approximation and its limits
in soft computing techniques. International Journal of Approximate Reasoning, 33(2):185–202. 00000.
Cited on page 59.

Timmer, J., Rust, H., Horbelt, W., and Voss, H. (2000). Parametric, nonparametric and parametric
modelling of a chaotic circuit time series. Physics Letters A, 274(3):123–134. 00000. Cited on page 85.

Topol, E. (2019). Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again. Hachette
UK. Cited 2 times on pages 21 and 45.

Bibliography 169

Tripathy, R. K., Bhattacharyya, A., and Pachori, R. B. (2019). A Novel Approach for Detection of
Myocardial Infarction From ECG Signals of Multiple Electrodes. IEEE Sensors Journal, 19(12):4509–
4517. Cited on page 135.

van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior,
A., and Kavukcuoglu, K. (2016). WaveNet: A Generative Model for Raw Audio. arXiv:1609.03499.
Cited 3 times on pages 22, 50, and 100.

Van Mulders, A., Schoukens, J., and Vanbeylen, L. (2013). Identification of systems with localised
nonlinearity: From state-space to block-structured models. Automatica, 49(5):1392–1396. Cited on
page 126.

Van Mulders, A., Schoukens, J., Volckaert, M., and Diehl, M. (2010). Two nonlinear optimization methods
for black box identification compared. Automatica, 46(10):1675–1681. Cited on page 85.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin,
I. (2017). Attention is All you Need. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information Processing Systems 30,
pages 5998–6008. Curran Associates, Inc. Cited 5 times on pages 20, 21, 45, 48, and 100.

Veloso, A., Meira Jr, W., and Zaki, M. J. (2006). Lazy Associative Classification. In Proceedingsof the 6th
International Conference on Data Mining (ICDM), pages 645–654. Cited on page 139.

Verdult, V. (2004). Identification of local linear state-space models: The Silver-box case study. IFAC
Proceedings Volumes, 37(13):393–398. Cited 2 times on pages 125 and 126.

Veronese, G., Germini, F., Ingrassia, S., Cutuli, O., Donati, V., Bonacchini, L., Marcucci, M., Fabbri,
A., and Italian Society of Emergency Medicine (SIMEU) (2016). Emergency physician accuracy in
interpreting electrocardiograms with potential ST-segment elevation myocardial infarction: Is it enough?
Acute Cardiac Care, 18(1):7–10. Cited 2 times on pages 21 and 130.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E.,
Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J.,
Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore,
E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris,
C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and Contributors, S. . . (2020).
SciPy 1.0–Fundamental Algorithms for Scientific Computing in Python. Nature Methods. Cited 2
times on pages 25 and 90.

Vorontsov, E., Trabelsi, C., Kadoury, S., and Pal, C. (2017). On orthogonality and learning recurrent
networks with long term dependencies. arXiv:1702.00071. Cited on page 99.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and Lang, K. J. (1989). Phoneme recognition using
time-delay neural networks. IEEE Trans. Acoust., Speech, Signal Process., 37(3):328–339. Cited on
page 122.

Wang, N., Er, M. J., and Han, M. (2014). Parsimonious Extreme Learning Machine Using Recursive
Orthogonal Least Squares. IEEE Transactions on Neural Networks and Learning Systems, 25(10):1828–
1841. 00083. Cited on page 67.

Wang, N., Sun, J.-C., Er, M. J., and Liu, Y.-C. (2016). Hybrid recursive least squares algorithm for online
sequential identification using data chunks. Neurocomputing, 174:651–660. 00014. Cited on page 67.

Bibliography 170

Warwick, K. and Craddock, R. (1996). An introduction to radial basis functions for system identification.
A comparison with other neural network methods. In Decision and Control, 1996., Proceedings of the
35th IEEE Conference On, volume 1, pages 464–469. IEEE. 00038. Cited 3 times on pages 67, 68,
and 82.

Widrow, B. and Hoff, M. E. (1960). Adaptive switching circuits. Technical report, Stanford Univ Ca
Stanford Electronics Labs. Cited on page 45.

Wigren, T. and Schoukens, J. (2013). Three free data sets for development and benchmarking in nonlinear
system identification. In 2013 European Control Conference (ECC). Cited 2 times on pages 118
and 124.

Willems, J. L., Abreu-Lima, C., Arnaud, P., van Bemmel, J. H., Brohet, C., Degani, R., Denis, B., Gehring,
J., Graham, I., and van Herpen, G. (1991). The diagnostic performance of computer programs for the
interpretation of electrocardiograms. The New England Journal of Medicine, 325(25):1767–1773. Cited
2 times on pages 130 and 140.

Willems, J. L., Abreu-Lima, C., Arnaud, P., van Bemmel, J. H., Brohet, C., Degani, R., Denis, B., Graham,
I., van Herpen, G., and Macfarlane, P. W. (1987). Testing the performance of ECG computer programs:
The CSE diagnostic pilot study. Journal of Electrocardiology, 20 Suppl:73–77. Cited on page 130.

Williams, R. J. and Zipser, D. (1989). Experimental analysis of the real-time recurrent learning algorithm.
Connection Science, 1(1):87–111. 00369. Cited 2 times on pages 71 and 106.

Wills, A. and Ninness, B. (2012). Generalised Hammerstein–Wiener system estimation and a benchmark
application. Control Engineering Practice, 20(11):1097–1108. Cited on page 122.

Wisdom, S., Powers, T., Hershey, J., Le Roux, J., and Atlas, L. (2016). Full-Capacity Unitary Recurrent
Neural Networks. In Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R., editors,
Advances in Neural Information Processing Systems 29, pages 4880–4888. Curran Associates, Inc. Cited
on page 99.

World Health Organization (2014). Global Status Report on Noncommunicable Diseases 2014: Attaining
the Nine Global Noncommunicable Diseases Targets; a Shared Responsibility. World Health Organization,
Geneva. OCLC: 907517003. Cited 2 times on pages 21 and 130.

Wray, J. and Green, G. G. R. (1994). Calculation of the Volterra kernels of non-linear dynamic systems
using an artificial neural network. Biological Cybernetics, 71(3):187–195. Cited on page 122.

Xia, F., Yang, L. T., Wang, L., and Vinel, A. (2012). Internet of things. International journal of
communication systems, 25(9):1101. Cited on page 19.

Zhang, C., Li, K., Yang, Z., Pei, L., and Zhu, C. (2014). A new battery modelling method based on
simulation error minimization. In 2014 IEEE PES General Meeting| Conference & Exposition. 00003.
Cited 3 times on pages 69, 80, and 84.

Zhang, D.-y., Sun, L.-p., and Cao, J. (2006). Modeling of temperature-humidity for wood drying based
on time-delay neural network. Journal of Forestry Research, 17(2):141–144. 00028. Cited 3 times on
pages 67, 68, and 82.

Zhang, J., Lei, Q., and Dhillon, I. S. (2018). Stabilizing Gradients for Deep Neural Networks via Efficient
SVD Parameterization. Proceedings of the 35 th International Conference on Machine Learning, page 9.
Cited on page 99.

Bibliography 171

Zhao, J., Zhu, Y., and Patwardhan, R. (2014). Identification of k-step-ahead prediction error model and
MPC control. Journal of Process Control, 24(1):48–56. Cited 2 times on pages 89 and 90.

	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables
	Contents
	Introduction
	Background
	Machine learning fundamentals
	Parameter estimation
	Maximum likelihood
	Normal distribution and the least-squares cost function
	Multinomial distribution and the softmax layer
	Bayes parameter estimation and maximum-a-posteriori
	Prior and parameter penalty

	Model complexity
	Bias-variance tradeoff
	Regularization methods and hyperparameter choice
	Model final performance

	Optimization
	Global vs local optimization algorithms
	Taylor approximations
	Convexity
	Line-search and trust-region methods
	Convergence rate
	Scaling
	Memory complexity
	Stochastic optimization

	Automatic differentiation
	Forward-mode automatic differentiation
	Reverse-mode automatic differentiation
	Computational complexity and applications

	Neural network models for sequences
	Sequence models
	Recurrent neural networks
	Training and inference using recurrent neural networks
	A short note about attention-based models
	Common recurrent neural networks architectures
	Bidirectional neural networks
	Multi-layer recurrent neural network

	Convolutional neural networks for sequences
	The uni-dimensional convolutional layer
	Padding and the transient response
	Downsampling in convolutional neural networks: strides and pooling
	Polyphase decomposition and dilations
	Deep convolutional neural networks for feature extraction
	Capturing input-output relation
	Skip connections and the residual neural network

	System identification and prediction error methods
	Mathematical representation of dynamical systems
	Dynamic representation
	Approximation function
	Noise model

	Prediction error methods
	Setup
	Nonlinear ARX models
	Nonlinear output error models
	Nonlinear ARMAX models
	General nonlinear state-space framework
	Initial conditions
	The data generation process
	Asymptotic properties
	Optimal output prediction
	Optimal cost function
	Uniform convergence of V

	Prediction error and maximum likelihood
	Some terminology
	Computing the derivatives
	Sensitivity equations
	Derivatives of the cost function

	Test design and data collection

	The trade-offs of recurrence
	Parallel training considered harmful?
	Introduction
	Unifying framework
	Parallel vs series-parallel training
	Optimal predictor

	Nonlinear least-squares network training
	Nonlinear least-squares
	Modified backpropagation
	Series-parallel training
	Parallel training

	Complexity analysis
	Neural network output and its partial derivatives
	Number of flops for series-parallel and parallel training
	Comparing methods
	Memory complexity

	Practical aspects
	Convergence towards a local minima
	Signal unboundedness during training
	Time series prediction

	Implementation and test results
	Example 1: data from a pilot plant
	Example 2: investigating the noise effect
	Timings

	Conclusion

	On the smoothness of nonlinear system identification
	Notation and setup
	Smoothness of prediction error methods
	Multiple shooting
	Method formulation
	Properties of the objective function
	Comparison with other methods

	Implementation
	Numerical examples
	Example 1: output error model for chaotic system
	Example 2: neural network for modeling pilot plant
	Example 3: pendulum and inverted pendulum
	Practical considerations

	Conclusion

	Attractor and smoothness in the analysis of recurrent neural networks training
	Introduction
	Setup and notation
	Information in a recurrent network
	Entropy of the internal states
	Contractive vs non-contractive systems
	Long-term memory

	Smoothness of the cost function
	Example: chaotic LSTM
	Theoretical results

	Attractors evolution during training
	Sine wave generation
	Symbol classification
	Word-level language model

	Related work
	Discussion

	Modeling signals and systems: applications to engineering and health care
	Deep convolutional networks in system identification
	Neural networks for temporal modeling
	Temporal convolutional network
	Regularization
	Batch normalization
	Optimization algorithms
	The residual block

	Connections to system identification
	Connection with Volterra series
	Connection with block-oriented models
	Conclusion

	Numerical results
	Example 1: nonlinear toy problem
	Example 2: Silverbox
	Example 3: F-16 ground vibration test
	Hyperparameter search and training time
	Nonlinear toy problem
	Silverbox
	F-16 ground vibration test

	Conclusion and future work

	Automatic diagnosis of the 12-Lead ECG using a deep neural network
	Results
	Model specification and training
	Testing and perfomance evaluation

	Discussion
	Methods
	Dataset acquisition
	Labelling training data from text report
	Training and validation set annotation
	Test set annotation
	Neural network architecture and training
	Hyperparameter tuning
	Statistical and empirical analysis of test results

	Conclusion
	Sequential quadratic programming solver
	Proofs
	Bibliography

