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RESUMO

Nesta tese são abordadas novas técnicas evolutivas baseadas em dados para o problema
de prognóstico de falhas. Nesse tipo de problema, previsões acuradas de múltiplos
passos à frente são essenciais para a determinação da vida útil remanescente (RUL, do
inglês remaining useful life) de um determinado ativo. As soluções para prognóstico de
falhas devem ser capazes de representar o comportamento tipicamente não-linear dos
processos de degradação desses ativos e ser adaptável às particularidades de cada unidade.
Nesse contexto, os sistemas nebulosos evolutivos são modelos capazes de representar
tais comportamentos, além de serem capazes de lidar com o comportamento variante no
tempo, também presente nesses problemas. Neste trabalho, propomos uma nova técnica
de modelagem para sistemas nebulosos evolutivos que utiliza funções de pertinência
Gaussianas multivariadas, tornando-a capaz de incorporar as complexas relações entre as
variáveis de interesse, e um mecanismo de aprendizagem recursivo construído a partir de um
fluxo de dados, ainda que dados históricos possam ser usados como ponto de partida. No
mecanismo proposto, o conhecimento é gerido pelo monitoramento de limiares dinâmicos
do erro de estimação. Além disso, é proposta uma metodologia para uso de tais técnicas em
problemas de prognóstico de falhas, levando em consideração a propagação das incertezas
do modelo em previsões de longo prazo. Três bases de dados bem estabelecidas são
utilizadas para avaliar o modelo proposto em problemas de previsão de séries temporais e
de prognóstico de falhas. Os experimentos indicam que o modelo proposto é competitivo em
termos de precisão e número de parâmetros livres comparado a outros sistemas nebulosos
evolutivos e pode se beneficiar da utilização tanto de dados históricos quanto de um fluxo
de dados para estimar a RUL e sua incerteza. Além disso, na maioria dos cenários de teste,
o modelo pode obter melhores desempenhos em relação às técnicas que não incorporam
novos dados ou cuja base de conhecimento não é gerida com base nos erros de estimação.

Palavras-chave: Estimativa de RUL baseada em dados. Prognóstico de falhas. Sistemas
nebulosos evolutivos. Modelos nebulosos Takagi-Sugeno.



ABSTRACT

This thesis addresses new data-driven evolving techniques to the problem of fault prog-
nostics. In such problems, accurate predictions of multiple steps ahead are essential for
the Remaining Useful Life (RUL) computation of a given asset. The fault prognostics’
solutions must be able to model the typically nonlinear behavior of the degradation
processes of these assets and be adaptable to each unit’s particularities. In this context,
the evolving fuzzy systems are models capable of representing such behaviors, in addition
to being able to deal with time varying behavior, also present in these problems. In
this work, we proposed a new modeling technique for evolving fuzzy systems that use
multivariate Gaussian membership functions, making it able to incorporate the complex re-
lationships between the variables of interest, and a recursive learning mechanism built upon
a data stream, although historical data can be used as a starting point. In the proposed
mechanism, the knowledge is managed through the monitoring of dynamic estimation
error thresholds. Moreover, a methodology is proposed to use such techniques in fault
prognostics problems, taking into account the model uncertainty propagation in long-term
predictions. Three well-established data sets are used to evaluate the proposed model in
problems of time-series prediction and fault prognostics. The experiments indicate that
the proposed model is competitive in terms of precision and number of free parameters
compared to other evolving fuzzy systems and can take advantage of both historical and
stream data to estimate the RUL and its uncertainty. Furthermore, in most test scenarios,
it may outperform other methods that do not manage new data incorporation or whose
knowledge base management is not based on the estimation errors.

Keywords: Data-driven RUL estimation. Fault prognostics. Evolving fuzzy systems.
Takagi–Sugeno fuzzy models.



LIST OF FIGURES

Figure 1.1 – Operating and maintenance cost chart. . . . . . . . . . . . . . . . . . . 15
Figure 1.2 – Taxonomy of prognostics approaches adopted in this work. . . . . . . . 17
Figure 2.1 – Prognostics program steps. . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 2.2 – Example of HI with multiple health stages. . . . . . . . . . . . . . . . . 24
Figure 2.3 – Degradation stages and uncertainty in RUL prediction. . . . . . . . . . 25
Figure 2.4 – Prognostics metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 3.1 – Illustration of EBeTS parameters ω and τ for rule creation. . . . . . . . 41
Figure 3.2 – Illustration of EBeTS parameter γ for rule merging. . . . . . . . . . . . 41
Figure 4.1 – Flowchart of the proposed data-driven framework for prognostics using

EFMs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 5.1 – Death Valley’s temperature one-step ahead prediction results using

EBeTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 5.2 – EBeTS prediction of the Death Valley, Ottawa, and Lisbon temperature

time series with NDEI and number of rules over time. . . . . . . . . . . 52
Figure 5.3 – Temperature data set from three different weather stations concatenated. 54
Figure 5.4 – Heat maps colored by the average number of rules and the average

NDEI for each pair of EBeTS parameters for the sensitivity analysis of
the first case study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 5.5 – Overview of PRONOSTIA testbed. . . . . . . . . . . . . . . . . . . . . 56
Figure 5.6 – Steps to generate the HI proposed by Javed et al. (2015). . . . . . . . . 58
Figure 5.7 – PRONOSTIA’s one-step ahead prediction results for training and initial

test sets of condition 1 using EBeTS. . . . . . . . . . . . . . . . . . . . 59
Figure 5.8 – EBeTS long-term prediction of the PRONOSTIA’s HIs for bearings

1–3, 2–3 and 3–3 with prediction starting from t1P = 100, t2P = 20, and
t2P = 20, respectively, and fault thresholds η1 = 20, η2 = 8, and η3 = 10,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 5.9 – Bearing’s HIs of condition 1 and 2 for comparison. . . . . . . . . . . . . 63
Figure 5.10–α−λ plot of the estimated RUL in scenario 1 with goal region of α = 0.2

using the Monte Carlo method to estimate the initial variance. . . . . . 67
Figure 5.11–α−λ plot of the estimated RUL in scenario 1 with goal region of α = 0.2

using the RMSE method to estimate the initial variance. . . . . . . . . 68
Figure 5.12–True and percentage charge capacity along discharge cycles. . . . . . . 69
Figure 5.13–Fitted exponential models for battery charge capacity data to approxi-

mate the true RUL of testing data sets. . . . . . . . . . . . . . . . . . . 72
Figure 5.14–α− λ plot of the estimated RUL of battery B0005 with goal region of

α = 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



Figure 5.15–α− λ plot of the estimated RUL of battery B0007 with goal region of
α = 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 5.16–α− λ plot of the estimated RUL of battery B0018 with goal region of
α = 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 5.17–Long-term prediction with 99% confidence intervals of different algo-
rithms in Battery B0005. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 5.18–Long-term prediction with 99% confidence intervals of different algo-
rithms in Battery B0007. . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 5.19–Long-term prediction with 99% confidence intervals of different algo-
rithms in Battery B0018. . . . . . . . . . . . . . . . . . . . . . . . . . . 79



LIST OF TABLES

Table 5.1 – Performance of temperature prediction on Death Valley, Lisbon and
Ottawa weather stations using EBeTS, exTS (ANGELOV; ZHOU, 2006)
and FBeM (LEITE et al., 2012), with best values in bold. . . . . . . . . 53

Table 5.2 – Sensitivity results NDEI/Final number of rules for parameters γ and τ

with ω = 95.45%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 5.3 – PRONOSTIA training and test data sets under different operation con-

ditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 5.4 – Accuracy based metric MAPE computed at t1P = 100, t2P = 20 and

t3P = 20 for operation conditions 1, 2 and 3, respectively, with best values
in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Table 5.5 – Accuracy based metric RA computed at t1P = 100, t2P = 20 and t3P = 20
for operation conditions 1, 2 and 3, respectively, with best values in bold. 64

Table 5.6 – Three distinct scenarios for RUL prediction using EBeTS for different
times in which predictions started (tP ). . . . . . . . . . . . . . . . . . . 65

Table 5.6 – Three distinct scenarios for RUL prediction using EBeTS for different
times in which predictions started (tP ). . . . . . . . . . . . . . . . . . . 66

Table 5.7 – Fitting parameters of the exponential models for battery charge capacity
available data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Table 5.8 – RA for all algorithm-battery pairs with prognostics starting at different
tP , with best values in bold. . . . . . . . . . . . . . . . . . . . . . . . . 74

Table 5.9 – Computational time during learning phases of training and testing stages
where FNR is the final number of rules. . . . . . . . . . . . . . . . . . . 74



LIST OF ABBREVIATIONS

exTS Evolving Extended Takagi-Sugeno

RUL Remaining Useful Life

EOL End of Life

PHM Prognostics and Health Management

EBeTS Error Based Evolving Takagi-Sugeno Model

CBM Condition-based Maintenance

HI Health Index

AI Artificial Intelligence

TS Takagi-Sugeno

UUT Unit Under Test

FBeM Fuzzy Set Based Evolving Modeling

MF Membership Function

RLS Recursive Least Squares

MSR Most Similar Rule

MAPE Mean Absolute Percentage Error

RA Relative Accuracy

LCR Last Created Rule

RMSE Root Mean Squared Error

RMS Root Mean Square

ANN Artificial Neural Network

FT Fault Threshold

PF Particle Filter

ARMA Autoregressive Moving Average

ANFIS Adaptive Neuro-Fuzzy Inference System

NDEI Non Dimensional Error Index

eNFN Evolving Neo-Fuzzy Neural Network

eMG Evolving Multivariable Gaussian

LSTM Long Short-Term Memory

EFM Evolving Fuzzy Model



LIST OF SYMBOLS AND NOTATION

R The set of real numbers

Rn The n-dimensional Euclidean space

Rm×n The set of real matrices of order m by n

N The set of natural numbers, N = {1, 2, . . .}

N≤k The set {1, 2, . . . , k} for a given k ∈ N

x⊤ or A⊤ Transpose of a vector x or a matrix A

(xk)M
k=1 The sequence {x1, . . . , xM}

x+ or x+ A random variable or vector taking values in R or Rnx

I[E] Indicator function of the event E

N (µ,Σ) Gaussian distribution with mean µ and covariance matrix Σ

Im Identity matrix of order m

0m×n Null matrix of order m× n

inf{S} The infimum of a sequence or set S

ϕ Fuzzy membership function defined by the map: R→ [0, 1]

Φ Fuzzy set {(u, ϕ(u)) |u ∈ U}, U is the universe of discourse

card(S) Cardinality of a set S

E[·] Mathematical expectation

Var(·) Variance

det(A) Determinant of a matrix A

HN (·, ·) Hellinger distance between two Gaussian distributions

arg max The argument that maximizes a function or set

∈ Denotes an element of



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.1 Published papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Prognostics steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.1 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.2 HI construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.3 Health stage division . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.4 RUL prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 RUL estimation approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.1 Model-based approaches . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 Data-driven approaches . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2.1 Statistical approaches . . . . . . . . . . . . . . . . . . . . 27
2.2.2.2 Artificial Intelligence approaches . . . . . . . . . . . . . . 29

2.2.3 Hybrid approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Prognostics metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Evolving Fuzzy Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 ERROR BASED EVOLVING TAKAGI-SUGENO MODEL . . . . . . 35

3.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Structure adaptation process . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 Rule creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Rule merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 EBeTS parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 RUL PREDICTION WITH EFS . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



4.2 Uncertainty estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1 Monte Carlo simulations . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.2 Error covariance online tracking . . . . . . . . . . . . . . . . . . . . 46

4.3 Uncertainty propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 Case study 1: temperature prediction . . . . . . . . . . . . . . . . . . . . . 49
5.1.1 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Case study 2: accelerated ball bearing prognostics . . . . . . . . . . . . . . 54
5.2.1 The PRONOSTIA data set . . . . . . . . . . . . . . . . . . . . . . 55
5.2.2 Metrics used for comparison . . . . . . . . . . . . . . . . . . . . . . 57
5.2.3 EBeTS parameters tuning . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.4 First experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.5 Second experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Case study 3: battery capacity prediction . . . . . . . . . . . . . . . . . . . 69
5.3.1 Parameter tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . 80

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Appendix 100

APPENDIX A RECURSIVE ESTIMATION OF STATISTICAL MEA-
SURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.1 Recursive estimation of the mean . . . . . . . . . . . . . . . . . . . . . . . 101

A.2 Recursive estimation of the auto-correlation matrix . . . . . . . . . . . . . 101

A.3 Recursive estimation of the covariance matrix . . . . . . . . . . . . . . . . 102

A.4 Recursive estimation of the inverse covariance matrix . . . . . . . . . . . . 103

APPENDIX B THE COVARIANCE MATRIX OF A PRODUCT TRANS-
FORMATION . . . . . . . . . . . . . . . . . . . . . . . . 104



15

1 INTRODUCTION

In the last few decades, the industry has been struggling to guarantee safety for
critical systems. These systems need maintenance to prevent unexpected failures due to
their deterioration or aging and to increase their reliability and availability (MA et al.,
2019b).

Maintenance policies are continually evolving to become more and more cheap
and reliable. The earliest policy consists of unplanned actions in which the replacement
of faulty components happens after a breakdown. As industrial systems become more
complex, waiting for a breakdown potentially increases the costs of maintenance; this
leads to the creation of preventive policies in which a periodic time interval for mainte-
nance is set regardless of the asset’s health status. This kind of policy also represents
a significant expense for industries since components are replaced unnecessarily. More
efficient policies, such as Condition-based Maintenance (CBM), are developed to handle
these situations (JARDINE; LIN; BANJEVIC, 2006). The costs associated with each
maintenance policy is shown in Figure 1.1 that places CBM in the optimal point in terms
of total costs, balancing operating costs with maintenance costs (COBLE, 2010; TOMS;
TOMS, 2008). Detecting undesirable events in systems such as oil and gas wells can
prevent environmental accidents, production losses, and maintenance costs while sparing
human lives, as shown in Vargas et al. (2019).

C
o
s
t

Number of Failure Events

Preventive

Maintenance

Condition-Based

Maintenance

Corrective

Maintenance

Total Cost

M
aintenance

C
ost

Operating

Cost

Figure 1.1 – Operating and maintenance cost chart.

Source: Coble (2010)

In the context of CBM, Prognostics and Health Management (PHM) enables the
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use of real monitoring data to create relevant health indicators and trends (JOUIN et al.,
2016). This can aid in the system life-cycle support by reducing and eliminating inspections
through early fault detection and prediction of impending faults (CHEN; YANG; HU, 2011).
PHM can aid several systems such as: aircraft; industrial processes; water, gas and oil
supply; manufacturing systems; transportation systems; (power) electrical and electronic
systems; to become available, reliable, and safe by assisting the avoidance of catastrophic
events (LY et al., 2009). One primary task in CBM is health prognostics (LEI et al., 2018),
which consists in predicting the Remaining Useful Life (RUL) of machinery. Prognostics is
usually composed of four processes, although some processes can be disregarded in some
applications: data acquisition, Health Index (HI) construction, health stage division, and
RUL prediction.

Different authors have tackled the RUL prediction problem by employing different
methodologies. These methods are commonly classified into three categories: data-driven,
model-based, and hybrid (KAN; TAN; MATHEW, 2015), which combines characteristics
of the previous two. These categories can be divided into smaller groups in various ways
(JAVED; GOURIVEAU; ZERHOUNI, 2017). The classification scheme adopted is the one
proposed by Guo, Li & Li (2019) as depicted in Figure 1.2. Model-based approaches rely
on mathematical models derived from the physics of components to assess their current
and future health conditions (CUBILLO; PERINPANAYAGAM; ESPERON-MIGUEZ,
2016). When sufficiently complete, these models tend to outperform models in the other
categories (LIAO; KÖTTIG, 2014; LUO et al., 2003). However, their restricted application
is the main drawback of these approaches since it is difficult to model the physics of
damage in complex systems (LEI et al., 2018; XU; WANG; XU, 2014).

1.1 Motivation

Data-driven approaches are divided into statistical and Artificial Intelligence (AI)
models. Statistical models generally perform RUL prediction by fitting available observa-
tions into empirical models to be presented as a probability density function conditioned
on these available observations (SI et al., 2011). They are useful in describing uncertainties
caused by different variability sources (LEI; LI; LIN, 2016). However, there are still
some challenges related to data-driven statistical methods, in general, e.g., the ability
to estimate the RUL with very few data, how to fuse multi-dimensional information of
condition monitoring data, and models that can deal with multiple degradation stages (SI
et al., 2011).

AI approaches (PALHARES; YUAN; WANG, 2019), such as Artificial Neural
Network (ANN), also deals with complex systems without relying on physical models of
the assessed system, which is challenging to obtain. Their purpose is to learn how to
produce the desired output of complex systems, possibly nonlinear, by reacting to given



Chapter 1. Introduction 17

Model-Based

Model-Based

Figure 1.2 – Taxonomy of prognostics approaches adopted in this work.

Source: Guo, Li & Li (2019)

inputs, i.e., to learn the input-output relationship (AN; KIM; CHOI, 2015). However,
it is necessary to retrain the neural network when operating conditions change (PENG;
DONG; ZUO, 2010). As almost all data-driven methods, AI also needs a large amount of
high-quality data from different operation conditions to train its models. AI approaches can
also be used with expert-based approaches, such as fuzzy inference systems; neuro-fuzzy
predictors have been extensively used for fault prognostics. For instance, in Wu et al. (2018)
the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used to create an HI through
multi-sensor information fusion for a Computer Numerical Control (CNC) machine. Cosme
et al. (2018) use a genetic algorithm to tackle the problem of impoverishment in particle
filters, improving its application to fault prognostics to both rotating bearings and milling
machines.

The necessity of high-quality data for prognostics techniques is a known problem
in the literature that is receiving more and more attention. In Chiachío et al. (2020), a
prognostics approach is proposed to predict the RUL of complex degradation processes,
such as the fatigue crack propagation using a stochastic degradation model based on
Markov chains. In the previous paper, the authors have shown that it is possible to
manage the prediction uncertainty as more data become available in real-time. Similarly,
Cadini et al. (2018) proposed a method based on particle filters and neural networks for
prognostics in an environment where high-quality data may be scarce. It employs the
proposed algorithm to predict the RUL of Li-ion batteries.

In general, these approaches have fixed structures, despite being adaptive, i.e.,
they rely on the assumption of a time invariant environment with respect to a training
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data set. This assumption often does not hold, making the aforementioned approaches
not suitable for real-time prognostics where human intervention is not always possible
to redefine the model’s domain when needed. A way of tackling the time invariance
assumption is to develop strategies based on multiple models. Cosme et al. (2019) present
a technique called IMMF, that consists of the interacting multiple filters theory associated
with an ANFIS model to predict the RUL of rotating bearings. Other way to tackle the
time invariance assumption is to develop evolving models, whose structures are not fixed
and their knowledge-base is built based on a data stream instead of a data set, allowing
the learning of complex behavior from scratch (CORDOVIL et al., 2020). The ability
to model complex dynamics places the Evolving Fuzzy Model (EFM) as an interesting
choice for prognostics applications in cases where it is not easy to describe or model
time-varying and nonlinear characteristics of a system. However, there are few works in the
fault prognostics field using these structures (EL-KOUJOK; GOURIVEAU; ZERHOUNI,
2011; GOURIVEAU; ZERHOUNI, 2012; RAMASSO; DENOEUX, 2014), and none of
them addresses the uncertainty quantification problem. The Evolving Extended Takagi-
Sugeno (exTS) method was used in El-Koujok, Gouriveau & Zerhouni (2011) to predict
the health state of real aircraft engines and its capabilities for forecasting tasks were tested
in Gouriveau & Zerhouni (2012) under different prediction architectures. Ramasso &
Denoeux (2014) proposes the use of exTS algorithm along with an evidential Markovian
classifier for prognostics in the CMAPPS turbofan data set.

1.2 Research objectives

In the context of PHM, predicting the RUL of a given asset along with its confidence
bounds is of utmost importance. There are several ways to tackle this problem; however,
this work’s scope is limited to evolving data-driven methods. To meet the general objectives,
the following specific aspects will be explored:

a) to propose methods capable of incorporating new data recursively, enabling its
practical application;

b) to investigate the direct use of estimation errors as part of the learning mechanism
in the process of model creation;

c) to investigate and propose techniques capable of quantifying the uncertainty
inherent to the process of RUL prediction;

d) to apply the proposed methods in experimental data sets.

1.3 Contributions

A novel evolving data-driven fuzzy model called Error Based Evolving Takagi-
Sugeno Model (EBeTS) is developed and employed to perform fault prognostics based
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on both historical and Unit Under Test (UUT) data, i.e., a specific system for which
prognostics is applied (SAXENA et al., 2008a). The proposed method aims at mitigating
some data-driven disadvantages while intensifying its advantages through an evolving
learning mechanism that disregards large amounts of high-quality data to start operating –
because of its evolving structure and adaptive parameters that are updated based on a
control chart of the regression error. Since it is a rule based system, the degradation is
modeled as a multiple stage phenomena, which is closer to real degradation processes. The
consequent of the rules is designed to be a simpler representation of the system that can
bear a physical meaning through expert knowledge input; the fuzzy aggregation of these
simple local models can approximate even complex and nonlinear functions. In short, the
contributions of this work are listed as follows:

a) a new evolving Takagi-Sugeno (TS) model denominated EBeTS, whose model
creation criterion is based on the estimation errors rather than in premise
variables alone, controlling the model complexity to reduce the estimation error;

b) an evolving prognostics approach that uses EBeTS to incorporate new data
from the UUT instead of using only historical data;

c) a way of quantifying and propagating model uncertainties to provide confidence
intervals for RUL prediction using TS models;

d) to validate the proposed approach prognostics capabilities, two experimental
data sets were used: the accelerated ball bearings from PRONOSTIA1 platform
and the Li-ion batteries data set from NASA Ames Prognostics Center of
Excellence (PCoE).

1.3.1 Published papers

Two papers that reflect the contributions of this work were published and one will
be submitted to an international conference:

a) M.O. Camargos, I. Bessa, M.F.S.V. D’Angelo, L.B. Cosme, R.M. Palhares.
“Data-driven prognostics of rolling element bearings using a novel Error Based
Evolving Takagi-Sugeno Fuzzy Model”. Applied Soft Computing, Elsevier
BV, v. 96, p. 106628, 2020. doi: 10.1016/j.asoc.2020.106628.

b) M.O. Camargos, I. Bessa, M.F.S.V. D’Angelo, R.M. Palhares. “Fault Prognostics
of Rolling Bearings Using a Hybrid Approach”. In: 21st IFAC World Congress
(2020), Berlim, Germany.

c) M.O. Camargos, I. Bessa, L.A.Q.C. Junior, P.H.S. Coutinho, R.M. Palhares.
“Evolving fuzzy systems applied to Li-ion battery charge capacity prediction for
fault prognostics”. To be submitted.

1 Provided for the PHM IEEE 2012 Prognostic Data Challenge.
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The main contributions of this work, presented in Chapters 3–5, are developed in Camargos
et al. (2020a). Moreover, in Camargos et al. (2020b), we propose a hybrid prognostics
approach based on a novel degradation model for rolling bearings and use the results to
extend the comparisons in Chapter 5.

1.4 Thesis outline

This thesis is organized in five chapters as follows. Chapter 1 presents the motiva-
tions for the research topic along with a brief literature review to points out some strengths
and weaknesses of each type of fault prognostics algorithm. The research objectives and
contributions are also presented in this chapter. Some background about fault prognostics
steps, methodologies, and evaluation metrics is given in Chapter 2. Chapter 3 presents our
main contribution: the new evolving TS model denominated EBeTS. Chapter 4 shows
how to use the new proposed model for long-term predictions, making it applicable to
prognostics tasks. The same Chapter 4 also shows the computation of confidence intervals
for long-term predictions using TS models. In Chapter 5, the proposed model is tested in
three experimental benchmarks; the first case study aims to test its ability to identify the
input-output relation under different temperature time series conditions. The proposed
approach is compared with two state-of-the-art EFMs, and showed competitive results
in terms of accuracy and complexity metrics. In the second case study, experimental
bearings degradation data from the PRONOSTIA platform (NECTOUX et al., 2012) are
used to validate the proposed prognostics approach. The proposed approach also shows
improvement when compared to other state-of-the-art and popular methods for fault
prognostics. The third experiment compares the performance of the proposed algorithm
with additional state-of-the-art EFMs and a deep learning alternative for prognostics on
NASA’s Li-ion battery data set. Finally, Chapter 6 enumerates possible directions for
continuity of this work.
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2 BACKGROUND

Prognostics is an essential task in a CBM program; it deals with the problem of
fault prediction before it occurs in an attempt to achieve zero-downtime performance
(JARDINE; LIN; BANJEVIC, 2006). The International Standard Organization states
that the goal of a prognostics process is the capability to predict the RUL (RASHID et al.,
2017). The prognostics program is generally composed of four processes: data acquisition,
HI construction, health stage division, and RUL prediction (LEI et al., 2018), as described
in Section 2.1. In particular, the estimation of RUL can be done using several methods
and tools that can be grouped into three main approaches: model-based prognostics,
data-driven prognostics, and hybrid approaches as shown in Section 2.2 and in Figure 1.2.
Finally, the techniques can be refined using available metrics, as listed in Section 2.3, to
find bottlenecks in performance (SAXENA et al., 2008a).

2.1 Prognostics steps

The four prognostics steps, namely data acquisition, HI construction, health stage
division, and RUL prediction (LEI et al., 2018), are shown in Figure 2.1 and described in
the following subsections.

2.1.1 Data acquisition

A prognostics program generally begins by measuring data relevant to the system
health (LEI et al., 2018). PHM programs can require information on thousands of
parameters in the entire life cycle of the product, such as temperature, vibration, pressure,
acoustic levels, voltage, and current (CHENG; AZARIAN; PECHT, 2010).

The set of monitored parameters will vary according to the application. In structural
prognostics, for instance, vibration sensor data is commonly used (SCHWABACHER,
2005). Its use has been reported in several applications involving rolling bearings (LI
et al., 2019; AHMAD et al., 2019; RAGAB et al., 2019), such as in gear systems of
helicopters (CHEN; VACHTSEVANOS; ORCHARD, 2012) and wind turbines (LEITE;
ARAÚJO; ROSAS, 2018). For battery prognostics, it is common to use temperature,
current, voltage, impedance, and capacity data (LIAO; KÖTTIG, 2014; KHUMPROM;
YODO, 2019; KHALEGHI et al., 2019; RAZAVI-FAR et al., 2019).

Although new sensor and communication development are driving technologies that
gradually improve industrial data acquisition devices, obtaining high-quality data that
contains fault evolution until failure still faces significant limitations (SAXENA et al.,
2008b). Lei et al. (2018) enumerates some reasons for that:
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(d) Step 4: RUL prediction.

Figure 2.1 – Prognostics program steps.

a) capturing and storing run-to-failure data can be quite expensive since real
degradation processes can take months or years;

b) most candidate components for prognostics are not allowed to fail because such
failures can lead to catastrophic events;

c) institutions with the resources to capture run-to-failure data are unlikely to
make this data available due to the application’s nature and the effort it took
to acquire these data.

2.1.2 HI construction

The second process of the program is the construction of an HI that is robust to
measurement noise and can reveal the degradation process of the evaluated asset. Choosing
the right HI is a crucial step because it can simplify the prognostics modeling, leading to
more accurate predictions (LEI et al., 2018).

It is possible to group the HIs into physical HI and virtual HI. Physical HIs are
related to signals that can be directly used as a health indicator, in other words, signals
that are directly related to the physics-of-failure. On the other hand, virtual HIs are, in
general, combinations of physical HIs (HU et al., 2012).
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Among the physical HIs, several authors use Root Mean Square (RMS) and kurtosis
to predict the RUL on vibrating mechanisms (SUTRISNO et al., 2012; LEI; LI; LIN, 2016;
HUANG et al., 2017; LIAO; TIAN, 2013; ZHANG; SI; HU, 2015); in Lei, Li & Lin (2016),
kurtosis is used to detect incipient faults and determine the first predicting time, while
Zhang, Si & Hu (2015) uses a filtered version of the feature to predict the RUL. Despite
its importance, features like RMS and kurtosis are only effective to indicate system health
conditions at certain statuses (XI; SUN; KRISHNAPPA, 2000). To mitigate that, physical
HIs can be mixed to create virtual HIs using principal component analysis, self-organizing
maps, Mahalanobis distance, and other transformations (JIN et al., 2019; WANG, 2012;
QIU et al., 2003; WANG et al., 2016; WIDODO; YANG, 2011; XI et al., 2014).

In order to analyze the HIs created, some metrics are proposed in the literature
(JAVED et al., 2015; ZHANG; ZHANG; XU, 2016). Since degradation in real-world
applications is irreversible, it is reasonable to assume that good HIs are monotonically
increasing or decreasing. However, this behavior can not always be met, justifying the
creation of a function to measure how monotonic a given HI is. The function, known as
“monotonicity”, can be defined1 as

Mon
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(xk)M

k=1

)︂
= 1
M − 1
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⃓
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⃓ , (2.1)

where (xk)M
k=1 is the HI sequence with M elements and I[E] is an indicator function of the

event E, i.e., its output is unitary if the event E happens and zero otherwise. Another
metric that can be used to evaluate an HI consists in the correlation between HI and time
because it is expected that the component will degrade gradually (YANG et al., 2016).
This metric is known as “trendability” and can be defined2 as
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where (xk, tk)M
k=1 is the HI with operation time sequence with M elements. Other metrics

and variations can be found in Lei et al. (2018).

2.1.3 Health stage division

Having an HI constructed, in observance to the metrics of monotonicity and
trendability, the third step of a prognostics program is the identification of distinct
degradation stages. The constructed HI, in general, presents different tendencies according
to the asset degradation level, as shown in Figure 2.2. Therefore, it is useful to divide
the HI time series in order to apply the model more adequate to the degradation level.
1 A definition of this metric that is robust to random fluctuations can be found in Camci et al. (2013).
2 A definition of this metric that is sensible to nonlinear correlations can be found in Carino et al. (2015),

Lei et al. (2016a).
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Moreover, the problem of health stage division can be seen as a pattern classification
problem where the patterns are HIs tendencies. However, it is not precisely the fault
detection and diagnosis problem but it can be used to detect the incipient degradation of
an asset and provide the instant to start RUL prediction, also known as the first predicting
time (LEI et al., 2018).
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Figure 2.2 – Example of HI with multiple health stages.

Several methods can be used to detect the first predicting time. A simple strategy
is to detect when the HI exceeds a Fault Threshold (FT). A few ways to define this
FT are reported in the literature; some examples are the use of a 3σ interval as FT
(WANG et al., 2016) and monitoring some HI characteristics, such as the Hotelling T 2

statistics and Box-Cox transformations to define normalized FTs (ZHANG et al., 2011;
AJAMI; DANESHVAR, 2012). Trigger mechanisms are also proposed to increase random
fluctuations robustness in detection; Li & He (2012) proposed to wait until a percentage
of HI values exceeds the defined FT.

Other authors divide the degradation into multiple stages using clustering algorithms
such as k-nearest neighbors, fuzzy c-means, and k-means to define the cluster prototypes
(RAMASSO; ROMBAUT; ZERHOUNI, 2013; JAVED; GOURIVEAU; ZERHOUNI, 2015;
SCANLON; KAVANAGH; BOLAND, 2013). It is also possible to use discrete state
transition models, such as hidden markov models (SOUALHI et al., 2014; LIU et al., 2015),
and AI classifiers, such as ANN, suport vector machines, and neuro-fuzzy systems (GUO
et al., 2016; SOUALHI; MEDJAHER; ZERHOUNI, 2015; ZURITA et al., 2014).
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2.1.4 RUL prediction

Predicting the RUL is an essential step in prognostics. It provides an estimation on
how much time, from the current instant, remains before a possible fault occurrence, given
the asset’s age, condition, and past operation profile (JARDINE; LIN; BANJEVIC, 2006).
Some authors define RUL from the HI point of view, i.e., RUL is the time left before the
system’s degradation state reaches a given FT (LI et al., 2015; SI et al., 2013), which is
expressed by:

r̂k = inf {N ∈ N | x̂k+N ≥ η}, (2.3)

where r̂k denotes the RUL computed at instant k given the observations of degradation
state until k and N represents the natural numbers set; x̂k+N represents the degradation
state estimate, i.e., the HI, at time k +N and η is the predefined FT.

More than an absolute estimation of the RUL, in this step, it is desired to provide a
confidence interval in which the RUL lies, taking into account the inherent uncertainty of
the program (TOBON-MEJIA et al., 2012). The uncertainty in RUL estimation is shown
in Figure 2.3, where the predicted degradation path reaches the FT before the correct path
would. Another uncertainty present in the process of RUL prediction is related to the FT,
which can be described as a probability distribution or a failure domain. However, in most
of the works in the literature, including this one, the FT is represented by a constant line
to simplify the RUL prediction process (LEI et al., 2018). Therefore, (2.3) is a simplified
version of the canonical RUL definition in Chiachío et al. (2015) where a failure domain is
defined.
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Figure 2.3 – Degradation stages and uncertainty in RUL prediction.
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2.2 RUL estimation approaches

Several authors have tackled the RUL prediction problem by employing different
approaches, but there is no consensus among authors about how these approaches should
be divided. Some of them adopt granular classifications: in (SIKORSKA; HODKIEWICZ;
MA, 2011), the approaches are grouped into knowledge-based models, life expectancy
models, ANN, and physical models. Lei et al. (2018) proposed four groups: physics-based,
statistical, AI, and hybrid. Other authors prefer to use a more general classification: in
(JARDINE; LIN; BANJEVIC, 2006), the methods are classified into statistics, model-
based, and AI. Despite the differences among classifications, in general, the approaches
are grouped into physics-based, data-driven, and hybrid approaches (LEE et al., 2014;
KAN; TAN; MATHEW, 2015; JAVED; GOURIVEAU; ZERHOUNI, 2017). In this work,
it is used the recent classification scheme proposed by Guo, Li & Li (2019) as depicted in
Figure 1.2. In the next subsections, each category will be described, and some examples
from the literature will be given.

2.2.1 Model-based approaches

Model-based techniques rely on mathematical models derived from the physics-
of-failure of component to assess its current and future health condition (CUBILLO;
PERINPANAYAGAM; ESPERON-MIGUEZ, 2016). It is the most accurate approach
for prognostics, justifying its use in cost-justified applications, and it generally requires
less training data than other approaches (HENG et al., 2009). However, their restrict
application is the main drawback of these approaches since it is difficult to model the
physics of damage in complex systems (LEI et al., 2018).

For instance, in rotating machinery, deriving the physical model of bearing degen-
eration is too complex (LIU et al., 2017). Nonetheless, for crack growth analysis, it is
possible to prove, through experiments, that the crack length is correlated to the number
of cycles (PARIS; ERDOGAN, 1963). These experiments gave birth to the most used
model for crack growth in prognostics, the Paris-Erdogan law:

da

dN
= m∆Kb, (2.4)

where a is the crack length, m and b are parameters depending on the bearing material,
N is the number of cycles and K is an intensity coefficient that depends on the type and
geometry of the crack (CUBILLO; PERINPANAYAGAM; ESPERON-MIGUEZ, 2016).
For state propagation, a Particle Filter (PF) with a modified crack growth model, based
on the Paris-Erdogan law, was used to predict the RUL of bearings in Liu et al. (2017).
An improved exponential model based on the same law was proposed for RUL prediction
in Li et al. (2015). In Nguyen, Liu & Zio (2019), an ensemble model that includes
the Paris-Erdogan law was combined with a PF to predict the RUL. The law was also
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used with PF for wind turbine bearing prognostics and insulated gate bipolar transistors
prognostics (LU; CHRISTOU, 2019; WANG et al., 2020).

Furthermore, prognostics is also frequently applied to Li-ion batteries. Several
models are proposed to estimate the battery’s state of charge and input it to the battery-
management system in order to increase safety since Li-ion batteries can explode when
overcharged (CHATURVEDI et al., 2010). In Bartlett et al. (2016), a reduced-order
electrochemical model is used to estimate the state of charge which is used to estimate the
battery’s capacity fade. It is also possible to use simpler models to estimate the capacity
fade; some authors use a combination of exponential models:

C(k) = a exp (bk) + c exp (dk), (2.5)

where C is the battery’s capacity, k is the cycle number, the parameters a and b are
related to the internal impedance, while d and c stand for aging rate, as proposed in He et
al. (2011). The model described by (2.5) was used for RUL prediction in Downey et al.
(2019) where a nonlinear least squares method with dynamic bounds estimates the models’
parameters; in Walker, Rayman & White (2015) a PF is used to estimates the models’
parameters.

2.2.2 Data-driven approaches

Data-driven approaches rely on the assumption that there exists available data
from run-to-failure or past experiments to train degradation models in an offline stage
and that data from the UUT will also be available to aid the prognostics up to the time
where prediction starts (tp). These models are not easy to explain because they are not
related to any physical meaning, but they can be applied to other systems without knowing
their complex physical models (LIAO; KÖTTIG, 2014). For this reason, the prognostics
problem may benefit from an evolving learning mechanism that can adapt its parameters
and change its structure according to new available data.

2.2.2.1 Statistical approaches

Statistical models generally perform RUL prediction by fitting available observations
into empirical models to be presented as a probability density function conditioned on
these available observations (SI et al., 2011). They are useful in describing uncertainties
caused by four variability sources: 1) temporal variability; 2) unit-to-unit variability; 3)
nonlinear variability; and 4) measurement variability (LEI; LI; LIN, 2016). In Li et al.
(2019), a Wiener process is used to predict the RUL of turbofan engines considering unit-
to-unit variability. Gebraeel et al. (2005) consider temporal and unit-to-unit variability for
prognostics in accelerated bearings through exponential degradation models with random
and Brownian motion error terms. Measurement variability is considered in Tang et al.
(2014) for RUL prediction of Li-ion batteries through Wiener processes.
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In the realm of statistical approaches, stochastic processes play an essential role. A
common strategy is to make random increments through time in the models’ coefficients,
this is known as random coefficient models (GEBRAEEL; PAN, 2008; JIN et al., 2016;
SONG; LIU, 2018). These increments are generally Gaussian, which allows the model to
describe non-monotonic trends. However, the technique can have its use restricted since
it is not capable of describing temporal variability (PANDEY; YUAN; NOORTWIJK,
2009). To address this problem, some authors use Wiener processes because they follow
the Markov property in which the future state only depends on the current state (FANG;
ZHOU; GEBRAEEL, 2015; LI et al., 2017). A Wiener process was used in Li et al. (2019)
to predict the RUL of a turbofan engine considering variability between units.

In prognostics, it is common to have monotonic HIs; in such cases, a gamma
process would be a better choice because its increments follow a gamma distribution (TSUI
et al., 2015). In Son, Fouladirad & Barros (2016), a non-homogenous gamma process
was used to model degradation and RUL prediction. Wiener and gamma processes are
prominent approaches in prognostics and survey works dedicated to each of them are
given by Zhang et al. (2018) and Noortwijk (2009), respectively. Another process used
to model degradation is the inverse Gaussian process, in which the increments follow an
inverse Gaussian distribution. Both gamma and inverse Gaussian processes are restricted
to the Markov property and can only model monotonic trends, however, in comparison
with gamma processes, inverse Gaussian processes are more flexible and can incorporate
different kinds of random effects (PAN; LIU; CAO, 2016; PENG; ZHU; SHEN, 2019).

Simpler linear methods for predicting the RUL based on statistics are the autore-
gressive models (QIAN; YAN, 2015) and some of its variations, such as, autoregressive
with exogenous inputs, Autoregressive Moving Average (ARMA) (CAESARENDRA et
al., 2011), autoregressive integrated moving average (ZHOU; HUANG, 2016; LIU et al.,
2019), and autoregressive moving average with exogenous inputs (YIU; WANG, 2007) can
also be used. The ARMA models, for instance, are well-known and widely employed in
the industry for prognostics applications (JARDINE; LIN; BANJEVIC, 2006). It is used
in Qian, Yan & Hu (2014) to estimate the dynamic model of rolling bearings, allowing the
prediction of faults with advance, while Barraza-Barraza et al. (2017) uses the extension
of ARMA models that consider exogenous inputs to make prognostics in aluminum plates
based on its crack growth. These linear regression models are easy to implement and
results are easy to explain, however, they are not effective for long-term predictions (LIAO;
KÖTTIG, 2014). Regarding the nonlinear versions of these approaches, such as nonlinear
autoregressive moving average with exogenous inputs and nonlinear autoregressive with
exogenous inputs, prognostics applications were not found in the literature, although they
are commonly found in systems identification problems.

Furthermore, statistical approaches also include Markov models for RUL prediction,
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as shown in Liu et al. (2015), where a continuous-time Markov model is used to derive the
RUL distribution in both homogeneous and non-homogeneous cases. When the degradation
state is not directly observable or is partially observable, it is possible to use hidden markov
model and gaussian mixture model hidden markov model, as in Zaidi et al. (2011) and
Ramasso & Denoeux (2014). However, these approaches rely on Markovian properties,
which may not be consistent in real-world applications. Therefore, there are still some
challenges related to data-driven statistical methods, e.g., the ability to estimate the RUL
with very few data, how to fuse multi-dimensional information of condition monitoring
data, and models that can deal with multiple degradation stages (SI et al., 2011).

2.2.2.2 Artificial Intelligence approaches

ANNs are strategies based on AI commonly used in fault diagnostics and prognostics
problems. Its purpose is to learn the input-output relationship of a complex system, possibly
nonlinear (AN; KIM; CHOI, 2015). Parameters from the functions used between the layers
along with weights and biases are estimated during the learning process (MENG; LI, 2019).
ANN architectures consist of interconnected elements arranged according to the task to
be done (AHMADZADEH; LUNDBERG, 2013).

A feed-forward neural network with one layer was used in Yang et al. (2016) to
map features to HIs and predict the RUL of electric motors. In Xiao et al. (2017), the
RUL of rolling bearings is predicted using a feed-forward neural network trained with the
back-propagation algorithm. Razavi-Far et al. (2019) use the extreme learning machine
as a learning algorithm to train the feed-forward neural network and predict the RUL
of Li-ion batteries considering missing observations. To explicitly deal with time-series
and use delayed outputs of the system in the model, recurrent neural networks were
used in Liu et al. (2015) and Guo et al. (2017) to predict the RUL in Li-ion batteries
and rolling bearings, respectively. Deep learning architectures, i.e., with multiple middle
layers between input and output, can also be used for prognostics tasks. In Zhang et al.
(2017), an ensemble of deep belief networks was trained using a multiobjective evolutionary
algorithm, balancing the accuracy and diversity as conflicting objectives and predicting the
RUL of aero-engines from NASA. The same database was used to show the effectiveness
of using deep convolutional neural networks for fault prognostics in Li, Ding & Sun (2018).
Furthermore, ANN approaches can deal with complex nonlinear systems disregarding
physical models of the assessed system; however, it is necessary to retrain the neural
network when operating conditions change and the result is a black box system (PENG;
DONG; ZUO, 2010).

ANNs can also be combined with an inference system that mimics the human
process of prediction through IF-THEN rules (WANG; GOLNARAGHI; ISMAIL, 2004).
An example of this combination is the ANFIS since it merges ANNs with a fuzzy inference



Chapter 2. Background 30

system, improving its ability to predict time-series in comparison to autoregressive and
feed-forward neural network models (JANG; SUN; MIZUTANI, 1996). Liu et al. (2019)
used an ANFIS model based on the fuzzy c-means algorithm for fault prognostics in
membrane fuel cells.

In addition to the variations of ANNs, a commonly used technique for prognostics
is the support vector regression, based on the suport vector machine classifier proposed by
Vapnik (2000). The hypothesis is that given a training data set, there exists a function in
which its greatest deviation from training data is ε and, at the same time, it is as flat as
possible (SMOLA; SCHÖLKOPF, 2004). To predict the RUL in Li-ion batteries, Wang &
Mamo (2018) uses the differential evolution algorithm to obtain the kernel parameters of
the support vector regression model. In Ma et al. (2019a), an ensemble of support vector
regression models is proposed to predict the current health state of a Li-ion battery.

To deal with small size and high-dimensional data sets, the Gaussian process
regression model can be used to achieve accurate prediction results, besides offering the
uncertainty quantification using the state prediction variance (KAN; TAN; MATHEW,
2015). In Aye & Heyns (2017), an integrate Gaussian process regression model is used to
predict the RUL of slow speed bearings through acoustic emission data. In Zhou et al.
(2018), an ANN is used as covariance function of a Gaussian process regression to predict
the RUL in Li-ion batteries.

2.2.3 Hybrid approaches

Each of the approaches previously treated has their own limitation; hybrid ap-
proaches tries to merge their qualities. In prognostics, it is common to associate physical
models to filtering techniques, such as PF, allowing the application of these models in
different environments and operational conditions since the model’s parameters are esti-
mated using known data through Bayes theorem (LIU et al., 2017; NGUYEN; LIU; ZIO,
2019; LU; CHRISTOU, 2019; WANG et al., 2020; WALKER; RAYMAN; WHITE, 2015).

A commonly used model for cutting tools is the Taylor tool life and its extensions
(YEN et al., 2004); Hanachi et al. (2019) merges the predictions from an empirical wear-
time model with ANFIS predictions using a PF extension to manage the prediction
uncertainties of a computer numerical control machine wear states. In Li & Liu (2019),
an adaptive hidden markov model that uses Taylor’s wear formula to predict the RUL
of computer numerical control machines is proposed. A dynamic multi-stage support
vector regression model is proposed in Tao, Zio & Zhao (2018) to recursively estimate the
health state of computer numerical control machines and turbofan engines from NASA
using recent observations through the sequential Monte Carlo paradigm. Li, Wang &
Yan (2019) use Gaussian process regression to analyze the capacity incremental curve for
RUL prediction and state of health estimation in Li-ion batteries. In Cosme et al. (2019),
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the limitation of having a single degradation model is addressed by using the Interacting
Multiple Model filtering theory associated with fuzzy TS systems in a framework called
IMMF in order to compute the RUL of rotating bearings.

2.3 Prognostics metrics

In critical systems health management, the prognostics methods need to be certified
through rigorous metrics. Saxena et al. (2008a) present one of the most comprehensive
work on this subject, where a set of metrics for RUL prediction are defined. Relative
Accuracy (RA) is a metric to infer the prognostics quality at a given instant tλ defined as:

RAλ = 1− |rλ − r̂λ|
rλ

, (2.6)

where rλ and r̂λ are, respectively, the actual and estimated RUL at tλ, as shown in
Figure 2.4a. The time instants tP and tEOL are the first predicting time and End of
Life (EOL), respectively. Furthermore, a metric to evaluate the prognostics’ results
throughout the entire asset’s life is the α−λ plot; it is usually used to evaluate prognostics
strategies since it shows whether the predicted RUL falls within a goal region around the
true RUL given by ±(α)(100)% (LALL; LOWE; GOEBEL, 2012). Figure 2.4b shows an
example of this metric.
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(a) True and estimated RUL at time index
tλ.
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(b) True and estimated RUL along with
±(α)(100)% accuracy cone.

Figure 2.4 – Prognostics metrics.

In addition to metrics related to the prognostics’ results, i.e., RUL prediction, it
can be useful to quantify how similar the multi-step ahead state prediction is to the actual
state. A metric for this task is the Mean Absolute Percentage Error (MAPE), defined as:

MAPEλ = 100
N

tλ+N∑︂
k=tλ

⃓⃓⃓⃓
⃓xk − x̂k

xk

⃓⃓⃓⃓
⃓ , (2.7)

where N is the prediction horizon, xk is the true system’s degradation state, and x̂k

represents the predicted system’s degradation state.
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2.4 Evolving Fuzzy Models

As discussed in Chapter 2.2, regarding RUL prediction methods, all have their
limitations. Physics-based methods have high accuracy, but the physics-of-failure models
are hard to obtain, and its replication, in general, is limited to equipment of the same
type operating under the same conditions. The statistical approaches are depicted with a
single degradation model, limiting its applications to multi-step ahead predictions among
the data-driven approaches. Also, most of these models assume a degradation rate that
depends on the system’s age without considering its health state. The AI-based models
also have limitations: ANNs are not interpretable; their parameters are randomly or
manually initialized, reducing its capacity of replication; and can use lots of computational
resources in the training stage. In almost all data-driven approaches, including neuro-fuzzy
systems, a large amount of high-quality data is required for training.

Given the discussed limitations of data-driven methods for RUL prediction, it is
essential the proposition of new methods that can deal with nonlinear and time variant
degradation models and can incorporate multiple degradation stages. Like all data-driven
methods under time variant environmental and operational conditions, they need to
be provided with adaptive learning capabilities (LIU; ZIO, 2016). In this context, the
fuzzy inference systems are competitive candidates, since they can represent different
degradation stages through a rule-based model whose combination can embody the system’s
nonlinearity. Moreover, several models, such as evolving TS and evolving neuro-fuzzy,
are proposed to endow these systems of evolving learning mechanisms in which not only
the model’s parameters are adapted, but its structure also changes in time, i.e., there
is no need to specify beforehand the number of degradation models (ŠKRJANC et al.,
2019). Moreover, EFMs can extract information through information granules, making
the models linguistically interpretable and flexible enough to be incremented with expert
knowledge, if needed (ANGELOV, 2010).

The practical applications of EFMs are various. Their recursive nature allows
both real-time fault detection and diagnosis (LEMOS; CAMINHAS; GOMIDE, 2013;
LEITE et al., 2009; CORDOVIL et al., 2019; INACIO; LEMOS; CAMINHAS, 2015) and
systems identification and time-series prediction (LEITE et al., 2012; LEITE et al., 2015;
ŠKRJANC et al., 2019). This work’s focus lies in the system identification and time-series
prediction problems in which the majority of proposed models use variations of the TS
fuzzy inference system, i.e., models whose rules consist of functional outputs. In their
evolving formulations, these models have a flexible structure that adapts their number
of rules, antecedent parameters and consequent parameters through data-streams. The
whole process consists of a recursive incremental learning mechanism that decides about
rule creation, exclusion and merging in the knowledge-base.

Throughout the years, different kinds of EFMs were proposed to explore various
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learning mechanism nuances. The multiple-input multiple-output model described in
Angelov & Zhou (2006), namely exTS, consists of a TS model with a functional consequent.
It consists of partitioning the input/output data space through an extension of the concepts
of clustering from the subtractive clustering approach (CHIU, 1994). The learning process
of creating and excluding rules in the knowledge-base is related to recursively computed
quality metrics such as the zone of influence of each cluster, their age and support size.
The rules are represented by univariate Gaussian Membership Functions (MFs) for each
premise variable.

The application of these algorithms to data-streams is one of the reasons for the
efforts towards approaches with less computational costs. The Evolving Neo-Fuzzy Neural
Network (eNFN) is a version of the neo-fuzzy neuron (YAMAKAWA et al., 1992) to deal
with data-streams, providing the ability to change the models’ structure in time, i.e., the
number of MFs and neurons can increase or decrease as its learning mechanism sees fit
(SILVA et al., 2014). The technique consists of tracking the fuzzy model’s local and global
prediction errors such that, when the local error is greater than the global one, the region
will be refined by adding more rules. The exclusion procedure is done by analysing its
inactivity in time. The standard neo-fuzzy neuron consists of zero-order TS functional
rules where the domain of each input is granulated separately into complementary triangle
MFs. The simplified structure of eNFN decreases its computational costs allowing its use
in high-frequency real-time dynamic systems.

Defining the right resolution of EFMs whose knowledge is represented by fuzzy
information granules is an aspect explored by Leite et al. (2012) in an effort to a multi-
resolution analysis of the data, enabling the evolving system to use coarser granularities.
Leite et al. (2012) proposes a fuzzy granular approach that adopts hyperboxes and fuzzy
object of trapezoid nature to analyze input-output data streams under different resolutions
and decide when to adopt coarser or more detailed granularities. The framework proposed
in Leite et al. (2012) extends the standard TS model to include a linguistic component,
in addition to the functional component, in the rule’s consequent to facilitate model
interpretation and to enclose the possible outputs of the model.

The application of evolving models for time-series prediction and systems iden-
tification has been producing efforts towards the definition of models that can account
for the complex relationships between the input variables. Lemos, Caminhas & Gomide
(2011) proposes an evolving fuzzy model, namely Evolving Multivariable Gaussian (eMG),
with first-order functional and multivariate Gaussians as MF to represent the premise
variables. This kind of MF can model the relation between input variables through a
recursive computation of a dispersion matrix. The model uses a learning mechanism based
on the participatory learning principle proposed in Yager (1990) that endows the algorithm
with the capacity to classify whether a sample is an outlier or the first representative of a
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new cluster.

The prognostics tasks addressed in this thesis are deeply related to regression and
long-term forecasting of a degradation time-series. For this purpose, we hypothesize that
two features are highly desirable: accounting for the complex relationships between input
variables (or regressors) and explicitly using the estimation error to adjust the model’s
structure in time. A method with these features will be explored in the next chapter,
where a new learning mechanism for EFMs that uses TS representation is proposed.
It combines the idea of accounting for the complex relationships between the variables
through multivariate Gaussian modeling with the knowledge-base control based on the
estimation error tracking.

2.5 Chapter summary

This chapter has introduced the task of fault prognostics with details to its main
steps, i.e., data acquisition, HI construction, health stage division and RUL prediction. The
latter is one of the most prominent study objects in the literature of PHM; therefore, an
overview of different classes of prognostics techniques is made covering the main advantages
and limitations of each one. Moreover, a brief overview on evolving fuzzy inference systems
is given.
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3 ERROR BASED EVOLVING TAKAGI-SUGENO MODEL

In this chapter, a specific type of rule-based fuzzy inference system, the TS model,
will be detailed. The proposed model, like many others in the literature, will be endowed
with an evolving learning mechanism. This mechanism explicitly considers the prediction
error as a trigger to create new rules. The hypothesis, tested in Chapter 5, is that
controlling the one-step ahead prediction error will improve the system’s multi-step ahead
predictions. In addition, to enable its use for prognostics problems, a scheme for uncertainty
quantification associated with the iterative propagation of such systems is proposed.

3.1 Problem formulation

A TS fuzzy model is one of the leading mathematical tools to represent a system
using fuzzy concepts. Instead of using fuzzy sets to represent the consequent part, such
as in Mamdani (1974), a TS fuzzy model employs a functional consequent, usually linear
(NGUYEN et al., 2019). In such systems, the i-th fuzzy rule, in a set of C if-then rules
can be written as

Rule i: if x1
k is Φ1

i,k−1 and · · · and xnx
k is Φnx

i,k−1

then ŷi,k =
[︂
1 x⊤

k

]︂
θ̂i,k−1

(3.1)

where xk ∈ Rnx is the vector of premise variables, θ̂i,k−1 ∈ Rnx+1 is the estimated vector
of consequent parameters. Moreover, Φj

i,k−1 is a fuzzy set for i ∈ N≤C and j ∈ N≤nx , such
that φj

i,k−1 : R→ [0, 1] is its MF. Throughout the text, N≤k will be used to denote the set
of natural numbers up to k, such that N≤k = {1, 2, . . . , k}.

The aggregation of fuzzy sets in the antecedent represents the degree of activation
wi : Rnx → R of a given rule and can be computed through the product t-norm1

wi,k−1(xk) =
nx∏︂

j=1
φj

i,k−1(x
j
k). (3.2)

The output of the TS fuzzy model is given by a convex combination between the
linear models in the consequent of each rule weighted by the activation degrees transformed
to comply with the convex sum property, i.e., they need to be non-negative and sum one.
The output of (3.1) can be inferred as follows:

ŷk =
C∑︂

i=1
hi,k−1(xk) ŷi,k, (3.3)

1 Although the product t-norm is widely used in engineering applications of fuzzy logic (KARNIK;
MENDEL, 1998), there are other t-norms, such as the ones described in Gupta & Qi (1991).
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hi,k−1(xk) = wi,k−1(xk)∑︁C
m=1 wm,k−1(xk)

. (3.4)

Given a fixed number of rules (C), the TS fuzzy model creates a coarse fuzzy
partitioning in the antecedent domain and adjusts the parameters of the consequent
polynomial models of degree one that can locally approximate the system. One of the
challenges of working with data streams is not knowing beforehand the model structure,
i.e., the number of rules (KASABOV; SONG, 2002). It is particularly relevant in the
fault prognostics context since the degradation dynamics are typically nonlinear, time
variant, and different for each UUT. In this work, the proposed EBeTS model is updated
with its parameters and structure that are adaptively estimated based on the observations
obtained at each time instant. Such property enables EBeTS to deal with nonlinear and
time-varying dynamics through uncertain measurements and, consequently, with fault
prognostics problems. With this scenario in mind, a new procedure to create rules based
on a control chart of the estimation error is proposed. Furthermore, a policy based on the
Hellinger distance, detailed in Section 3.2.2, is proposed to merge existing clusters.

3.2 Structure adaptation process

In order to consider the complex relations between input dimensions, a multivariate
MF can be used instead of univariate MFs aggregated by a t-norm as in (3.2). According to
Angelov (2010), the antecedent MF of TS fuzzy models are usually described by Gaussians.
In this work, a Gaussian multivariate MF is used to compute the degree of activation,
such that

wi,k−1(xk) = exp
(︃
−1

2
(︂
xk − µ̂i,k−1

)︂⊤ ˆ︁Σ−1
i,k−1

(︂
x− µ̂i,k−1

)︂)︃
, (3.5)

is used. The mean µ̂i,k−1 and the dispersion matrix ˆ︁Σi,k−1 of the antecedent MFs at
time k − 1 are recursively estimated for each rule according to (3.6a)–(3.6c) and the
Sherman-Morrison formula (HAGER, 1989), as shown in Appendix A:

∆i,k = xk − µ̂i,k−1, (3.6a)

µ̂i,k = µ̂i,k−1 + ρi,k ∆i,k, (3.6b)

ˆ︁Σ−1
i,k = 1

1− ρi,k

⎛⎝ˆ︁Σ−1
i,k−1 + ρi,k

ˆ︁Σ−1
i,k−1 ∆i,k ∆⊤

i,k
ˆ︁Σ−1

i,k−1

1 + ρi,k ∆⊤
i,k
ˆ︁Σ−1

i,k−1 ∆i,k

⎞⎠ , (3.6c)

where ρi,k = 1/ni,k weights equally all observations regardless the time of occurrence, ni,k

is the number of data points associated to the i-th rule at time instant k. The dispersion
is initialized as an identity matrix and the mean is the first data point assigned to the
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i-th rule, i.e., (3.6b) and (3.6c) are initialized as ˆ︁Σi,1 = Inx and µ̂i,1 = xi,1, respectively.
The Recursive Least Squares (RLS) algorithm, described by (3.7a)–(3.7d) (ÅSTRÖM;
WITTENMARK, 1996, p. 518), is employed to estimate the consequent parameters θ̂i,k:

αi,k = yk − x̃⊤
k θ̂i,k−1, (3.7a)

gi,k = Fi,k−1 x̃k

(︂
1 + x̃⊤

k Fi,k−1 x̃k

)︂−1
, (3.7b)

Fi,k = Fi,k−1 − gi,k x̃⊤
k Fi,k−1, (3.7c)

θ̂i,k = θ̂i,k−1 + αi,k gi,k, (3.7d)

where αi,k ∈ R is known as the a priori estimation error, gi,k ∈ Rnx+1 is the gain vector,
Fi,0 = 103 × Inx+1 can be interpreted as the inverse sample autocorrelation matrix (LIU
et al., 2009) multiplied by a large constant that represents the parameters’ uncertainty,
and θ̂i,0 = 0nx+1×1 are the initial values for the coefficients, i.e., a vector of zeros. The
augmented vector x̃k is defined as x̃k =

[︂
1 x⊤

k

]︂⊤
. The system output (3.3) at instant k

can be rewritten as
ŷk = (hk−1(xk))⊤ Θ̂⊤

k−1 x̃k, (3.8)

where hk−1(xk) = [h1,k−1(xk) · · · hC,k−1(xk)]⊤ ∈ RC is the vector of normalized degrees
of activation and Θ̂k−1 =

[︂
θ̂1,k−1 · · · θ̂C,k−1

]︂⊤
∈ Rnx+1×C is a matrix with the conse-

quent coefficients estimated with RLS in the previous iteration. The uncertainties of each
local system are represented by the recursively estimated inverse sample autocorrelation
matrix (3.7c) of the parameters.

3.2.1 Rule creation

The thresholds used for rule creating in evolving TS models are defined using,
in general, three strategies: (i) estimation error; (ii) similarity measure between cluster
prototypes; (iii) ϵ-completeness condition (ŠKRJANC et al., 2019). Most models in the
literature that create rules based on estimation error use predefined thresholds, in which
the output error can not be above. The evolving fuzzy neural network (KASABOV, 2001)
method uses a predefined error threshold along with a similarity measure between new
observations and the allocated radial basis neurons to create rules; this is practically
the same procedure used in both Dynamic Fuzzy Neural Networks (WU; ER, 2000) and
Generalized Fuzzy Neural Networks (WU; ER; GAO, 2001), while Wu, Er & Gao (2001)
introduces the concept of ϵ-completeness. Predefined error thresholds were also used in
Rong et al. (2006), Tzafestas & Zikidis (2001), Pratama et al. (2014). The proposed
EBeTS model uses a control chart for the residuals estimation as a trigger to create new
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rules. The objective is not to force the system to reach a predefined estimation error
through the excessive creation of new rules, overfitting the parameters.

The rule creation procedure is related to the local approximation error variation,
i.e., it only takes into account what happens in the local affine model expressed by the
consequent of the Last Created Rule (LCR) of the TS fuzzy model whose structure initiates
with only one rule. The local approximation error is assumed to be a Gaussian random
variable, therefore, it is fully described by its mean µR and variance σ2

R, with R being a
vector of stored residuals. When a new data point (xk, yk) becomes available at time step
k, it is stored in matrix X and vector Y to be used in a possible merging procedure. The
residual of the data point assignment to the LCR is computed as

εk =
⃓⃓⃓
x̃⊤

k θ̂LCR,k − yk

⃓⃓⃓
, (3.9)

where θ̂LCR,k are the consequent parameters of the LCR. In order to classify the data
point as anomalies or not, the residual computed by (3.9) is classified through the following
control chart

(εk − µR)2

σ2
R

> (χ2)−1
p (ω), (3.10)

where (χ2)−1
p (ω) represents the inverse of the chi-squared statistic with p-degrees of

freedom, resulting in an ellipse that covers at least 100ω% of the data under the Gaussian
assumption; the number of degrees of freedom is chosen as the residual’s dimension,
therefore p = 1 (MOSHTAGHI; LECKIE; BEZDEK, 2016). Since inequality (3.10)
depends on the residual variance, the first two data points assigned to a new rule (or to the
first rule) will be automatically considered non-anomalies and stored in the residual vector
R; after this initialization, its mean and variance can be computed, allowing the control
chart application. When the number of continuous anomalies exceeds the persistence
index τ , arbitrarily defined to control the model complexity, a new rule will be created.
Since some knowledge is available, the consequent parameters of the new rule will be
initialized as

θ̂LCR+1,0 = 1
C

C∑︂
i=1

θ̂i,k. (3.11)

The rule’s parameters will then be updated with the last τ sequential anomalies detected,
i.e., the last τ observations stored in X and Y. Finally, the vector of residuals R along
with data matrices X and Y will be cleaned, i.e., |R| = |X| = |Y| = 0, where | · | represents
the amount of elements of a matrix or vector. The other parameters are initialized in the
same way as before.

3.2.2 Rule merge

Whenever a new rule needs to be created, i.e., the number of continuous anomalies
exceeds the persistence index τ , the LCR will be compared with the other rules to decide
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whether it needs to be merged or not. The algorithm only stores the data associated to
the LCR. The stored data will be used to re-estimate the antecedent and consequent
parameters of the Most Similar Rule (MSR) in a merge.

The metric to account for similarity needs to be able to compare the fuzzy sets in the
antecedent, and in this work, it is described as multivariate Gaussians. A function to quan-
tify the distance between two probability distributions is called f -divergence (CSISZÁR;
SHIELDS, 2004). Since a threshold should be defined to merge rules or not, it is useful that
the f -divergence has bounded output. In addition, it must also be symmetric, non-negative
and respect the triangle inequality to induce a distance metric. The Hellinger distance is
an f -divergence with all these properties (GIBBS; SU, 2002; CIESLAK et al., 2012).

For two multivariate fuzzy sets Φ1 and Φ2 with Gaussian membership functions
described by their means and dispersion matrices (µ1, Σ1) and (µ2, Σ2), respectively, the
squared Hellinger distance is defined as:

H2(Φ1,Φ2) = 1−
4
√︂

det(Σ1) det(Σ2)√︂
det(Σ)

exp(M12), (3.12a)

M12 = −(µ1 − µ2)⊤Σ−1(µ1 − µ2)
8 , (3.12b)

where Σ = Σ1+Σ2
2 . Let S, given in (3.13), be the set of rules whose Hellinger distance

from the LCR is smaller than a given threshold γ.

S = {H(Φi,ΦLCR) |H(Φi,ΦLCR) < γ, i ∈ N≤C \ LCR} . (3.13)

Whenever the cardinality of S is positive, namely card (S) > 0, the LCR will be discarded
while the MSR, given by arg mini S, will have its parameters updated by the data previously
associated with the discarded rule, i.e., matrix X and vector Y, using (3.6a)–(3.6c) and
(3.7a)–(3.7d). The main steps of the learning algorithm EBeTS are summarized in
Algorithm 1.

3.3 EBeTS parameters

EBeTS model introduces three parameters to control the model’s complexity: ω,
τ , and γ. The first parameter (ω) controls the size of the statistical bounds around the
residual mean of the LCR as shown in (3.10). It is assumed that the residuals are Gaussian
random variables; for this reason, knowing their distribution parameters, i.e., mean µR

and variance σ2
R, allows the definition of a region where 100ω% of non-anomalous data

are within through the inverse chi-squared distribution. When a given data sample does
not belong to this region, it is classified as an anomaly.

Classifying a data point as anomaly or non-anomaly is useful to decide whether to
create a new rule or not. However, the rule creation process must be robust regarding
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Algorithm 1 Learning algorithm of EBeTS.
1: procedure EBeTS(γ, τ, ω)
2: CA← 0 ▷ Number of continuous anomalies
3: LCR← 1 ▷ Last created rule
4: C← 1 ▷ Number of rules
5: while xk is available do
6: Read xk and estimate output ŷk using (3.8)
7: Read yk

8: Append xk to X and yk to Y
9: Adjust LCR consequent parameters via (3.7a)–(3.7d)

10: Adjust LCR antecedent parameters via (3.6a)–(3.6c)
11: Compute estimation residual using (3.9)
12: if |R| > 2 and condition (3.10) holds then ▷ Anomaly classification
13: CA← CA + 1 ▷ Count continuous anomalies
14: else
15: CA← 0
16: Append estimation residual to R
17: end if
18: if CA > τ then
19: Compute S using (3.13)
20: if card(S) > 0 then
21: MSR← arg mini S ▷ Most similar rule
22: for all (xk, yk) ∈ (X, Y) do
23: Adjust MSR consequent parameters using (3.7a)–(3.7d)
24: Adjust MSR antecedent parameters using (3.6a)–(3.6c)
25: end for
26: C← C− 1
27: end if
28: Initialize consequent and antecedent parameters for a new rule
29: Update new rule’s parameters with last τ sequential anomalies
30: CA← 0
31: C← C + 1
32: LCR← C
33: Clear vectors R and Y and matrix X
34: end if
35: k ← k + 1
36: end while
37: end procedure

outliers. The second parameter, the persistence index (τ), is introduced to control the
rule creation by defining how many anomalies in sequence are allowed to happen before
creating another rule. Parameters ω and τ are illustrated in Figure 3.1 where the region
defined by µR, σ2

R and ω is depicted in blue (solid and dashed lines) and anomalies are
depicted as red dots; at the end of the time series a group of τ sequential anomalies is
shown.

The last parameter (γ) defines a minimum Hellinger distance threshold for which
merging can be considered for two clusters. The distances are computed for each pair of
clusters where the closest pair is merged, provided the Hellinger distance between them is
less than the threshold γ. Figure 3.2 depicts an example of the Hellinger distance between
two bi-variate Gaussian distributions where four degrees of overlapping are shown.

The choice of each of the three EBeTS parameters described in this section will
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Figure 3.2 – Illustration of EBeTS parameter γ for rule merging.

reflect on the model complexity, i.e., the final number of rules in the model. As the
parameter ω decreases, more data points will be considered anomalies, increasing the
chance of creating new rules. When the parameter τ increases, more sequential anomalies
will be required to create a new rule, decreasing the chance of creating new rules. In
the same way, an increase in γ leads to a decrease in the number of rules as more rules
become eligible to be merged. Therefore, a typical trade-off between the complexity and
the expected model’s performance arises from the parameter choices.

Although EBeTS parameters can be defined based on historical data, if available,
their values can also be defined in the absence of any knowledge extracted from data.
Considering anomalous behavior to be events unlikely to happen, statistically, these
would be events in the lower and upper tails of the Gaussian distribution of the residuals.
Therefore, a recommendation for ω under unavailable knowledge is a conservative value
close to 100%, i.e., the definition of 2σ to 4σ bands around the mean prediction residual.
The persistence index is closely related to the estimation of the nx-dimensional inverse
dispersion matrices in both antecedent and consequent parts of the rule, because these
sequential anomalies are used to update a recently created rule; therefore, to decrease the
chance of rank deficiency on these matrices, it is suggested to use nx + 1 data points to
estimate them, i.e., τ = nx + 1. The last parameter γ does not have a recommendation
based on any statistical principle; empirically, in the absence of problem-related knowledge,
a good choice would be γ = 0.5, since it is the midpoint of the interval [0, 1], where the
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Hellinger distance lies within.

3.4 Chapter summary

In this chapter, an evolving TS method for time-series prediction multiple steps
ahead is developed. First, the problem is formulated using the TS fuzzy model, where
the time-series behavior is modeled with a convex combination of local affine functions
of the input variables. Then, the recursive structure adaptation process is detailed; the
mean and dispersion matrix of the fuzzy antecedent MFs are updated as new data is
available and the coefficients of the consequent affine functions are estimated with RLS.
The proposed approach combines the idea of accounting for the complex relationships
between the variables through multivariate Gaussian modeling with the knowledge-base
control based on the estimation error tracking. The novel rule managing mechanisms
based on a dynamic control chart and the Hellinger distance allows the suggestion of
problem-agnostic parameters, increasing the EBeTS robustness.
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4 RUL PREDICTION WITH EFS

A common concept on prognostics is the prediction of how much time remains
before a failure occurs, also known as the RUL, given the current machine age, condition
and the past operation profile (JARDINE; LIN; BANJEVIC, 2006). In this sense, the
RUL can be defined as the amount of time until the system’s degradation state reaches
a predefined threshold, as shown in (2.3). In particular, data-driven prognostics rely on
the assumption that there exist available data from run-to-failure experiments to train
degradation models in an offline phase and that data from the UUT will also be available
to aid the prognostics up to the time where prediction starts (tp). It is not always the
case, and the possibility of not having available historical data but only a few UUT data
is explored in Section 5.2. For this reason, the prognostics problem may benefit from
an evolving learning mechanism that can adapt its parameters and change its structure
according to new available data while the fuzzy TS representation allows the modeling of
nonlinear degradation behavior.

A general data-driven framework for using Evolving Fuzzy Models (EFMs) for
prognostics tasks is shown in Figure 4.1. This is a two-phase framework composed by an
offline stage and an online stage. The offline phase consists of training a TS fuzzy system
using any available technique with historical data; this phase is nonessential considering
EFMs can start make predictions from scratch while adapting both its parameters and
structure in real-time. In the online phase, the EFM will be updated whenever a new
observation becomes available, allowing the start of the prognostics task. The following
subsections details how the degradation state can be propagated along with its uncertainty
for prognostics purposes using EFMs.

4.1 Problem formulation

The RUL prediction problem can be stated as a multi-step ahead prediction of
a system’s degradation state until it reaches a threshold η defined by some physical
knowledge of the assessed element. The state propagation can be done using a nonlinear
state transition auto-regressive model, such that

x̂k+N |k = fk (vk+N,L) , (4.1)

where vk+N,L, given by

vk+N,L =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
[xk xk−1 · · · xk−L+1]⊤ , if N = 1

[x̂k+N−1 · · · x̂k+1 xk · · · xk+N−L]⊤ , if 2 ≤ N ≤ L

[x̂k+N−1 · · · x̂k+N−L]⊤ , if N > L

(4.2)
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Figure 4.1 – Flowchart of the proposed data-driven framework for prognostics using EFMs.

is a lag vector with the estimates. Furthermore, xn and x̂n are, respectively, the observed
and estimated degradation state at time instant n, L is the order of the auto-regression
polynomial, N is the number of steps ahead for which the degradation state is predicted,
and fk(·) is the state transition function recursively obtained until instant k using EBeTS.
The long-term prediction based on systems such as the one proposed in this work can be
made in different ways. According to (GOURIVEAU; ZERHOUNI, 2012), there are five
main approaches divided into single-output (Iterative, Direct, and DirRec) and multiple-
output (Parallel and MISMO). The iterative approach consists of a single prediction tool
to make one-step-ahead predictions and uses the last predicted value as a regressor to
estimate the next ones; it has the most straightforward implementation and does not
require the user to set the prediction horizon (N) beforehand. However, it suffers from
error propagation and does not account for temporal behavior, i.e., once fk is obtained, it
will not be changed in the multi-step prediction phase. In the direct approach, H models
are used to predict a single different horizon using the same observed data; since each
model is independent of each other, they do not consider the complex relations between
the variables and may hinder its implementation. The DirRec approach, on the other
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hand, combines aspects of the previous two: it uses current predictions as regressors to
the next steps, but in each step, a different model is used; however, it can also suffer from
error propagation. In the multiple-output approaches, the parallel approach yields the
best results in complexity and implementation simplicity; it uses a single model to predict
multiple steps in less computing time, but it can raise rounding errors. The MISMO
approach consists of several multiple-output models; it can be seen as an approach between
the direct and the parallel approaches according to the definition of its parameters. In this
work, the iterative approach is used as the mechanism of long-term prediction due to its
simple implementation, low complexity, and unnecessary definition of a prediction horizon.

4.2 Uncertainty estimation

Considering a state transition function given by a TS model with rules given in
(3.1) and multivariate Gaussian MFs given by (3.5), the degradation state propagation
given in (4.1) can be rewritten as:

x̂k+N = (hk (vk+N,L))⊤ Θ̂⊤
k ṽk+N,L + ϵk+N , ∀N > 0 (4.3)

where hk(·) and Θ̂k are the normalized degrees of activation and consequent parameters
for each rule with structure updated until time instant k, respectively; N is the prediction
horizon and ṽk+N,L is the augmented vector ṽk+N,L ≜

[︂
1 v⊤

k+N,L

]︂⊤
. To account for

prediction uncertainties, the following white Gaussian noise is added in model (4.3).

ϵk ∼ N
(︂
0, σ2

ϵ

)︂
. (4.4)

where σ2
ϵ is considered to be constant. This noise variance will be estimated through Monte

Carlo simulations using the consequent parameters’ covariance matrix estimated via RLS
until time instant k. Another way to compute it is to recursively track the covariance of
estimation errors through the online learning operation. Both methods, described in the
following subsections, are compared in Section 5.2.

4.2.1 Monte Carlo simulations

A possible way to estimate the variance σ2
ϵ in (4.4) is by Monte Carlo simulations

using the known model’s parameters up until time instant k. The method consists in
generating M observations of the parameters and estimate the variance as

σ̂2
ϵ ≈

1
M

M∑︂
j=1

(︄
xk −

C∑︂
i=1

hi,k(zk) ṽ⊤
k,L ϑi,k

)︄2

, (4.5)

where ϑi,k ∼ N
(︂
θ̂i,k,Fi,k

)︂
and as M → ∞, σ̂2

ϵ → σ2
ϵ . According to (LJUNG, 1999,

p. 368), under the assumption of white Gaussian noise, the posterior distribution of the
consequent parameters at an instant k is Gaussian with mean θ̂i,k and covariance matrix
Fi,k, whose recursion relations are given in (3.7c) and (3.7d), respectively.
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4.2.2 Error covariance online tracking

Another possibility is to keep track of the model’s error covariance matrix for time
instances n ∈ N≤k. The error mean can be tracked in a similar way of (3.6a) and (3.6b):

∆ϵ,n = ϵn − µ̂ϵ,n−1, (4.6)

µ̂ϵ,n = µ̂ϵ,n−1 + 1
n

∆ϵ,n, (4.7)

where n is the global amount of inputs processed by EBeTS. The error mean starting
point is µ̂ϵ,0 = 0ny×1. Once the error mean is estimated, the recursive sum of squares from
it can also be computed:

Mϵ,n = Mϵ,n−1 + (ϵn − µ̂ϵ,n−1)(ϵn − µ̂ϵ,n)⊤, (4.8)

where Mϵ,0 = 0ny×ny . Then, at time instant n, the error covariance matrix is given as

Σϵ,n = Mϵ,n

n− 1 . (4.9)

The constant variance σ2
ϵ in (4.4) used for the long-term prediction can be estimated as

σ2
ϵ ≈ Σϵ,k. (4.10)

4.3 Uncertainty propagation

After computing the initial uncertainty in the estimation of one step ahead pre-
dictions, the long term propagation of that uncertainty is made by considering the input
vector (4.2) to be a vector composed of random variables, such that

v+
k+N,L =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
[xk xk−1 · · · xk−L+1]⊤ , if N = 1[︂
x̂+

k+N−1 · · · x̂+
k+1 xk · · · xk+N−L

]︂⊤
, if 2 ≤ N ≤ L[︂

x̂+
k+N−1 · · · x̂+

k+N−L

]︂⊤
, if N > L

(4.11)

It is worth noting that, when N = 1, the previous degradation states are known and,
therefore, are not random variables. Accordingly, the output x̂k+N of the state transition
function in (4.3) is also a random variable:

x̂+
k+N = (hk (zk+N))⊤ Θ̂⊤

k ṽ+
k+N,L + ϵk+N , ∀N > 0 (4.12)

where zk+N ≜ E[ṽk+N,L] are premise variables defined as the expected value of the input
vector. For the uncertainty propagation, it is necessary to compute its variance in the
multi-step prediction framework. For the first step, the variance can be computed as

Var
(︂
x̂+

k+1

)︂
= Cov

(︃
(hk (zk+1))⊤ Θ̂⊤

k ṽ+
k+1,L + ϵk+1

)︃
= Cov

(︃
(hk (zk+1))⊤ Θ̂⊤

k ṽ+
k+1,L

)︃
+ σ2

ϵ . (4.13)
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Since the degrees of activation hk(·) are computed with the expected value of the random
variable ṽ+

k+1,L, it can be considered, along with the parameters vector, as a constant
defined as: ΞN ≜ (hk (zk+N))⊤ Θ̂⊤

k . Therefore, using the results from Appendix B, the
variance (4.13) becomes:

Var
(︂
x̂+

k+1

)︂
= Ξ1 Cov

(︂
ṽ+

k+1,L

)︂
Ξ⊤

1 + σ2
ϵ

= Ξ1 ΛL
1 Ξ⊤

1 + σ2
ϵ

= σ2
ϵ

= λ2
1, (4.14)

where ΛL
N ≜ Cov

(︂
ṽ+

k+N,L

)︂
and λ2

N ≜ Var
(︂
x̂+

k+N

)︂
. It is worth noting that ΛL

1 = 0 because,
when N = 1, the previous degradation states are known. Simirlarly, the variance N steps
ahead is computed recursively as

Var
(︂
x̂+

k+N

)︂
= Cov

(︃
(hk (zk+N))⊤ Θ̂⊤

k ṽ+
k+N,L + ϵk+N

)︃
= ΞN Cov

(︂
ṽ+

k+N,L

)︂
Ξ⊤

N + σ2
ϵ

= ΞN ΛL
N Ξ⊤

N + σ2
ϵ . (4.15)

The covariance matrix of the random vector ṽ+
k+1,L is given as

ΛL
N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0
0 λ2

N−1 · · · λN−LλN−1ρ̂L,1
... ... . . . ...
0 λN−1λN−Lρ̂1,L · · · λ2

N−L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.16)

where the first row and column represent the covariance between the random variables
with the augmented one. Moreover, λ2

i = 0 when i < 0 meaning that the value of xk+N

is known. The covariance matrix shown in (4.16) is weighted by Pearson correlation
coefficients ρ̂, estimated through available UUT data or recursively estimated, as shown
in Appendix A.2.

Considering the degradation to be a random variable with Gaussian distribution
whose expected value is propagated by successive applications of (4.3), it is possible to
suggest lower and upper bounds for the RUL at a (α)(100)% significance level as

r̂lower,k = inf {N ∈ N : x̂k+N + z1−α/2 λN ≥ η}, (4.17a)

r̂upper,k = inf {N ∈ N : x̂k+N + zα/2 λN ≥ η}, (4.17b)

To provide useful information for decision-making in practical engineering applications, it is
important to represent, quantify, propagate and manage uncertainty (SANKARARAMAN,
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2015). However, there is still a lack of effective uncertainty quantification for multi-step
ahead prediction based on EFMs. In this sense, despite the simplicity, the uncertainty
quantification methodology described in this section is a novelty in the context of EFMs
and enabled the fault prognostics for this kind of model.

4.4 Chapter summary

This chapter presents the uncertainty quantification and propagation procedures
used for evolving TS models, such as EBeTS. The quantified uncertainty are related to
model uncertainties, which account for the proposed model’s estimation error from Guo,
Li & Li (2019). The proposed quantification technique can use the posterior distribution
of the consequent parameters of each rule noise or the global error covariance matrix to
estimate the model initial uncertainty that will be propagated in the long-term predictions.
The uncertainty quantification and propagation procedures enables the definition of a
data-driven framework for prognostics using EFMs, as shown in Figure 4.1.
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5 RESULTS AND DISCUSSION

5.1 Case study 1: temperature prediction

In order to illustrate the ability of the proposed method for system identification,
three time series composed by monthly recorded mean temperatures from Death Valley
(Furnace Creek), Ottawa, and Lisbon weather stations are used. The data set consists of
records from January of 1901, 1895 and 1910, respectively, up to December of 2009. Systems
sensitive to the state of the atmosphere may benefit from weather predictions (LEITE et
al., 2012). These predictions can help the decision-making process in many sectors, e.g.,
agriculture, aviation, and transportation. In all experiments, the data were scaled to the
interval [0, 1] using their maximum and minimum temperatures in degrees Celsius.

The proposed EBeTS model is compared with two fuzzy evolving models, the Fuzzy
Set Based Evolving Modeling (FBeM) (LEITE et al., 2012) and the exTS (ANGELOV;
ZHOU, 2006); these models can also represent time variant nonlinear systems. As discussed
in Chapter 2, both learning mechanisms are similar to the proposed technique in terms of
the main model structure, which is based on a TS fuzzy inference system. Apart from
the learning mechanisms, another difference between these two models and EBeTS is that
they do not account for the correlation between the input variables, which is achieved in
EBeTS through multivariate MFs in the antecedent part of its rules.

The experiment consists of predicting the temperature one, three, six, and nine
months ahead using the last five observations. The objective of this design is to check
the prediction capabilities of EBeTS along with its robustness under situations where the
outputs are less correlated with the input, e.g., in a monthly recording temperature data
set, xk+1 is more correlated to xk than xk+6 is to xk. The input and output provided to
the three algorithms are, respectively,

xk =
[︃
xk xk−1 . . . xk−4

]︃⊤
, (5.1a)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

xk+1

xk+3

xk+6

xk+9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊤

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1(xk)
f2(xk)
f3(xk)
f4(xk)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊤

. (5.1b)

The tuning parameters of EBeTS were set as γ = 0.5, τ = 6 and ω = 95.45%, using the
recommendations detailed in Section 3.3; along with the recommendation, a sensitivity
analysis is made in Subsection 5.1.1 to support the choice. The parameters chosen for
FBeM were the ones reported in Leite et al. (2012), namely ρFBeM = 0.7, ψFBeM = 48
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and ηFBeM = 2. The only parameter set for exTS is the rule covariance initialization
constant ΩexTS. It is analogous to the parameter Fi,0 of EBeTS, therefore it is also set as
ΩexTS = 103.

In the specific case of one-step ahead temperature prediction in the Death Valley
region, Figure 5.1a depict the true and predicted values from Nov/1963 to Jan/1968. The
prediction error, number of rules and membership degree for each rule from Jan/1901 to
Dec/2009 are shown in Figure 5.1b, Figure 5.1c, and Figure 5.1d, respectively.

The results are shown in Table 5.1, where a comparison is made in terms of the
Non Dimensional Error Index (NDEI), Theil’s U statistic and computing time. In order
to illustrate the knowledge-base construction, the average number of rules is also depicted.
The NDEI metric consists of the known Root Mean Squared Error (RMSE) divided by
the standard deviation of the target time series, defined as:

NDEI =

√︂∑︁N
i=1(xi − x̂i)2√︃

1
N−1

∑︁N
i=1

(︂
xi − 1

N

∑︁N
j=1 xj

)︂2
. (5.2)

The Theil’s U statistic, on the other hand, is a metric to check the predictions in relation
to a naïve predictor where ŷi+1 = yi. According to Makridakis, Wheelwright & Hyndman
(1998, p. 50) if the value of U in (5.3) is less than 1, the forecast is better than the naïve
method. It will be 1 when they are the same and greater than 1 when the forecast is worse
than naïve predictions:

U =

⌜⃓⃓⃓
⎷⃓
∑︁N−1

i=1

(︂
x̂i+1−xi+1

xi

)︂2

∑︁N−1
i=1

(︂
xi+1−xi

xi

)︂2 . (5.3)

The proposed EBeTS can maintain its accuracy with predictions better than naïve
forecasts, by controlling the model complexity with a criterion designed to reduce the
estimation error. This complexity is reflected by the average number of rules which is a
widely used metric to account for complexity-based interpretability. This is one of the two
types of interpretability defined in Gacto, Alcalá & Herrera (2011); the other type is called
semantics-based interpretability and is not addressed in this work. The low prediction
errors of both EBeTS and exTS in this case study indicate their suitability for prognostics,
assuming that the long-term predictions required for RUL estimation can be done with
these predictors.

An illustration of EBeTS process of predicting the temperature of the three weather
stations is shown in Figure 5.2. Its first row shows the true and estimated output as well
as the second row for a smaller time span, indicated in the first row as a grayish stripe.
The third row shows both NDEI and the number of rules over time, where it is possible
to see the number of rules changing as NDEI changes. It is important to notice that the
redundant information of axis labels and title is omitted to improve readability.
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(a) Death Valley’s true and predicted temperature from Nov/1963 to Jan/1968.
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(b) Death Valley’s temperature prediction error from Jan/1901 to Dec/2009.
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Figure 5.1 – Death Valley’s temperature one-step ahead prediction results using EBeTS.
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Figure 5.2 – EBeTS prediction of the Death Valley, Ottawa, and Lisbon temperature time
series with NDEI and number of rules over time.

5.1.1 Sensitivity analysis

In this case study, the parameters used for EBeTS are chosen based on recommen-
dations detailed in Section 3.3, where a discussion on how the parameters affect the model
complexity is also provided. A sensitivity analysis is done to provide a more detailed
insight into the parameters’ influence in both complexity and accuracy. Both NDEI and
the total number of rules are computed in an experiment with the following parameters
range:

(ω, γ, τ) ∈ Os × Gs × Ts, (5.4)

where
Os = {38.29%, 68.27%, 86.64%, 95.45%, 98.76%, 99.73%, 99.95%}, (5.5a)

Gs = {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, (5.5b)

Ts = {3, 4, 5, 6, 7, 8, 9}. (5.5c)

The analysis is performed in a version of the temperature data set prepared for
one step ahead predictions, where samples from the three stations are concatenated as
depicted in Figure 5.3. The results for each set of parameters from (5.4) are summarized
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Table 5.1 – Performance of temperature prediction on Death Valley, Lisbon and Ot-
tawa weather stations using EBeTS, exTS (ANGELOV; ZHOU, 2006) and
FBeM (LEITE et al., 2012), with best values in bold.

Metric Location Method Prediction N steps ahead
N = 1 N = 3 N = 6 N = 9

NDEI

Death
Valley

EBeTS 0.2859 0.3268 0.3435 0.2220
FBeM 0.3780 0.3777 0.3369 0.3346
exTS 0.2814 0.2851 0.3040 0.2315

Lisbon
EBeTS 0.4116 0.4702 0.5270 0.3422
FBeM 0.5124 0.5016 0.4952 0.4508
exTS 0.3933 0.4627 0.4289 0.3689

Ottawa
EBeTS 0.3198 0.3294 0.3176 0.2801
FBeM 0.3547 0.3603 0.3589 0.3566
exTS 0.3479 0.3479 0.3084 0.3021

Avg. Rules

Death
Valley

EBeTS 3.7857 3.9562 5.0617 3.5927
FBeM 11.2842 11.4762 11.2375 10.9784
exTS 4.7926 5.6346 2.9800 3.8694

Lisbon
EBeTS 2.8065 5.3951 3.6140 3.6830
FBeM 10.4238 9.9320 9.8276 11.0868
exTS 4.6809 6.9639 3.7511 6.6324

Ottawa
EBeTS 2.4068 2.9978 2.8795 5.7950
FBeM 10.1477 9.0882 9.7034 9.1069
exTS 9.1689 6.8178 9.7093 7.0842

Theil’s U

Death
Valley

EBeTS 0.5267 0.6138 0.6748 0.4408
FBeM 0.6336 0.6840 0.6086 0.6358
exTS 0.4558 0.4696 0.5881 0.4548

Lisbon
EBeTS 0.7175 0.7632 0.8774 0.5965
FBeM 0.8336 0.7852 0.7929 0.7525
exTS 0.6710 0.7336 0.6714 0.6389

Ottawa
EBeTS 0.5604 0.5431 0.5501 0.5044
FBeM 0.5974 0.6690 0.6105 0.6634
exTS 0.6146 0.6214 0.5368 0.5339

Time (s)

Death
Valley

EBeTS 0.2876 0.2462 0.2438 0.2432
FBeM 0.3505 0.2916 0.3378 0.3174
exTS 0.3330 0.1596 0.1572 0.1507

Lisbon
EBeTS 0.1826 0.2592 0.2062 0.2053
FBeM 0.2402 0.2364 0.2606 0.2331
exTS 0.1513 0.2398 0.1390 0.2463

Ottawa
EBeTS 0.2015 0.2698 0.2193 0.3273
FBeM 0.4284 0.4506 0.3004 0.3263
exTS 0.3517 0.2602 0.4203 0.2528
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in Figure 5.4, where pairwise heat maps colored by the average number of rules and the
average NDEI are shown. In the first column of Figure 5.4, the discussion from Section 3.3
becomes evident: the lower ω is, or the higher τ and γ are, the lower the average number of
rules will be. The second column shows how the NDEI behaves as each pair of parameters
changes. According to Figure 5.4, the choice of parameters (τ, ω, γ) = (6, 95.45%, 0.5),
made without any knowledge about the data, is shown to be within regions where both the
number of rules and the value of NDEI are low. A similar analysis was done considering
ω = 95.45%, as shown in Table 5.2. When τ increases, EBeTS tends to create less rules
and even large changes in γ will not affect its results in terms of NDEI and the final
number of rules.
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Figure 5.3 – Temperature data set from three different weather stations concatenated.

Table 5.2 – Sensitivity results NDEI/Final number of rules for parameters γ and τ with
ω = 95.45%.

γ
τ

3 4 5 6 7 8 9
0.2 0.3467/61 0.3245/47 0.3187/14 0.3240/6 0.2855/5 0.2902/2 0.2892/2
0.3 0.3474/57 0.3288/38 0.3228/13 0.3240/6 0.2829/4 0.2902/2 0.2892/2
0.4 0.3308/46 0.3258/34 0.3185/11 0.3240/6 0.2829/4 0.2902/2 0.2892/2
0.5 0.3374/39 0.3343/19 0.3143/8 0.2868/4 0.2829/4 0.2902/2 0.2892/2
0.6 0.3352/32 0.3366/17 0.3109/7 0.2868/4 0.2822/3 0.2902/2 0.2892/2
0.7 0.3357/25 0.3362/11 0.3021/4 0.2865/3 0.2805/3 0.2902/2 0.2892/2
0.8 0.3550/14 0.3495/8 0.2961/3 0.2872/2 0.2819/2 0.2902/2 0.2892/2

5.2 Case study 2: accelerated ball bearing prognostics

In order to assess RUL prediction using models generated by EBeTS, two experi-
ments with the PRONOSTIA platform data are proposed. The first one aims at comparing
the results of the EBeTS based prognostics with a method based on multiple models
reported in Cosme et al. (2019). The second experiment consists in the comparison of
three distinct scenarios for RUL prediction using EBeTS, as discussed in Subsection 5.2.5.
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Figure 5.4 – Heat maps colored by the average number of rules and the average NDEI for
each pair of EBeTS parameters for the sensitivity analysis of the first case
study.

In order to prevent numerical problems due to RLS initialization, only rules with more
than one data point associated to it were use for multi-step ahead predictions.

5.2.1 The PRONOSTIA data set

The PRONOSTIA data set consists of accelerated degradation of ball bearings
under different operation conditions during their whole operational life (NECTOUX et
al., 2012). The testbed, shown in Figure 5.5, has three parts: (i) rotating part, composed
by an asynchronous motor that allows the bearing to rotate through a system of gearing
and different couplings; (ii) degradation generation part, composed by a pneumatic jack
applying a radial force that reduces the bearing’s life duration; (iii) measurements part
to obtain instantaneous measurements from the radial force applied on the bearing, the
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rotation speed of the shaft handling the bearing and the torque inflicted to the bearing.
There are three different operation conditions in the data set; the differences between them
are related to the horizontal force applied on the bearings and their rotating speeds, as
shown in Table 5.3. The influence of these variables’ variations are not considered for RUL
prediction since they were kept almost stable during the whole operation. The available
signals are the vibration in horizontal and vertical direction as well as the temperature of
the bearings with a sampling frequency of 25.6 kHz for the vibration signals and of 10 Hz
for the temperatures ignals. For each 10 seconds of operation a batch of 2560 samples, or
0.1 seconds, becomes available and is used to generate the HI used for RUL prediction.

The PRONOSTIA data set is widely used to investigate various aspects of prognos-
tics algorithms. The HI construction problem include extraction of time-frequency domain
features (SINGLETON; STRANGAS; AVIYENTE, 2015; ZHAO; TANG; TAN, 2016) and
correlation-based features (LEI et al., 2016b; MEDJAHER; ZERHOUNI; BAKLOUTI,
2013). Moreover, the RUL is predicted using different techniques such as Wiener processes
(HUANG et al., 2017; WANG et al., 2016), neuro-fuzzy networks (PAN et al., 2014), and
support vector regression (BENKEDJOUH et al., 2013), to name a few.

NI DAQ Card Pressure regulator Cylinder pressure Force sensor

AC motor Speed sensor Torquemeter Accelerometers

Tested

bearing

Figure 5.5 – Overview of PRONOSTIA testbed.

Source: Lei, Li & Lin (2016)

According to Nectoux et al. (2012), there are two main reasons for using data-
driven techniques to tackle PRONOSTIA: the first one is that nothing is known about the
degradation nature and origin; the other reason is that there is a mismatch between the
experiments and the theoretical framework such as L10 life, Ball Pass Frequency of Inner
Ring, and Ball Pass Frequency of Outer Ring.
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Table 5.3 – PRONOSTIA training and test data sets under different operation conditions.

Condition # Operation conditions Training/validation sets Test sets
1 1800rpm / 4000N Bear1−1 / Bear1−2 Bear1−3 to Bear1−7

2 1650rpm / 4200N Bear2−1 / Bear2−2 Bear2−3 to Bear2−7

3 1500rpm / 5000N Bear3−1 / Bear3−2 Bear3−3

The first step towards a data-driven approach in prognostics is to extract candidate
features for a useful HI. In this work, these features are derived from vibration sensors
in the same way described in Javed et al. (2015) where the horizontal vibration signals
were chosen; since the force is applied in this direction, they convey more information on
the degradation than the others. To construct the HI proposed in Javed et al. (2015), the
following steps must be taken:

Step 1. wavelet transform using the fourth level of decomposition of fourth order
Daubechies in each 0.1 s packet;

Step 2. application of the arc tangent trigonometric function in the packet;

Step 3. statistical reduction of the packet by the standard deviation function;

Step 4. application of a smoothing task, in this case an exponential moving average
with a window of size 12;

Step 5. computation of cumulative sum for improving trendability and monotonic-
ity.

The steps are also depicted in Figure 5.6, where Step 0 represents the raw data acquisition.

5.2.2 Metrics used for comparison

Two accuracy based metrics are used to evaluate the proposed method performance:
the MAPE and RA. They are computed as follows (SAXENA et al., 2008a):

MAPEk = 100
N

k+N∑︂
i=k+1

⃓⃓⃓⃓
⃓xi − x̂i

xi

⃓⃓⃓⃓
⃓ , (5.6)

RAk = 1− |rk − r̂k|
rk

, (5.7)

where N is the number of future predictions until the UUT state reaches the threshold;
rk and r̂k are, respectively, the actual and estimated RUL at k. For simplicity purposes,
polynomials of degree one were used, which means that the number of autoregressive
components is one in (4.3).
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Figure 5.6 – Steps to generate the HI proposed by Javed et al. (2015).

5.2.3 EBeTS parameters tuning

Since there are available historical data to train and validate the algorithms, the
sets Beari−1 and Beari−2 of the i-th operation condition were used to define the EBeTS
parameters. A grid search was used to find the best set of parameters with the objective of
maximizing the mean prognostics RA in the training data set. For parameter γ, the grid in-
terval was set to {0.1, 0.2, . . . , 0.9}; for parameter τ , the grid interval was set to {1, 2, . . . , 5};
and for parameter ω, the grid interval was set to {68.27%, 86.64%, . . . , 99.99%}. The values
for ω are related to the band size around the residuals mean, i.e., {1σ, 1.5σ, 2σ, . . . , 4σ}.
The best set of parameters after the search was γ = 0.8, τ = 2 and ω = 68.27%.

In the specific case of one-step ahead prediction of bearing health condition for
condition 1, Figure 5.7a depict the true and predicted values for training and validation
datasets Bear1−1 and Bear1−2 with the beginning of the testing dataset Bear1−3 up until
its time instant tP = 100. The prediction error, number of rules and membership degree
for each rule in the same interval is shown in Figure 5.7b, Figure 5.7c, and Figure 5.7d,
respectively. Although the process of merging rules is not depicted in Figure 5.7, due to the
choice of parameters, i.e., low values for τ and ω and a high value for γ, redundant rules
were merged every 8 processed samples on average. This choice of parameters resulted in
a large creation/merge rate throughout the learning phase.

5.2.4 First experiment

In this experiment, EBeTS is compared with four other prognostics methods: a
fuzzy version of the interacting multiple models algorithm, namely IMMF (COSME et al.,
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(b) PRONOSTIA’s HIs prediction error for training and initial test sets of condition 1.
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Figure 5.7 – PRONOSTIA’s one-step ahead prediction results for training and initial test
sets of condition 1 using EBeTS.
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2019); an EFM based on concepts from the well-known subtractive clustering algorithm
(CHIU, 1994), namely exTS (ANGELOV; ZHOU, 2006), the popular ARMA models,
and a hybrid method proposed by Camargos et al. (2020b) that uses a generic fractional
polynomial model propagated through a PF. Both IMMF and exTS are state-of-the-art
structures used for fault prognostics based on fuzzy models (GOURIVEAU; ZERHOUNI,
2012); the fact that they are in the same class of fault prognostics techniques justifies
the comparison with EBeTS. It is also important to notice that three of them, namely,
IMMF, ARMA, and the hybrid approach, are fixed structures where learning happens in
an offline stage, and the UUT data are not used to improve their parameter estimates. A
brief overview of the techniques used for comparison is given below.

The IMMF described in Cosme et al. (2019) consists of a two-stage prognostics
approach. The first stage is an offline training phase where known historical data are used
to obtain fuzzy rules in a TS fuzzy inference system. The i-th rule’s consequent part are
affine functions of the past degradation states, such that:

Rule i: if xk−1 is Φi then x̂i,k = pixk−1 + qi, (5.8)

where Φi are pi-shaped MFs; each one has four parameters to control their shape. The
fuzzy rules are estimated through ANFIS algorithm. The second phase is a modified
version of the interactive multiple model (BLOM; BLOEM, 2007) that takes into account
the membership degrees to provide the combined estimation of parallel PFs.

The ARMA models are defined as

xt = c+ εt +
p∑︂

i=1
aixt−i +

q∑︂
i=1

biϖt−i, (5.9)

where ϖt ∼ N (0, σ2
ϖ) are independent identically distributed random variables, c is a

constant term, a = [a1 · · · ap]⊤ ∈ Rp and b = [b1 · · · bq]⊤ ∈ Rq are the model’s
parameters, and p and q represent the model’s structure. Given a pair (p, q) and a data
set, the task is to estimate a, b, c and σ2

ϖ.

The hybrid approach described in Camargos et al. (2020b) also consists of a two-
phase process where historical data are first used to train the proposed degradation model’s
parameters. The Levenberg-Marquardt algorithm is used in this step to fit the data into
the following generic fractional polynomial model

x̂k = θ1 + θ2k
θ3 + θ4x

θ5
k−1. (5.10)

Once the parameters are computed, the RUL will be estimated using a PF to propagate
the degradation state.

The set of parameters for EBeTS used in this experiment is the one found by the
grid search, i.e., γ = 0.8, τ = 2 and ω = 68.27%. For the exTS, it is set ΩexTS = 103 as
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it is analogous to the rule covariance initialization constant in EBeTS. For all fuzzy-based
prognostics approaches, the number of previous states used for predicting the RUL, i.e.,
the number of regressors, is set to one. For the ARMA models, a more flexible number of
past states used for prognostics is allowed to fully take advantage of the approach. A grid
search is performed with both p and q ranging from 1 to 10, i.e., 100 different combinations
of (p, q) for each condition. For each pair (p, q), the first bearing data is used to train
the ARMA model’s coefficients; the trained models are used for prognostics using the
second bearing data enabling the computation of both RA and MAPE metrics. An index
that combines both metrics was constructed to find the pair (p, q) that maximizes the RA
while minimizing the MAPE and the number of parameters in the model, such that

Ik(p, q) = RAk(p, q) +
(︄

1− MAPEk(p, q)
100

)︄
+
(︃

1− p+ q

20

)︃
, (5.11)

where RAk(p, q) and MAPEk(p, q) are the RA and MAPE metrics at time k using pa-
rameters (p, q), respectively. These metrics were computed with the validation data set,
i.e., the second bearing of each condition, and, the chosen value of k for each condition
is the time in which prognostics starts in the test data set. The values of (p, q) for each
condition that maximizes the index in (5.11) are: (9, 4) for condition 1, (5, 2) for condition
2, and (4, 1) for condition 3. The IMMF requires the number of degradation models to be
set beforehand and does not use UUT data to adjust these fixed models; the parameters
used are the ones reported in Cosme et al. (2019), i.e., for each bearing condition, a fuzzy
inference system with three rules, as described in (5.8), is estimated offline. Likewise, the
parameters reported in Camargos et al. (2020b) are used for the hybrid approach, where
each bearing condition has a different set of parameters.

Since there are differences in the bearings’ life duration for each operation condition,
different starting times and threshold were set for the prognostics task. In bearing
conditions 1, 2 and 3, prognostics started at t1P = 100 and t2P = t3P = 20, respectively, and
the threshold was set to η1 = 20, η2 = 8 and η3 = 10, respectively. This choice allows
comparisons with the IMMF, for which the proposed method achieves better MAPE results
for all bearing conditions, except 1–3 as shown in Table 5.4 and Table 5.5, where MAPE
and RA are computed at k = tP . An illustration for the PRONOSTIA’s HI prediction for
all bearings in the test dataset using these initial conditions is shown in Figure 5.8.

The results in Table 5.4 and Table 5.5 shows a significant improvement in RUL
prediction using the proposed method instead of IMMF or ARMA for condition 2, because,
in condition 1, the test HI is more similar to the train HI than in condition 2. Figure 5.9
depicts this difference, where the train HI is shown as a continuous black line, the most
different test HI, within the same condition, as a red line with squares and the most
similar test HI, also within the same condition, as a blue line with circles. This difference
indicates that evolving approaches, such as EBeTS and exTS, can yield better results in
cases where training and test data have different behavior.
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Figure 5.8 – EBeTS long-term prediction of the PRONOSTIA’s HIs for bearings 1–3, 2–3
and 3–3 with prediction starting from t1

P = 100, t2
P = 20, and t2

P = 20,
respectively, and fault thresholds η1 = 20, η2 = 8, and η3 = 10, respectively.

5.2.5 Second experiment

This experiment evaluates three distinct scenarios for RUL prediction using EBeTS.
The first scenario consists of using the available historical data to obtain the TS model in an
offline phase, while UUT data are used to adapt the models online, as depicted in Figure 4.1.
The second scenario consists of using historical data to train the TS model without any
adjustments regarding UUT data, i.e., for condition 1, only data from bearings 1 and 2
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Figure 5.9 – Bearing’s HIs of condition 1 and 2 for comparison.

Table 5.4 – Accuracy based metric MAPE computed at t1
P = 100, t2

P = 20 and t3
P = 20 for

operation conditions 1, 2 and 3, respectively, with best values in bold.

Bearing tP EBeTS IMMF exTS ARMA Hybrid
1–3 100 7.01 3.85 9.21 3.58 2.88
1–4 100 6.17 9.73 3.71 2.72 8.63
1–5 100 2.39 6.41 1.02 2.66 1.6
1–6 100 1.13 3.01 3.48 7.37 5.45
1–7 100 1.07 2.77 3.64 4.94 2.69
Average for
condition 1 3.55 5.15 4.21 4.25 4.25

2–3 20 2.48 20.17 6.52 3.96 10.2
2–4 20 3.55 12.56 7.85 4.98 1.74
2–5 20 3.77 19.0 2.02 6.75 21.32
2–6 20 5.06 24.91 3.92 2.96 4.65
2–7 20 4.56 6.05 3.75 2.65 1.87
Average for
condition 2 3.88 16.54 4.81 4.26 7.96

3–3 20 2.88 7.66 4.68 7.85 6.37
Total

Average 3.64 10.56 4.53 4.58 6.13

are used. In the last scenario, the RUL is predicted when only UUT data are available.
Such evaluations are essential to illustrate an important property of EBeTS that is an
advantage concerning many of prognostics methods: the ability to take advantage of both
historical and UUT data for providing improved RUL predictions. The RUL in these three
scenarios is computed at different starting times for each bearing. In some experiments of
scenario 3, the failure threshold was not reached within the prediction horizon defined by
the failure time; this can happen when knowledge is not yet sufficient to create transition
models that can predict the RUL, i.e., the prediction converges prematurely to a value
below the failure threshold. The set of parameters used in this experiment for scenarios
1 and 2 is the one found by the grid search, i.e., γ = 0.8, τ = 2 and ω = 68.27%. For
scenario 3, however, this set can not be used since no training data is available; therefore,
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Table 5.5 – Accuracy based metric RA computed at t1
P = 100, t2

P = 20 and t3
P = 20 for

operation conditions 1, 2 and 3, respectively, with best values in bold.

Bearing tP EBeTS IMMF exTS ARMA Hybrid
1–3 100 0.85 0.97 0.75 0.87 0.96
1–4 100 0.73 0.91 0.97 0.9 0.82
1–5 100 0.89 0.85 0.94 0.9 0.91
1–6 100 0.98 0.94 0.84 0.79 0.96
1–7 100 0.98 0.97 0.86 0.85 0.99
Average for
condition 1 0.89 0.93 0.87 0.86 0.93

2–3 20 0.9 0.84 0.79 0.71 0.75
2–4 20 0.86 0.91 0.76 0.47 1
2–5 20 0.91 0.53 0.97 0.2 0.42
2–6 20 0.98 0.75 0.87 0.74 0.82
2–7 20 0.97 0.85 0.9 0.82 0.95
Average for
condition 2 0.92 0.78 0.86 0.59 0.79

3–3 20 0.91 0.96 0.97 0.76 1
Total

Average 0.91 0.86 0.87 0.73 0.87

the recommendation if Section 3.3 is used, i.e., γ = 0.5, τ = 2 and ω = 95.45%.

The results are shown in Table 5.6, where each bearing has a different failure time.
All three scenarios were tested with prediction starting from different instants before
failure. In these scenarios, it is expected that MAPE decreases and RA increases as the
starting prediction time becomes closer to the failure time while maintaining low values of
MAPE and high values of RA.

In scenario 1, the proposed scheme, for conditions 1 and 3, values of MAPE decrease
in all cases while RA values increase or fluctuate around a value whereas new data are
not affecting the models in a perceptive way; this fluctuation is related to the continuous
process of creation and combination of rules. For condition 2, the high variability of life
duration along all data sets may be responsible for more significant oscillations in MAPE
and RA. The results of scenario 3 follow what is expected, but initial values of MAPE
are too high since only data from UUT are known. In general, the comparison between
scenarios 1 and 3 shows that starting with some historical knowledge gives better RUL
estimations, especially when starting prediction time is far from failure time. Additionally,
the comparison between scenarios 1 and 2 shows that updating the degradation model
when new data are available also gives better RUL estimations.
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Table 5.6 – Three distinct scenarios for RUL prediction using EBeTS for different times in
which predictions started (tP ).

Bearing Fails at tP
Scenario 1 Scenario 2 Scenario 3

MAPE RA MAPE RA MAPE RA

1–3 1271
100 7.01 0.85 7.96 0.78 39.80 –
700 1.99 0.84 3.71 0.69 0.85 0.84
1200 0.05 0.96 0.92 0.56 0.12 0.83

1–4 865
100 6.17 0.73 6.57 0.86 21.19 –
500 2.22 0.76 1.60 0.99 5.54 –
800 0.12 0.92 0.54 0.80 0.12 0.88

1–5 992
100 2.39 0.89 2.23 1.00 30.71 –
500 1.99 0.87 1.33 0.93 7.24 –
800 0.30 0.92 2.15 0.66 0.86 0.46

1–6 1063
100 1.13 0.98 1.09 0.92 30.64 –
500 1.07 0.96 1.23 0.86 8.42 –
900 0.06 0.98 2.34 0.58 0.50 0.66

1–7 1069
100 1.07 0.98 1.24 0.92 35.32 –
400 0.97 0.95 1.02 0.90 14.16 –
800 0.13 0.96 2.14 0.71 4.21 –

2–3 230
20 2.48 0.90 2.30 0.91 44.67 –
80 3.35 0.84 3.23 0.85 19.84 –
200 0.48 0.90 1.38 0.73 2.13 0

2–4 239
20 3.55 0.86 3.18 0.88 34.99 –
80 4.63 0.81 4.57 0.81 13.31 –
200 1.88 0.72 1.73 0.72 1.76 0.08

2–5 195
20 3.77 0.91 4.44 0.90 44.47 –
80 2.26 0.92 2.65 0.90 17.90 –
160 0.18 1.00 0.48 0.94 2.73 0

2–6 202
20 5.06 0.98 5.77 0.97 28.25 –
100 0.52 0.92 0.60 0.92 2.73 0.51
180 0.27 0.91 0.74 0.77 0.35 0.86

2–7 192
20 4.56 0.97 7.54 0.92 27.32 –
80 0.54 0.95 0.59 0.97 7.35 –
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Table 5.6 – Three distinct scenarios for RUL prediction using EBeTS for different times in
which predictions started (tP ).

Bearing Fails at tP
Scenario 1 Scenario 2 Scenario 3

MAPE RA MAPE RA MAPE RA

140 0.94 0.85 0.54 0.88 0.22 0.96

3–3 311
20 2.88 0.91 4.44 0.86 42.53 –
140 0.42 0.92 1.29 0.87 1.76 0.64
280 0.36 0.84 0.48 0.77 0.32 0.84

The α − λ plot is usually used to evaluate prognostics strategies since it shows
whether the predicted RUL falls within a goal region around the true RUL given by
±(α)(100)% (LALL; LOWE; GOEBEL, 2012). Figure 5.10 and Figure 5.11 depicts the
α − λ plot with goal region of α = 0.2 for all bearings on scenario 1, where the RUL is
computed for all time instants from the starting prediction point up until the fail time of
each bearing, listed in Table 5.6. In almost all situations, the predicted RUL is inside the
gol region the whole time and the suggested RUL bounds given by (4.17a) and (4.17b) at
a 95% confidence level are shown for some points.

Considering the Monte Carlo method to estimate the Gaussian noise variance, as
described in Subsection 4.2.2, it is observed that these bounds increase after a rule is
created or combined since the covariance matrix of the model parameters is initialized with
a large value; in this case, the new rule has not learned enough to stabilize the covariance
matrix used for the posterior distribution. Thus, it leads to an increase of the quantified
uncertainty, as depicted in Figure 5.10. When such rules are merged with rules more
stable, i.e., rules with knowledge acquired from a more significant data set, the overall
uncertainty of the model decreases, as depicted in Figure 5.10. It is also worth pointing
out that, for some points of this experiment, the EBeTS models produced confidence lower
bounds for the degradation series below the fault threshold. In these cases, the upper
bound RUL estimation in (4.17b) cannot be computed; therefore, the RUL lower bound is
used reflected as the upper bound, making the suggested bounds symmetric concerning
the estimated value.

Although the uncertainty quantification and propagation techniques using Monte
Carlo simulations are provided for evolving TS models, its behavior during the rule creation
and merging processes still needs to be addressed to make it manageable and offer support
for decision-makers. In contrast with the Monte Carlo initialization method, the method
described in Subsection 4.2.2 shows more stability concerning the events of creation and
combination of rules. The same experiment is depicted in Figure 5.11, showing that not
only the uncertainty estimation were reduced but this design allowed the RUL lower bound
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to be computed for all tested data points.
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Figure 5.10 – α− λ plot of the estimated RUL in scenario 1 with goal region of α = 0.2
using the Monte Carlo method to estimate the initial variance.
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Figure 5.11 – α− λ plot of the estimated RUL in scenario 1 with goal region of α = 0.2
using the RMSE method to estimate the initial variance.
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5.3 Case study 3: battery capacity prediction

The third case deals with the degradation of Li-ion batteries. This type of battery
can be found both in the industry and in our day-to-day lives, such as in electric vehicles,
micro-grids, and a significant number of consumer electronics (LI; WANG; YAN, 2019;
SAHA; GOEBEL, 2009). The cycle aging data sets of four Li-ion batteries are provided
by the testbed in NASA Ames Prognostics Center of Excellence (PCoE) and comprises
the commercial Li-ion 18650 sized rechargeable batteries from Idaho National Laboratory;
programmable 4-channel DC electronic load and power supply; voltmeter, ammeter and
thermocouple sensor suite; custom electrochemical impedance spectrometry equipment;
and environmental chamber to impose different operational conditions. The batteries were
run at room temperature (23º C), where charging was done in a constant mode at 1.5 A
until the voltage reached 4.2 V. The discharge process was done at a constant current
level of 2 A until the battery voltage reached 2.7 V. More details on the experiments can
be found in Saha & Goebel (2009).

In this experiment, the HI used is the percentage charge capacity, shown in Fig-
ure 5.12b, instead of its true value, shown in Figure 5.12a. According to Saha & Goebel
(2009), when the batteries reached 30% fade in rated capacity (from 2 Ah to 1.4 Ah), the
experiments stopped. Therefore, the FT used in this case study is 70%. Figure 5.12 shows
the available data set for this experiment, namely, B0005, B0006, B0007, and B0018. The
data from B0006 were arbitrarily chosen as the training data set.
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Figure 5.12 – True and percentage charge capacity along discharge cycles.

The prognostics results of EBeTS are compared with exTS and ARMA models, both
previously used, and three other algorithms, namely, eNFN, eMG, and Long Short-Term
Memory (LSTM). To make a more comprehensive comparison, in terms of different classes
of prognostics algorithms, the deep learning LSTM model is also used. The recurrent
neural networks with LSTM consists of cells that maintain the state over time and using
nonlinear gating unites to regulate the information flow into and out of it (HOCHREITER;
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SCHMIDHUBER, 1997); these structures are effective and scalable models for learning
problems related to sequential data that requires capturing long-term temporal dependence
(GREFF et al., 2017).

5.3.1 Parameter tuning

The specific parameters of each algorithm were chosen as standard values reported
in the literature. For EBeTS, the choice was made based on the recommendations made in
Section 3.3, as ωEBeTS = 95.45%, τEBeTS = ℓ+ 1 with ℓ being the number of input lags or
autoregressors, γEBeTS = 0.5, δEBeTS = 103. As in the previous experiments, for exTS the
selection is ΩexTS = 103. For the eNFN, the learning rate has been set to βeNFN = 0.01,
the granularity controller is ηeNFN = 10, and the threshold to remove MFs based on age
is weNFN = 100. For the eMG algorithm, the learning rate has been set to βeMG = 0.05,
the unilateral confidence interval to define the compatibility threshold is αeMG = 0.01,
the window size for the alert mechanism is weMG = 20, and the initial dispersion matrix
at cluster creation is Σinit

eMG = 10−3 × Iℓ. The LSTM algorithm was defined to have 200
hidden units with a solver configured to use the Adam optimizer (KINGMA; BA, 2015)
with 250 epochs. The initial learning rate is set to 0.005 and will drop by a factor of 0.2
at every 125 epochs1.

Tuning the parameters for these techniques is a rather complicated task to do.
Although some generic choices are available, they are not robust enough to be chosen in
a problem-agnostic manner, as will be shown in the results. The results are susceptible
to different parameters, even for exTS with only one adjustable parameter in the present
formulation. The EBeTS, on the other hand, shows to be robust to problem independent
choices for its three parameters. Using the standard parameters, in this experiment, the
free parameter is set to be the number of input lags.

The known data, i.e., the training data from B0006, and 20 samples of each testing
data set, are used to validate each approach’s lags in each data set. The following modified
version of the index in (5.11) is used

Ik(ℓ, ζ,κ) = RAk(ℓ, ζ,κ) +
(︄

1− MAPEk(ℓ, ζ,κ)
100

)︄
+
(︄

1− ℓ

20

)︄
, (5.12)

where ζ ∈ {B0005,B0007,B0018} is one of the testing batteries, the used algorithm is
κ ∈ {EBeTS, exTS,ARMA, eNFN, eMG,LSTM}, and ℓ is the number of lags that will
range from 1 to 20 in the validation procedure. For the ARMA models the index will be
the same as in (5.11) with both p and q ranging from 1 to 10. The number of lags will be
1 From Mathworks’ example on time-series forecasting using deep learning. Available in <https://www.

mathworks.com/help/deeplearning/ug/time-series-forecasting-using-deep-learning.
html>.

https://www.mathworks.com/help/deeplearning/ug/time-series-forecasting-using-deep-learning.html
https://www.mathworks.com/help/deeplearning/ug/time-series-forecasting-using-deep-learning.html
https://www.mathworks.com/help/deeplearning/ug/time-series-forecasting-using-deep-learning.html
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defined as the following maximization problem:

ℓ(ζ,κ) = arg max
l

1
4

∑︂
j ∈ {5,10,15,20}

Ij(l, ζ,κ). (5.13)

The index in (5.12) depends on the actual RUL of the testing battery to compute
the RA, which is not known. Therefore, we propose an approximation for validation
purposes that uses the model in (2.5), commonly used to quantify Li-ion battery’s charge
capacity:

C(k; c) = c1 exp (c2k) + c3 exp (c4k), (5.14)

where the vector parameters c = [c1 c2 c3 c4]⊤ can be estimated using the known
battery data in the least-squares sense. The function lsqcurvefit2 is used to find the
parameters for battery B0006, which will be used as the initial value to find the parameters
using the first 20 samples of each testing battery. The model used to approximate the
RUL for each test battery will be the average between the model found with training data
set B0006 and the model found with the first 20 samples of the testing data, as depicted in
Figure 5.13. The model computed with B0006 data is shown in Figure 5.13a; this model is
also shown in Figure 5.13b, along with the partial model using B0005 data and the average
model. Similarly, these models are also shown for B0007 and B0018 in Figure 5.13c and
Figure 5.13d, respectively.

The parameters of the exponential models depicted in Figure 5.13 are listed in
Table 5.7. In order to find the parameters of the exponential model that uses the training
data of battery B0006, the starting point is c0 = [1 1 1 0]⊤, while for the other
batteries, the coefficients from the B0006 model are used as starting point.

Table 5.7 – Fitting parameters of the exponential models for battery charge capacity
available data.

Battery Exponential model’s (5.14) parameters
c1 c2 c3 c4

B0006 -0.4512 13.3905 1.0115 0.0033
B0005 -0.4512 13.3905 0.9226 0.0011
B0007 -0.4512 13.3905 0.9437 0.0010
B0018 -0.4512 13.3905 0.9305 0.0031

Once the parameters of (5.14) are computed for each testing battery data set,
a RUL estimate can be done to compute the index (5.12) which will be used in the
optimization problem (5.13). Given a battery data ζ and an algorithm κ, the following
steps are performed to find the best number of lags:

Step 1. Fit an instance of (5.14) using the training data (B0006).
2 Available in <https://www.mathworks.com/help/optim/ug/lsqcurvefit.html>

https://www.mathworks.com/help/optim/ug/lsqcurvefit.html
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(b) Combined exponential model using B0006
model and B0005 partial model.
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(c) Combined exponential model using B0006
model and B0007 partial model.

20 40 60 80 100 120

Discharge cycle

60%

70%

80%

90%

100%

H
e

a
lt
h

 i
n

d
e

x

B0018 data

Available data limit

B0006 model

B0018 model

Avg. model

Fault threshold

(d) Combined exponential model using B0006
model and B0018 partial model.

Figure 5.13 – Fitted exponential models for battery charge capacity data to approximate
the true RUL of testing data sets.

Step 2. Fit an instance of (5.14) using the available test data of battery ζ, i.e., the
first 20 samples of it.

Step 3. Find a RUL estimate using the average predictions of models from Steps 1
and 2.

Step 4. For each lag between 2 and 20, prepare the training data (B0006) using a
Hankel matrix.

Step 5. Use the algorithm κ to train a model for each lag using data from Step 4.

Step 6. Solve the optimization problem in (5.13) to find the best number of lags.

5.3.2 Results and discussion

The optimization problem in (5.13) defines the number of input lags for each
algorithm-battery pair. The third column of Table 5.8 shows the number of input lags
used, while the subsequent columns show the RA for different starting prognostics points
tP . In this table, the symbol ‘*’ indicates the prognostics task that was not carried out for
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that tP and ‘–’ represents an algorithm’s impossibility to compute the RUL for that tP .
This impossibility can happen when the long-term predictions converge to a value greater
than the FT or even when they become crescent, never reaching the FT. It is important
to note that, for the ARMA models, the Lags column of Table 5.8 corresponds to the p
coefficient in (5.9); the q coefficient found in the validation was zero for all batteries. To
compare the algorithms between each other considering the same data knowledge, the
sample index (si) in which the prognostics start is adjusted considering the tP and the
input lags of each battery-algorithm pair. Using the EBeTS’ input lags as a basis, the
adjustment is si = tP − (ℓ− 3). For this reason, the B0018-exTS pair is unable to start
the prognostics task at tP = 20 because si = 6 will be less than the amount of lags ℓ = 17.

The results in Table 5.8 indicate that multivariate Gaussian models can better
represent some problems. An example is the similar results achieved for battery B0005
using both EBeTS and eMG. However, this phenomenon was not observed in batteries
B0007 and B0018 in which the non-evolving algorithms ARMA and LSTM performed
better in some situations. The reason for that is associated with each technique’s chosen
parameters as different choices of parameters could lead to better results. In the absence of
a fine-tuning procedure for choosing these parameters, the evolving approaches were more
prone to create models with wrong long-term tendencies. As for EBeTS, it is essential to
emphasize its parameter choice was made based on Section 3.3.

The non-evolving models, such as ARMA and LSTM, produced competitive results
in terms of RA. However, when comparing the computation time to train the models
and to make successive RUL estimates (α − λ plot), the non-evolving LSTM takes a
significantly higher time to be trained and used. This disparity is expected since LSTM is
a deep learning approach that requires a large amount of parameters to be estimated. The
proposed algorithm, was also competitive in terms of computing time during the learning
phase. The high computing time for evolving approaches, such as exTS, is related to the
creation of more rules to represent the degradation state.

The α− λ plot is shown in Figure 5.14, Figure 5.15, and Figure 5.16, for batteries
B0005, B0007, and B0018, respectively. The uncertainty is quantified for all evolving
techniques using the RMSE method in Section 4.2.2 using a 99% confidence level. The
ARMA models’ built-in3 uncertainty propagation shows confidence bounds sufficiently
large to encompass the entire goal region, offering poor decision-making support. The
LSTM method as no uncertainty quantification mechanism in its standard form. For
battery B0005, as shown in Figure 5.14, it is possible to note the similarity between EBeTS
and eMG, also shown in Table 5.8. In some experiments, the estimated RUL’s absence
(red line) in these figures; these are situations where the long-term prediction failed to
3 From MATLAB’s System Identification Toolbox. Available in <https://www.mathworks.com/help/

ident/ref/forecast.html>

https://www.mathworks.com/help/ident/ref/forecast.html
https://www.mathworks.com/help/ident/ref/forecast.html
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Table 5.8 – RA for all algorithm-battery pairs with prognostics starting at different tP ,
with best values in bold.

Battery Algorithm ℓ
tP

20 40 60 80 100 120

B0005
fails at
cycle
125

EBeTS 3 0.9412 0.7805 0.7581 0.9762 0.9545 *
exTS 9 – – – 0.9524 0.9091 *

ARMA 1 0.7647 0.8293 0.8548 0.7381 0.8182 *
eNFN 3 0.1373 0.3415 0.2097 0.3333 – *
eMG 5 0.8922 0.9756 0.9355 0.9048 0.9545 *

LSTM 3 0.9020 0.9634 0.7903 0.5952 – *

B0007
fails at
cycle
166

EBeTS 3 0.8182 0.8943 0.8350 0.7229 0.7460 0.8140
exTS 10 0.6853 0.5447 – – 0.8254 0.8372

ARMA 1 0.5944 0.6179 0.5728 0.5060 0.5238 0.5349
eNFN 4 – – 0.1650 0.2530 0.4444 0.2791
eMG 5 0.6923 0.7561 0.7087 0.6265 – –

LSTM 2 0.6643 0.7317 0.7961 0.8916 0.9048 0.5116

B0018
fails at
cycle
97

EBeTS 3 0.9054 0.9630 0.7941 0.7857 * *
exTS 17 * 0.5926 – – * *

ARMA 1 0.7973 0.7778 0.9118 0.5714 * *
eNFN 1 – 0.1111 0.2647 0.5714 * *
eMG 5 0.8378 0.8889 – – * *

LSTM 3 0.9324 0.7407 0.2647 – * *
* prognostics task was not carried out.
– algorithm’s impossibility to compute the RULs.

Table 5.9 – Computational time during learning phases of training and testing stages where
FNR is the final number of rules.

Algorithm
Training stage Testing stage (α− λ plot)

B0006 B0005 B0007 B0018
Time (s) FNR Time (s) FNR Time (s) FNR Time (s) FNR

EBeTS 0.0431 2 2.4630 2 3.7910 2 1.2972 2
exTS 0.2111 11 23.4547 8 49.7472 11 22.2839 12

ARMA 0.2230 – 14.1833 – 14.6436 – 7.0072 –
eNFN 0.0751 2 5.5241 2 10.4547 2 2.9943 2
eMG 0.0453 1 2.0638 1 8.5818 1 10.4159 1

LSTM 11.4016 – 337.8710 – 544.6485 – 326.0498 –

reach the FT, either for converging too soon or assuming a wrong tendency direction.

The long-term prediction for batteries B0005, B0007, and B0018 are shown in
Figure 5.17, Figure 5.18, and Figure 5.19 for tP = 20, respectively. As discussed before, the
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Figure 5.14 – α−λ plot of the estimated RUL of battery B0005 with goal region of α = 0.2.
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Figure 5.15 – α−λ plot of the estimated RUL of battery B0007 with goal region of α = 0.2.
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Figure 5.16 – α−λ plot of the estimated RUL of battery B0018 with goal region of α = 0.2.

sample index is adjusted to match the same sample in the data set for all battery-algorithm
pairs. For the pair B0018-exTS, the prediction was made considering si = 17, which does
not allow a numerical comparison as done in Table 5.8 but allows to illustrate the long-term
prediction, as shown in Figure 5.19. For the evolving approaches, the fuzzy membership
degree is also shown right below each one, except for the non-evolving approaches ARMA
and LSTM.

5.4 Chapter summary

In this chapter, the application of fuzzy evolving models to solve real-world problems
is explored through three applications. The first case study is a proof-of-concept to evaluate
the proposed model’s predictive capabilities concerning two well-established techniques in
the EFMs literature. The proposed technique is competitive in terms of both accuracy and
interpretability metrics. Furthermore, the executed sensitivity study indicates that the
proposed method’s parametrization can be done through a problem-agnostic methodology,
i.e., using knowledge not necessarily related to the problem itself. This work’s main
focus has been also explored in other two real-world prognostics problems that involve
common assets of many industrial applications: rolling bearings and Li-ion batteries. In the
bearings experiment, the prognostics’ results were compared with different architectures’
techniques; the fuzzy evolving models showed more consistent predictions in situations
where the training dataset exhibited distinct behaviors than the testing sets. In the battery
experiment, the proposed model was tested against other types of EFMs showing similar
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Figure 5.17 – Long-term prediction with 99% confidence intervals of different algorithms
in Battery B0005.

results to the eMG technique that also uses multivariate Gaussian membership functions
to represent the data clusters. They also exhibited similar results in terms of training and
testing time. It is crucial to notice that the chosen techniques’ parametrization was based
on previous works that did not tackle the long-term prediction problem, which may have
considerably affected their performances. In order to carry a fair comparison, the EBeTS
parameters were chosen based on the recommendations of Section 3.3, that is, completely
independent of the problem.
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Figure 5.18 – Long-term prediction with 99% confidence intervals of different algorithms
in Battery B0007.
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Figure 5.19 – Long-term prediction with 99% confidence intervals of different algorithms
in Battery B0018.
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6 CONCLUSIONS AND FUTURE WORK

In the last few decades, the industry has been struggling to reduce the life cycle cost
by creating smarter maintenance policies to avoid catastrophic failures, guaranteeing safety
for its critical systems. In this context, new CBM frameworks are being proposed; these
frameworks’ main task is the fault prognostics tasks, which include algorithms capable
of estimating the RUL of a given asset. In the last years, different techniques for RUL
prediction were proposed. Using the asset’s physical model can yield very accurate results,
but they are challenging and expensive to obtain. Among the data-driven techniques,
many depend on a large amount of high-quality training data from different operational
conditions to create their models; others have fixed structures that may not work under
time variant environments where human intervention to redefine the problem’s domain is
not always possible.

The Evolving Fuzzy Models are promising alternatives to solve nonlinear problems
in time variant environments. Their structure and parameters are flexible and can be
adapted recursively according to a data-stream. The low computational complexity of such
recursive updates allows its use in real-time systems and enables starting the knowledge-
base from scratch. This Thesis has proposed a novel data-driven prognostics approach
based on evolving TS fuzzy models denominated EBeTS, whose parameters are estimated
through the recursive evaluation of estimation errors. The proposed EBeTS can model
nonlinearities and time variant behavior due to its evolving fuzzy structure. The use
of multivariate MFs avoids the loss of information related to the complex interactions
between input variables.

This capability is illustrated via the EBeTS application in three benchmarks:
prediction of temperature time series from three weather stations, the prognostics of
rolling bearings in the PRONOSTIA problem, and the prognostics of charge capacity
in Li-ion batteries. All the three problems have nonlinear and time-varying dynamics.
The proposed algorithm has been compared with different state-of-the-art evolving and
non-evolving approaches and has showed very competitive results in terms of different
metrics. The prognostics approach based on the EBeTS model provides a way of fusing
multivariate condition monitoring information to describe multiple-stage degradation
phenomena. Furthermore, a framework to quantify and propagate uncertainties related
to the model’s estimation error has been provided such that it can be plugged into any
EFM, enabling their use in real-world prognostics problems. The proposed quantification
technique can use the posterior distribution of the consequent parameters of each rule’s
noise or the global error covariance matrix to estimate the model’s initial uncertainty that
will be propagated in the long-term predictions.
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This thesis envisions to provide a deepened study concerning the use of EFMs
applied to the industrial problem of fault prognostics. This type of model has been chosen
due to its suitability for challenging situations, such as (i) modeling systems with nonlinear
dynamics; (ii) running in time variant environments; (iii) being able to generate predictions
without needing a large amount of training data; (iv) environments that require real-time
predictions; (v) to meet the necessity of having interpretable models that can include
expert knowledge. The obtained results have demonstrated that there is still room for
improvement, such as:

• To improve the uncertainty management framework, enabling a better decision-
making process. A bank of adaptive Kalman filters could be considered in an
evolving framework whose final prediction is a mixture of all the filters through the
Interactive Multiple Model theory. This setting allows the incorporation of different
uncertainty sources, such as measurement variability. Furthermore, having such a
framework can also enable the exploration of particle filters to model non-Gaussian
uncertainties.

• During the tests, some of the long-term predictions made by some of the evolving
algorithms faced early convergence to values different from the pre-defined FT,
making it impossible to predict the RUL. Once the creating of HIs can consider the
trendability and monotonicity degrees, it could be useful to endow the algorithms
with a trend-aware mechanism to create more stable long-term predictions.

• Considering exogenous inputs in the evolving models can also help create control laws
that can maximize the RUL of the assets. It also allows a cost-effective maintenance
policy creation in hostile environments, such as offshore wind turbines.

• The investigation of new HIs with good predictability trough the metrics of mono-
tonicity and trendability that can also allow the detection of the first time of
prognostics, i.e., the detection of the degradation beginning.

We hope this thesis can help to consolidate the use of EFMs to solve fault prognostics
problems and provides the required foundations for the subsequent developments.
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APPENDIX A – RECURSIVE ESTIMATION OF STATISTICAL
MEASURES

This chapter provides closed formulas for the recursive computation of statistical
measures, such as the mean, auto-correlation matrix, covariance matrix, and inverse
covariance matrix. These computations allow the tracking of such measures in data-
streams, enabling its application to real-time systems.

A.1 Recursive estimation of the mean

Let µ̂n ∈ Rm be the sample mean of a data stream composed of n observations
xi ∈ Rm, defined as

µ̂n = 1
n

n∑︂
i=1

xi. (A.1)

The recursion relation can be found after separating the last term in the summation, such
that

µ̂n = 1
n

(︄
n−1∑︂
i=1

xi + xn

)︄

= 1
n

[︂
(n− 1)µ̂n−1 + xn

]︂
, (A.2)

therefore, the recursive algorithm for the sample mean of a data stream that requires only
the past value of the mean and the new observation at time instant n is given by

µ̂n =
(︃

1− 1
n

)︃
µ̂n−1 + 1

n
xn. (A.3)

A.2 Recursive estimation of the auto-correlation matrix

Let X ∈ Rm×n be a data set with n data points x ∈ Rm with mean vector
µX ≜ E[X]. The full auto-correlation matrix of X is given as

RXX =

⎡⎢⎢⎢⎢⎣
1
n

∑︁n
k=1 x1kx̄k1 · · · 1

n

∑︁n
k=1 x1kx̄km

... . . . ...
1
n

∑︁n
k=1 xmkx̄k1 · · · 1

n

∑︁n
k=1 xmkx̄km,

⎤⎥⎥⎥⎥⎦ (A.4)

where xij and x̄ij are the j-th elements of the i-th of X and X⊤, respectively. Let rij,n be
the j-th element of the i-th row of the estimated auto-correlation matrix up until time
instant n, defined as:

rij,n = 1
n

n∑︂
k=1

xikx̄kj. (A.5)
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Similarly to the recursion shown in Section A.1, a recursion for r̂ij,n can be computed as

r̂ij,n = 1
n

n∑︂
k=1

xikx̄kj

= 1
n

(︄
n−1∑︂
k=1

xikx̄kj + xinx̄nj

)︄

= 1
n

[(n− 1)r̂ij,n−1 + xinx̄nj] . (A.6)

Therefore a recursion for the auto-correlation matrix is given as

R̂n =
(︃

1− 1
n

)︃
R̂n−1 + 1

n
xnx⊤

n . (A.7)

A.3 Recursive estimation of the covariance matrix

Let X ∈ Rm×n be a data set with n data points x ∈ Rm with mean vector
µX ≜ E[X]. The auto-covariance matrix of this data set is computed as in Gubner (2006,
p. 335):

Σ̂X = E[(X− E[X])(X− E[X])⊤]
= E[XX⊤ −XE[X]⊤ − E[X]X⊤ + E[X]E[X]⊤]
= E[XX⊤]− E[X]E[X]⊤ − E[X]E[X]⊤ + E[X]E[X]⊤

= RXX − E[X]E[X]⊤, (A.8)

where RXX ≜ E[XX⊤] is the auto-correlation matrix. To find a recursion, the definition
will be made in terms of the time instant n as

Σ̂n = Rn − µ̂nµ̂⊤
n , (A.9)

where the first term is given in (A.7) and the second can be computed using the mean
recursion described in Section A.1, as:

µ̂nµ̂⊤
n =

(︃
n− 1
n

µ̂n−1 + 1
n

xn

)︃(︃
n− 1
n

µ̂n−1 + 1
n

xn

)︃⊤

=
(︃
n− 1
n

)︃2
µ̂n−1µ̂

⊤
n−1 + n− 1

n2

(︂
µ̂n−1x⊤

n + xnµ̂⊤
n−1

)︂
+ xnx⊤

n

n2 (A.10)

where the first term of (A.10) can be developed as
(︃
n− 1
n

)︃2
µ̂n−1µ̂

⊤
n−1 = n2 − 2n+ 1

n2 µ̂n−1µ̂
⊤
n−1

= (n2 − n) + (1− n)
n2 µ̂n−1µ̂

⊤
n−1

= n− 1
n

µ̂n−1µ̂
⊤
n−1 −

n− 1
n2 µ̂n−1µ̂

⊤
n−1, (A.11)
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and the third term of (A.10) can be developed as

xnx⊤
n

n2 = xnx⊤
n

n2 + xnx⊤
n

n
− xnx⊤

n

n

= xnx⊤
n

n
− n− 1

n2 xnx⊤
n . (A.12)

Replacing the developed terms (A.11) and (A.12) in (A.10), we have

µ̂nµ̂⊤
n = n− 1

n
µ̂n−1µ̂

⊤
n−1 + xnx⊤

n

n
− n− 1

n2 (xn − µ̂n−1)(xn − µ̂n−1)⊤. (A.13)

Now, replacing (A.7) and (A.13) back in (A.9), we have

Σ̂n = n− 1
n

R̂n−1 −
n− 1
n

µ̂n−1µ̂
⊤
n−1 + n− 1

n2 (xn − µ̂n−1)(xn − µ̂n−1)⊤

= n− 1
n

[︃
R̂n−1 − µ̂n−1µ̂

⊤
n−1 + 1

n
(xn − µ̂n−1)(xn − µ̂n−1)⊤

]︃
(A.14)

Therefore, the recursive recursion relation for updating the covariance matrix of a data
stream is given as

Σ̂n = n− 1
n

[︃
Σ̂n−1 + 1

n
(xn − µ̂n−1)(xn − µ̂n−1)⊤

]︃
. (A.15)

A.4 Recursive estimation of the inverse covariance matrix

Considering the recursive estimation of the covariance matrix, as shown in (A.15),
and the inversion matrix lemma, also known as the Sherman-Morrison-Woodbury identity
(HENDERSON; SEARLE, 1981). The lemma states that, for a nonsingular matrix A,

(A + UCV)−1 = A−1 −A−1U(C−1 + VA−1U)−1VA−1, (A.16)

where A ∈ Rn×n, U ∈ Rn×k, C ∈ Rk×k e V ∈ Rk×n. The lemma can be applied in the
recursive formula (A.15) by considering A = Σ̂n−1, U = ∆n ≜ xn − µ̂n−1, C = n−1 e
V = ∆⊤

n , such that:

(A + UCV)−1 =
(︂
Σ̂n−1 + ∆nn

−1∆⊤
n

)︂−1
.

Therefore, the recursive relation to the inverse covariance matrix is given as

Σ̂−1
n = n

n− 1
(︂
Σ̂n−1 + ∆nn

−1∆⊤
n

)︂−1

= n

n− 1

[︄
Σ̂−1

n−1 − Σ̂−1
n−1∆n

(︃
n+ ∆⊤

n Σ̂−1
n−1∆n

)︃−1
∆⊤

n Σ̂−1
n−1

]︄

= n

n− 1

⎛⎝Σ̂−1
n−1 −

Σ̂−1
n−1∆n∆⊤

n Σ̂−1
n−1

n+ ∆⊤
n Σ̂−1

n−1∆n

⎞⎠ , for n > 1. (A.17)
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APPENDIX B – THE COVARIANCE MATRIX OF A PRODUCT
TRANSFORMATION

In this chapter, the covariance matrix of a random vector transformed by a constant
matrix multiplication is defined.

Theorem B.1. Let X ∈ Rm be a column vector of m jointly distributed random variables
with finite second moments with covariance matrix ΣX ∈ Rm×m and A ∈ Rn×m a constant
matrix. The covariance matrix of the transformed random variable Y = AX ∈ Rn is
ΣY = AΣXA⊤ ∈ Rn×n.

Proof. From the definition, the covariance matrix ΣX = E
[︂
(X− E[X])(X− E[X])⊤

]︂
.

Considering the linearity of expectation, the covariance matrix of Y can be computed as:

Cov(AX) = E
[︂
(AX− E[AX])(AX− E[AX])⊤

]︂
= E

[︂
(AX−AE[X])(AX−AE[X])⊤

]︂
= E

[︂
A(X− E[X])(X− E[X])⊤A⊤

]︂
= AE

[︂
(X− E[X])(X− E[X])⊤

]︂
A⊤

= AΣXA⊤ (B.1)
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