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Abstract

Large-scale systems have become increasingly common in modern society where many real

systems are widely distributed in space and consist of a large number of interconnected

subsystems with strong coupling among them. In this context, this thesis addresses the

problem of distributed control of large-scale nonlinear systems which are described by

Takagi-Sugeno (TS) fuzzy models interconnected by sector nonlinearities.

An approach based on Lyapunov theory is used as a starting point for the distributed

controller synthesis. A quadratic block-diagonal Lyapunov function is used to check the

asymptotic stability of large-scale systems via sufficient conditions described in terms of

Linear Matrix Inequalities (LMIs).

In the first moment, this thesis deals with networked systems such no decomposition

technique is applied to large-scale systems. Creating a large number of LMIs usually

generated when dealing with large-scale systems is prevented by defining an augmented

vector created with state vectors and association functions of subsystems. In this case,

state constraints and saturation in the control input are also considered, which are often

found in practice and are generated by limitations in the physical system or in the de-

scription of models that represent them. Besides that, the proposed approach also allows

to maximize the estimate of the domain of attraction where initial conditions belonging

to the region converge asymptotically to the equilibrium point.

In the sequel, the synthesis problem of distributed controllers for large-scale nonlinear

systems is solved utilizing the so-called chordal decomposition. This decomposition takes

advantage of the sparsity pattern of the graph associated with the large-scale system

to decrease the computational complexity of the problem. Thus, the analysis of the

computational complexity and the running time of the method show that solutions can

be provided with reasonable computational efforts, even though the number of subsystems

is very large.

Finally, aiming to illustrate the effectiveness of the proposed methods for distributed

control design, the stabilization of multiple inverted pendulums connected by nonlinear

springs and the control of electrical power systems are considered.
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Resumo

O contexto de sistemas de grande escala tornou-se razoavelmente comum na sociedade

moderna já que muitos sistemas reais são de fato distribúıdos no espaço e consistem

em um grande número de subsistemas interconectados e, em muitos casos, com forte

acoplamento entre os mesmos. Nesse contexto, esta tese considera o problema de controle

distribúıdo de sistemas de grande escala não-lineares, os quais são descritos por modelos

fuzzy Takagi-Sugeno interconectados por não-linearidades setoriais.

Uma abordagem baseada na teoria de Lyapunov é usada como ponto de partida para

obter a śıntese de controladores distribúıdos. Uma função de Lyapunov bloco-diagonal

quadrática é utilizada para se obter condições suficientes para a checagem da estabilidade

assintótica do sistema de grande escala.

Em um primeiro momento, a tese lida com sistemas em rede, uma vez que nenhuma

técnica de decomposição é aplicada aos sistemas de grande escala. A criação de um grande

número de desigualdades matriciais lineares geradas quando lidamos com sistemas de

grande escala é evitada a partir do uso de um vetor aumentado formado com os vetores

de estado e funções de pertinência dos subsistemas. Neste caso, também considera-se

restrições nos estados e saturação na entrada de controle, restrições estas que podem

estar frequentemente presentes em sistemas reais pois podem ser geradas por limitações

no sistema f́ısico ou na descrição dos modelos que o representam. Além disso, a abordagem

também nos permite maximizar a estimativa do domı́nio de atração para o qual condições

iniciais que pertencem à região convergem assintoticamente para o ponto de equiĺıbrio.

Posteriormente, o problema de śıntese de controladores distribúıdos para sistemas de

grande escala não-lineares é resolvido utilizando a decomposição chordal, que aproveita

o padrão de esparsidade do grafo associado ao sistema de grande escala para diminuir a

complexidade computacional do problema. A análise da complexidade computacional e

tempos de execução do método mostra que soluções podem ser fornecidas com esforços

computacionais razoáveis, mesmo que o número de subsistemas seja grande.

Por último, visando verificar a efetividade da abordagem proposta, o projeto de cont-

role distribúıdo é aplicado a problemas reais como, por exemplo, estabilização de múltiplos
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pêndulos invertidos conectados por molas não-lineares e controle de sistemas elétricos de

potência.
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1 Introduction

1.1 Motivation

Large-scale systems have become increasingly common in modern society where many

practical systems are widely distributed in space and consist of a large number of inter-

connected heterogeneous subsystems with strong physical coupling among them, such as

transportation systems, water and energy distribution, mobile robots, industrial processes

and communication networks (Antoulas 2005; Mahmoud 2011; Meyn 2007; Šiljak 2007).

However, the notion of large-scale is very subjective and several definitions have been

presented in the literature. The definition adopted in this thesis is: a system is large-

scale when its dimensions are so large that conventional techniques of modeling, analysis,

control, and computation fail to provide solutions with reasonable computational efforts

and, further, it is necessary to use some decomposition techniques to solve the prob-

lem (Jamshidi 1997).

Due to structural characteristics such as high dimensionality, information structure

constraints, uncertainty and induced delays (Bakule 2008; Lunze 1992), the analysis of

large-scale systems stability can be very challenging. The large-scale systems addressed

in this thesis consist of several nonlinear interconnected heterogeneous subsystems by

linear or nonlinear physical couplings, where the subsystems are represented by TS fuzzy

models, which is a powerful way to represent nonlinearities, since one can, in principle,

smoothly approximate nonlinear systems with an arbitrary precision by relying on this

mathematical description (Nguyen et al. 2019; Takagi and Sugeno 1985).

In such cases, it is usual to represent a large-scale system by means of a graph and

if interactions between subsystems are mutual, an undirected graph can be used (Godsil

and Royle 2001). Figure 1.1 depicts an example of a large-scale system composed by five

subsystems; a continuous arrow indicates that the dynamics of subsystem i depends on

the states of the subsystem j interconnected to it and vice versa. In this case, we say

that subsystem j belongs to the neighborhood Ni of the i-th subsystem. For example, in

Figure 1.1, N4 = {1, 3, 5}. In general, the graph that represents a large-scale system is

1



INTRODUCTION MOTIVATION

sparse, thus this thesis exploits this feature to develop an approach to the synthesis of

controllers for large-scale systems.

S1

S2

S3

S4

S5

Figure 1.1: A large-scale system represented by its subsystems Si, i ∈ I5. Continuous
arrows represent the physical couplings between subsystems.

In this context, the problem of handling nonlinear interconnections between subsys-

tems can be considered as one of the great challenges in the design of controllers for

large-scale systems, since usually only linear interconnections are considered in many

works in the current literature on the subject.

Different alternatives to deal with this problem have been employed. In general, it may

be assumed that the nonlinear interconnections satisfy a few particular conditions. For in-

stance, a Lipschitz condition is considered in (Li, Wu, and He 2018; Zhang and Lin 2014),

and the same assumption together with equal interconnected systems was considered in

(Li, Wu, and He 2018). In (Ye 2011), unknown nonlinear interconnections satisfying a

polynomial bounding condition were assumed. In (Dhbaibi et al. 2009; Liu and Li 2002)

uncertain norm-bounded interconnections were considered, while a quadratic bounding

was used in (Stanković, Stipanović, and Šiljak 2007; Zečević and Šiljak 2004), in the con-

text of dynamic and static output feedback, respectively. Interconnected Lur’e systems

are discussed in (Zečević, Cheng, and Šiljak 2010) in which the nonlinear interconnec-

tions satisfy a sector-bounded condition. Chang et al. 2014 proposed a decomposition of

nonlinear interconnections into a combination of a linear term and an uncertain linear

one.

Except for the reference (Chang et al. 2014), all the previous papers mentioned in the

last paragraph do not consider a fuzzy TS framework, which is a powerful way to represent

nonlinearities since one can, in principle, smoothly approximate nonlinear systems with

arbitrary precision by relying on this mathematical description (Nguyen et al. 2019; Takagi

and Sugeno 1985). Besides that, TS fuzzy model representations have successfully been

combined with Lyapunov theory to derive powerful stability and stabilization conditions

(Nguyen et al. 2019). However, if each nonlinear interconnection is transformed into a set

of fuzzy rules, this can lead to the so-called rule-explosion problem (Tanaka and Wang

2001). This happens in (Zhang, Zhong, and Dang 2012), where the authors transform all

nonlinearities into a set of fuzzy rules and focus on considering the time-varying delay in

the subsystems, and also in (Zhong, Zhu, and Lam 2018), where the problem of distributed

2



INTRODUCTION MOTIVATION

event-triggering control is examined. To avoid incorporating an excessive number of rules

in the TS models, Kim, Park, and Joo 2017 employ TS fuzzy modeling to represent

local nonlinearities of the subsystems, and nonlinear interconnections are considered to

be norm-bounded ones, while in (Koo, Park, and Joo 2014) nonlinear interconnections

satisfy a quadratic bounding.

Note that, when TS fuzzy models with linear consequent are used, only the local

nonlinearity of subsystems are represented by fuzzy rules, while it is assumed that the

interconnections satisfy some particular condition. In this context, when TS fuzzy models

are used in a way that they incorporate in the model sector-bounded functions, it is gener-

ated the so-called Nonlinear Takagi-Sugeno (N-TS) fuzzy models (Dong, Wang, and Yang

2009; Dong, Wang, and Yang 2011), i.e. TS fuzzy models with nonlinear consequent. It

is noteworthy that the sector-bounded function is similar to the one in the Lur’e problem,

however, it is a function of system’s states rather than a function of system’s output.

1.1.1 Control of Large-Scale Systems

One of the main issues in large-scale systems is related to the control design under infor-

mation structure constraints (Lunze 1992; Mahmoud 2011; Šiljak and Zečević 2005). In

other words, the problem is how to define a control strategy from the information flow in

the large-scale system since its complexity can increase rapidly according to the number

of subsystems. In this case, standard control structures may not be applicable. In the

following, we highlight the main drawbacks of centralized control and we discuss alterna-

tives for the control structures of large-scale systems such as decentralized and distributed

control.

Centralized versus Decentralized Control

Centralized control structures have been popular choices in most of the approaches in the

past, and several methods for stability analysis and control design of linear and nonlinear

systems are available in the literature (Khalil 2002; Skogestad and Postlethwaite 2005).

Its structure is characterized by computing the control inputs from all the systems’ states.

Figure 1.2 depicts the centralized control scheme applied to control the large-scale system

in Figure 1.1.

As a matter of fact, centralized techniques depend on a central entity that receives

from subsystems all data available and determines all control input signals. In other

words, all information is assumed to be available for a single unit capable of influencing

all subsystems by means of control actions that depend on globally available information.

However, when this kind of approach is used in large-scale systems it leads to some

problems such as high computational complexity, which increases with the number of sub-

systems; and also low reliability, since a data transmission failure from a single subsystem

3



INTRODUCTION MOTIVATION

Networked System

S1

S2
S3

S4

S5

Controller

u1

u2 u3

u4

u5
x1

x2 x3

x4
x5

Figure 1.2: Centralized control structure. The states and control inputs of each subsystem
Si are denoted by xi and ui, respectively. Dashed arrows indicate that the states (blue) of
each subsystem are sent to a centralized controller that computes and transmits control
inputs (red) back to each subsystem.

can compromise the operation of the overall networked system. Furthermore, large-scale

systems often have sensors and actuators geographically separated and, owing to economic

reasons or to delays in data transmission, centralized control can become an impractica-

ble solution, such that decentralized control structures can be considered more attractive

(Lunze 1992).

The main idea of decentralized control is dividing the large-scale system into inde-

pendent or quasi-independent subsystems to design local controllers. In a decentralized

control architecture, each subsystem in the network has a local controller whose action

is computed based only on local information on the subsystem’s internal variables, as

depicted in Figure 1.3 (see surveys (Bakule 2008, 2014; Šiljak and Zečević 2005) and

references therein).

As a result, a decentralized control structure can achieve higher reliability than a

centralized one, since unlike in the centralized approach, if one decentralized controller

fails, only one part rather than the whole control system fails. However, local controllers

may not be effective to ensure a suitable level of performance of large-scale systems, or a

proper set of local controllers that can stabilize the overall network might not even exist

(Lunze 1992), mainly when the interconnections among subsystems are very strong and

the local controllers are designed not taking this into consideration.

Distributed Control

In distributed control, the local controllers can make use of information on internal vari-

ables along with those of the subsystems in the neighborhood of the controlled subsystem

to compute its control input, see Figure 1.4. In contrast to centralized and decentralized

4
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Networked System

S1

S2
S3

S4

S5

Decentralized Control

C1

C2
C3

C4

C5

u1

u2 u3

u4

u5x1

x2
x3

x4

x5

Figure 1.3: Decentralized control structure. Dashed arrows indicate that the states (blue)
of each subsystem are sent to a local controller that computes and transmits control inputs
(red) back each corresponding subsystem.

control architectures, the distributed control structure appears as an alternative aiming

to provide greater reliability with respect to communication failures in the network in

comparison to centralized controllers, while still being able to improve performance and

stabilization capability (Lunze 1992; Zečević and Šiljak 2010). In addition, distributed

control approaches have the potential to overcome some computational issues associated

with the design of centralized strategies for high dimensional systems.

Networked System

S1

S2
S3

S4

S5

Distributed Control

C1

C2
C3

C4

C5

u1

u2 u3

u4

u5x1

x2
x3

x4

x5

Figure 1.4: Distributed control structure. Dashed arrows (gray) between local controllers
indicate that the states or control inputs of subsystems in the neighborhood are sent to a
local controller to compute the control signal for its corresponding subsystem.
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Distributed control has been applied mainly in cooperative and coordinated control

of multi-agent systems (Bullo, Cortés, and Mart́ınez 2009; Yu et al. 2016), and in this

context, the subsystems are often considered equal. Furthermore, many papers have

considered networked distributed control structures where subsystems are connected over

an underlying communication network, and the analysis is focused on network induced

problems. For instance, a distributed model predictive control strategy for nonlinear

networked control systems with asynchronous communication is proposed in (Zhou et al.

2018). For linear subsystems and linear interconnections, Kazempour and Ghaisari 2013

developed networked distributed control systems subject to both random delay and packet

loss induced by non-ideal communication links. Peng et al. 2015 presented a data-based

framework for distributed actuator fault identification and accommodation in networked

process control systems, and again each subsystem was modeled as a linear system.

1.2 Objectives

The main objective of this thesis is to design distributed control laws for a class of

continuous-time large-scale nonlinear heterogeneous systems. This objective will be pur-

sued by exploiting features of interconnection graphs and of distributed control archi-

tectures to improve flexibility and efficiency in the design of controllers for large-scale

systems described by interconnected N-TS fuzzy models, i.e. TS fuzzy models with non-

linear consequents. Therefore, based on what was previously discussed, the following

specific objectives are pursued:

1. To propose a new representation of large-scale system through interconnected N-TS

fuzzy models (namely, TS fuzzy models with nonlinear consequents), aiming to avoid

the rule-explosion problem that occurs in traditional TS fuzzy models;

2. To obtain sufficient conditions for distributed control design of networked systems

based on quadratic block-diagonal Lyapunov functions and derived and expressed in

terms of LMIs (Boyd et al. 1994), while both state and control input constraints are

taken into account in the synthesis of controllers, and the maximizing the volume

of the estimated DoA for the closed-loop system;

3. To obtain sufficient conditions for distributed control design of large-scale systems

based on chordal decomposition and quadratic block-diagonal Lyapunov functions

in order to get solutions to the case where the number of subsystems is large;

4. To propose a methodology able to be used in the synthesis for both distributed and

decentralized controllers.
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1.3 Outline and Contributions

The outline and main contributions of the thesis are:

• Chapter 2 provides an overview of the concepts, definitions, and results utilized through-

out this thesis with regard to chordal graphs and TS and N-TS fuzzy models. This

chapter also introduces how large-scale systems can be represented by interconnected

N-TS fuzzy systems which is the first contribution of this thesis.

• Chapter 3 presents the main results obtained for the distributed stabilization of net-

worked nonlinear systems1, where quadratic stabilization conditions are obtained through

distributed control structures. Besides, it presents and discusses the results of applying

the developed approach in two types of systems. The results in this chapter have been

published in (Araújo, Torres, and Palhares 2020).

• Chapter 4 demonstrates how the chordal decomposition can be used to exploit the

sparsity properties of the graph associated with the large-scale system and, thus, it

proposed an alternative to the results presented in Chapter 3 to the case when the

number of subsystems is large. In addition, the analysis of computational complexity

and running time of the proposed methods are provided.

• Chapter 5 points out conclusions and directions for the continuity of the research.

Publications

The results of this thesis have led to the following publications.

• Araújo, R. F., L. A. B. Torres, and R. M. Palhares (2020). “Distributed Control of

Networked Nonlinear Systems via Interconnected Takagi-Sugeno Fuzzy Systems with

Nonlinear consequent”. In: IEEE Transactions on Systems, Man, and Cybernetics: Sys-

tems, pp. 1-10. To appear.

• Araújo, R. F., L. A. B. Torres, and R. M. Palhares (2019). “Controle Descentral-

izado de Sistemas Interconectados por Não-Linearidades Setoriais Sujeitos a Saturação

nos Atuadores”. In: 14◦ Simpósio Brasileiro de Automação Inteligente (SBAI), Ouro

Preto, MG, Brasil.

In addition, other results for N-TS models have been obtained although they are not

covered in this thesis.

1In Chapter 3, we refer to large-scale system as a networked system because no decomposition tech-
nique is applied to large-scale systems.
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• Coutinho, P. H. S., R. F. Araújo, A.-T. Nguyen, and R. M. Palhares (2020). “A

Multiple-Parameterization Approach for Local Stabilization of Constrained Takagi-

Sugeno Fuzzy Systems with Nonlinear Consequents”. In: Information Sciences 506,

pp. 295-307.

• Araújo, R. F., Coutinho, P. H. S., A.-T. Nguyen, and R. M. Palhares (2019). ”Delayed

Nonquadratic L2-Stabilization of Continuous-Time Takagi-Sugeno Fuzzy Models with

Nonlinear Consequents”. In: Submitted to IEEE Transactions on Fuzzy Systems.
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2 Background

In this chapter, we present the fundamental concepts on graph theory and TS fuzzy models

used in this thesis. Firstly we introduce the notion of chordal graphs, its main features,

and roles in decomposition of sparse symmetric matrices. Next, we show how TS and

N-TS fuzzy models can be used to describe nonlinear systems using different sets of fuzzy

rules. Finally, as an initial contribution of this thesis, we introduce how large-scale sys-

tems can be represented by interconnected N-TS fuzzy systems.

2.1 Chordal Graph

Graph Theory provides a natural and powerful framework for studying relationships

among interconnected systems in a network. A graph G(V , E) is composed by a set

of vertices V = {1, 2, . . . , n} and a set of edges E = {(i, j)| i, j ∈ V}. A graph is called

complete if any two vertices are connected by an edge.

A path in G is a sequence of edges that connect a sequence of distinct vertices. A

graph is called connected if there is a path between every pair of vertices. A clique is a

subset of vertices C ⊆ V that induces a complete subgraph GC(C, EC), i.e., (i, j) ∈ E for

any distinct vertices i, j ∈ C. If C is not a subset of any other clique, then it is called a

maximal clique. The number of vertices in C is denoted by |C|. A cycle of length k in a

graph G is a set of pairwise distinct vertices {1, 2, . . . , k} ⊆ V such that (k, 1) ∈ E and

(i, i + 1) ∈ E for i = {1, 2, . . . , k− 1}.
A chord is an edge between nonconsecutive vertices on the path. In a cycle, a chord is

an edge connecting two non-adjacent vertices. Throughout this thesis, we are interested

in a particular class of chordal graphs, called undirected graphs, in which two connected

vertices interact mutually, i.e. (i, j) ∈ E ⇔ (j, i) ∈ E . Next, the definition of chordal

graph is given.
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Definition 2.1: Chordal graph

An undirected graph G is called chordal if every cycle of length greater than three

has at least one chord.

Nonchordal graphs can always be extended to a chordal graph by adding additional

edges to the original one. A chordal extension can be efficiently generated from heuris-

tics, such as the minimum degree ordering followed by a symbolic Cholesky factorization

(Vandenberghe and Andersen 2015).

Definition 2.2: Chordal extension

A chordal extension of a graph G(V , E) is a chordal graph Ĝ(V , Ê), where E ⊆ Ê .

Given an undirected graph G, its corresponding Adjacency matrix AG = [αij] ∈ Rn×n

is such that αij = 1, if (i, j) ∈ E , indicating a connection/edge between vertices i and j,
and αij = 0, otherwise. Since the graph is undirected, the Adjacency matrix is symmetric,

i.e. AG ∈ Sn. In addition, the neighborhood of the i-th vertex is defined by the set of

vertices Ni = {j ∈ V| αij 6= 0}. The Degree matrix of a graph, DG = [dij] ∈ Rn×n, is

a diagonal matrix that contains information on the number of edges attached to each

vertex, such that dii = ∑n
j=1 αij, ∀i ∈ V ; and dij = 0, if i 6= j. From the Adjacency and

Degree matrices one can compute the Laplacian matrix LG = [`ij] ∈ Rn×n of a graph:

LG , DG − AG . Since both the degree and the Adjacency matrices are symmetric, the

Laplacian is also a symmetric matrix and it satisfies the following properties (Godsil and

Royle 2001):

Property 2.1: Laplacian matrix of an undirected graph

LG1N = 0N,
N

∑
j=1

`ij = 0, ∀i ∈ V .

Example 2.1. Consider the two undirected graphs illustrated in Figure 2.1. The graph in

Fig. 2.1(a) is chordal, because has a cycle of length 4 with one chord, i.e. edge (1, 3). The

following vertices sets define its cliques: {1, 2}, {1, 3}, {1, 4}, {2, 3}, {3, 4}, {1, 2, 3}
and {1, 3, 4}. Further, its maximal cliques are only C1 = {1, 2, 3} and C2 = {1, 3, 4},
which are not subsets of any other clique.

On the other hand, the graph in Fig. 2.1(b) is nonchordal. However, a chordal ex-

tension can be obtained through the addition of a chord, e.g. adding the edge (1, 3) or

the edge (2, 4). Note that, the chordal extension is not unique and can be performed in

different ways.

10



BACKGROUND CHORDAL GRAPH

1

2

3

4

(a) Graph Ga - chordal graph.

1

2

3

4

5

6

(b) Graph Gb - nonchordal graph.

Figure 2.1: Examples of undirected graphs.

The Laplacian matrices of the above graphs satisfy Property 2.1 and are defined as

follows:

LGa =


3 −1 −1 −1
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2

 , LGb =



2 −1 0 −1 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
−1 0 −1 4 −1 −1
0 0 0 −1 1 0
0 0 0 −1 0 1


.

Perfect Elimination Ordering

A vertex of an undirected graph is called simplicial if the subgraph induced by its neigh-

borhood Ni is complete, i.e. all its neighbors are connected to each other. An ordering

(or equivalently a numbering of the vertices) σ = 〈1, . . . , n〉 of an undirected graph G
is a perfect elimination ordering if each ith vertex, for i = {1, 2, . . . , n}, is a simplicial

vertex in the subgraph induced by the vertices {i, i + 1, . . . , n}. Theorem 2.1 is used to

check the chordality of a graph and is equivalent to Definition 2.1.

Theorem 2.1: Theorem 4.1 in (Vandenberghe and Andersen 2015)

A graph G(V , E) is chordal if and only if G has a perfect elimination ordering.

2.1.1 Maximal Cliques and Clique Trees

Given a perfect elimination ordering, the maximal cliques of a chordal graph can be

identified in linear time (Blair and Peyton 1993). Let G be a connected chordal graph

with a set of maximal cliques VT = {C1, C2, . . . , Ct}. These maximal cliques can be

arranged in a clique tree T = (VT , ET ) with ET ⊆ VT × VT , which satisfies the clique-

intersection property, i.e. Ci ∩ Cj ⊆ Ck if clique Ck lies on the path between cliques Ci and

Cj in the tree (Blair and Peyton 1993).

A related notion is the so-called running intersection property, an ordering of the

maximal cliques C1, . . . , Ct satisfies the running intersection property if for every k ∈ It−1,
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one has that Ck+1 ∩
k⋃

j=1

Cj

 ⊆ Cs, for some s ≤ k. (2.1)

The Theorems 2.2 and 2.3 are obtained from the discussed properties above and,

similar to Theorem 2.1, they are also equivalent to Definition 2.1.

Theorem 2.2: Theorem 3.2 in (Blair and Peyton 1993)

A connected graph G(V , E) is chordal if and only if there exists a clique tree that

satisfies the clique-intersection property.

Theorem 2.3: Theorem 3.4 in (Blair and Peyton 1993)

A connected graph G(V , E) is chordal if and only if there exists an ordering of its

maximal cliques that satisfies the running-intersection property.

Example 2.2. To illustrate these concepts, consider a chordal extension of undirected

graph shown in Figure 2.1(b). The chordal extension can be obtained by adding one edge

to cycle {1, 2, 3, 4}, e.g. the undirected edge (1, 3).

Therefore, the maximal cliques of the graph are C1 = {1, 2, 3}, C2 = {1, 3, 4},
C3 = {4, 5} and C4 = {4, 6}. Notice that, the clique tree shown in Figure 2.2 satisfies

the clique-intersection property. Consider maximal cliques C1 and C4, one has C1 ∩ C4 =

∅ ⊆ C2. Further, one can verify that the ordering C1, C2, C3, C4 satisfies also the running-

intersection property (2.1).

Figure 2.2: Clique tree associated to chordal extension of undirected graph shown in
Figure 2.1(b).
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2.1.2 Sparse Symmetric Matrices and Chordal Decomposition

In this subsection, we present the applications of chordal graphs to sparse positive semidef-

inite matrices. The notation used in the following text is the same one proposed in (Zheng,

Mason, and Papachristodoulou 2018).

Given an undirected graph G(V , E), a matrix X = [xij] ∈ Sn has a sparsity pattern E
if xij = xji = 0, whenever i 6= j and (i, j) /∈ E . Basically, the sparsity pattern of a graph

is incorporated into its Adjacency and Laplacian matrices, as we can see in Example 2.1.

Thus, the space of symmetric matrices with sparsity pattern E is defined as

Sn(E , 0) = {X ∈ Sn | xij = xji = 0, if i 6= j and (i, j) /∈ E}.

In addition, if X ∈ Sn(E , 0) and E ⊂ Ê , then X also has sparsity pattern Ê , i.e.

X ∈ Sn(Ê , 0). Notice that, if Ĝ(V , Ê) is chordal, this denotes the chordal extension given

in Definition 2.2. Further, we define the set of positive semidefinite matrices with sparsity

pattern E as

Sn
+(E , 0) = {X ∈ Sn(E , 0) | X � 0}.

For instance, given a graph G(V , E), its Laplacian matrix is LG ∈ Sn
+(E , 0). Given a

clique Ck of a graph G(V , E) with maximal cliques {C1, . . . , Ct}, the principle submatrices

of a sparsity pattern E are defined matrices ECk ∈ R|Ck|×n, ∀k ∈ It with entries

(ECk)ij =

1, if Ck(i) = j,

0, otherwise,

where Ck(i) is the i-th vertex in Ck, whose vertices are sorted in the natural ordering.

These submatrices will then be used in the chordal decomposition theorem.

Theorem 2.4: Chordal decomposition theorem (Agler et al. 1988; Kakimura

2010)

Let G(V , E) be a chordal graph with maximal cliques {C1, C2, . . . , Ct}. Then, X ∈
Sn

+(E , 0) if and only if there exist matrices Xk ∈ S
|Ck|
+ for k ∈ It such that

X =
t

∑
k=1

E>Ck
XkECk .

Example 2.3. As an illustration of the decomposition discussed above, consider the graph

in Figure 1.1. Although the graph is nonchordal, a chordal extension Ĝ can be performed

by adding the undirected edge (1, 3). Consider the Laplacian matrix of the nonchordal

13



BACKGROUND CHORDAL GRAPH

graph shown in Figure 1.1:

LG =


2 −1 0 −1 0
−1 2 −1 0 0
0 −1 2 −1 0
−1 0 −1 3 −1
0 0 0 −1 1

 � 0. (2.2)

The corresponding maximal cliques of the extended graph Ĝ(V , Ê) are C1 = {1, 2, 3},
C2 = {1, 3, 4}, C3 = {4, 5}. In this case, since the Laplacian matrix of Ĝ(V , Ê) has the

same sparsity pattern of the Laplacian matrix associated with G(V , E), from Theorem 2.4,

matrix (2.2) can also be decomposed in the same way as follows:

LG = E>C1

 a1 −1 0
−1 2 −1
0 −1 a3


︸ ︷︷ ︸

� 0

EC1 + E>C2

 a2 0 −1
0 a4 −1
−1 −1 a5


︸ ︷︷ ︸

� 0

EC2 + E>C3

[
a6 −1
−1 1

]
︸ ︷︷ ︸

� 0

EC3 ,

with a1 + a2 = 2, a3 + a4 = 2 and a5 + a6 = 3. The principle submatrices related to the

maximal cliques of the extended graph are:

C1 = {1, 2, 3} ⇒ EC1 =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 ,

C2 = {1, 3, 4} ⇒ EC2 =

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0

 ,

C3 = {4, 5} ⇒ EC3 =

[
0 0 0 1 0
0 0 0 0 1

]
.

Remark 2.1

Theorem 2.4 plays an important role in the context of sparse semidefinite problems

since that if a LMI constraint has a chordal sparsity pattern, then it can be equivalently

replaced by a set of smaller LMIs and a set of equality constraints, the Example 2.3

illustrates the chordal decomposition. Therefore, according to (Fukuda et al. 2001;

Nakata et al. 2003), using this theorem brings substantial computational enhancement

to solving large sparse semidefinite problems, mainly if the number of vertices in

maximal cliques is small.
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2.2 Takagi-Sugeno Fuzzy Models

TS fuzzy models (Takagi and Sugeno 1985) have become one of the most popular modelling

frameworks used to represent nonlinear systems, since they can approximate any smooth

nonlinear function with an arbitrary precision from fuzzy rules with linear consequents.

The main feature of this modelling approach is its capability to represent nonlinear systems

by a convex combination of local linear dynamics and, as a consequence, it facilitates the

employment of Lyapunov stability theory based analysis and design techniques (Nguyen

et al. 2019; Tanaka and Wang 2001).

Consider a continuous-time and input affine nonlinear system given by:

ẋ(t) = f (x(t)) + g(x(t))u(t), (2.3)

where x(t) ∈ Rnx is the state vector; u(t) ∈ Rnu is the control input vector; and

f (·) ∈ Rnx and g(·) ∈ Rnx×nu are smooth nonlinear function matrices.

A continuous-time TS fuzzy model which represents the nonlinear system (2.3) can be

expressed by the following fuzzy rules (Nguyen et al. 2019; Rhee and Won 2006):

Rule i : IF z1(t) ∈ Mαi1
1 and · · · and zp(t) ∈ Mαip

p ,

THEN ẋ(t) = Aix(t) + Biu(t),
(2.4)

where i ∈ Ir, with r the number of fuzzy rules; z(t) ∈ Rp is the premise variables vector

(zj(t) is the j-th element of vector z(t)); Ai ∈ Rnx×nx and Bi ∈ Rnx×nu are matrices

describing the local linear dynamics of the system; Mαij
j is the fuzzy set related to the

premise variable zj(t); αij is an index that relates each fuzzy set of the premise variable

zj(t) with rule i, e.g. an index α32 = 1 indicates that the first fuzzy set of the premise

variable z2(t) is used on the third rule; and 1 ≤ αij ≤ rj with rj the number of fuzzy sets

related to the premise variable zj(t).

The grade of membership 0 ≤ ω
αij
j (zj(t)) ≤ 1 associated with premise variable zj(t)

and fuzzy set Mαij
j such that a corresponding normalized grade of membership can be

obtained as

µ
αij
j (zj(t)) =

ω
αij
j (zj(t))

∑
rj
αij=1 ω

αij
j (zj(t))

.

These normalized grade of membership satisfy the convex sum properties:

µ
αij
j (zj(t)) ≥ 0,

rj

∑
αij=1

µ
αij
j (zj(t)) = 1.

In addition, these properties are inherited by the inferred TS membership functions ς(z(t))
given by Definition 2.3. Thus, ςi(z(t)) satisfies Property 2.2.
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Definition 2.3: Inferred TS membership functions

ςi(z(t)) =
p

∏
j=1

µ
αij
j (zj(t)), (2.5)

Property 2.2: Convex sum property

ςi(z(t)) ≥ 0,
r

∑
i=1

ςi(z(t)) = 1.

where r =
p

∏
j=1

rj is the TS model’s total rule number.

The set of rules (2.4) and membership functions (2.5) yield the following inferred TS

fuzzy model:

ẋ(t) =
r

∑
i=1

ςi(z(t)) (Aix(t) + Biu(t)) . (2.6)

Different methods can be used to obtain a TS fuzzy model from nonlinear system equa-

tions. The most common approaches in the literature are the fuzzy local approximation

and sector nonlinearity approach (Tanaka and Wang 2001). Example 2.4 illustrates how

to build a TS fuzzy model using the sector nonlinearity approach, which is the technique

used throughout this thesis.

Example 2.4. Consider the following nonlinear system (Tanaka and Wang 2001, Chap-

ter 2):

ẋ1 = −x1 + x1x3
2

ẋ2 = −x2 + (3 + x2)x3
1.

(2.7)

We need to find a representation such that ẋ = g(x)x, however, notice that this choice is

not unique. Defining as premise variables, z1 = x1x2
2 and z2 = (3 + x2)x2

1, one has that

ẋ =

[
−1 z1

z2 −1

]
x.

Assuming that x1 ∈ [−1, 1] and x2 ∈ [−1, 1], the premise variables’ bounds are given by

max z1 = 1, max z2 = 4,

min z1 = −1, min z2 = 0.
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From the maximum and minimum values, z1 and z2 can be represented by

z1 = µ1
1(z1) · 1 + µ2

1(z1) · (−1),

z2 = µ1
2(z2) · 4 + µ2

2(z2) · 0,

with

µ1
1(z1) + µ2

1(z1) = 1,

µ1
2(z2) + µ2

2(z2) = 1.

Therefore the membership functions can be calculated as

µ1
1(z1) =

z1 + 1
2

, µ2
1(z1) =

1− z1

2
,

µ1
2(z2) =

z2

4
, µ2

2(z2) =
4− z2

4
.

In this case the nonlinear system (2.7) is represented by the following TS fuzzy model:

Rule i : IF z1(t) ∈ Mαi1
1 and z2(t) ∈ Mαi2

2 ,

THEN ẋ = Aix,

and the inferred TS membership functions hi(z) are constructed as follows

α11 = 1, α12 = 1, ς1(z) = µ1
1(z1)µ1

2(z2),

α21 = 1, α22 = 2, ς2(z) = µ1
1(z1)µ2

2(z2),

α31 = 2, α32 = 1, ς3(z) = µ2
1(z1)µ1

2(z2),

α41 = 2, α42 = 2, ς4(z) = µ2
1(z1)µ2

2(z2).

Finally, the inferred fuzzy model is described by

ẋ =
4

∑
i=1

ςi(z)Aix,

with

A1 =

[
−1 1
4 −1

]
, A2 =

[
−1 1
0 −1

]
, A3 =

[
−1 −1
4 −1

]
, A4 =

[
−1 −1
0 −1

]
.
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Remark 2.2

As mentioned before, different choices of premise variables can be made in order to

represent g(x). In Example 2.4, considering the defined premise variables, z1 and z2,

the required number of fuzzy rules (r) to described the TS fuzzy model is r = 22.

However, if one decides to define three premise variables, e.g., z1 = −1 + x3
2, z2 = 3x2

1

and z3 = −1 + x3
1, then r = 23 fuzzy rules are necessary to describe the same nonlinear

system. Notice that the number of rules grows exponentially with the number of sector

nonlinearities used to construct the fuzzy model.

In addition, the TS fuzzy model obtained via sector nonlinearity approach can

exactly represent the nonlinear system in a local region of the state space, i.e. within

the compact set defined by the limits considered for the state variables such that the

convex sum property holds.

Fuzzy Summations

In general, the analysis and synthesis conditions for TS systems are expressed as matrix

inequalities and in terms of membership functions. In particular, the synthesis conditions

are commonly written as the following double fuzzy summation:

r

∑
i=1

r

∑
j=1

ςiς jΥij � 0. (2.8)

The inequality (2.8) is nonlinear and has infinite dimension. Thus, several sufficient

conditions based on a finite set of LMIs have been proposed in the literature to guarantee

that (2.8) is valid. Next, two of these conditions used throughout this thesis will be

presented.

Lemma 2.1: Double fuzzy summation (Tanaka and Wang 2001)

A sufficient condition for expression (2.8) to be valid, with i, j ∈ Ir, is

Υii � 0,

Υij + Υji � 0, j � i.

Proof. Note that

r

∑
i=1

r

∑
j=1

ςiς jΥij =
r

∑
i=1

ς2
i Υii +

r−1

∑
i=1

r

∑
j=i+1

ςiς j
(
Υij + Υji

)
Therefore the conditions on the lemma are sufficient for expression (2.8).

When multiple fuzzy summations are obtained instead of a double summation (2.8),

the following Lemma ensures its positiveness.
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Lemma 2.2: Multiple fuzzy summation (Sala and Ariño 2007)

A sufficient condition for

r

∑
i1=1
· · ·

r

∑
ip=1

(
p

∏
`=1

ςi`

)
Υ(i1,...,ip) � 0,

is that, for every combination of (i1, i2, . . . , ip) with i` ∈ Ir, the sum of its permu-

tations is positive definite.

2.2.1 Takagi-Sugeno Fuzzy Models with Nonlinear

Consequents

When the TS fuzzy model previously described is used to represent a complex dynamical

system, the so-called problem of rules explosion occurs due to a large number of nonlin-

earities. Stability analysis and control synthesis for such T-S fuzzy models often are very

challenging, since the large number of fuzzy rules leads to high computational complexity

as well. The fuzzy local approximation method is employed to obtain a TS fuzzy model

with fewer fuzzy rules to overcome this drawback. However, the designed control laws

based on the fuzzy model may not guarantee the stability of the original nonlinear system

(Tanaka and Wang 2001).

In this context, N-TS models, i.e. TS fuzzy models with nonlinear consequent, have

been employed to avoid using an excessive number of fuzzy rules while increasing the

model accuracy. Two approaches have emerged: the first one consists of using TS fuzzy

models with polynomial consequent (Sala 2009; Sala and Ariño 2009; Tanaka et al. 2009),

and the other one is the method introduced in (Dong, Wang, and Yang 2009; Dong, Wang,

and Yang 2011) in which sector-bounded functions are added to the traditional TS fuzzy

models, with linear local models, resulting in nonlinear consequent. More discussion on

the latter approach is given in the sequel since this is the method used throughout this

work.

Assuming that the nonlinear function f (x(t)) in (2.3) can be rewritten as follows:

f (x(t)) = fa(x(t)) + fb(x(t))φ̄(x(t)), (2.9)

in which φ̄(x(t)) =
[
φ̄1(x(t)) φ̄2(x(t)) · · · φ̄nφ(x(t))

]>
, φ̄i(x(t)) ∈ R, ∀i ∈ Inφ , are

sector-bounded nonlinear functions, i.e. each one satisfies Property 2.3.
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Property 2.3: Sector-bounded nonlinearity

A sector-bounded nonlinearity φ̄i(x(t)) ∈ R is such that

φ̄i(x(t)) ∈ co{ΩL(i)x(t), ΩU(i)x(t)}

with ΩL(i), ΩU(i) ∈ R1×nx . Therefore, φ̄i(x(t)) satisfies the inequality(
φ̄i(x(t))−ΩL(i)x(t)

) (
φ̄i(x(t))−ΩU(i)x(t)

)
≤ 0. (2.10)

In order to maintain a convex condition, some transformations in the nonlinear term

φ̄i(x(t)) will be performed. Let φi(x(t)) = φ̄i(x(t))−ΩL(i)x(t), and substituting φ̄i(x(t))
in (2.10), one has that

φi(x(t))
(

φi(x(t))−Ω(i)x(t)
)
≤ 0, (2.11)

where Ω(i) = ΩU(i) −ΩL(i). Substituting φ̄i(x(t)) in (2.9) yields

f (x(t)) = fa(x(t)) + fb(x(t))ΩLx(t) + fb(x(t))φ(x(t)),

where ΩL =
[
Ω>L(1) Ω>L(2) · · · Ω>L(nφ)

]>
, and φ(x(t)) =

[
φ1(x(t)) · · · φnφ(x(t))

]>
.

Thus, the nonlinear system (2.9) can be written as follows:

ẋ(t) = f̄a(x(t)) + g(x(t))u(t) + fb(x(t))φ(x(t)),

with f̄a(x(t)) = fa(x(t)) + fb(x(t))ΩLx(t).

As shown previously, the nonlinear functions f̄a(·), fb(·) and g(·) can be described by

fuzzy techniques (Tanaka and Wang 2001). Consequently, the nonlinear system (2.3) can

be expressed by the following N-TS fuzzy model:

Rule i : IF z1(t) ∈ Mαi1
1 and · · · and zp(t) ∈ Mαip

p ,

THEN ẋ(t) = Aix(t) + Biu(t) + Giφ(x(t)),
(2.12)

where i ∈ Ir, with r the number of fuzzy rules; x(t) ∈ Rnx is the state vector; u(t) ∈ Rnu

is the control input vector; φ(x(t)) ∈ Rnφ is the nonlinearities vector; z(t) ∈ Rp is

the premise variables vector (zj(t) is the j-th element of vector z(t)); Ai ∈ Rnx×nx ,

Bi ∈ Rnx×nu and Gi ∈ Rnx×nφ are constant matrices describing the local dynamics of the

system; Mαij
j is the fuzzy set related to the premise variable zj(t).

The rule set (2.12) and membership functions (2.5) yield the following inferred N-TS

fuzzy model:

ẋ(t) =
r

∑
i=1

ςi(z(t)) (Aix(t) + Biu(t) + Giφ(t)) . (2.13)
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One of the advantages of the N-TS fuzzy models is to generate less rules compared

to traditional TS fuzzy systems, since it incorporates the nonlinearity ϕ(x). Aiming to

obtain a smaller number of rules, an approximate representation of the nonlinearities

is usually used to create the TS fuzzy system, which can lead to serious performance

problems or in extreme cases, closed-loop instability.

Thus, the N-TS fuzzy model allows a better convex representation, where some system

nonlinearities are exactly transformed into a convex sum, and the others are nonlinearities

belonging to the sector satisfying Property 2.3.

Example 2.5. To highlight the advantage of using N-TS fuzzy models, we consider two-

inverted pendulums connected via a linear spring, which are depicted in Figure 2.3.

l1

m1

x1

u1

l2

m2

x3

u2

Figure 2.3: Two-inverted pendulums connected via linear springs.

The system dynamics can be described by the following continuous-time state-space

representation:

ẋ1 =x2,

ẋ2 =
g
l1

sin x1 +
1

m1l2
1

u1 +
ka2

m1l2
1

(
sin x3 cos x3 − sin x1 cos x1

)
,

ẋ3 =x4,

ẋ4 =
g
l2

sin x3 +
1

m2l2
2

u2 +
ka2

m2l2
2

(sin x1 cos x1 − sin x3 cos x3) ,

(2.14)

where x1 and x3 are the rod angles with respect to the vertical axis and x2 and x4 are

state variables stand for the angular velocities of each rod; mi is the mass, and li is the

rod length of the ith pendulum; ui is the torque applied to the base of the ith pendulum;

g is the gravitational acceleration; k denotes the spring elastic constants, and a is their

connection heights.

Defining the premise variables, z1 = sin x1 and z2 = sin x3, and assuming that

|x2i−1| ≤ π/2, ∀i ∈ I2, each premise variable can be written as local sector nonlin-

earity, i.e. sin x2i−1 ∈ co{b2x2i−1, b1x2i−1}, with b1 = 1 and b2 = 2/π. Therefore, one
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can represent zi = sin x2i−1 as follows:

zi =

(
2

∑
j=1

µ
j
i(zi)bj

)
x2i−1,

where the normalized membership functions can be calculated as

µ1
i (zi) =


zi− 2

π sin−1 zi

(1− 2
π ) sin−1 zi

, zi 6= 0,

1, otherwise,

and µ2
i (zi) = 1− µ1

i (zi), ∀i ∈ I2.

Furthermore, the remaining nonlinearities also belong to a local sector if |x2i−1| ≤
π/2, i.e. φi(x) = sin x2i−1 cos x2i−1 ∈ co{0, x2i−1}, for i ∈ I2. Indeed, for each nonlin-

earity φi(x) one has that

φ1(x) ∈ co
{[

0 0 0 0
]

x,
[
1 0 0 0

]
x
}

,

φ2(x) ∈ co
{[

0 0 0 0
]

x,
[
0 0 1 0

]
x
}

.

Thus, the nonlinear system (2.14) is represented by the following N-TS fuzzy model:

Rule κ : IF z1(t) ∈ Mαi1
1 and z2(t) ∈ Mαi2

2

THEN ẋ = Aκx + Bκu + Gκφ(x).

The inferred TS membership functions hκ(z) is constructed as follows

α11 = 1, α12 = 1, ς1(z) = µ1
1(z1)µ1

2(z2),

α21 = 1, α22 = 2, ς2(z) = µ1
1(z1)µ2

2(z2),

α31 = 2, α32 = 1, ς3(z) = µ2
1(z1)µ1

2(z2),

α41 = 2, α42 = 2, ς4(z) = µ2
1(z1)µ2

2(z2).

Finally, the inferred fuzzy model is given by

ẋ =
4

∑
κ=1

ςκ(z) (Aκx + Bκu + Gκφ(x)) ,

with

Aκ =


0 1 0 0

g
l1

bi 0 0 0

0 0 0 1
0 0 g

l1
bj 0

 , Bκ =


0 0
1

m1l2
1

0

0 0
0 1

m2l2
2

 , Gκ =


0 0
− ka2

m1l2
1

ka2

m1l2
1

0 0
ka2

m2l2
2
− ka2

m2l2
2

 ,

and i, j ∈ I2, κ = j + 2(i− 1).
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Remark 2.3

Notice that just as in the classical TS fuzzy model, different choices of premise vari-

ables can be made. Transforming all nonlinearities in a fuzzy description as in Exam-

ple 2.4, z2i−1 = sin x2i−1, z2i = sin x2i−1 cos x2i−1, for i ∈ I2, then 24 fuzzy rules are

required to build a regular – with affine consequent – TS fuzzy model (2.6). However,

as shown in the Example 2.5, if we use the N-TS fuzzy model (2.13), the number of

fuzzy rules would be reduced to only 22.

Analogously, if we had N series-connected inverted pendulums, the number of

fuzzy rules would be reduced from 22N to 2N. As a result, both conservativeness and

computational complexity for stability analysis and control design can be drastically

reduced when using N-TS fuzzy models for continuous-time (Dong, Wang, and Yang

2009) and discrete-time systems (Dong, Wang, and Yang 2011).

2.3 Interconnected N-TS Fuzzy Systems

Consider a continuous-time large-scale system which consists of N interconnected nonlin-

ear subsystems with nonlinear interconnections and subject to control input saturation.

Each i-th subsystem is described as follows:

ẋi(t) = fi(xi(t)) + gi(xi(t))sat(ui(t)) + ∑
j∈Ni

hij(xi(t), xj(t)), (2.15)

where i ∈ IN, xi(t) ∈ Rnxi is the state vector of i-th subsystem; ui(t) ∈ Rnui is the i-th
control input vector; fi, gi and hij are smooth nonlinear functions and hij can be divided

into a linear function and a bounded sector nonlinear one.

As it was demonstrated in the Section 2.2, TS fuzzy models can be used to approximate

nonlinear functions from fuzzy rules (Takagi and Sugeno 1985). Thus, if we transform

only local nonlinearities, fi(xi(t)) and gi(xi(t)) in (2.15), using fuzzy rules, we should

obtain the following N-TS fuzzy model for each subsystem in (2.15):

Rule Rl
i : IF zi1(t) ∈ Mαl1

i1 and zi2(t) ∈ Mαl2
i2 and · · · and zipi(t) ∈ M

αlpi
ipi

THEN ẋi(t) = Al
ixi(t) + Bl

isat(ui(t))

+ ∑
j∈Ni

(
Hl

iixi(t)− Hl
ijxj(t)

)
+ Gl

i

(
∑

j∈Ni

ϕij(xi(t), xj(t))

)

where i ∈ IN; l ∈ Iri , with ri the number of rules; Rl
i denotes the l-th fuzzy rule of i-th

subsystem; zi(t) ∈ Rpi is the premise variables vector associated to i-th subsystem (zij(t)
is the j-th element of vector zi(t)); Mαl j

ij is the fuzzy set related to the premise variable
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zij(t); xi(t) ∈ Rnxi is the state vector of i-th subsystem; ui(t) ∈ Rnui is the i-th input

vector subject to saturation; ϕij(·) are functions describing the nonlinear interconnections

between the i-th and j-th subsystems; Ni is the set of indexes related to the subsystems

in the network that are directly connected to the i-th subsystem, i.e. j ∈ Ni ⇔ αij 6= 0;

Al
i and Bl

i are known constant matrices of appropriate dimensions; with Hl
ij working as

a weighing of the contributions of the linear couplings between interconnected systems,

and Gl
i weighing the corresponding contributions of nonlinear couplings for the l-th local

model.

After using fuzzy combination of rules, we can directly obtain the i-th inferred N-TS

fuzzy model as follows

ẋi(t) =
ri

∑
l=1

ςl
i(zi(t))

[
Al

ixi(t) + Bl
isat(ui(t))

+ ∑
j∈Ni

(
Hl

iixi(t)− Hl
ijxj(t)

)
+ Gl

i

(
∑

j∈Ni

ϕij(xi(t), xj(t))

)]
,

(2.16)

where i ∈ IN, Al
i, Bl

i , Hl
ij and Gl

i are known constant matrices with appropriate dimen-

sions; with the nonlinearities ϕij satisfying Property 2.3.

From the above description, the state and input vectors of the whole large-scale

system are given, respectively, by x(t) =
[
x>1 (t) x>2 (t) · · · x>N(t)

]>
∈ Rnx , and

u(t) =
[
u>1 (t) u>2 (t) · · · u>N(t)

]>
∈ Rnu , with nx = ∑N

i=1 nxi and nu = ∑N
i=1 nui ,

such that the entire network dynamics can be expressed as

ẋ(t) = (AN + HN ◦ L) x(t) + BNsat(u(t)) + GN [(AG ◦Φ(x(t))) 1N] , (2.17)

with sat(u) =
[
sat(u1(t))> sat(u2(t))> · · · sat(uN(t))>

]>
; AN is a block diagonal

matrix, i.e., AN =
⊕N

i=1
(
∑ri

l=1 ςl
i(zi(t))Al

i
)
, and similarly the same holds for BN and

GN; HN = [∑ri
l=1 ςl

i(zi(t))Hl
ij], L = [Lij] = `ij1nxi×nxj

and Φ(x) = [ϕij(xi, xj)] ∈ RN×N

is a matrix of nonlinear functions; and AG is Adjacency matrix associated with the inter-

connection graph G of the large-scale system. Notice that the term (AG ◦Φ(x)) could be

further simplified by defining that ϕij(xi, xj) = 0, if αij = 0, such that the information

on the network connectivity is incorporated in the definition of the nonlinear coupling

functions.

Notice that if the i-th and j-th subsystems are not interconnected, then the nonlinearity

ϕij(xi, xj) does not exist and it can cause numerical problems in the design conditions and

it should not be taken into consideration. Thus, φi(x(t)) =
[

ϕij1 ϕij2 · · · ϕijdii

]>
∈

Rdii is defined as a column vector formed by stacking the nonlinear functions ϕijκ , with

jκ ∈ Ni, κ ∈ Idii . This notation is illustrated in the following example.
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Example 2.6. Consider the interconnected system represented by the graph in Figure 2.4.

The neighborhood associated with the 4th subsystem is given by N4 = {1, 3, 5}, with

S1

S2

S3

S4

S5

Figure 2.4: Graph of interconnected system.

κ ∈ I3 and j1 = 1, j2 = 3, and j3 = 5.

Hence, φ4(x(t)) =
[

ϕ41(x4, x1) ϕ43(x4, x3) ϕ45(x4, x5)
]>

.

Thus, the entire network (2.17) can be rewritten taking this aspect into account, such

that

ẋ(t) = (AN + HN ◦ L) x(t) + BNsat(u(t)) + ḠNφ(x(t)), (2.18)

where ḠN is also block diagonal matrix and incorporates the information on the num-

ber of interconnections of each subsystem, i.e., ḠN =
⊕N

i=1

(
∑ri

l=1 ςl
i(zi(t))Gl

i 1
>
dii

)
, and

φ(t) =
[
φ>1 (t) φ>2 (t) · · · φ>N(t)

]>
. Therefore, the i-th N-TS fuzzy model can be

simplified as follows:

ẋi(t) =
ri

∑
l=1

ςl
i(zi(t))

[
Al

ixi(t) + Bl
isat(ui(t))

+ ∑
j∈Ni

(
Hl

iixi(t)− Hl
ijxj(t)

)
+ Gl

i 1
>
dii

φi(x(t))

]
.

(2.19)

The entire network model (2.18) and its subsystems (2.19) will be used in Chapter 3

to obtain synthesis conditions.

Remark 2.4

Notice that since each function ϕij(xi, xj) satisfies Property 2.3, and considering the

definition of φi(x), it follows that each φi(x) also satisfies Property 2.3, i.e., there

exists given matrix Ωi =
[
Ωi1 Ωi2 · · · ΩiN

]
∈ Rdii×nx , nx = ∑N

i=1 nxi , with

Ωij ∈ R
dii×nxj , ∀j ∈ IN, such that the following inequality holds

φi(x)>Λ−1
i (φi(x)−Ωix) ≤ 0, (2.20)

where Λi ∈ Rdii×dii is any positive definite diagonal matrix which is responsible for

inserting degrees of freedom in (2.11).
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Example 2.7. To exemplify the construction of interconnected N-TS fuzzy models con-

sider a network of interconnected inverted pendulums. The following modifications are

done in the system of inverted pendulums coupled by springs (Šiljak 2012, Chapter I):

(i) Consider the problem with more than two interconnected inverted pendulums, such

that their interconnections are represented by the corresponding graph Adjacency

matrix;

(ii) Linear springs are replaced by the so-called hardening springs (Khalil 2002), with

restoring forces modeled as cubic functions of their displacements, as follows

h(y) = k(1 + a2y2)y, and we assume that all springs are equal;

(iii) Assume also that the pendulums can have different masses and rod lengths, while

being subjected to control input saturation.

Thus, the system of multiple interconnected inverted pendulums can be described by

ẋi1(t) = xi2(t),

ẋi2(t) =
g
li

sin(xi1(t)) +
1

mil2
i

sat (ui(t))

− ka2

mil2
i

∑
j∈Ni

(
xi1(t)− xj1(t)

)
− ka2γ2

mil2
i

∑
j∈Ni

(
xi1(t)− xj1(t)

)3 ,

(2.21)

where i ∈ IN, N is the number of pendulums; the state vector of the i-th subsystem is

xi(t) =
[

xi1(t) xi2(t)
]>

, xi1(t) is the rod angle with respect to the upright position,

xi2(t) is the angular velocity, and ui(t) is the torque applied to the base of the i-th
pendulum; g denotes the gravitational acceleration, mi is the mass, and li is the rod

length of the i-th pendulum. Since the springs are equal, thus k and γ denote the linear

and nonlinear elastic coefficients, respectively, and a is the height of the their connection

at the pendulums rods.

Notice that the system of multiple interconnected inverted pendulums (2.21) can be

rewritten in the form given in (2.19) using the approach presented in Section 2.2. However,

the N-TS fuzzy models is only valid if |xi1(t)| ≤ θ̄, which defines the validity region of

the model (2.16). As discussed below, this constraint directly enables the use of sector-

boundedness conditions for the nonlinear functions.

A 2-rule N-TS fuzzy model (2.19) can be obtained to each i-pendulum applying

the sector nonlinearity approach previously illustrated, choosing zi(t) = sin(xi1(t)) ∈
co
{

sin θ̄
θ̄

, 1
}

as the premise variable of the i-th subsystem, and ϕijκ (xi, xjκ ) = (xi1 −

xjκ1)3 ∈ co
{

0, Ωi(κ)x
}

, with κ ∈ Idii , and Ωi =
[
Ωi1 Ωi2 · · · ΩiN

]
,

Ωii(κ) =
[
4θ̄2 0

]
, ∀i ∈ IN, for Ωijκ(κ) = −Ωii(κ), if jκ ∈ Ni and Ωij(κ) =

[
0 0

]
,
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otherwise. The i-th local state-space matrices are given by

A1
i =

[
0 1
g
li

0

]
, A2

i =

[
0 1

g
li

sin θ̄
θ̄

0

]
, B1

i = B2
i =

[
0
1

mil2
i

]
,

H1
ij = H2

ij =

[
0 0
− ka2

mil2
i

0

]
, G1

i = G2
i =

 0

− ka2γ2

mil2
i

 .

2.3.1 Fuzzy Summations and Interconnected Systems

The great advantage of interconnected N-TS fuzzy systems is the only local nonlinearity

of N interconnected nonlinear subsystems is transformed by fuzzy rules and nonlinear

interconnections satisfy the sector condition.

In this context, the analysis and synthesis conditions will usually present N sets of

double fuzzy summations, i.e. each subsystem has corresponding double fuzzy summa-

tions, in other words, each subsystem has its proper set of membership functions. Based

on this, Lemmas 2.1 and 2.2 are not adequate to address this scenario, because they

consider only one set of fuzzy summations and a generalization to N sets is required.

Therefore, we will use the notion of multisets (Singh et al. 2007) that emerges due

to multiple sets of membership functions. A similar idea has been mainly utilized in

the context of discrete-time systems (Coutinho et al. 2019; Coutinho et al. 2020) con-

cerning multisets of delay, which are inserted in the membership function to reduce the

conservativeness.

Next, we provide fundamental concepts about multisets. The notation used is based

on the one proposed in (Coutinho et al. 2020).

Definition 2.4: Multisets (Singh et al. 2007)

Let S = {ς1, ς2, . . . , ςn} be a set. A multiset Sς over S is a cardinal-valued function

Sς : S 7→ N such that for ς ∈ Dom(Sς) implies the cardinal |ς|Sς
. The value |ς|Sς

denotes the multiplicity of ς, i.e. the number of times ς occurs in Sς. A multiset Sς

is denoted here by the set of pairs Sς = {〈|ς1|Sς
, ς1〉, . . . , 〈|ςn|Sς

, ςn〉}.

Example 2.8. If the multiplicity of a given element ς ∈ Sς is 1, it is simply denoted

〈1, ς〉 = ς. Particularly, synthesis conditions in this thesis present only multisets of

double fuzzy summations, i.e. the multiplicity of membership functions of i-th subsystem

is |ςi|Sς
= 2 and the multiset of membership functions associated to overall system is

Sς = {〈2, ς1〉, . . . , 〈2, ςn〉}.
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Definition 2.5: Index set and multi-index

The i-th index set of a multiple fuzzy summation with multiset of membership func-

tions Sς is the set of all indexes in the sum associated with subset Sςi ⊂ Sς. It is

denoted here by Iςi = {ιi = (ιi,1, . . . , ιi,|Sςi |
) | ιi,j ∈ Iri , j ∈ I|Sςi |

}. An element

ιi ∈ Iςi is called multi-index of i-th subset of multiset Sς.

Example 2.9. Consider (2.19) with N = 2, a generic multiple fuzzy summation with

double fuzzy summations of each subsystem can be written by:

∑
ι1∈Iς1

∑
ι2∈Iς2

ςι1
1 ςι2

2 Υ(ι1,ι2) =
r1

∑
ι1,1=1

r1

∑
ι1,2=1

r2

∑
ι2,1=1

r2

∑
ι2,2=1

ς
ι1,1
1 ς

ι1,2
1 ς

ι2,1
2 ς

ι2,2
2 Υ(ι1,1,ι1,2,ι2,1,ι2,2).

Lemma 2.3: Multiple fuzzy summation with multiset of membership

functions, adapted from Lemma 2 in (Coutinho et al. 2020)

A sufficient condition for the satisfaction of the following inequality dependent on a

multiple fuzzy summation with multiset of membership functions

∑
ι1∈Iς1

· · · ∑
ιN∈IςN

(
N

∏
i=1

ς
ιi
i

)
Υ(ι1,...,ιN) � 0,

is that, for every combination of (ι1, . . . , ιN), where ιi is a multi-index given by

Definition 2.5, the sum of its permutations is positive definite.

Remark 2.5

Given a multidimensional fuzzy summations with multiset of membership functions

Sςi = {〈|ςi|Sς
, ςi〉}, ∀i ∈ N , the number of LMIs to ensure its positiveness obtained

with Lemma 2.3 is given by (Coutinho et al. 2020, Remark 7)

N

∏
i=1

(ri + |ςi|Sς
− 1)!

(|ςi|Sς
)!(ri − 1)!

.

Specially in this thesis, a multiplicity of each membership function is equal to 2, i.e.

|ςi|Sς
= 2. Therefore, the number of LMIs is

N

∏
i=1

r2
i + ri

2
.

The Lemma 2.3 is obtained from the recursive application of Lemma 2.2 in each i-th
subset of multiset Sς associated with multiple fuzzy summation. This will be illustrated

in next example.
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Example 2.10. Consider that, we want to check the positiveness of the multiple fuzzy

summation in Example 2.9, for r1 = r2 = 2. Since N = 2, the multiset of membership

functions is Sς = {〈2, ς1〉, 〈2, ς2〉}.

∑
ι1∈Iς1

∑
ι2∈Iς2

ςι1
1 ςι2

2 Υ(ι1,ι2) � 0.

By Lemma 2.3, its positiveness is ensured if the following set of conditions hold:

Υ(1,1,1,1) � 0, Υ(2,2,2,2) � 0, Υ(1,1,1,2) + Υ(1,1,2,1) � 0, Υ(1,1,2,2) � 0,

Υ(1,2,1,1) + Υ(2,1,1,1) � 0, Υ(1,2,1,2) + Υ(2,1,1,2) + Υ(1,2,2,1) + Υ(2,1,2,1) � 0,

Υ(1,2,2,2) + Υ(2,1,2,2) � 0, Υ(2,2,1,1) � 0, Υ(2,2,1,2) + Υ(2,2,2,1) � 0.

Above conditions can also be obtained from the recursive application of Lemma 2.2.

Initially, we can apply Lemma 2.2 to multi-index ι2, resulting in the conditions:

Υ(ι1,1,1) � 0, Υ(ι1,1,2) + Υ(ι1,2,1) � 0, Υ(ι1,2,2) � 0.

Next, if we apply Lemma 2.2 to multi-index ι1, by considering each one of the previous

conditions one has that:

Υ(1,1,1,1) � 0, Υ(1,2,1,1) + Υ(2,1,1,1) � 0, Υ(2,2,1,1) � 0,

Υ(1,1,1,2) + Υ(1,1,2,1) � 0, Υ(2,2,1,2) + Υ(2,2,2,1) � 0,

Υ(1,2,1,2) + Υ(1,2,2,1) + Υ(2,1,1,2) + Υ(2,1,2,1) � 0,

Υ(1,1,2,2) � 0 Υ(1,2,2,2) + Υ(2,1,2,2) � 0 Υ(2,2,2,2) � 0 .

According to Remark 2.5, the number of LMIs obtained is equal to 9.
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3 Distributed Control of Networked

Nonlinear Systems

In this chapter, we investigate the problem of designing nonlinear distributed control laws

for a class of continuous-time networked nonlinear heterogeneous systems with sector-

bounded nonlinear interconnections. The new sufficient conditions, taking into account

state constraints and actuators saturation, are derived in terms of LMIs. In addition, the

volume of the DoA estimate for the closed-loop system is maximized.

The presentation and the results in this chapter were based on (Araújo, Torres, and Pal-

hares 2020).

3.1 Introduction

Networked systems consist of several interconnected subsystems by linear or nonlinear

couplings. Particularly, this thesis is concerned in the case where subsystems interact

physically with each other and interconnections are nonlinear, e.g. nonlinear springs

connect the inverted pendulums in the Example 2.7.

In this chapter, we explore the flexibility in the control design provided by using N-TS

fuzzy models, together with the advantages of a distributed control approach to design-

ing nonlinear distributed control law for a class of continuous-time networked nonlinear

heterogeneous systems with sector-bounded nonlinear interconnections. Besides, here we

refer to the large-scale system as a networked system because no decomposition technique

is applied to large-scale systems, this case will be addressed in the next chapter.
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3.1.1 Regional Stability

Real-world systems are also subject to both state and control input constraints, which

may arise either from economic restrictions or safety reasons (Nguyen et al. 2016). State

constraints can be considered due to the existence of physical limitations for the system

states or when the system’s model is valid only in a given bounded region, e.g. when

relying on linear models valid around a specific operating point. This also happens when

TS fuzzy models are employed to represent nonlinear functions that can be taken as sector

nonlinearities only in bounded regions of the state-space, according to what was discussed

in Section 2.2.

In this chapter, we consider that the estimate of the domain of attraction for the

closed-loop system (to be defined next) is inside a polytopic region in state-space, which

establishes the validity region of the system’s model. By following this approach, it is

possible to ensure that the system trajectories will always evolve within the validity region

of the underlying system model, for every initial condition in the estimated domain of

attraction. It should be emphasized that this fundamental requirement is often neglected

in many works, especially when one deals with fuzzy TS models.

The polytopic set associated with the validity of the model (2.6) representing (2.3) is

defined as follows:

Dx =
{

x(t) ∈ Rnx : β>ν x(t) ≤ 1, ν ∈ Ine

}
, (3.1)

with βν ∈ Rnx being given vectors that define the limits (hyperplanes) of the polytopic

set, and ne the number of hyperplanes.

Domain of Attraction Estimate

In the context of nonlinear systems, equilibrium points are usually only locally asymptot-

ically stable. Therefore, it is important to find the DoA corresponding to the equilibrium

point under consideration.

Definition 3.1: Domain of Attraction (DoA)

The DoA is a positively invariant region around an equilibrium point of a given non-

linear system such that every trajectory initiating inside it asymptotically converges

to the equilibrium point.

To find the exact DoA is usually very challenging. Alternatively, it can be easier to

guarantee regional stability considering an estimate of the DoA (Khalil 2002). As a matter

of fact, one can estimate the DoA via Lyapunov theory, using Lyapunov functions level

sets (Khalil 2002).
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Thus, if we consider the following quadratic Lyapunov function in the stability analysis

of the nonlinear system in (2.3):

V(x(t)) = x(t)>Px(t), (3.2)

with P = P> � 0, the 1-level set associated with the quadratic Lyapunov function (3.2)

is an ellipsoidal region defined as:

LV =
{

x(t) ∈ Rnx : x(t)>Px(t) ≤ 1
}

.

If V̇(x(t)) < 0 along the trajectories of the nonlinear system (2.3), ∀x(t) ∈ LV , x(t) 6= 0,

then LV is a positively invariant ellipsoidal set, and hence it is also a subset of the DoA

of the system (Khalil 2002).

In addition, we must ensure that LV is a subset of Dx, the validity region defined in

(3.1). This condition is guaranteed if the following inequality holds (Rohr, Pereira, and

Coutinho 2009):

1− x(t)>βν − β>ν x(t) + x(t)>Px(t) ≥ 0, ∀ν ∈ Ine . (3.3)

One can achieve this result by rewriting (3.1) as 2− x(t)>βν − β>ν x(t) ≥ 0, and since

x(t)>Px(t) ≤ 1, ∀x(t) ∈ LV , then (3.3) implies that LV ⊆ Dx.

The inequality (3.3) can be rewritten as the quadratic form:[
1
−x(t)

]> [
1 ?

βν P

] [
1
−x(t)

]
� 0, ∀ν ∈ Ine .

Hence, if the next LMI holds [
1 ?

βν P

]
� 0, ∀ν ∈ Ine , (3.4)

it implies that LV ⊆ Dx. Figure 3.1 illustrates, for case two-dimensional, the inclusion of

DoA, LV , in the validity region of the model Dx, which is ensured by LMI constraint (3.4).

Representation of Control Input Saturation

On the other hand, input control constraints or actuator saturation emerge from limi-

tations in actuators and may seriously degrade the closed-loop performance, leading the

system to critical conditions and, in extreme cases, it may cause instability if not fully

considered in the controller design process (Hu and Lin 2001; Tarbouriech et al. 2011).

Consider the nonlinear system (2.3) subject to control input constraint:

ẋ(t) = f (x(t)) + g(x(t))sat(u(t)).
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x2(t)

x1(t)

LV

Dx

Figure 3.1: Validity region Dx and DoA.

The control input, u(t), is subject to a saturation map sat(·) : Rnu 7→ Rnu , defined

as

sat(ui(t)) = max (min (ui(t), ūi) ,− ūi) , ∀i ∈ Inu ,

where ūi > 0 is the absolute bound of the i-th component of the control input.

Different forms can be used to describe saturation, in (Tarbouriech et al. 2011, Chap-

ter 2) 3 different polytopic approaches are presented. In particular, Hu and Lin 2001

also propose a polytopic representation, however, this approach generates 2nu LMIs to be

considered in the control design. In the context of the control of networked systems, this

is prohibitive.

Thus, the approach based on a sector nonlinearity model presented in (Tarbouriech

et al. 2011, Chapter 3) is used throughout this chapter, where a dead-zone nonlinearity is

defined as

ψ(u(t)) = u(t)− sat(u(t)),

with ψ(u(t)) ∈ Rnu .

Consider a linear state feedback control law u(t) = Kx(t). The following lemma is

useful to deal with dead-zone nonlinearities (Tarbouriech et al. 2011).

Lemma 3.1: Dead-zone nonlinearity (Tarbouriech et al. 2011)

Consider the set

Du =
{

x(t) ∈ Rnx :
∣∣∣(K−W)(i)x(t)

∣∣∣ ≤ ūi, ∀i ∈ Inu

}
,

where W ∈ Rnu×nx is any matrix.

If x(t) ∈ Du, then

ψ(u(t))>U (ψ(u(t))−Wx(t)) ≤ 0,

holds for any positive definite diagonal matrix U ∈ Rnu×nu .
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Proof. If x(t) ∈ Du, then we can conclude that, ∀i ∈ Inu , one has that:

−ūi ≤ (K−W)(i)x(t) ≤ ūi. (3.5)

Thus it is necessary to show that, ∀i ∈ Inu ,

ψ(ui(t))>U(i,i) (ψ(u(t))−Wx(t))(i) ≤ 0, (3.6)

where U(i,i) denotes the i-th element of the diagonal of the matrix U. Thus, three possible

cases according to the value of ui(t) have to be considered:

(i) −ūi ≤ ui(t) ≤ ūi. It follows that ψ(ui(t)) = 0 and thus (3.6) holds.

(ii) ui(t) > ūi. Since ψ(ui(t)) = ui(t)− ūi, then

ψ(ui(t)) = K(i)x(t)− ūi > 0.

Notice that from (3.5) then (K−W)(i)x(t) ≤ ūi and

(ψ(u(t))−Wx(t))(i) = (K−W)(i)x(t)− ūi ≤ 0.

Since ψ(ui(t)) > 0, then inequality (3.6) holds.

(iii) ui(t) < −ūi. Since ψ(ui(t)) = ui(t)− ūi, then

ψ(ui(t)) = K(i)x(t)− ūi < 0.

Again, it follows from (3.5) that (K−W)(i)x(t) ≥ −ūi. Hence

(ψ(u(t))−Wx(t))(i) = (K−W)(i)x(t)− ūi ≥ 0.

However, ψ(ui(t)) < 0 in this case, then inequality (3.6) holds.

Analogously to the previous subsection, we must ensure that LV associated with the

Lyapunov function (3.2) is a subset of Du, the region in which saturation is described as

dead-zone nonlinearity. Thus, if following inequality holds

V(x(t)) ≥ V(x(t))−
‖ (K−W)(i) x(t)‖2

ū2
i

> 0, (3.7)

then, Lemma 3.1 is valid ∀x(t) ∈ LV and consequently LV ⊂ Du. Inequality (3.7) also

guarantees that the Lyapunov function is positive definite inside of the subset Du.

In addition, Lemma 3.1 is also used to ensured that the time derivative is negative

definite, such that:

V̇(x(t)) ≤ V̇(x(t))− 2ψ(u(t))>U (ψ(u(t))−Wx(t)) < 0.

Figure 3.2 illustrates, for case two-dimensional, the inclusion of DoA, LV , in the set

Du, which is ensured the stability in presence of saturation.
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x2(t)

x1(t)

LV

Dx

Du

Figure 3.2: DoA and sets Dx and Du.

3.2 Problem Statement

Consider a continuous-time networked system which consists of N interconnected non-

linear heterogeneous subsystems with nonlinear interconnections and subject to control

input saturation. The interconnection among subsystems is represented by an undirected

graph G(V , E). Each i-th subsystem is described as follows:

ẋi(t) = fi(xi(t)) + gi(xi(t))sat(ui(t)) + ∑
j∈Ni

hij(xi(t), xj(t)), (3.8)

where i ∈ IN, xi(t) ∈ Rnxi is the state vector of i-th subsystem; ui(t) ∈ Rnui is the i-th
control input vector; fi, gi and hij are smooth nonlinear functions.

Each subsystem in (3.8) can be represented by a N-TS fuzzy model, according to the

discussion in Section 2.3. Thus, the i-th inferred N-TS fuzzy model is given as follows

ẋi(t) =
ri

∑
l=1

ςl
i(zi(t))

[
Al

ixi(t) + Bl
isat(ui(t))

+ ∑
j∈Ni

(
Hl

iixi(t)− Hl
ijxj(t))

)
+ Gl

i

(
∑

j∈Ni

ϕij(xi(t), xj(t))

)]
,

(3.9)

where i ∈ IN, Al
i, Bl

i , Hl
ij and Gl

i are known constant matrices with appropriate dimen-

sions; with the nonlinearities ϕij being sector-bounded and satisfying Property 2.3.

For control design, we will consider the following nonlinear distributed control law for

the i-th subsystem:

ui(t) =
ri

∑
l=1

ςl
i(zi(t))Kl

ixi(t) + ∑
j∈Ni

Γij ϕij(xi(t),xj(t)) + ∑
j∈Ni

Fijxj(t),

where Kl
i ∈ Rnui×nxi , Γij ∈ Rnui×1, and Fij ∈ R

nui×nxj , and Ni is the set of indexes related

to the subsystems in the network that are directly connected to the i-th subsystem; i.e.,
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j ∈ Ni ⇔ αij 6= 0. To simplify the notation, henceforward matrices Γij will be grouped

by defining Γi =
[
Γij1 Γij2 · · · Γijdii

]
∈ Rnui×dii , with jκ ∈ Ni, κ ∈ Idii , similarly to

φi(x(t)) in Section 2.3, such that

ui(t) =
ri

∑
l=1

ςl
i(zi(t))Kl

ixi(t) + Γiφi(x(t)) + ∑
j∈Ni

Fijxj(t). (3.10)

Example 3.1. For instance, considering Example 2.6, the neighborhood associated with

the 4th subsystem is N4 = {1, 3, 5}. Therefore, matrix Γ4 associated with the 4th

subsystem is Γ4 =
[
Γ41 Γ43 Γ45

]
.

The following assumption is considered in order to have a consistent control law

in (3.10).

Assumption 3.1

The state vector xj(t) is available for the i-th subsystem, and the nonlinear functions

ϕij(xi, xj) are known for the i-th subsystem, if j ∈ Ni.

Similarly to (Dong, Wang, and Yang 2009), the nonlinearities φi(x(t)) were incorpo-

rated in the nonlinear distributed control law (3.10). This a priori additional information

aims to improve the system response by reducing conservativeness in the controller syn-

thesis procedure. The same approach has been used in several works on N-TS fuzzy

systems either for continuous-time (Dong, Wang, and Yang 2009; Moodi et al. 2019)

or for discrete-time systems (Coutinho et al. 2020; Dong, Wang, and Yang 2011; Klug,

Castelan, and Coutinho 2015; Klug et al. 2015).

Remark 3.1

A decentralized control law can be obtained by taking Γi = 0 and Fij = 0, ∀i ∈ IN

and ∀j ∈ Ni. A distributed control law that is linear with respect to state variables

from neighboring subsystems corresponds to Γi = 0, ∀i ∈ IN. On the other hand,

a nonlinear distributed control law inspired in the one in (Dong, Wang, and Yang

2009)a, would be obtained by taking Fij = 0, ∀i ∈ IN and ∀j ∈ Ni. The last one is a

distributed control law since the nonlinear interconnections also depend on the states

of subsystems in the neighborhood of the i-th subsystem.

aDong, Wang, and Yang 2009 deals only with a single system and the control law is considered
centralized.
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Using the representation of saturation as dead-zone nonlinearity and substituting

(3.10) into (3.9) leads to the following closed-loop subsystem:

ẋi(t) =
ri

∑
k=1

ri

∑
l=1

ςk
i (zi(t))ςl

j(zi(t))
(

Ak
i + Bk

i Kl
i + diiHk

ii

)
xi(t)

+ ∑
j∈Ni

ri

∑
k=1

ςk
i (zi(t))

(
Bk

i Fij − Hk
ij

)
xj(t)

+
ri

∑
k=1

ςk
i (zi(t))

(
Bk

i Γi + Gk
i 1>dii

)
φi(x(t))−

ri

∑
k=1

ςk
i (zi(t))Bk

i ψi(ui(t))

(3.11)

where ψi(ui(t)) = ui(t)− sat(ui(t)) is the dead-zone nonlinearity.

Remark 3.2

To consider systems without saturation, one must eliminate terms with regard to the

dead-zone nonlinearity in (3.11).

According to what was discussed in section 3.1.1, state and control input constraints

should be considered, since the set of interconnected closed-loop subsystems are only valid

in a local region Dx, besides, saturation is described as dead-zone nonlinearity and defines

a region Du. Further, the maximization of the volume of the DoA estimate is pursued.

Thus, we establish the following problem.

Problem 3.1

Design a nonlinear distributed controller (3.10) for each i-th subsystem (3.9), such

that the volume of the DoA estimate, LV ⊂ Dx ∩ Du, of the networked nonlinear

closed-loop system, composed by the interconnected subsystems (3.11), is maximized.

3.3 Stabilization of Interconnected N-TS Fuzzy

Systems

It is known that Lyapunov inequalities for linear systems admit block-diagonal solutions

(Sootla, Zheng, and Papachristodoulou 2017, 2019). Thus, the following quadratic block-

diagonal Lyapunov function candidate is considered in the stability analysis of the N
interconnected closed-loop subsystems in (3.11):

V(x(t)) =
N

∑
i=1

xi(t)>Pixi(t) = x(t)>PNx(t), (3.12)

where x(t) =
[
x1(t)> x2(t)> · · · xN(t)>

]>
, PN =

N⊕
i=1

Pi, with Pi = P>i � 0.
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Initially, to demonstrate the effects of multiple fuzzy summation when dealing with a

networked system, we will consider that subsystems are free from both state and control

input constraints, see Remark 3.2.

The next theorem provides sufficient conditions to ensure that the origin of the net-

worked nonlinear system is asymptotically stable. As the theorem addresses all subsystems

of the whole network, the notation of multi-index introduced in Section 2.3 will be used.

Theorem 3.1: Stabilization of networked system I

Let Ωi, ∀i ∈ IN given. If there exist matrices Qi � 0, diagonal matrices Λi � 0, and

any matrices Rιi,2
i , Sij and Ti, ∀i ∈ IN, ∀ιi,2 ∈ Iri and ∀j ∈ Ni, satisfying (3.13):

r1

∑
ι1,1=1

r1

∑
ι1,2=1

· · ·
rN

∑
ιN,1=1

rN

∑
ιN,2=1

ς
ι1,1
1 ς

ι1,2
1 . . . ς

ιN,1
N ς

ιN,2
N

[
ΘN + ∆ ?

ΠN + ΩQN −2ΛN

]
≺ 0, (3.13)

where,

ΘN =
N⊕

i=1

((
Aιi,1

i Qi + diiH
ιi,1
ii Qi + Bιi,1

i Rιi,2
i

)>
+
(

Aιi,1
i Qi + diiH

ιi,1
ii Qi + Bιi,1

i Rιi,2
i

))
,

QN =
N⊕

i=1

Qi, ΛN =
N⊕

i=1

Λi, ΠN =
N⊕

i=1

(
Bιi,1

i Ti + Gιi,1
i 1>dii

Λi

)>
, Ω =

[
Ω>1 · · · Ω>N

]>
∆ =

∆ij = 0nxi×nxj
, if αij = 0

∆ij = Bιi,1
i Sij + S>ji B

ιj,1
j
>
− Hιi,1

ij Qj −QiH
ιj,1
ji
>

, if αij = 1
.

Then continuous-time networked nonlinear system represented by a given undi-

rected graph G(V , E), composed by N interconnected closed-loop subsystems given

in (3.11), is stable and the control gains in (3.10) are: Kιi,1
i = Rιi,1

i Q−1
i , Γi = TiΛ−1

i
and Fij = SijQ−1

j .

Proof. If inequality (3.13) holds, taking Rιi,1
i = Kιi,1

i Qi, Ti = ΓiΛi, and Sij = FijQj,

∀i ∈ IN, ∀ιi,1 ∈ Iri and ∀j ∈ Ni; and applying the congruence transformation

diag
(

PN, Λ−1
N , U−1

)
, leads to the matrix inequality:

r1

∑
ι1,1=1

r1

∑
ι1,2=1

· · ·
rN

∑
ιN,1=1

rN

∑
ιN,2=1

ς
ι1,1
1 ς

ι1,2
1 . . . ς

ιN,1
N ς

ιN,2
N

[
Θ̃N + ∆̃

Π̃N + Λ−1
N Ω −2Λ−1

N

]
≺ 0, (3.14)
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with

Θ̃N =
N⊕

i=1

((
Aιi,1

i + Bιi,1
i Kιi,2

i + diiH
ιi,1
ii

)>
Pi + Pi

(
Aιi,1

i + Bιi,1
i Kιi,2

i + diiH
ιi,1
ii

))
,

∆̃ =

∆̃ij = 0nxi×nxj
, if αij = 0

∆̃ij = PiB
ιi,1
i Fij + F>ji Bιi,2

j
>

Pj − PiH
ιi,1
ij − Hιi,2

ji
>

Pj, if αij = 1
,

Π̃N =
N⊕

i=1

(
Bιi,1

i Γi + Gιi,1
i 1>dii

)>
Pi.

Pre- and pos-multiplying (3.14) by
[
x> φ(x)>

]
and its transpose, and considering

(3.11) and (3.12), one has that

V̇(x)− 2 ∑
i∈IN

φi(x)>Λ−1
i (φi(x)−Ωix) < 0. (3.15)

Notice that since each nonlinearity φi(x) verifies a sector condition as in (2.20), the

inequality (3.15) defines an upper bound for the time derivative of the Lyapunov function

(3.12), implying V̇(x) < 0, ∀x 6= 0. This completes the proof.

One of the main difficulties when dealing with interconnected systems using TS fuzzy

models is to obtain conditions from the combinations of the rules of each subsystem

(Tanaka and Wang 2001), since with the increasing amount of subsystems the number of

LMIs grows exponentially. This happens in Theorem 3.1, since Lemma 2.3 must be used

to obtain a finite number of LMIs.

To avoid this problem and to ensure that the asymptotic stability of the subsystem

trajectories, we propose conditions based on LMI constraints obtained in a similar way

as the one presented in (Lam and Lauber 2012; Lin, Wang, and Yang 2007), where

membership functions have been used together with state variables to define a quadratic

form.

For this, Lemma 2.1 is applied into each i-th closed-loop subsystem (3.11), thus, an

equivalent form of (3.11) is given by

ẋi(t) =
ri

∑
k=1

(ςk
i (zi(t)))2Akk

i xi(t) + 2
ri−1

∑
k=1

ri

∑
l=k+1

ςk
i (zi(t))ςl

i(zi(t))

(
Akl

i + Alk
i

2

)
xi(t)

+ ∑
j∈Ni

ri

∑
k=1

ςk
i (zi(t))

(
Bk

i Fij − Hk
ij

)
xj(t)

+
ri

∑
k=1

ςk
i (zi(t))

(
Bk

i Γi + Gk
i 1>dii

)
φi(x(t))−

ri

∑
k=1

ςk
i (zi(t))Bk

i ψi(ui(t))

(3.16)
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where Akl
i = Ak

i + Bk
i Kl

i + diiHk
ii and ψi(ui(t)) = ui(t) − sat(ui(t)) is the dead-zone

nonlinearity. In addition, the following vector is defined:

x̄ =
[
ς>1 ⊗ x>1 ς>2 ⊗ x>2 · · · ς>N ⊗ x>N

]>
, (3.17)

where ςi =
[
ς1

i (zi(t)) ς2
i (zi(t)) · · · ς

ri
i (zi(t))

]>
is the vector of membership functions

of the i-th subsystem.

To deal with saturation, a modified version of Lemma 3.1 is presented in Lemma 3.2

to consider the control law (3.10).

Lemma 3.2: Dead-zone nonlinearity for distributed control law (3.10)

Consider the set

Du =
{

x ∈ Rnx :
∣∣∣(KN + F−W)(ι)x̄ + (ΓN − J)(ι)φ(x)

∣∣∣ ≤ ūι, ∀ι ∈ Inu

}
, (3.18)

where W ∈ Rnu×nx̄ and J ∈ Rnu×nφ are any matrices with dimensions defined by

nx̄ = ∑N
i=1 rinxi , nu = ∑N

i=1 nui , and nφ = ∑N
i=1 dii; KN =

⊕N
i=1

[
K1

i · · · Kri
i

]
,

ΓN =
⊕N

i=1 Γi, the block matrix F = [F̄ij], with F̄ij = 1>rj
⊗ Fij, if αij = 1 and

Fii = 0nui×rjnxj
, if αij = 0.

If x ∈ Du, then

ψ(u)>U−1 (ψ(u)−Wx̄− Jφ(x)) ≤ 0, (3.19)

holds for any positive definite diagonal matrix U ∈ Rnu×nu , with

φ(x) =
[
φ1(x)> · · · φN(x)>

]>
, and ψ(u) =

[
ψ1(u1)> · · · ψN(uN)>

]>
.

Proof. The proof follows the same steps of Lemma 3.1 and has been omitted here.

The following theorem provides sufficient conditions to ensure that the origin of the

networked nonlinear system is locally asymptotically stable.
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Theorem 3.2: Stabilization of networked system II (Araújo, Torres, and

Palhares 2020)

Let βν, ūι, ∀ν ∈ Ine , ∀ι ∈ Inu , and Ωi, ∀i ∈ IN given. If there exist matrices

Qi � 0, diagonal matrices Λi � 0, U � 0, and any matrices W, J, Rl
i, Sij and Ti,

∀i ∈ IN, ∀l ∈ Iri and ∀j ∈ Ni, satisfying the following LMIs:[
1 ?

QN βν QN

]
� 0, ∀ν ∈ Ine , (3.20)

Q̃N ? ?

−Ω̄Q̄N 2ΛN ?(
RN + S−W

)
(ι)

(
T N − J

)
(ι)

ū2
ι

 � 0, ∀ι ∈ Inu , (3.21)

 ΘN + ∆ ? ?

ΠN + Ω̄Q̄N −2ΛN ?

−UBN + W J −2U

 ≺ 0, (3.22)

where,

QN =
N⊕

i=1

Qi, Q̄N =
N⊕

i=1

(Iri ⊗Qi), Q̃N =
N⊕

i=1

(1ri×ri ⊗Qi), ΛN =
N⊕

i=1

Λi,

RN =
N⊕

i=1

[
R1

i · · · Rri
i

]
, TN =

N⊕
i=1

Ti; BN =
N⊕

i=1

[
B1

i
> · · · Bri

i
>
]

,

ΘN =
N⊕

i=1


Θ11

i · · · Θ1ri
i

...
. . .

...

Θri1
i · · · Θriri

i

 , Θkl
i =

(
Ākl

i + Ālk
i

2

)>
+

(
Ākl

i + Ālk
i

2

)
,

Ākl
i =Ak

i Qi + diiHk
iiQi + Bk

i Rl
i ,

∆ =

∆ij = 0rinxi×rjnxj
, if α = 0

∆ij = [∆kl
ij ], if α = 1, with ∆kl

ij = Bk
i Sij + S>ji Bl

j
> − Hk

ijQj −QiHl
ji
> ,

ΠN =
N⊕

i=1

[
Π1

i · · · Πri
i

]
, Πk

i =
(

Bk
i Ti + Gk

i 1>dii
Λi

)>
,

Ω̄ =
[
Ω̄>1 Ω̄>2 · · · Ω̄>N

]>
, with Ω̄i =

[
1>r1
⊗Ωi1 1>r2

⊗Ωi2 · · · 1>rN
⊗ΩiN

]
,

S =[S̄ij], with S̄ij = 1>rj
⊗ Sij, if αij = 1, or S̄ij = 0nui×rjnxj

, if αij = 0.

Then continuous-time networked nonlinear system represented by a given undi-

rected graph G(V , E), composed by N interconnected closed-loop subsystems given

in (3.16), is stable and the control gains in (3.10) are: Kl
i = Rl

iQ
−1
i , Γi = TiΛ−1

i and

Fij = SijQ−1
j .
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Proof. Assume that (3.20) is satisfied. Applying the congruence transformation

diag (1, PN), with Pi = Q−1
i , ∀i ∈ IN, in (3.20) one has that[

1 ?

βν PN

]
� 0, ∀ν ∈ Ine ,

and pre- and pos-multiplying the last inequality by
[
1 −x>

]
and its transpose, respec-

tively, it results:

1− x>βν − β>ν x + x>PNx ≥ 0.

Since x>PNx ≤ 1, ∀x ∈ LV , then 2− x>βν − β>ν x ≥ 0 holds ∀x ∈ LV , implying that

β>ν x ≤ 1. Hence, LV ⊆ Dx, with Dx defined in (3.1).

Next, applying a congruence transformation to (3.21) with diag
(

P̄N, Λ−1
N , 1

)
, with

P̄N =
⊕N

i=1 (Iri ⊗ Pi), Λ−1
N =

⊕N
i=1 Λ−1

i and P̄N = Q̄−1
N , followed by the application of

the Schur complement Lemma, we obtain[
P̃N ?

−Λ−1
N Ω̄ 2Λ−1

N

]
− 1

ū2
ι

Υ>(ι)Υ(ι) � 0, ∀ι ∈ Inu , (3.23)

where P̃N =
⊕N

i=1 (1ri×ri ⊗ Pi), and Υ =
[
KN + F − W̃ ΓN − J̃

]
, with W̃ = WP̄N

and J̃ = JΛ−1
N . Pre- and pos-multiplying (3.23) by

[
x̄> φ(x)>

]
and its transpose,

considering (3.16) and using (3.12) as Lyapunov function, it leads to

V(x) + 2 ∑
i∈IN

φi(x)>Λ−1
i
(
φi(x)− Ω̄ix̄

)
−
‖
(
KN + F − W̃

)
(ι) x̄ +

(
ΓN − J̃

)
(ι) φ(x)‖2

ū2
ι

> 0.

Thus, since each nonlinearity φi(x) verifies a sector condition (according to Remark 2.4),

Lemma 3.2 it valid ∀x(t) ∈ LV and it follows that LV ⊂ Du, with Du defined in (3.18).

Finally, if inequality (3.22) holds, taking Rl
i = Kl

i Qi, Ti = ΓiΛi, and Sij = FijQj,

∀i ∈ IN, ∀l ∈ Iri and ∀j ∈ Ni; and applying the congruence transformation

diag
(

P̄N, Λ−1
N , U−1

)
, it leads to the matrix inequality:

 Θ̃N + ∆̃ ? ?

Π̃N + Λ−1
N Ω̄ −2Λ−1

N ?

−BNP̄N + U−1WP̄N U−1 JΛ−1
N −2U−1

 ≺ 0, (3.24)
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with

Θ̃N =
N⊕

i=1


Θ̃11

i · · · Θ̃1ri
i

...
. . .

...

Θ̃ri1
i · · · Θ̃riri

i

 , Θ̃kl
i =

(
Akl

i + Alk
i

2

)>
Pi + Pi

(
Akl

i + Alk
i

2

)
,

∆̃ =

∆̃ij = 0rinxi×rjnxj
, if α = 0

∆̃ij = [∆̃kl
ij ], if α = 1, with ∆̃kl

ij = PiBk
i Fij + F>ji Bl

j
>Pj − PiHk

ij − Hl
ji
>Pj

,

Π̃N =
N⊕

i=1

[
Π̃1

i · · · Π̃ri
i

]
, Π̃k

i =
(

Bk
i Γi + Gk

i 1>dii

)>
Pi.

Pre- and pos-multiplying (3.24) by
[
x̄> φ(x)> ψ(u)>

]
and its transpose, and con-

sidering (3.12), one has that

V̇(x)− 2 ∑
i∈IN

φi(x)>Λ−1
i
(
φi(x)− Ω̄ix̄

)
− 2ψ(u)>U−1 (ψ(u)− W̃x̄− J̃φ(x)

)
< 0.

(3.25)

Notice that since each nonlinearity φi(x) verifies a sector condition as in (2.20) and

ψ(u) is a dead-zone nonlinearity and satisfies (3.19), inequality (3.25) defines an upper

bound for the time derivative of the Lyapunov function (3.12), implying V̇(x) < 0, ∀x 6= 0.

This completes the proof.

Remark 3.3

Notice that the combination of membership functions of different subsystems is avoided

in LMI constraint (3.22), because Lemma 2.1 is applied in each i-th subsystem and

then using the membership functions together with states to generate the quadratic

form.

Theorem 3.2 provides sufficient conditions to ensure asymptotic stability and an esti-

mate of the DoA, LV , of the networked nonlinear system. However, we are interested in

finding the largest estimate considering Dx and Du, i.e., LV ⊂ Dx ∩ Du. The following

Corollary solves Problem 3.1 incorporating the maximization of the volume of LV , while

still considering the sufficient conditions in Theorem 3.2.
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Corollary 3.1: Maximization of the DoA estimate

If the optimization problem,

max
Qi,Λi,U,W,J,Rl

i ,Sij,Ti

det
(
QN
)1/nx

subject to (3.20), (3.21) and (3.22)

is feasible, then Problem 3.1 has a solution that gives the largest positively invariant

ellipsoidal set LV under the considered constraints.

Proof. Note that maximizing det
(
QN
)1/nx implies on minimizing det

(
PN
)1/nx and hence

the volume of the set LV associated with the Lyapunov function (3.12) is maximized. The

rest of the proof is a direct consequence of Theorem 3.2.

Remark 3.4

Notice that in the case when saturation is not taken into account, it is necessary to

exclude in the Theorem 3.2 the LMI constraint (3.21) as well as 3th row and 3th

column in LMI constraint (3.22). Furthermore, one has to pay attention when using

Corollary 3.1 since if there is no saturation on the control inputs, the state constraints

must form a compact polytopic set such that the cost function in the optimization

problem remains bounded.

3.4 Illustrative Examples

In this section, two study cases are presented to illustrate the effectiveness of the nonlinear

distributed control strategy. The first example is an electrical power system composed

of two-machine subsystems discussed in Lin, Wang, and Yang 2007. The second one is

a network of multiple inverted pendulums coupled by nonlinear springs presented in the

Example 2.7, which is a modified version of the example presented in (Šiljak 2012).

All simulation results presented throughout this chapter were obtained using the

Yalmip parser (Löfberg 2004) and Mosek solver (Mosek 2017) performing on software

Matlab R2018b.
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3.4.1 Two-machine Subsystems

Consider an electrical power system composed of two-machine subsystems and given as

in (Lin, Wang, and Yang 2007):

ẋi1(t) = xi2(t),

ẋi2(t) = − Di

Mi
xi2(t) +

1
Mi

ui(t)

+
2

∑
j=1

ViVjYij

Mi
× [cos (δ0

ij − θij)− cos (xi1(t)− xj1(t) + δ0
ij − θij)],

(3.26)

where i ∈ I2, xi1(t) denotes the absolute rotor angle and xi2(t) is the angular velocity of

the i-th machine. Parameters Mi, Di, Vi, and Yij denote the inertia coefficient, damping

coefficient, internal voltage, and the modulus of the transfer admittance between the i-th
and j-th machine, respectively. All parameter values are the same used in (Lin, Wang,

and Yang 2007).

For i ∈ I2, one has x(t) =
[

x11 x12 x21 x22

]>
, note that by considering

xi1(t) ∈ [−π/2, π/2] nonlinear interconnections ϕij(xi, xj) = cos (δ0
ij − θij)−

cos (xi1 − xj1 + δ0
ij − θij) belong to the sector ϕij(xi, xj) ∈ co{ΩLx(t), ΩUx(t)}, with

ΩL =
[
−0.813 0 0.813 0

]
, ΩU =

[
0.628 0 −0.628 0

]
, which can be transformed

in a sector nonlinearity ϕ̄ij(xi, xj) = cos (δ0
ij − θij)− cos (xi1 − xj1 + δ0

ij − θij)−ΩLx ∈
co{0, Ωix(t)}, where Ωi = ΩU −ΩL as in (Dong, Wang, and Yang 2009). Thus, the

system of two-machine in (3.26) can be described as follows:

ẋi1(t) = xi2(t),

ẋi2(t) = − Di

Mi
xi2(t) +

1
Mi

ui(t) +
2

∑
j=1

ViVjYij

Mi

(
ϕ̄ij(xi, xj) + ELx(t)

)
,

(3.27)

Although the model in (3.27) does not have local nonlinearities. Thus, the whole

networked system is represented by only one rule independently of the subsystems number,

which is an advantage over the approach in (Lin, Wang, and Yang 2007), where 9 rules

are required to describe the system with two machines. Notice that this number will

increase exponentially in the case of adding more machines. In addition, in (Lin, Wang,

and Yang 2007) an approximate approach is used to obtain the fuzzy rules describing the

system (Takagi and Sugeno 1985), and it is not possible to estimate a DoA since there is

no guarantee of convergence for any initial condition.

In order to compare the approaches, the LMI given in (3.20) has been added in the

condition of Remark 1 in (Lin, Wang, and Yang 2007), which ensures the validity of the

model; as well as the cost function in Corollary 3.1, which aims to compare the volume

of the DoA that this approach would generate if it would be possible to compute. In this

case, the proposed methodology has been performed disregarding saturation, i.e. the LMI

condition (3.21) and 3th row and 3th column in LMI condition (3.22) has been excluded.
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In addition, constraint xi2(t) ∈ [−2π, 2π] is also considered in order to avoid that

the cost function of the optimization problem is unbounded. Table 3.1 presents values

of det
(
QN
)1/nx , which is proportional to volume of DoA obtained with the aforemen-

tioned approaches. Note that the methodology in Section 3.3 returns a DoA greater with

regarding to the proposed extension from (Lin, Wang, and Yang 2007).

Table 3.1: Values of det
(
QN
)1/nx obtained with extension of (Lin, Wang, and Yang 2007)

and Corollary 3.1.

Method det
(
QN
)1/nx

Extension of (Lin, Wang, and Yang 2007) 8.2996
Corollary 3.1 9.8696

Figures 3.3 and 3.4 illustrate the trajectories of angular positions of two-machines

obtained using the extension of (Lin, Wang, and Yang 2007) previously described, con-

sidering the initial conditions x0(t) =
[
0.7732 0 −0.5203 0

]>
, which belongs to

stability regions obtained by both methods.

Note that the quality of the responses is worse (greater settling times and control

input magnitudes, although this not is always guaranteed) than those obtained from the

method proposed in Section 3.3, illustrated in Figures 3.5 and 3.6.

0 5 10 15

-1

-0.5

0

0.5

1

Figure 3.3: Trajectories of angular positions of two-machines in Section 3.4.1 – Extension
of (Lin, Wang, and Yang 2007).
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0 5 10 15

-30

-20

-10

0

10

20

30

Figure 3.4: Control signals of two-machines in Section 3.4.1 – Extension of (Lin, Wang,
and Yang 2007).
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Figure 3.5: Trajectories of angular positions of two-machines in Section 3.4.1 – Corol-
lary 3.1.
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Figure 3.6: Control signals of two-machines in Section 3.4.1 – Corollary 3.1.

3.4.2 Multiple Inverted Pendulums

The networked system composed by multiple inverted pendulums coupled by nonlinear

springs described in the Example 2.7 will used to demonstrate the effectiveness of the

proposed design approach. The system parameters are N = 9, g = 9.8m/s2, k = 80N/m,

γ = 0.8m−1, a = 0.5m, the saturation of the control input is defined as ūi = 25Nm,

∀i ∈ IN and the other parameters (masses (mi) and lengths (li)) are shown in Table 3.2.

Table 3.2: Parameters of the multiple inverted pendulums.

Subsystem mi (kg) li (m) xi10 (rad)

S1 0.35 1.2 -0.1652
S2 0.35 1.2 -0.1007
S3 0.30 1.3 -0.1094
S4 0.25 0.9 -0.1511
S5 0.25 1.1 0.1267
S6 0.45 1.1 0.1072
S7 0.40 1.1 -0.1344
S8 0.25 0.9 0.1008
S9 0.45 1.2 0.1587

The graph representing the interconnections between the nine pendulums is depicted

in Figure 3.7. From that one obtains the Adjacency and Degree matrices of the networked

system, respectively, AG and DG . Obviously, the value of the volume of the DoA estimate

depends on the level of the control input saturation and limits the trajectories of the states.
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S1 S2

S3

S4

S5 S6

S7

S8

S9

Figure 3.7: Networked system graph of the interconnected inverted pendulums.

However, in this case, the limits of the state variable xi1(t) also modify the nonlinearity

sector. Thus, the value of θ̄ which generates the greatest DoA estimate is θ̄ = 0.3927.

The reduction in the conservativeness is illustrated by the values of det
(
QN
)1/nx

obtained from the optimization in Corollary 3.1. The values for the control law (3.10)

and their modifications discussed in Remark 3.1 are shown in Table 3.3. Notice that the

volume of the set LV can be increased with the addition of terms in the control law as

proposed in this thesis.

Table 3.3: Values of det
(
QN
)1/nx obtained with Corollary 3.1, and alternatives of control

in the Remark 3.1.

Controller det
(
QN
)1/nx

Decentralized (Γi = 0 and Fij = 0) 1.5763
Linear Distributed (Γi = 0) 1.7223
Nonlinear Distributed (Fij = 0, inspired in (Dong, Wang, and Yang 2009)) 2.2391
Nonlinear Distributed (Eq. (3.10)) 2.3355

The closed-loop behavior of the system is depicted in Figure 3.8, considering, as initial

conditions, all pendulums at rest and their angular positions xi10 as given in Table 3.2. It

is worth pointing out that the nonlinear distributed controller is the only one guaranteeing

the stabilization considering the set of initial conditions. The corresponding control signals

are depicted in Figure 3.9. Note that although the saturation is taken into account,

the proposed nonlinear distributed controller prevents its occurrence and guarantees the

asymptotic stability of the closed-loop system.

3.5 Conclusions

This chapter investigated the nonlinear distributed control problem for a class of continuous-

time networked heterogeneous systems with bounded sector nonlinear interconnections

subject to both control input saturation and state constraints, which are described by

interconnected nonlinear Takagi-Sugeno fuzzy systems. A quadratic block-diagonal Lya-
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Figure 3.8: Time evolution of the angular positions for the nine interconnected inverted
pendulums in Section 3.4.2.
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Figure 3.9: Control signals of the nine interconnected inverted pendulums in Section 3.4.2.

punov function was used to obtain sufficient conditions to solve the problem by means of

LMIs, and two theorems were proposed from this.

Although Theorem 3.1 ensures the stability of the networked system, it is prohibitive,
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even considering a small number of subsystems, since a large number of LMIs is ob-

tained due to application of Lemma 2.3. Theorem 3.2 was proposed to overcome this

problem, which using the membership functions of subsystems to define the augmented

vector (3.17), dealing with the combination of membership functions of subsystems in a

single LMI constraint.

It has been shown that if the associated optimization problem is feasible, the closed-

loop networked control system is asymptotically stable, and the corresponding estimated

ellipsoidal DoA is maximized. Finally, two examples of networked systems were employed

to show the effectiveness of the proposed control approach, with respect to other works and

over decentralized and linear distributed control laws derived following the same method.
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4 Distributed Control of Large-Scale

Systems

In this chapter, we investigate the problem of distributed controller synthesis for a class of

large-scale systems. For this, the chordal decomposition is used to extend the result based

on the multisets of membership functions presented in the previous chapter. Besides, it

presents the analysis of the computational complexity of the approach when the number of

interconnected subsystems increases.

4.1 Introduction

A system is large-scale when its dimension is such that traditional modeling, analysis,

control, and computation techniques cannot provide solutions with reasonable computa-

tional efforts (Jamshidi 1997). The methods enumerated in Section 1, either using fuzzy

TS models or not, to deal with nonlinear interconnections among subsystems are not

scalable when the number of subsystems is large.

In this context, the chordal decomposition (Blair and Peyton 1993; Vandenberghe

and Andersen 2015) has been used to reduce the complexity of the resulting problems,

mainly when the graph associated with the large-scale system is sparse. This technique

was used to design distributed control of interconnected systems in (Zheng, Mason, and

Papachristodoulou 2018), although all components were considered linear, including sub-

systems, interconnections and controllers.

As discussed in Chapter 3, Theorem 3.1 is impractical even when the number of the

subsystems is relatively small, and although Theorem 3.2 can provide solutions for a

higher number of subsystems, it does not take advantage of sparsity of the graph that

represents the networked system.
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In this chapter, the chordal decomposition is used to deal with large scale systems in

order to extend the previously developed approach to the case where the number of subsys-

tems is large. Finally, we will provide an analysis of the computational complexity of the

proposed methods aiming to illustrate the advantages of using the chordal decomposition.

4.1.1 Sparse Block Matrices and Chordal Decomposition

According to the discussion in Chapter 3, the occurrence of block matrices is natural

when we deal with large-scale systems. Therefore, we provide an extension of the Chordal

Decomposition Theorem presented in Theorem 2.4 for the case where X is a block matrix,

i.e. X = [Xij].

Given a vector λ = {λ1, λ2, . . . , λN}; with λi ∈ R, i ∈ IN; a block matrix X ∈ Snx

has λ-partitioning with nx = ∑N
i=1 λi, such that

X =


X11 X12 · · · X1N

X>21 X22 · · · X2N
...

...
. . .

...

X>1N X>2N · · · XNN

 ,

where each block Xij ∈ Sλi×λj , ∀i, j ∈ IN. For an undirected graph G(V , E), the space

of λ-partitioned symmetric matrices with sparsity pattern E is defined as

S
nx
λ (E , 0) = {X ∈ Snx | Xij = X>ji = 0, if i 6= j and (i, j) /∈ E},

and the space of sparse block positive semidefinite matrices is

S
nx
λ,+(E , 0) = {X ∈ S

nx
λ (E , 0) | X � 0}.

Similar to Section 2.1, if X ∈ S
nx
λ (E , 0) and E ⊂ Ê 1, then X also has sparsity pattern Ê ,

i.e. X ∈ S
nx
λ (Ê , 0).

To extend the chordal decomposition theorem, we define a block version of the principle

submatrices. Given a clique Ck of a chordal graph G(V , E) and a partition λ, the block-

wise principle submatrices of a sparsity pattern E are matrices ECk,λ ∈ R|Ck|λ×nx , ∀k ∈ It

with |Ck|λ = ∑i∈Ck
λi, and nx = ∑N

i=1 λi with entries

(ECk,λ)ij =

Iλi , if Ck(i) = j,

0λi×λj , otherwise,
(4.1)

where Ck(i) is the i-th vertex in Ck, whose vertices are sorted in the natural ordering.

Thus, the following theorem extends Theorem 2.4 to the case of sparse block matrices.

1Ê denotes the edges set of a chordal extension of graph G, see Section 2.1.
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Theorem 4.1: Block-chordal decomposition theorem (Zheng 2019)

Let G(V , E) be a chordal graph with maximal cliques {C1, C2, . . . , Ct}. Given a

partition λ = {λ1, λ2, . . . , λN} and nx = ∑N
i=1 λi, then, X ∈ S

nx
λ,+(E , 0) if and only

if there exist matrices Xk ∈ S
|Ck|λ
+ for k ∈ It such that

X =
t

∑
k=1

E>Ck,λXkECk,λ.

Note that when λi = 1, ∀i ∈ IN, ECk,λ = ECk and Theorem 4.1 is reduced to The-

orem 2.4. In this thesis, each element of partition corresponds to the order of each

subsystem, i.e. λi = nxi .

Example 4.1. In this example Theorem 4.1 will be applied to illustrate how to obtain

fewer constraints from a sparse inequality. Consider the chordal graph G(V , E) in Fig-

ure 4.1 and the block matrix (4.2) with the same sparsity pattern of the graph.

1

2

3

4

Figure 4.1: Graph of large-scale system.

X =


X11 X12 X13 X14

X>12 X22 X23 0
X>13 X>23 X33 X34

X>14 0 X>34 X44

 ∈ S
nx
λ,+(E , 0). (4.2)

Maximal cliques associated to the graph are C1 = {1, 2, 3} and C2 = {1, 3, 4}, and its

block principle submatrices are build as in (4.1). Thus, from Theorem 4.1, one has that

the following set of constraints is equivalent to (4.2).

X1 =

 Y1 X12 Y2

X>12 X22 X23

Y>2 X>23 Y3

 ∈ S
|C1|λ
+ , X2 =

W1 W2 X14

W>2 W3 X34

X>14 X>34 X44

 ∈ S
|C2|λ
+ ,

Yi + Wi = Xii, i = {1, 3}, and Y2 + W2 = X13.

(4.3)

Notice that equality constraints in the example above arise due to overlapping elements

in the graph, i.e. if a vertex or an edge appear in more than one maximal clique. In
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this thesis, we will consider that the overlapping elements are divided equally between

inequality constraints, eliminating the equality constraints. For this, we define Z = [ζij] ∈
SN(E , 0), with each element equal to the number of times vertices, if i = j, and edges

(i, j), if i 6= j, appears in a clique tree T of the graph.

Then, matrix Z̄ = [ζ̄ij] of averaging factors for decomposing the overlapping elements

is defined as:

ζ̄ij =


1

ζij
, if i ∈ T ∀i = j, or (i, j) ∈ T ∀i 6= j

0, otherwise
. (4.4)

Example 4.2. Considering the previous example, the clique tree T of the graph in

Figure 4.1 is shown in Figure 4.2.

Figure 4.2: Clique tree of the chordal graph in Figure 4.1.

Notice that vertices 1 and 3 appear twice in the clique tree, as well as the (1, 3) and

(3, 1) edges. Also, the (2, 4) and (4, 2) edges not belong to the graph, i.e. ζ24 = ζ42 = 0.

Therefore,

Z =


2 1 2 1
1 1 1 0
2 1 2 1
1 0 1 1

 .

Hence, the matrix Z̄ of averaging factors for decomposing the overlapping elements can

be obtained as in (4.4). Thus, constraints (4.3) are transformed as follows:

X1 =

ζ̄11X11 X12 ζ̄13X13

X>12 X22 X23

ζ̄13X>13 X>23 ζ̄33X33

 ∈ S
|C1|λ
+ ,

X2 =

ζ̄11X11 ζ̄13X13 X14

ζ̄13X>13 ζ̄33X33 X34

X>14 X>34 X44

 ∈ S
|C2|λ
+ .

(4.5)

Based on this, constraints (4.2), (4.3) and (4.5) are equivalent.

4.2 Problem Statement

Consider a continuous-time large-scale system which consists of N interconnected non-

linear heterogeneous subsystems with nonlinear interconnections. The interconnection
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among subsystems is represented by an undirected graph G(V , E). Each i-th subsystem

is described as follows:

ẋi(t) = fi(xi(t)) + gi(xi(t))ui(t) + ∑
j∈Ni

hij(xi(t), xj(t)), (4.6)

where i ∈ IN, xi(t) ∈ Rnxi is the state vector of i-th subsystem; ui(t) ∈ Rnui is the i-th
control input vector; fi, gi and hij are smooth nonlinear functions.

According to the discussion in Section 2.3, each subsystem in (4.6) can be represented

by a N-TS fuzzy model. Thus, the i-th inferred N-TS fuzzy model is given by

ẋi(t) =
ri

∑
l=1

ςl
i(zi(t))

[
Al

ixi(t) + Bl
iui(t)

+ ∑
j∈Ni

(
Hl

iixi(t)− Hl
ijxj(t)

)
+ Gl

i

(
∑

j∈Ni

ϕij(xi(t), xj(t))

)]
,

(4.7)

where i ∈ IN, Al
i, Bl

i , Hl
ij and Gl

i are known constant matrices with appropriate di-

mensions; with the nonlinearities ϕij being sector-bounded ones and satisfying the Prop-

erty 2.3.

As in the previous chapter, we will consider the same nonlinear distributed control law

for the i-th subsystem (4.7):

ui(t) =
ri

∑
l=1

ςl
i(zi(t))Kl

ixi(t) + ∑
j∈Ni

Γij ϕij(xi(t),xj(t)) + ∑
j∈Ni

Fijxj(t), (4.8)

where Assumption 3.1 is still considered valid, together with the observations made in

Remark 3.1 regarding modifications in the control law. Furthermore, we will consider

subsystems without saturation in its control inputs, according to Remark 3.2. Thus,

substituting (4.8) into (4.7) it leads to the following closed-loop subsystem:

ẋi(t) =
ri

∑
k=1

ri

∑
l=1

ςk
i (zi(t))ςl

j(zi(t))
(

Ak
i + Bk

i Kl
i + diiHk

ii

)
xi(t)

+ ∑
j∈Ni

ri

∑
k=1

ςk
i (zi(t))

(
Bk

i Fij − Hk
ij

)
xj(t) + ∑

j∈Ni

ri

∑
k=1

ςk
i (zi(t))

(
Bk

i Γij + Gk
i

)
ϕij(x(t))

(4.9)

As discussed earlier, the approach proposed in Chapter 3 is not applicable when the

number of interconnected subsystems is large. In this chapter, we take advantage of

the sparsity of the underlying interconnection graph to solve the following problem with

reasonable computational efforts.

Problem 4.1

Design a nonlinear distributed controller (4.8) for each i-th subsystem (4.7), such

that the large-scale nonlinear closed-loop system, composed by the interconnected

subsystems (4.9), is stable.
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4.3 Stabilization of Large-Scale Systems

The sufficient conditions for distributed stabilization of large-scale systems presented in

this section are obtained through of the following quadratic block-diagonal Lyapunov

function candidate (Sootla, Zheng, and Papachristodoulou 2017, 2019):

V(x(t)) =
N

∑
i=1

xi(t)>Pixi(t) = x(t)>PNx(t),

where x(t) =
[
x1(t)> x2(t)> · · · xN(t)>

]>
, PN =

N⊕
i=1

Pi, with Pi = P>i � 0.

Particularly, this choice is justified because the sparsity pattern of the graph associated

with the N interconnected subsystems is maintained in the LMI constraints generated

from it. Theorem 4.2 provides sufficient conditions to guarantee that the origin of the

large-scale nonlinear system is asymptotically stable.

Theorem 4.2: Stabilization of large-scale system

Let the matrices Ωi associated with the sector nonlinearities in each subsystem (4.7),

∀i ∈ IN, according to (2.20), be given. Let G(V , E) be an undirected graph, with

a chordal extension that has maximal cliques {C1, C2, . . . , Ct}. Assume that there

exist matrices Qi � 0, diagonal matrices Λij � 0, and any matrices Rιi,2
i , Sij and Tij,

∀i ∈ IN, ∀ιi,2 ∈ Iri and ∀j ∈ Ni, satisfying (4.10):

∏
i∈Ck

 ri

∑
ιi,1=1

ri

∑
ιi,2=1

ς
ιi,1
i ς

ιi,2
i

[ Θk + ∆k ?

Πk + ΩkQk −2Λk

]
≺ 0, ∀k ∈ It (4.10)

where,

Θk =
⊕
i∈Ck

1
ζii

((
Aιi,1

i Qi + diiH
ιi,1
ii Qi + Bιi,1

i Rιi,2
i

)>
+
(

Aιi,1
i Qi + diiH

ιi,1
ii Qi + Bιi,1

i Rιi,2
i

))
,

Qk =
⊕
i∈Ck

Qi, Λk =
⊕

(i,j)∈ECk

1
ζij

Λij, Πk =
⊕

(i,j)∈ECk

1
ζij

(
Bιi,1

i Tij + Gιi,1
i Λij

)>
,

∆k = ECk,λ∆E>Ck,λ, Ωk = ECk,d

(
ECk,λΩE>Ck,λ

)
, for ∆ and Ω in Theorem 3.1,

with ECk,d ∈ R
|ECk
|×|Ck|λ , (ECk,d)ij =

1, if ECk(i) = E(j),

0, otherwise,

where ECk(i) and E(j) are the i-th and j-th edge in GCk and G, respectively, sorted in

the natural ordering.

Then the continuous-time large-scale nonlinear system represented by the graph G,

composed by N interconnected closed-loop subsystems given in (4.9), is stable and the

control gains in (4.8) are given by: Kιi,1
i = Rιi,1

i Q−1
i , Γij = TijΛ−1

ij and Fij = SijQ−1
j .
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Proof. From Theorem 4.1, constraints (4.10) are equivalent to the constraint (3.13) in

Theorem 3.1. The rest of the proof is a direct consequence of the proof of Theorem 3.1.

Since the constraints (4.10) in Theorem 4.2 are nonlinear ones, one has to use Lemma 2.3

to obtain a finite number of LMI.

The main advantage of Theorem 4.2 over Theorem 3.1 is the possibility of dealing with

a large number of interconnected subsystems by taking into account the sparsity of the

graph that represents the large-scale interconnected system. The higher the sparsity of

the graph, the smaller the size of the LMIs to be considered. A graph with high sparsity

means that it has a large number of maximal cliques with a small number of vertices in

each clique.

Notice that the chordal extension of the graph is used only to obtain the maximal

cliques, which indicate which subsystems participate in each constraint defined by a cor-

responding maximal clique, while the original graph is taken into account to mounting

the block matrices of each constraint.

Remark 4.1

Notice that if the number of maximal cliques in the graph represents interconnections

of the large-scale system is unitary, i.e. the graph is complete, then Theorem 4.2 is

reduced to Theorem 3.1.

4.4 Analysis of the Computational Complexity

In this section, it is discussed the analysis of the computational complexity of Theo-

rems 3.1 and 3.2 presented in Chapter 3 in comparison to the computational complexity

of Theorem 4.2 proposed in Section 4.3.

As Theorems 3.1 and 4.2 do not take into account both state and control input con-

straints, for the Theorem 3.2 we will consider only the LMI constraint (3.22) and the

observations in Remark 3.4 to evaluate its computational complexity.

The computational complexity of an LMI solver based on interior point methods can

be estimated as being proportional to log(N3
d Nl), where Nd is the number of decision

variables and Nl is the number of LMI rows (Nguyen et al. 2016). In general, the number of

decision variables depends only on the control law, dimension of the system and Lyapunov

function used to obtain LMI conditions. Thus, since all theorems use the same control

law and Lyapunov function, the number of decision variables can be computed as follows:

Nd =
N

∑
i=1

(
nxi

(
nxi + 1

2

)
+ dii + nui nxiri + ∑

j∈Ni

nui nxj + nui dii

)
.
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And the number of LMI rows is computed as shown in Table 4.1. Particularly, the

number of LMI rows in Theorems 3.2 and 4.2 are obtained by following the observations

in Remark 2.5.

Table 4.1: Comparison of the number of LMI rows in Theorems 3.1, 3.2 and 4.2.

Method Nl

Theorem 3.1

(
N
∑

i=1
(nxi + dii)

)(
N
∏
i=1

r2
i +ri

2

)
Theorem 3.2

N
∑

i=1
(rinxi + dii)

Theorem 4.2
t

∑
k=1

((
∑

i∈Ck

nxi + |Ck |!
(|Ck |−2)!

)(
∏

i∈Ck

r2
i +ri

2

))

Notice that when the graph that represents interconnections in a large-scale system

is complete, the number of maximal cliques is t = 1 and |Ck| = N, with k = 1, where

N denotes the number of subsystems. Hence ∑N
i=1 dii = N!

(N−2)! , and the number of LMI

rows in Theorems 3.1 and 4.2 are equal (see Remark 4.1).

Theorem 3.2 reduces the combination between membership functions by using the

augmented vector (3.17), and consequently avoiding the use of Lemma 2.3. However, the

procedure increases the sparsity of the LMI constraint since the order of the matrix grows

beyond the number ri of fuzzy rules for each subsystem. On the other hand, Theorem 4.2

takes advantage of the graph sparsity to reduce the size of the LMI constraints. Thus

the number of LMI rows will be smaller than the corresponding number of rows in the

theorems as long as the sizes of the maximal cliques are small, such that the product will

be reduced, although the sum that depends on the number k of maximal cliques grows.

Next, the network of multiple inverted pendulums coupled by nonlinear springs pre-

sented in Example 2.7 will be used again to illustrated these issues and to compare the

computational complexity of proposed theorems when the number of subsystems is rela-

tively large.

4.4.1 Multiple Inverted Pendulums

For the network of multiple inverted pendulums presented in Section 2.3, the number of

fuzzy rules is ri = 2, and the size of state and control input vectors for each i-th subsystem

are nxi = 2 and nui = 1, ∀i ∈ IN.

To compare the application of theorems developed in Chapter 3 with the application of

Theorem 4.2, we have analyzed their computational complexity and their running times,

considering different graph sizes. Different chordal graphs were generated with the number

of vertices (subsystems) between 20 and 1020, with the size of the largest maximal clique

defined by

τ = max
k∈It
|Ck|,
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modified accordingly to illustrate the increasing in the computational complexity for

τ = 2, τ = 6 and τ = 10.

All simulation results presented throughout this section were conducted on an oth-

erwise idle computer equipped with Intel Core i3 3.06GHz, with 4 GB of RAM, and

Mac OS 10.13.6, using the Yalmip parser (Löfberg 2004) and Mosek solver (Mosek 2017)

performing on software Matlab R2017b. All presented execution times are Matlab times,

i.e. time intervals spent between the call to tic and toc commands used to measure

execution time.

Computational Complexity

According to Table 4.1, the computational complexity of the Theorem 3.1 is high, even

for a small number of subsystems, due to the combination of all membership functions of

the subsystems. For instance, for N = 120, the computational complexity is proportional

to 69.8, and for N = 1020, it is proportional to approximately 500, which makes the

theorem impractical.

On the other hand, the computational complexity associated with Theorem 4.2 de-

pends on the number of maximal cliques of the graph and their sizes, i.e. the complexity

is small if the sizes of the largest maximal cliques are small. Figures 4.3, 4.4 and 4.5

illustrate the increasing computational complexity for Theorems 3.2 and 4.2, considering

that the size of the largest maximal clique of the corresponding graph is τ = 2, τ = 6
and τ = 10, respectively.

20 220 420 620 820 1020

10

12

14

16

18

20

Figure 4.3: Comparison of the computational complexity associated with Theorems 3.2
and 4.2, considering the largest maximal clique size τ = 2.
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We have verified that the computational complexity in Theorem 4.2 increases with the

size of the largest maximal clique, although the number of maximal cliques is reduced.

Besides, if the size of the largest maximal clique increases, the computational complexity

in Theorem 4.2 approximates that in Theorem 3.1. When τ = N, they are equal according

to Remark 4.1, but it is worth noticing that this scenario is rarely found in practice.

20 220 420 620 820 1020

10

12

14

16

18

20

Figure 4.4: Comparison of the computational complexity of Theorems 3.2 and 4.2, con-
sidering the largest maximal clique size τ = 6.

20 220 420 620 820 1020
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16
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Figure 4.5: Comparison of the computational complexity of Theorems 3.2 and 4.2, con-
sidering the largest maximal clique size τ = 10.
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Running Time

Although the computational complexity in Theorem 3.2 is smaller than that found for the

best case in Theorem 4.2 (τ = 2), it is not scalable to a large number of subsystems, as

illustrated in Figures 4.6 and 4.7.

Figure 4.6 shows the total running time, i.e. the summation of time intervals spent on

assembling the LMIs, parsing them using Yalmip, and running the optimization solver,

considering τ = 2. Notice that the time required to solve the problem with N = 220
subsystems using Theorem 3.2 is higher than the time required to solve the problem with

N = 720 subsystems using Theorem 4.2.

20 220 420 620 820 1020
10

0

10
1

10
2

10
3

10
4

10
5

Figure 4.6: Comparison of the total running time associated with Theorems 3.2 and 4.2,
considering the largest maximal clique size τ = 2.

This happens due to the difficulty of the solver to deal with sparse constraints, as

evidenced in Figure 4.7. Comparing Figures 4.7(a) and (b), notice that the Yalmip parser

time is minimal with respect to Theorem 3.2, such it has only one LMI constraint. In

contrast, Theorem 4.2 creates several smaller LMI constraints, eliminating its sparsity

such that the solver is much faster. For instance, for N = 420, the solver running time is

500 times smaller than the solver running time associated with Theorem 3.2. Moreover,

the solver time does not increase as rapidly as for Theorem 3.2, even when considering a

large number of subsystems.

The same behavior described above is repeated for case τ = 6, according with depicted

in Figures 4.8 and 4.9. Again, Theorem 4.2 presents better performing when the number of

subsystems increases. Notably, in this case, the solver running time sometimes decreases

when the number of subsystems increases. This variation occurs because, although the
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(a) Yalmip parser plus solver running time.
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(b) Solver running time.

Figure 4.7: Comparison of the Yalmip parser plus solver running time and only solver
running time associated with Theorems 3.2 and 4.2, considering the largest maximal
clique size τ = 2.

size of the largest maximal clique is 6, the size of other maximal cliques is small, causing

variation in the size of the constraints.
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Figure 4.8: Comparison of the total running time associated with Theorems 3.2 and 4.2,
considering the largest maximal clique size τ = 6.

63



LARGE-SCALE SYSTEMS CONCLUSIONS
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(a) Yalmip parser plus solver running time.
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(b) Solver running time.

Figure 4.9: Comparison of the Yalmip parser plus solver running time and only solver
running time associated with Theorems 3.2 and 4.2, considering the largest maximal
clique size τ = 6.

4.5 Conclusions

This chapter discussed how a chordal decomposition can be employed to deal with higher

computational complexity in Theorem 3.1 when a large number of subsystems must be

considered, i.e. a large-scale interconnected system is under consideration.

In this context, Theorem 4.2 was proposed to explore the graph sparsity in order to

reduce the computational complexity in Theorem 3.1. For this, the chordal decomposition

can be used such that the number of combinations of membership functions between

subsystems is significantly reduced.

Although both Theorem 3.2, proposed in Chapter 3, and Theorem 4.2 reduce the

computational complexity associated with Theorem 3.1, only the last one is scalable, i.e.

can solve the problem when the number of subsystems becomes large, as it can be seen in

the comparison of running times presented in the last section. This happens because the

sparsity of constraints is removed before handing them over to the optimization solver.

This prevents the high computational burden that would be present, since ordinary solvers

are not capable of exploring sparse constraints.
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5 Conclusions and Future Directions

In this chapter we present the main conclusions as well as the final remarks with respect to

the problems investigated in this doctoral thesis. We also discuss possible future research

directions.

5.1 An Overview of the Research

This thesis investigated the distributed control problem for a class of continuous-time

large-scale systems.

We have considered that the large-scale systems are described as a network of het-

erogeneous subsystems that has an underlying graph topology (Section 2.1), such that

each subsystem can be described as a nonlinear Takagi-Sugeno (N-TS) fuzzy model, i.e. a

Takagi-Sugeno fuzzy model with nonlinear consequent (Section 2.2). In addition, we have

also assumed that the subsystems are linked together relying on sector-bounded nonlinear

interconnections (Section 2.3).

Distributed control synthesis procedures, represented as LMI semidefinite programs,

were proposed by taking into account the presence or absence of input saturation in each

subsystem of the network (Chapter 3).

Furthermore, we have also proposed a new control synthesis procedure aiming to use

the graph sparsity to reduce the total running time to solve the associated optimization

problem when the number of subsystems increases together with the problem computa-

tional complexity (Chapter 4).

5.2 Main Conclusions

Chapter 3 presents an alternative method to obtain sufficient conditions for distributed

stabilization of the networked system. It is based on quadratic block-diagonal Lyapunov
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functions and include saturation of the control inputs in the interconnected subsystems.

It has been shown that if the associated optimization problem is feasible, the closed-

loop networked control system is asymptotically stable, and the corresponding estimated

ellipsoidal Domain of Attraction (DoA) is maximized. Two examples of networked systems

are employed to show the effectiveness of the proposed control approach, which is able to

be used in the synthesis of not only distributed but also decentralized controllers. Notably,

it is illustrated in Section 3.4.1, the advantage of the N-TS fuzzy models over the TS fuzzy

models, since less conservative results are achieved with a lower number of rules.

Chapter 4 presents another way to reduce the total running time to solve the associ-

ated optimization problem when dealing with large-scale systems, despite the increased

computational complexity. Sufficient conditions of positiveness of the multiple fuzzy sum-

mations with a multiset of membership functions without the need to use the approach

based on the augmented vector (3.17) are obtained relying on the graph chordal decom-

position. The combinations of fuzzy rules among interconnected subsystems are reduced

as the more sparse is the graph representing the subsystems interconnections in the large-

scale system. In Section 4.4, it is illustrated that the approach developed is more scalable

in comparison to the one in Chapter 3 when the number of interconnected subsystems is

large. The elimination of the sparsity in the constraints before handing them over to the

optimization solver leads to this improvement, since commercial solvers for semidefinite

programs, such as Mosek, are usually not ready to deal with sparse constraints.

5.3 Possible Future Directions

As a direct extension of methods developed to decrease the computational complexity of

the problem, we intend to combine both approaches, i.e. to use the chordal decomposition

together with the augmented vector ideas, to improve the performance of the solver,

mainly when the size of the largest maximal clique is high.

One possibility for future research is the extension of the method to deal with the

addition of subsystems in the large-scale system, such that the graph is also extended

by the inclusion of a new vertex and edges. This can allow creating a plug and play

approach on the network of interconnected subsystems, similarly to the method used in

(Riverso, Farina, and Ferrari-Trecate 2013; Riverso and Ferrari-Trecate 2012) to synthesize

a distributed controller for interconnected linear systems.

Other topics for future research include the extension of the proposed method to deal

with:

1. large-scale systems where observers have to be used to estimate either the instanta-

neous values of the nonlinear interconnections or the states of adjacent subsystems;

2. control of discrete-time large-scale systems; or
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3. sampled-data based control incorporating effects of communication network induced

delays (Kim, Park, and Joo 2017).

Moreover, other types of Lyapunov function candidates, together with more general

control structures, could be used to reduce the conservativeness of the proposed solutions.

It is interesting to notice also that, in the context of fault tolerant control, the property

of chordal graphs can be used to ensure the stability of a particular subsystem from its

physical interconnections even if all of its actuators fail.

Furthermore, another topic of interest would be the synchronization of multi-agent

systems. In this kind of problem, the subsystems have to perform a specific task together.

Thus, nonlinear consensus protocols could be used to improve stabilization conditions,

similarly to what was investigated in (Andreasson et al. 2014).
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Zečević, A. and D. D. Šiljak (2010). Control of Complex Systems: Structural Constraints

and Uncertainty. New York, NY, USA: Springer.

Zhang, H., H. Zhong, and C. Dang (2012). “Delay-dependent decentralized H∞ filtering

for discrete-time nonlinear interconnected systems with time-varying delay based on

72

https://doi.org/10.1109/CDC.2017.8264648
https://doi.org/10.1109/CDC.2017.8264648
https://doi.org/10.1109/TAC.2019.2948194
https://doi.org/10.1016/j.automatica.2006.11.010
https://doi.org/10.1109/TSMC.1985.6313399
https://doi.org/10.1109/TFUZZ.2008.924341
https://doi.org/10.1109/TFUZZ.2008.924341
https://doi.org/10.1109/TAC.2011.2132270
https://doi.org/10.1109/TAC.2004.837542
https://doi.org/10.1016/j.amc.2010.01.119


Bibliography Bibliography

the T-S fuzzy model”. In: IEEE Transactions on Fuzzy Systems 20, pp. 431–443. doi:

10.1109/TFUZZ.2011.2175231.

Zhang, X. and Y. Lin (2014). “Nonlinear decentralized control of large-scale systems

with strong interconnections”. In: Automatica 50, pp. 2419–2423. doi: 10.1016/j.

automatica.2014.07.024.

Zheng, Y. (2019).“Chordal Sparsity in Control and Optimization of Large-Scale Systems”.

PhD thesis. University of Oxford.

Zheng, Y., R. P. Mason, and A. Papachristodoulou (2018). “Scalable design of structured

controllers using chordal decomposition”. In: IEEE Transactions on Automatic Control

63.3, pp. 752–767. doi: 10.1109/TAC.2017.2726578.

Zhong, Z., Y. Zhu, and H. Lam (2018). “Asynchronous piecewise output-feedback control

for large-scale fuzzy systems via distributed event-triggering schemes”. In: IEEE Trans-

actions on Fuzzy Systems 26, pp. 1688–1703. doi: 10.1109/TFUZZ.2017.2744599.

Zhou, Y., D. Li, J. Lu, Y. Xi, and L. Cen (2018). “Networked and distributed predictive

control of non-linear systems subject to asynchronous communication”. In: IET Control

Theory Applications 12, pp. 504–514. doi: 10.1049/iet-cta.2017.0674.

73

https://doi.org/10.1109/TFUZZ.2011.2175231
https://doi.org/10.1016/j.automatica.2014.07.024
https://doi.org/10.1016/j.automatica.2014.07.024
https://doi.org/10.1109/TAC.2017.2726578
https://doi.org/10.1109/TFUZZ.2017.2744599
https://doi.org/10.1049/iet-cta.2017.0674

	List of Figures
	List of Tables
	Notation
	List of Acronyms
	Introduction
	Motivation
	Control of Large-Scale Systems

	Objectives
	Outline and Contributions

	Background
	Chordal Graph
	Maximal Cliques and Clique Trees
	Sparse Symmetric Matrices and Chordal Decomposition

	Takagi-Sugeno Fuzzy Models
	Takagi-Sugeno Fuzzy Models with Nonlinear Consequents

	Interconnected N-TS Fuzzy Systems
	Fuzzy Summations and Interconnected Systems


	Networked Systems
	Introduction
	Regional Stability

	Problem Statement
	Stabilization of Interconnected N-TS Fuzzy Systems
	Illustrative Examples
	Two-machine Subsystems
	Multiple Inverted Pendulums

	Conclusions

	Large-Scale Systems
	Introduction
	Sparse Block Matrices and Chordal Decomposition

	Problem Statement
	Stabilization of Large-Scale Systems
	Analysis of the Computational Complexity
	Multiple Inverted Pendulums

	Conclusions

	Conclusions and Future Directions
	An Overview of the Research
	Main Conclusions
	Possible Future Directions

	Bibliography

