
mαcrφ@ufmg
Universidade Federal de Minas Gerais

Programa de Pós-Graduação em Engenharia Elétrica

MACRO Research Group - Mecatronics, Control and Robotics

MANIPULATION TASK PLANNING AND
MOTION CONTROL USING TASK

RELAXATIONS

Marcos da Silva Pereira

Belo Horizonte, Brazil

2020

Marcos da Silva Pereira

MANIPULATION TASK PLANNING AND

MOTION CONTROL USING TASK

RELAXATIONS

Dissertation submitted to the Programa de Pós-

Graduação em Engenharia Elétrica of Escola de En-

genharia at the Universidade Federal de Minas Gerais,

in partial fulfillment of the requirements for the degree

of Master in Electrical Engineering.

Advisor: Bruno Vilhena Adorno

Belo Horizonte, Brazil

2020

To my parents Dácia and José Poli.

Acknowledgements

My first contact with robotics of manipulators was during my year abroad at the Technical

University of Dresden (TU Dresden) in Germany with grantee from CAPES and the

Science without Borders Program. Among other courses, I attended to a course about

fundamentals of robot manipulators. I must thank CAPES for the financial support. It

has significantly changed the course of my studies. After one year at TU Dresden, I did

an internship at Bosch Rexroth in Germany where I had my first strong experience with

software development to which I am grateful. It has certainly contributed to my technical

development in other fields. Next, I returned to the University of Braśılia (UnB) to finish

my undergrad studies.

Back at UnB, I decided to continue in the field of robot manipulators. I had some

colleagues that worked at the robotics and automation laboratory (LARA). They introduced

me to Prof. Mariana Bernardes and Dr. Luis Figueredo (at the time, pursuing his PhD).

Prof. Mariana accepted to guide me in the field of robot manipulators and Dr. Luis

helped me a lot with his applied and theoretical background. Both introduced me to the

field of robotics using dual quaternions (DQs) through the works of Prof. Bruno Adorno.

I got very curious about DQs and decided someday I would like to do research in that

field. Hence, I must thank Prof. Mariana and Dr. Luis for their guidance during my last

undergrad semesters.

Before finishing my studies, I did my mandatory internship again at Bosch Rexroth in

Germany, during which I had my first contact with programmable logic controllers. Once

again I am thankful to Bosch Rexroth for the opportunity. After concluding my undergrad

studies, I spent some more time at Rexroth, but decided to come back to Brazil. In Brazil

I decided to do a Master and applied at the Federal University of Minas Gerais (UFMG).

After being accepted, I talked with Prof. Mariana and Dr. Luis and both recommended

me to Prof. Bruno.

As soon as I became a student from Prof. Bruno, I was astonished by how professional

and organized he was. In less than a week, he gave me all the information needed for me

to feel welcomed at UFMG and introduced me to the members of the MACRO research

group. I received a warm welcome and was well explained how everything worked. Here I

must thank Rafael, Mariana, Juan (Juancho), Stella, and Frederico. All of them helped

iv

v

me both with their friendship and with technical advice. Later on, Ana Christina joined

the group and became a great work colleague. We were both starting our master studies.

We shared valuable technical ideas through absolutely insightful discussions to solve a lot

of different issues and bugs. Here I must also thank Gabriel Pacheco, who also started his

master at the same time, with whom I also debated about a variety of curious problems.

Thales Silva also joined our discussions and contributed with interesting ideas. Because of

all of these colleagues, I have had a joyful and enjoyable master’s period.

The knowledge curve required during a master escalates quickly. I am very grateful

to Prof. Bruno who provided me all the knowledge background needed through lectures,

books, papers, and the amazing DQ Robotics library. Here I must also acknowledge

Dr. Murilo Marinho for his help with fixing issues of the DQ Robotics. Additionally to

providing technical and theoretical tools, Prof. Bruno and I had productive meetings

to discuss about my master’s project during which interesting ideas emerged. Moreover,

our weekly group meetings with lots of questions and answer sections deeply contributed

to my learning process. Lastly, all the discussions and interactions with the students

and professors of the MACRO group helped me to shape and build this master’s thesis.

Concerning financial support, I must thank CAPES for the scholarship. However, life is

not only doing research, working, and writing papers, people also make friends and have

other activities. Besides all my technical hobbies, I like running.

After joining a running group in Belo Horizonte (BH), I met a lot of funny and

interesting local people. I am thankful to all the friends I made there. Together, we trained

weekly, participated of the BH Half Marathon and of the International Pampulha Race,

but most importantly we had our monthly resenhas (pub meetings) and our parties. I

have to mention Jaqueline, John, Mariana, and Ivan. They have made my weeks and

weekends in BH lighter and full of laughs.

Along with new friends, I also carry friendships and family ties who have backed me

all the way until now. I must specially thank my life long friend Tiago, my sisters Joana

and Cećılia, my nephew Jonas, my newborn nephew Martin, my closest cousins Pedro,

Mateus, Tobias, and Mariana, and all the rest of my family. They make my life warmer

and brighter.

Finally, I am most deeply thankful to my parents Dacia and José Poli who have been

inspiring, encouraging and supporting me along all my life.

Agradecimentos

Meu primeiro contato com robótica de manipuladores foi durante meu intercâmbio na

Univeridade Técnica de Dresden na Alemanha (TU Dresden) com bolsa da CAPES através

do programa Ciência Sem Fronteiras. Dentre outras disciplinas, eu fiz uma disciplina sobre

fundamentos de robótica de manipuladores. Eu agradeço a CAPES pelo apoio financeiro.

Essa oportunidade alterou significativamente o curso dos meus estudos. Após um ano na

TU Dresden, eu estagiei na Bosch Rexroth na Alemanha e tive meu primeiro contato forte

com desenvolvimento de software. Sou grato a eles por isso. Certamente contribuiu para o

meu aprendizado técnico em outras áreas. Após o estágio, eu retornei a Universidade de

Braśılia (UnB) para finalizar minha graduação.

De volta na UnB, eu decidi continuar na área de robótica de manipuladores. Eu

tinha alguns colegas que trabalhavam no Laboratório de Automação e Robótica (LARA).

Eles me apresentaram à Profa. Mariana Bernardes e ao Dr. Luis Figueredo (na época

fazendo seu doutorado). A Profa. Mariana aceitou me orientar na área de robótica de

manipuladores e o Dr. Luis me ajudou bastante com sua forte base teórica e aplicada.

Ambos me introduziram à robótica utilizando quatérnios duais (QD) através dos trabalhos

do Prof. Bruno Adorno. Eu fiquei bastante curioso sobre QDs e decidi que algum dia

gostaria de fazer pesquisa na área. Portanto, eu preciso agradecer a Profa. Mariana e ao

Dr. Luis pela orientação durante meus últimos semestres da graduação.

Antes de finalizar minha graduação, eu fiz meu estágio obrigatório novamente na

Bosch Rexroth na Alemanha onde eu tive meu primeiro contato com controladores lógico

programáveis. Novamente, eu agradeço a Bosch Rexroth pela oportunidade. Após me

formar, eu passei mais algum tempo na Rexroth, mas decidi retornar ao Brasil. Decidi

fazer o mestrado e apliquei na Universidade Federal de Minas Gerais (UFMG). Depois de

ser aceito, conversei com a Profa. Mariana e com o Dr. Luis e ambos me recomendaram

para o Prof. Bruno.

Assim que conheci o Prof. Bruno e iniciei as atividades com ele, eu achei incŕıvel o

quão profissional e organizado ele é. Em menos de uma semana ele me explicou tudo

que era necessário para eu me sentir em casa na UFMG e me apresentou aos membros

do grupo de pesquisa MACRO. Fui muito bem recebido e rapidamente me explicaram

como o grupo funciona. Agradeço ao Rafael, à Mariana, ao Juan (Juancho), à Stella

vi

vii

e ao Frederico. Todos me ajudaram tanto com amizade quanto com questões técnicas.

Algum tempo depois, a Ana Christina, que começou o mestrado junto comigo, escolheu a

orientação do Prof. Bruno e se tornou uma grande colega de trabalho. Compartilhamos

diversas ideias técnicas úteis através de discussões muito interessantes para resolver um

monte de problemas e erros. Também preciso agradecer ao Gabriel Pacheco, que também

iniciou o mestrado na mesma época. Também discutimos uma variedade de problemas

curiosos. O Thales Silva também costumava participar das discussões e contribuir com

ideias interessantes. Todos esses colegas tornaram o peŕıodo do meu mestrado divertido e

proveitoso.

A curva de conhecimento necessário durante o mestrado cresce rapidamente. Sou muito

grato ao Prof. Bruno por me fornecer toda base de conhecimento necessária através de

aulas, livros, artigos e da incŕıvel biblioteca DQ Robotics. Aqui eu preciso agradecer

também ao Dr. Murilo Marinho pela ajuda com a solução de problemas com a DQ

Robotics. Além de fornecer as ferramentas teóricas e técnicas, eu e o Prof. Bruno tivemos

reuniões bem produtivas sobre o meu projeto de mestrado durante as quais interessantes

ideias surgiram. Além disso, nossos encontros semanais do grupo de pesquisa com muitas

seções de perguntas e respostas contribuiram fortemente para o meu aprendizado. Por

fim, todas as discussões e interações que tive com os estudantes e professores do MACRO

me ajudaram a dar forma e construir essa dissertação. Em relação a suporte financeiro,

eu preciso agradecer a CAPES pela bolsa de mestrado durante boa parte do peŕıodo. No

entanto, a vida não é apenas fazer pesquisa, trabalhar e escrever artigos, nós também

fazemos amizades e temos outras atividades. Além dos meus hobbies técnicos, eu gosto de

corrida.

Eu conheci várias pessoas interessantes e divertidas de Belo Horizonte (BH) depois

de entrar para um grupo de corrida local. Eu sou grato a todas amizades que eu fiz lá.

Nós treinamos juntos, participamos da Meia Maratona de BH e da Volta Internacional da

Pampulha, mas mais importante participava das resenhas mensais e das festas do grupo.

Eu preciso agradecer com carinho a Jaqueline, o John, a Mariana e o Ivan. Eles tornaram

minhas semanas e finais de semana mais leves e cheios de gargalhadas.

Além dos novos amigos, eu carrego minhas amizades e familiares que tem me apoiado

durante toda minha jornada até agora. Eu preciso agradecer especialmente ao meu amigo

de longa data Tiago, às minhas irmãs Joana e Cećılia, o meu sobrinho Jonas, meu mais

novo sobrinho Martin, os meus primos mais próximos Pedro, Mateus, Tobias e Mariana e

todo o resto da minha famı́lia. Eles tornam minha vida mais viva e clara.

Finalmente, sou profundamente grato aos meus pais Dácia e José Poli que vem me

inspirando, encorajando e me dando suporte ao longo de toda minha vida.

Resumo

Esta dissertação de mestrado trata da integração de planejamento de tarefas e controle de

movimento em robótica de manipulação para tarefas que podem ser relaxadas. O objetivo

é gerar automaticamente sequências fact́ıveis de manipulação para serem executadas por

um controlador que considera restrições geométricas impostas pela tarefa. Para lidar com

a alta dimensionalidade do problema de manipulação e a complexidade de especificar

tarefas, foi usado um arcabouço multicamadas para planejamento de tarefa e movimento

adaptado da literatura. O arcabouço adaptado consiste de um planejador de alto ńıvel,

que gera planos de tarefa para especificações em lógica temporal linear, e um controlador

de movimento de baixo ńıvel baseado em otimização com restrições, que permite definir

regiões de interesse ao invés de localidades exatas e é reativo a mudanças no espaço de

trabalho. Logo, não há adição de tempo de planejamento de movimento ao tempo total de

planejamento. Além disso, como não há fase de replanejamento devido a falhas em um

planejador de movimento, as ações para o robô são geradas apenas uma vez para cada

tarefa, portanto, a busca por plano de tarefas ocorre em um grafo estático. Com relação

ao relaxamento de tarefas, a ação do plano de tarefas de segurar um objeto até uma região

alvo é relaxada fazendo-se controle de distância ao plano alvo ao invés de controle de

pose. Desse modo, ao invés de utilizar-se seis graus de liberdade para controlar a pose,

apenas um grau de liberdade é utilizado para controlar a distância ao plano. Para manter

o efetuador dentro de uma região de interesse e fora de uma região proibida enquanto ele

se desloca para o plano, restrições são adicionadas. Com as restrições, o efetuador se move

para a região alvo no plano, que é delimitada pela combinação de primitivas geométricas.

Utilizando-se restrições por planos, foi definida uma região alvo quadrada que resulta

em uma região de interesse na forma de um tronco de pirâmide invertido. Além disso,

foi proposta uma nova interpretação de restrição cônica chamada restrição ponto-cone

que permite definir regiões alvos circulares e que resulta em um tronco de cone invertido.

Essa abordagem foi testada com tarefas de pick-and-place com complexidade similar à das

tarefas realizadas no arcabouço original. O número de nós de planejamento gerados foi

reduzido, o que implica em menor tempo total de planejamento. Por fim, foi mostrado

que o efetuador permanece dentro da região de interesse e se move em direção ao plano

alvo tanto no caso da região quadrada quanto no caso da região circular.

viii

Abstract

This master thesis addresses the integration of task planning and motion control in robotic

manipulation for tasks that can be relaxed and the generation of feasible manipulation

sequences that are executed by a controller that explicitly accounts for the task geometric

constraints. To cope with the high dimensionality of the manipulation problem and the

complexity of specifying the tasks, we use a multi-layered framework for task and motion

planning adapted from the literature. The adapted framework consists of a high-level

planner, which generates task plans for linear temporal logic specifications, and a low-level

motion controller, based on constrained optimization, that allows defining regions of

interest instead of exact locations while being reactive to changes in the workspace. Thus,

there is no low-level motion planning time added to the total planning time. Moreover,

since there is no replanning phase due to motion planner failures, the robot actions are

generated only once for each task because the search for a plan occurs on a static graph.

Concerning task relaxation, the task plan action of holding an object toward a target region

is relaxed by controlling the end-effector distance to a target plane instead of requiring

pose control. This way, instead of requiring six degrees of freedom to control the pose,

only one degree of freedom is used to control the distance to a plane. We add constraints

that keep the end-effector inside a region of interest and outside a restricted region while it

moves toward the plane. Thus, it moves toward the target region that is constrained by the

combination of geometric primitives. By using plane constraints, we define a rectangular

target region that results in an inverted pyramid trunk region of interest. Additionally,

we propose a new interpretation of conic constraints called point-cone constraint that

allows defining circular target regions resulting in an inverted cone trunk. We evaluated

the adapted framework with pick-and-place tasks with similar complexity to the original

framework and showed that the number of plan nodes generated is smaller than the one in

the original framework, which implies less total planning time. Lastly, it is shown that the

end-effector remains within the regions of interest and moves toward the target region for

both the rectangular and circular target regions.

ix

Contents

List of Figures xii

List of Tables xiv

Acronyms xv

Notation xvi

1 Introduction 1

1.1 Objective and Contributions . 5

1.2 Structure of the Text . 6

2 State of the Art 7

2.1 Task Planning . 8

2.2 Integration of Task and Motion Planning 12

2.3 Task Relaxation . 14

2.4 Conclusion . 17

3 Manipulation Planning Framework 19

3.1 Linear Temporal Logic . 22

3.2 Problem Statement . 25

3.3 Planning Framework . 25

3.3.1 Linear Temporal Logic Task Specification 25

3.3.2 Manipulation Abstraction . 26

3.3.3 Deterministic Finite Automaton . 29

3.3.4 Product Graph . 30

3.3.5 Searching for a Path in the Product Graph 31

3.3.6 Coordinating Layer and Low-level Motion Planner 32

3.4 A New Approach for the Planning Framework 32

3.5 Execution of Manipulation Actions . 32

3.6 Conclusion . 34

x

CONTENTS xi

4 Constrained Motion Controller 35

4.1 Constrained Motion Controller . 35

4.2 Constraints . 37

4.2.1 Plane Constraints . 37

4.2.2 Cylindrical Constraints . 38

4.2.3 Line Constraints . 40

4.2.4 Point-Cone Constraint: A New Approach to Define Conic Constraints 41

4.2.5 Additional Constraints . 43

4.3 Control Objective . 43

4.4 Conclusion . 46

5 Task Relaxation 47

5.1 Planning Complexity . 47

5.2 Task Relaxation . 48

5.3 Dual Quaternion Algebra . 50

5.4 Regions of Interest . 52

5.4.1 Geometrical Primitives . 52

5.4.2 Distance Functions . 53

5.4.3 More Geometrical Primitives . 54

5.4.4 Inverted Pyramid Trunk Region of Interest 56

5.4.5 Inverted Cone Trunk Region of Interest 57

5.5 Conclusion . 58

6 Experiments and Results 59

6.1 Computational Tools . 59

6.2 Evaluation of the Planning Framework . 60

6.3 Evaluation of Relaxed Task Constraints . 65

6.3.1 Determining the Parameters of the Target Regions 65

6.3.2 Constraints Parameters . 66

6.3.3 Constrained Motion Controller Parameters 67

6.3.4 Constraints Evaluation . 68

6.3.5 Evaluation of Plane and Point-Cone Constraints Time Performance 86

6.4 Conclusion . 87

7 Conclusion and Future Works 88

7.1 Conclusions . 88

7.2 Future works . 92

Bibliography 94

List of Figures

1.1 Assistive robotics scenario. 2

1.2 Integration of task planning and motion control using task relaxations . . . 3

1.3 Pick-and-place robotic environments. 5

3.1 Manipulation planning frameworks. 21

3.2 Motion graph M . 26

3.3 Location graph L . 27

3.4 Automaton obtained from LTL specification ϕ = Ep0 ∧ Ep1 ∧ Ep2. 30

3.5 Task plan action sequence to transfer an object between two locations. . . 34

4.1 Region of interest composed of an inverted pyramid trunk. 38

4.2 Plane and cylindrical constraints . 40

4.3 Point-cone constraint. 41

4.4 Pose control of the end-effector. 44

4.5 Control of distance to target plane. 45

5.1 Discretization of regions in the workspace into multiple locations. 48

5.2 Disk C(pπ, R) with disk center pπ and radius R. 55

5.3 Cone CC(pπ ,R)
pA

with apex pA and cone base given by the disk C(pπ, R). . . 56

5.4 Inverted pyramid trunk region of interest. 57

5.5 Inverted cone trunk region of interest. 58

6.1 Scene for an LTL specification. 60

6.2 High-level and low-level planning time. 64

6.3 Target regions. 66

6.4 Lateral views of the end-effector trajectory using plane constraints. 69

6.5 Signed distances between end-effector and environment planes. 70

6.6 Signed distances between end-effector and object cylinder line and plane. . 71

6.7 Constraint W(lz): signed distance d̃eff,lz between end-effector and robot

z-axis infinite cylinder. 72

xii

LIST OF FIGURES xiii

6.8 Constraint W(lz,cone): angle φlz ,l between end effector z-axis and static line

l parallel to robot z-axis. The safe angle φsafe is the cone maximum angle. 72

6.9 Constraint W(q̇): joint limits constraints. 73

6.10 Lateral views of the end-effector trajectory using the point-cone constraint. 73

6.11 Signed distances between end-effector and environment planes. 75

6.12 Signed distances between end-effector and object cylinder line and plane. . 76

6.13 Constraint W(lz): signed distance d̃eff,lz between end-effector and robot

z-axis infinite cylinder. 77

6.14 Constraint W(lz,cone): angle φlz ,l between end effector z-axis and static line

l parallel to robot z-axis. The safe angle φsafe is the cone maximum angle. 77

6.15 Constraint W(q̇): joint limits constraints. 78

6.16 Lateral views of the end-effector trajectory using the plane constraints. . . 79

6.17 Lateral views of the end-effector trajectory using the point-cone constraint. 80

6.18 Plane constraints: signed distance between the end-effector and environment

planes . 81

6.19 Plane constraints: signed distance between the end-effector and the objects 82

6.20 Plane constraints: signed distance between the end-effector and the robot

z-axis . 82

6.21 Plane constraints: line-cone constraint. 83

6.22 Plane constraints: joints limits constraint. 83

6.23 Point-cone constraint: signed distance between the end-effector and envi-

ronment planes . 84

6.24 Point-cone constraint: signed distance between the end-effector and the

objects . 84

6.25 Point-cone constraint: signed distance between the end-effector and the

robot z-axis . 85

6.26 Point-cone constraints: line-cone constraint. 85

6.27 Point-cone constraint: joints limits constraint. 86

List of Tables

2.1 Comparison of task planning methods. 10

2.2 Comparison of frameworks that solve the robotic task planning problem. . 14

2.3 Comparison of the task relaxation methods. 17

4.1 Constraints activation and control objective during each task plan action.

The ogripper is the number of the object currently in gripper. 46

5.1 Task action, corresponding control objective, and number of degrees of

freedom required. 50

6.1 Planning data for ϕ1, ϕ2, ϕ3, and ϕ4. 64

6.2 Constraints parameters used during all the experiments. 67

6.3 Constrained motion controller parameters. 68

6.4 Constraints time performance. 86

xiv

Acronyms

ITMP Integration of task and motion planning.

LTL Linear temporal logic.

STL Signal temporal logic.

DFA Deterministic finite automaton.

AI Artificial intelligence.

STRIPS Stanford Research Institute Problem Solver.

ADL Action Description Language.

PDDL Planning Domain Description Language.

MTM Manipulation Task Model.

BDD Binary decision diagram.

SMAP Sampling based motion and symbolic action planner.

VFI Vector field inequality.

DOF Degrees of freedom.

OMPL Open Motion Planning Library

ROS Robot Operating System.

xv

Notation

A Set of atomic propositions.

a0, a1, . . . Atomic propositions from the set A.

2A Alphabet given by the power set of A.

A0, A1, . . . Letters formed by atomic propositions.

σ Words formed by letters.

ϕ Linear temporal logic (LTL) formula.

U LTL operator “until”.

X LTL operator “next”.

E LTL operator “eventually”.

� Satisfying relation σ � ϕ: a word σ satisfies a formula ϕ.

2 Does not satisfy relation.

O Set of objects.

o0, o1, . . . Objects from the set O.

Γ Set of labels.

l0, l1, . . . Labels from the set Γ.

p0, p1, . . . Atomic propositions of the form (oi, lj) ∈ O × Γ, which means that “object oi

is in location with the label lj”.

L Set of locations.

loc0, loc1, . . . Locations of interest.

L Location graph.

xvi

LIST OF TABLES xvii

OL Set of objects locations.

ōi,loc Location of te ith object.

L Function that maps locations to labels.

R Abstraction graph.

M Set of motion primitives.

M Motion graph.

V Set of abstraction R nodes.

v Node of the set V .

α Motion primitive action α ∈M.

oL Tuple oL ∈ OL that indicates the location of each object.

Aϕ Deterministic finite automaton (DFA) obtained from the LTL formula ϕ.

Z Finite set of states from the DFA.

z State from the set Z.

Σ Set of events that causes transitions in the DFA.

δ Transition function from the DFA.

F Set of final states from the DFA.

P Product graph.

VP Product graph nodes.

p Node from the product graph.

Π Generates the letters that causes the transition in the automaton.

L Labeling function.

P Function that determines if an object label in a proposition matches the label

of the corresponding object in the tuple oL.

T,F True and false values.

F Function that returns the object location in oL corresponding the proposition

object.

LIST OF TABLES xviii

∅ Represents the empty set.

q Manipulator joints vector.

x Task vector.

x̃ Task error.

u Control input vector.

λ Controller damping factor.

η Controller gain.

J Task Jacobian.

ηx Constraint gain of geometric primitive x.

d#1,#2 Distance between geometric entities #1 and #2.

d̃ Signed distance between geometric entities.

dx,safe Safe distance to geometric entity x.

W(x) Constraints with regard to geometric entity x.

π Plane.

c Infinite cylinder c.

l Line.

D#1,#2 Squared distance between geometric entities #1 and #2.

D̃ Signed squared distance between geometric entities.

lpoint
cone Point-cone constraint center line.

lz,cone Line-cone constraint line passing through the end-effector z-axis.

P k
n The k-permutation from n elements.

H Set of quaternions.

ı̂, ̂, k̂ Quaternion units.

h,x,y Quaternions.

h∗ Quaternion conjugate.

LIST OF TABLES xix

Hp Set of pure quaternions.

S3 Set of unit quaternions with unit norm.

〈a, b〉 Inner product between pure quaternions a and b.

a× b Cross product between pure quaternions a and b.

r Unit quaternion representing rotation.

n Pure quaternion representing the rotation axis.

H Set of dual quaternions.

ε Dual unit.

h,x,y Dual quaternions.

h∗ Dual quaternion conjugate.

Hp Set of pure dual quaternions.

〈a, b〉 Inner product between pure dual quaternions a and b.

a× b Cross product between pure dual quaternions a and b.

S Set of unit dual quaternions.

vec4 Operator that maps quaternion to a four-dimensional column real vector.

vec8 Operator that maps dual quaternion to an eight-dimensional column real

vector.

I Region of interest in Hp.

Pπ Set of all points on a plane.

Aπ,Bπ Half-spaces above and below a plane π.

c(l, R) Infinite cylinder c with centerline l and radius R.

ζ#1,#2 Line segment between points #1 and #2.

C(pπ, R) Circle with radius R and centerpoint p on plane π.

CC(pπ ,R)
pA

Cone with appex pA and base circle C(pπ, R).

LIST OF TABLES xx

IQ Inverted pyramid trunk region of interest.

IC Inverted cone trunk region of interest.

1
Introduction

With the development of robots, humans became even more capable of making machines

autonomously transform the world. Robots were placed in factories to do the simple

repetitive task of transferring materials between locations (W. Spong et al., 2005). Robots

had to be manually programmed for every new task. Moreover, robots would only achieve

the task in a highly structured environment. As sensing capabilities were added, they were

programmed to weld, paint, assemble, etc. These robots were coined as robot manipulators,

which are robotic arms equipped with an end-effector to modify the environment. Their

success in the industry grew the attention of other fields. They were adapted to execute

domestic tasks (Cha et al., 2015), to explore space and underwater environments (Laryssa

et al., 2002; Khatib et al., 2016), to provide physical assistance to medical surgeons (Hager

et al., 2008), and also to do nuclear material manipulation similar to the old teleoperation

devices (Kuban and Martin, 1984). Although manipulators were modified to work in a

wide range of environments, there is still a need to specify and generate task plans for

them to operate autonomously. This is called manipulation task planning.

The planning of manipulation tasks can be applied in different environment. For

instance, the mobile manipulators that will work in restaurants in the future must be

capable of serving clients in a given order (He et al., 2015). Mobile manipulators that

will work washing dishes or other kind of objects must also follow a specific order of

manipulation (Kaelbling and Lozano-Perez, 2011). Task planning also appears in the

field of mobile robots. Mobile robots working in hospitals monitoring patients need to

visit them in the correct sequence (Kress-Gazit et al., 2007). Additionally, mobile robots

1

CHAPTER 1. INTRODUCTION 2

working in search and rescue missions must coordinate their actions to find injured people

(Kress-Gazit et al., 2007). Mobile robots operating under energy and battery constraints

also need to consider when they must stop at a recharge station, but still be capable of

achieving the task (Kundu and Saha, 2019). Among the vast applications of task planning

in robotics, we focus on an assistive robotics application scenario.

This work focuses on the application scenario of a manipulator that must execute tasks

for a seated person with limited or no lower limbs mobility. There are arm support systems

(passive or active) that can help people with weak arm and hand functions. However,

people with motor disabilities face difficulties to manipulate objects in a large environment

due to their reachability limitations (Iskandar et al., 2019). In this context, manipulators

appear as suitable helpers to do pick-and-place tasks for people with motor disabilities.

This way, people regain part of their independence back since the manipulator can reach

farther objects in the environment.

We have created a simulation scene with the Jaco robot from Kinova Robotics, cuboid

objects, and regions where the objects must be placed. The robot can assist the person

by manipulating objects between regions of interest in a given sequence specified by the

person. For instance, while the person reads a book, the robot may heat meat and cool

salad and, afterward, serve both to the person. See Figure 1.1. To solve this kind of task

autonomously, we make use of manipulation task planning.

meat

waiting

book

person

cooling

pen

preparation

Figure 1.1: Assistive robotics scenario where the manipulator must pick and place objects
for a person with motor disabilities. The red, green, blue, and orange objects represent
meat, salad, book, and pen, respectively.

The goal of manipulation task planning is to automatically generate feasible movement

sequences to manipulate objects to place them in their correct locations in the workspace

(Erdem et al., 2011). To accomplish this, the manipulation order must be regarded (Erdem

CHAPTER 1. INTRODUCTION 3

et al., 2011). Therefore, the geometrical description of the problem and motion planning

alone are not enough to solve the problem. As a result, there is a need to do integration of

task and motion planning (ITMP) (Erdem et al., 2011).

Motion planning and task planning have complementary advantages. Task planners

decide what the robot must do to achieve a task, but they do not consider the detailed

arrangement of the environment (Kaelbling and Lozano-Perez, 2011). More specifically,

they generate a sequence of actions to satisfy a given specification. Meanwhile, a motion

planner must have a map of the environment to generate a trajectory to manipulate the

objects based on the task plan (Kaelbling and Lozano-Perez, 2011). Lastly, the trajectories

are sent to a motion controller that executes them. The question that remains is how to

solve each of these steps and integrate them (see Figure 1.2).

Figure 1.2: Necessary steps to do ITMP (top row) and manipulation task planning and
motion control with task relaxations (bottom row). In this work we have adopted the
latter.

The task planner requires a way to specify the tasks. A commonly used option in

robotics is linear temporal logic (LTL) (Baier and Katoen, 2008, ch. 5) since it allows

describing rich specifications with high expressivity by associating actions to locations

and applying temporal operators to define the order of execution. Next, model-checking

techniques solve the task planning problem by reasoning over an abstract model of the

robot and formal specifications (Bhatia et al., 2011). LTL has been frequently used in

mobile robotics (Kloetzer and Belta, 2008; Kress-Gazit et al., 2007; Bhatia et al., 2011;

McMahon and Plaku, 2014; Kundu and Saha, 2019; Kloetzer and Mahulea, 2015). However,

the techniques for mobile robotics depend on the discrete representation of the state-space,

which makes them intractable to manipulation planning due to the large dimensionality of

the manipulation problem. To solve this problem, He et al. (2015) propose a framework

that allows the planning of high-level manipulation tasks specified in LTL and also handles

the ITMP problem.

The ITMP problem is hard because the high-level task descriptions ignore the geomet-

rical preconditions to physically realize the task (Srivastava et al., 2014). Even simple

high-level tasks such as pick and place of objects have continuous parameters, geometrical

preconditions, and effects. As a result, the method of generating a sequence of tasks

with the task planner and executing the motion planner for each task may fail. This

CHAPTER 1. INTRODUCTION 4

happens because there is a gap between the task planner representation and the physical

environment (Lozano-Perez et al., 1987). One way to solve this is to use an interface layer

between the high-level and low-level that allows the task planner to plan in an abstract

state-space. In this state-space, the geometry of the problem is ignored (Srivastava et al.,

2014). Since the generated task plan may not be realizable by the motion planner (Latombe

and Jean-Claude, 1991), the geometrical constraints are detected by the low-level planner

in a continuous state-space and are sent back to the task planner through the interface layer

(Srivastava et al., 2014). In this sense, ITMP works started using multi-layered frameworks

that use a task planner to generate a motion sequence for the motion planner, which checks

the viability of executing the task (Erdem et al., 2011; Kaelbling and Lozano-Perez, 2011;

Srivastava et al., 2014; Lozano-Perez and Kaelbling, 2014; He et al., 2015).

In addition to using LTL, He et al. (2015) also propose a multi-layered framework that

enhances the state of the art of ITMP by allowing more expressivity, making it possible

to specify temporal constraints at the task level reducing the complexity of the low-level

planning. The goal of the framework is to determine the tasks of pre-grasping and placing

of objects between locations of interest in order to realize a task specified in LTL. The

framework has a coordinating layer between the task planner and the motion planner that

assigns weights to plans proportionally to the difficulty of executing a task plan based

on the motion planning result. In this sense, there is a replanning phase every time the

motion planning fails. Furthermore, a new task plan must be found. Hence, a considerable

amount of time is spent on task and motion planning.

From the task point of view, the framework proposed by He et al. (2015) only allows

placing the object in exact locations of interest in the workspace. Nonetheless, some tasks

may benefit from using a region of interest instead of an exact location, that is, the task

may be relaxed (see Figure (1.3)). A common solution is to discretize the workspace

in multiple locations to define different possibilities for placing the manipulated objects.

However, this approach increases the number of locations in the planning process. As a

result, the number of possibilities that the planner must consider quickly grows and the

total planning time increases. In contrast to the discretization approach, , the constrained

motion controller (Marinho et al., 2019) solves the motion problem and allows to keep the

robot outside a restricted region or inside a safe region by using constraints.

CHAPTER 1. INTRODUCTION 5

(a) Manipulator grasping items: the
boxes area can be represented by
regions of interest. (Source: Right-
Hand Robotics)

(b) Manipulator placing object
within a region of interest. (Source:
RightHand Robotics)

(c) Manipulator moving items: the
placing task can be relaxed to al-
low the item to be placed anywhere
within the drawer region. (Source:
Nvidia)

Figure 1.3: Pick-and-place robotic environments that can benefit from task relaxation to
regions of interest.

By using suitable constraints in the constrained motion controller (Marinho et al.,

2019), we define regions of interest, which greatly reduces the computational burden of

the overall task relaxation method, with the additional advantages that there is no need

of motion planning and the system is reactive. Considering the aforementioned techniques,

the main focus of this work lies on solving the ITMP problem based on the manipulation

task planning framework of He et al. (2015), in which the tasks are specified in LTL,

and on the constrained motion controller of Marinho et al. (2019) that makes the system

reactive and allows to relax tasks without incurring in high computational complexity.

Figure 1.2 shows our approach.

1.1 Objective and Contributions

The goal of this work is to solve the ITMP problem for manipulation tasks combining the

manipulation task planning framework proposed by He et al. (2015) and the constrained

motion controller of Marinho et al. (2019). As a result, it is possible to plan and relax

manipulation tasks in a computationally efficient manner. In this sense, the specific

objectives are:

• Implement the planning framework of He et al. (2015) without the need of the

interface and the motion planning layers;

• Adapt the planning framework to use the constrained motion controller of Marinho

et al. (2019) instead of the motion planning layer.

The first step of implementing the planning framework proposed by He et al. (2015)

consists in specifying a task using LTL. Then, the LTL task specification is converted into

a deterministic finite automaton (DFA) that specifies all the ways the robot can execute

CHAPTER 1. INTRODUCTION 6

the task. Also, an abstraction, which captures all the ways the robot can manipulate

objects, is defined and then combined to the DFA into a product graph that represents how

the robot can move objects to achieve the specified task. Next, the Dijkstra’s algorithm is

used to search for a path on the graph from an initial node to an accepting one. Finally,

the high-level plan is executed by the constrained motion controller of Marinho et al.

(2019), which is based on an optimization problem that minimizes the joint velocities in

the `2-norm sense while respecting hard constraints, such as obstacles in the workspace,

joint limits, etc. On the one hand, the system is reactive to changes in the environment.

On the other hand, the system may suffer from local minima.

While the ITMP problem has been addressed in the framework of He et al. (2015) and

the constrained motion controller of Marinho et al. (2019) solves the execution of task

plans allowing task relaxation, task relaxation requires the definition of regions of interest.

In this context, the main contributions of this work are:

• The ITMP problem is solved in a computationally efficient manner;

• The ITMP framework is adapted to efficiently accommodate relaxed tasks;

• To reduce the total planning time of the framework, it is proposed the use of a

constrained motion controller (Marinho et al., 2019) that allows doing obstacle

avoidance and to specify joint limits. Hence, it is possible to directly execute the

actions from the task plan satisfying the task specification;

• Well-known constraints are combined to define regions of interest for relaxed tasks;

• In addition to well-known constraints, a new approach to define conic constraints is

presented. As a result, it becomes possible to define a circular region of interest in a

simpler way that requires fewer calculations during the control loop.

1.2 Structure of the Text

In addtion to this introduction chapter, this thesis organization is outlined as follows:

Chapter 2 presents a review of the state of the art regarding task planning, ITMP, and

task relaxation. Next, in Chapter 3, the framework of He et al. (2015) is explained. In

Chapter 4, the constrained motion controller of Marinho et al. (2019) and the constraints

used in this work are presented. It alsoincludes the new approach to the point-cone

constraint. Afterward, in Chapter 5, the task relaxation and the definition of the regions of

interest are presented together with the advantages of the approach to the overall planning

framework. In Chapter 6, the adapted ITMP framework for relaxed tasks is evaluated in a

simulation environment on a Jaco robot from Kinova Robotics that has to perform tasks

for a seated person with limited or no lower limbs mobility. Lastly, Chapter 7 summarizes

the results obtained and presents future works.

2
State of the Art

As robots have become physically capable of executing highly complex manipulation

tasks, there is a need to define plans in a longer time horizon and with a considerable

number of manipulable objects in cluttered environments. Those plans determine the task

execution order and how to execute them, which motivates the integration of task and

motion planning (ITMP). In this sense, this work focuses on solving the ITMP problem

for manipulation tasks in a computationally efficient manner by combining state of the art

techniques including task planning, motion controllers, and task relaxations. This chapter

covers state of the art techniques for task planning, ITMP, and task relaxation.

Motion planning and task planning are two problems in robotics studied from different

points of view. Task planners generate plans by processing a high number of action states,

that is, states that describe what the robot must do regardless of where objects are located

in the environment (Kaelbling and Lozano-Perez, 2011). This means that they can decide

to cross a room without taking into account the objects in the middle of the way (Kaelbling

and Lozano-Perez, 2011). On the other hand, a motion planner treats the geometry of the

problem, that is, it must know the location of each object to plan how to manipulate them

(Kaelbling and Lozano-Perez, 2011). It generates trajectories to move the robot from a

starting point to a goal region while avoiding obstacles (Choset et al., 2005). For instance,

in the case of manipulators, it can specify how to get a cake tray out of an oven but it

does not predict if the oven door is open or closed.

Hierarchically speaking, bottom-up motion planning techniques focus on gathering

information from the environment through sensors and creating control references for

7

CHAPTER 2. STATE OF THE ART 8

closed-loop controllers by using detailed robot models to move the robot between different

configurations (Kress-Gazit et al., 2007). On the other hand, top-down task planning

techniques usually focus on finding a discrete action plan for the robot to execute a

specified task (Kress-Gazit et al., 2007). Neither one of the approaches alone is sufficient

to accomplish a manipulation task. Therefore, there is a need of ITMP to solve complex

manipulation tasks.

The goal of ITMP is to use a task planner to define a high-level manipulation task

sequence that is used to generate a trajectory in the task space for a low-level motion planner

that plans the trajectories in the configuration space. This low-level trajectory is then

executed by a motion controller. This way, continuous motion planning is combined with

discrete task reasoning (He et al., 2015). Discrete high-level task plans are appropriately

described by using an abstract discrete model of the robot and formal specifications. Next,

task planning can be done through model-checking techniques (Bhatia et al., 2011).

2.1 Task Planning

Task planning appears in many guises. For instance, consider a robot that has to pick

a box from a desk drawer and place it inside a wardrobe. Initially, the drawer and the

wardrobe are closed. At the end of execution, the box must be inside the wardrobe and

both must be closed. The high-level controller does not define the continuous trajectory

that the manipulator must execute, it only specifies the task execution constraints. The

high-level task specification does not define a motion sequence to be executed. The order

in which the robot will open the drawer and the wardrobe and pick up the box is not

specified. The robot can first open the drawer, pick up the box, place it on the table, open

the wardrobe and continue the task or it can first open the drawer and the wardrobe and

place the box directly in the wardrobe and only at the end close both. There are a lot of

possibilities.

Artificial intelligence (AI) has been dealing with the solution of problems as the above.

Fikes and Nilsson (1971) propose a problem solver called STRIPS (Stanford Research

Institute Problem Solver) that searches for a model in a space of world models to reach the

desired goal by applying operators to the world models. Operators are actions that have

preconditions and effects. However, STRIPS does not regard temporal specifications and

only uses linear sequences of operators (Fikes and Nilsson, 1971). Furthermore, STRIPS

operators do not allow their effects to be conditional. To enhance STRIPS, Gelfond

and Lifschitz (1998) propose the Action Description Languages (ADLs) that operate on

states of a transition system. In this context, a transition system can be understood as a

labeled directed graph in which each vertex represents a system state and actions causes

the transition between the states. Later on, the Planning Domain Description Language

(PDDL) (Ghallab et al., 1998) was derived, among other formalisms, from ADL. PDDL is

CHAPTER 2. STATE OF THE ART 9

composed of domain files that contain the predicates, actions, and effects and an instance

file that contains the objects, initial state and goal description. The system state depends

on the predicates that are true. Moreover, the predicates dictate the preconditions for

an action to be executed and the effects represent the changes an action causes in the

world. Finally, the goal descriptions are used to specify the state that the system must

reach. For robotic domains, it is common to define predicates for locations of objects

and the robot, and some actions representing grasping, holding, moving, and placing.

Although these formalisms can describe task planning problems, they require lower layers

to translate their very high-level plans to robot actions. In this sense, Lana et al. (2015)

propose the Manipulation Task Model (MTM) that is dedicated to the planning of robotic

manipulation tasks in a bottom-up manner.

The MTM describes actions and their sequence to take an object from an initial state

to the desired state. The task primitive actions are defined as elements of dual quaternion

algebra while the sequence is described by a small subset of process algebra. One of the

advantages of the MTM is that it considers the task’s physical parameters and, thus,

facilitates the use of motion controllers to execute the task. However, MTM is specific

to manipulation tasks, which is a drawback when describing tasks such as navigation.

Furthermore, the MTM also does not allow temporal specifications.

An interesting alternative for the aforementioned formalisms is linear temporal logic

(LTL), which allows to specify Boolean and temporal constraints. Also, LTL has correctness

and completeness guarantees (Baier and Katoen, 2008, ch. 5), but the number of states of

the specified task has combinatorial growth, which is also known as the state-explosion

problem (Wongpiromsarn et al., 2010). Therefore, frameworks based on LTL usually build

a discrete abstraction of the robotic system (Kress-Gazit et al., 2007; He et al., 2015;

Kloetzer and Belta, 2008; Bhatia et al., 2011), but such construction is usually non-trivial.

From the application point of view, LTL can be used to specify a wide range of robotic

tasks such as coverage, sequencing, conditions, avoidance and counting (Kress-Gazit et al.,

2007; McMahon and Plaku, 2014). In our application, described in Chapter 1, it is desirable

to specify tasks with temporal constraints that enable enforcing execution order. Hence,

LTL appears as a suitable formalism. See Table 2.1.

CHAPTER 2. STATE OF THE ART 10

Table 2.1: Comparison of task planning methods.

Work Advantages Disadvantages
Fikes and Nilsson
(1971); Gelfond

and Lifschitz
(1998); Ghallab

et al. (1998)

Specify high-level tasks using
actions with preconditions and

effects for a scene and goal
description.

Require lower layers to translate
their very high-level plans to robot

actions.

Lana et al. (2015) Specify sequence of actions that the
robot must execute. The actions
contains wrenches and twists that
the robot must use. This way, it is
easier to use motion controllers to

execute the task.

Work only for manipulation
applications. For instance,

navigation tasks cannot be specified.
Additionally, temporal

specifications are not allowed.

Linear temporal
logic (LTL)

Allows to specify Boolean and
temporal constraints. Allows to

check correctness and completeness
of systems. Allows specifying tasks

such as coverage, sequencing,
conditions, avoidance and counting.

Suffers from the state-explosion
problem. Usually requires a discrete
abstraction of the robotic system.

LTL has been used mainly in mobile robotics. Kress-Gazit et al. (2007) propose the

construction of controllers for mobile robots that generate continuous trajectories satisfying

LTL task specifications. The LTL task specification explicitly models sensor inputs. This

way, the task descriptions consider dynamic environments and enable multi-robot search

and rescue style missions. Bhatia et al. (2011) propose the use of co-safe1 LTL formulas

that allow to specify finite-horizon tasks. The LTL formula depends on the regions of

interest in the workspace for the robot. This means that the specification contains the

sequence of regions the robot must visit. McMahon and Plaku (2014) deal with the

problem of computing a control function that considers dynamics and a co-safe LTL

specification to generate a collision-free trajectory for nonlinear, high-dimensional mobile

robots. Kloetzer and Mahulea (2015) present a method that controls a group of mobile

robots to accomplish a task specified in LTL x (LTL which does not use the operator

Next and is interpreted over an infinite set of truth values). Differently from the other

works, the LTL x specification accounts for the tasks of the whole team of robots instead

of specifying tasks for each robot. Another difference is that the locations may appear or

disappear based on probability density functions. Most of the aforementioned works use

LTL task specifications that contain the regions that the robot must visit. As a result,

they depend on the discrete representation of the state space that is commonly represented

by a discrete abstraction. Moreover, they usually convert the LTL specification formula

into an automaton whose behaviors satisfy the formula. Next, they combine the discrete

1Co-safe LTL formulas are LTL formulas that can be interpreted using finite words and only contain
the temporal operators Next, Eventually and Until. Moreover, the negation operator is not allowed over
temporal formulas.

CHAPTER 2. STATE OF THE ART 11

abstraction with the automaton to obtain a product graph that contains the sequence of

regions the robot must visit while satisfying the task specification.

In addition to the other approaches, Kloetzer and Belta (2008) propose a framework

to solve the following problem: given an LTL x formula, find a set of initial states and

a feedback control law for a system such that all the closed-loop trajectories of the

system satisfy the formula and stay inside a polytope that can, for instance, represent

the environment boundaries for a planar robot. Also in the context of abstraction-free

temporal logic frameworks, Lindemann (2018) proposes to obtain control strategies for

single- and multi-agent input-affine dynamical systems such that it satisfies a signal

temporal logic (STL) task2. The first controller is a model predictive controller (MPC)

that uses reformulated STL robust semantics that allows obtaining a computationally

efficient method to check how robustly a task is satisfied. The next strategy is based on a

continuous-time feedback control law robust to noise that satisfies as best as possible the

STL task. Next, a control method that connects temporal properties with time-varying

control barrier functions through predicate functions is proposed. The method allows a

broader range of STL specifications but loses robustness to noise. Lastly, a decentralized

continuous-time feedback control law is obtained for single-agents that forms together a

multi-agents system in which each agent must satisfy a STL specification. More recently,

Kundu and Saha (2019) propose an algorithm to generate trajectories for robots that need

to meet functional and energy requirements from an LTL formula specification. The task

specification depends on locations where the robot must go and on the energy level of the

robot. The motion of the robot is captured using a set of motion primitives and the robot

moves in an occupancy grid in discrete steps.

As can be seen, the abstraction techniques for mobile robotics commonly depend on the

discrete representation of the state-space, which makes them intractable to manipulation

planning due to the large dimensionality of the manipulation problem. To solve this

problem, He et al. (2015) propose a framework that allows the planning of high-level

manipulation tasks specified in co-safe LTL formulas. The formulas contain the order

of manipulation and the location where each object must be placed in the environment.

From the task planning point of view, the high-level planner converts the co-safe LTL task

specification into a DFA and combines it with a suitable manipulation abstraction that

describes the actions the manipulator can execute to manipulate objects in the environment.

As a result, it is possible to search for a task plan that satisfies the LTL formula and

contains what the robot must do. Later on, still in the context of LTL in manipulation task

planning, He et al. (2017) propose a similar planning framework to solve the problem of

completing a manipulation task plan in the presence of external interference from humans

by also considering human movements in the abstraction. Afterward, He et al. (2019a)

2STL consists of predicates (maps from Rn to {T,F}) that are obtained after evaluation of a predicate
function (maps from Rn to R)

CHAPTER 2. STATE OF THE ART 12

developed a way to automatically construct such abstraction. In another work, He et al.

(2019b) propose a solution for the LTL-based reactive manipulation planning problem

that uses PDDL instead of an abstraction and binary decision diagrams (BDDs) alongside

the DFA. BDDs are a compact representation of Boolean functions that map a set of

boolean variables to a boolean output (Bryant, 1986). The results show a faster solution

for the reactive planning problem. Since the goal of this work is to solve the task planning

problem for manipulation tasks without interference, the methodology proposed by He

et al. (2015) is adopted. Lastly, the framework also handles the ITMP problem.

2.2 Integration of Task and Motion Planning

To solve the ITMP problem, Kambhampati et al. (1991) investigate the use of a hybrid

planning model that contributes with expressiveness and reasoning power to traditional

hierarchical planners through the use of a set of specialists, which adapt the plan to

satisfy unexpected additional constraints. Hence, the planner and the specialists must

know the constraints imposed by their decisions to avoid inconsistent tasks. To add more

flexibility to ITMP, some works have started using multi-layered frameworks that use

a task planner to generate a motion sequence for the motion planner, which checks the

viability of executing the task (Erdem et al., 2011; Kaelbling and Lozano-Perez, 2011;

Srivastava et al., 2014; Lozano-Perez and Kaelbling, 2014; He et al., 2015; Dornhege et al.,

2009; Bhatia et al., 2011). Other works consider constraints imposed by the environment

or by the system dynamics and construct task plans incrementally (Cambon et al., 2009;

Plaku and Hager, 2010).

Dornhege et al. (2009) decompose the manipulation problem in a symbolic part which

represents high-level tasks and a geometrical part which represents the manipulator

kinematics and the environment description. Erdem et al. (2011) use predicates and

functions to test execution viability but specifying which checks must happen at high- or

low-level. In addition to using LTL, Bhatia et al. (2011) propose a multi-layered framework,

which builds a discrete abstraction of the system. It generates high-level plans based on

information from the low-level planner. Afterward, it uses the sampling-based low-level

planner to generate trajectories for the high-level plans. The work of Srivastava et al.

(2014) uses three layers: high-level, interface, and low-level. The interface layer allows the

communication between task and motion planners in order to identify low-level planner

failures to demand a new task from the high-level planner. The procedure repeats itself

until a low-level trajectory generated for the high-level specifications can be executed

successfully or until all the high-level tasks are eliminated. The interface between high-level

and low-level planning is common in ITMP works since the low-level planner cannot always

generate feasible plans for a high-level plan. However, there are also approaches that are

implemented in a top-down manner.

CHAPTER 2. STATE OF THE ART 13

The method proposed by Plaku and Hager (2010) called sampling-based motion and

symbolic action planner (SMAP) generates a task plan tree from a PDDL specification

that contains actions with preconditions and postconditions to transform the world. The

predicates for each action depends on a finite collection of continuous variables in the

world. In the initial state of the world, symbolic action planning is done to select actions

whose preconditions are satisfied. Next, sampling-based motion planners that allow

treating collision avoidance and differential constraints are used to extend the plan tree to

continuous states that satisfy the action postconditions. This process is repeated until

the PDDL specification goal is reached. Kaelbling and Lozano-Perez (2011) propose a

top-down ITMP aggressively hierarchical architecture that generates plans for a task

specification based on predicates, world states, goals, and operators that modify the world.

Given a task specification, the initial plan state has the plan top-level goal preconditions

and the operators to be applied to the state. If an operator is primitive it is directly

executed, else a new plan step with its preconditions is added to the plan tree. The

plan tree is built in a depth-first manner until the set of top-level goal preconditions are

satisfied. By not modifying the first high-level plan step until it is satisfied, the hierarchical

problem decomposition is simpler and results in lower search times. Furthermore, the

technique operates in the continuous geometry domain, that is, it does not require a priori

discretization of the state-space. Later on, Lozano-Perez and Kaelbling (2014) propose to

use partial plans for a manipulation problem, which is solved as a constraint satisfaction

problem.

In addition to using LTL, He et al. (2015) also propose a multi-layered framework to

solve the ITMP problem, which uses a coordinating layer between high- and low-level

to decide about the difficulty of executing the task. Furthermore, the use of LTL allows

the description of complex manipulation tasks with temporal constraints, which other

ITMP techniques are not capable of describing (He et al., 2015). On the other hand, the

state-explosion problem also appears in LTL planners, but the multi-layer abstraction

technique reduces the problem. Nonetheless, the size of the abstraction still quickly grows

with an increase in the number of locations. As a result, the state-space explosion problem

is still present. Another drawback is that it also uses a motion planner in the low-level

layer, which requires motion planning time, in addition to the high-level planning time.

Lastly, although we have chosen to adapt the framework of He et al. (2015), there

are already studies using it as a benchmark for ITMP. In this sense, we have to mention

the task and motion planning framework of Dantam et al. (2018). Dantam et al. (2018)

propose a method that allows using more flexible abstractions than the domain-specific

manipulation abstraction used by He et al. (2015). Instead of using LTL to describe

the task domain, PDDL is used. More specifically, they define a formal language that

accommodates preconditions, actions, task operators, and effects. Therefore, a task plan is

a string in the task language that leads to an accepting state. Moreover, constraint-based

CHAPTER 2. STATE OF THE ART 14

task planning is done by using incremental satisfiability modulo theories (SMT). SMT

allows adding rules to Boolean satisfiability and has a more expressive way of expressing

constraints (logical assertions about motion feasibility). From the motion planning point

of view, the method uses off-the-shelf RRTs sampling-based motion planners from the

Open Motion Planning Library (Sucan et al., 2012). Finally, the ITMP problem is solved

by using geometric information from failed motion plans to update the constraints used

in SMT. This way, this novel method for SMT allows new plans to take into account

previous failed plans in the planning process. Both task and motion planning horizons

are increased in the case of a failed plan. The results show that, in the case of tasks

with multiple objects, the method of Dantam et al. (2018) has significantly better time

performance when compared to the framework of He et al. (2015). Table 2.2 summarizes

the frameworks that are built on the ideas of the aforementioned works or that solve some

of the issues still present in ITMP with temporal logic.

Table 2.2: Comparison of frameworks that solve the robotic task planning problem.

Work Advantages Disadvantages
Dantam et al.

(2018)
Plan effectively for manipulation

tasks with multiple objects.
Strongly couple task and motion
planning. This way, it is more

difficult to implement methods for
task relaxation.

Lindemann
(2018)

Propose an abstraction-free signal
temporal logic method that does

not suffer from the curse of
dimensionality and that is

computationally efficient for single-
and multi-agent systems.

It cannot be directly applied to
plan manipulation tasks. The work

focused on ground and aerial
vehicles and on multi-robot

scenarios.

He et al. (2015) Generate plans for manipulation
tasks. Use LTL to specify the tasks.
Decouple high- and low-level layers
resulting in an interesting option to

do task relaxation since the
low–level motion planner can be

substituted for a constrained
motion controller that

accommodates several constraints.

Require an abstraction that suffers
from the curse of dimensionality in
the case of using multiple objects or

having a highly complex task
specification.

2.3 Task Relaxation

The framework proposed by He et al. (2015) solves the ITMP problem. However, some

manipulation tasks are described by using regions of interest that contain multiple locations.

For instance, if it is desired that a manipulator pick an object and place it on a table, it

could place it anywhere on the table. Thus, a common approach is to discretize the table

CHAPTER 2. STATE OF THE ART 15

into many possible locations and sample one of them. Therefore, a possible solution for

such cases is to discretize the workspace in multiple locations to define regions of interest

for placing the manipulated objects. However, a discretization of the workspace does not

scale well for the high-level planner in the work of He et al. (2015), since an increase in

the number of locations may cause the state-space explosion problem.

In the context of workspace discretization, Garrett et al. (2018) propose the FFRob

algorithm for solving task and motion planning problems. In the FFRob, a state is

represented by a set of values that indicate the robot configuration, the object being

held, and the pose of each object. Garrett et al. (2018) also propose the extended action

specification (EAS) to specify tasks. EAS is similar to STRIPS but allows preconditions

to be logical formulas that determine, for instance, when the robot can perform an action.

Given a task specification, the FFRob alternates between sampling and planning phases

until a solution is found. In the sampling phase, they discretize the pick and place problem

by creating symbolic actions from a finite sampled set of states. Next, the planning phase

searches the discretized possible options. They also define a relaxed state as a set of

states formed by all combinations of possible values for a state. In other words, a relaxed

state represents all the possible robot configurations, objects, and poses of objects for

the state. This means that the robot simultaneously tests all actions of the set of states

represented by the relaxed state. However, in the work of He et al. (2015), a similar

approach would quickly increase the number of planning states resulting in longer planning

time. Differently from the task relaxation in a top-down manner, it is also possible to

approach the task relaxation problem in a bottom-up manner, that is, by making use of

kinematic redundancy in the low-level motion controller.

Classic kinematic redundancy techniques allow task constraints in addition to the main

task control law. This is done by using the degrees of freedom not being used in the main

task. Hence, a secondary task that does not disturb the main task and consider constraints

can be added. In this sense, Mansard and Chaumette (2009) propose the directional

redundancy method that only activates the secondary task if it does not increase the error

of the main task, which preserves the stability of the system. This is done by building

an operator similar to the one that projects in the nullspace of the Jacobian that allows

the control law error components to converge separately, which enables to add constraints

to ensure that each component surely decreases. In the context of task relaxation, this

method could be used to move the end-effector towards a target pose in the workspace

while satisfying constraints such as joint-limits. Nonetheless, our goal is to move towards a

region of interest and, hence, more constraints are required. This can be done by exploiting

kinematic singularity avoidance techniques and switching between control strategies.

The kinematic singularity avoidance techniques in the low-level controller for redundant

manipulators are usually based on using self-motion (i.e. movements of the links that do

not disturb the end-effector location (Bedrossian, 1990)). The most used technique stems

CHAPTER 2. STATE OF THE ART 16

from the optimization of a manipulability function projected on the Jacobian nullspace.

Moreover, a secondary task can be satisfied through the projection in the nullspace of the

Jacobian (Liégeois, 1977). In this context, Figueredo et al. (2014) propose the relaxation of

task constraints and the switching to control tasks with fewer degrees of freedom to allow

the use of self-motion whenever possible. The switching strategy is based on relaxing the

control requirements according to offline defined geometric task objectives. For instance,

consider a manipulator that has to place a box on a table. The box pose requirements may

be satisfied after the box is within a bounded geometric region (i.e. region of interest) over

the table and, hence, position control alone can be used to place the box on the table. The

switching rule requires the definition of geometric controllable sets. They define which task

primitive (i.e. distance, position, orientation, or pose) should be controlled to achieve a

geometric task. Lastly, to enhance the task relaxation capabilities, additional optimization

criteria with respect to the task-space variables and the task-space constraints such as

obstacles and joints limits could be considered. To do this, a possible solution is to use

hierarchical least-square optimization (Escande et al., 2014).

Least-square optimization can be used to fulfill as best as possible a set of constraints

that may not be feasible (Escande et al., 2014). Furthermore, when the constraints are

linear on the control inputs, the least-square problem is written as a quadratic program.

Thus, Escande et al. (2014) propose a method to solve a hierarchical quadratic program

in a computationally efficient manner that allows to solve problems with many variables

fast enough to be used in real-time control. This is achieved by means of lexicographic

optimization. In other words, it is not possible to optimize an objective with lower priority

without increasing the objective of higher priority. As a result, the multi-objective problem

turns into a single iterative process that can be solved at once. However, the work focused

mostly on applying the technique to solve the inverse kinematics and adding simple

obstacle-avoidance constraints. Meanwhile, Marinho et al. 2019 used similar concepts to

propose a constrained motion controller.

The constrained motion controller (Marinho et al., 2019) allows the definition of

constraints to keep the robot outside a restricted region or inside a safe region and the

system to be reactive. By using suitable constraints, we can define regions of interest

instead of discrete poses for the end-effector. The idea is to specify geometrical constraints,

based on those regions of interest, to accomplish the desired task generated by the high-level

task-planner without resorting to low-level motion planning. Therefore, we adapt the

framework of He et al. (2015) to use the constrained motion controller. Constrained motion

controllers depend on the specification of a set of constraints that must be respected by

the system. They can be described by minimization problems (Laumond et al., 2015)

that make use of extra available degrees of freedom of the robot to achieve the task while

respecting the constraints. This enables the generation of collision-free motions by using

mathematical programming. Nonetheless, in the general case, there are no analytical

CHAPTER 2. STATE OF THE ART 17

solutions and numeric solvers must be used (Goncalves et al., 2016; Escande et al., 2014).

Table 2.3 summarizes the task relaxation methods. Since our goal is to relax the tasks to

regions of interest, we have adopted the constrained motion controller of (Marinho et al.,

2019).

Table 2.3: Comparison of the task relaxation methods.

Work Advantages Disadvantages
Garrett et al.

(2018)
Allow relaxed states that discretize
a state into all the possible robot

configurations, objects, and poses of
objects for the state.

Does not scale well when combined
with the framework of He et al.

(2015) because of the discretization.

Mansard and
Chaumette (2009)

Allow specifying constraints such as
joints limits.

Depending on the number of robot
DOF, it does not accomodate
constraints such as obstacle

avoidance in the case of having
multiple obstacles because the

number of DOF available for the
secondary task is not enough.

Figueredo et al.
(2014)

Switch between control objectives
during task execution reducing the

number of degrees of freedom
required. This way, the remaining

degrees of freedom can accomodate
secondary tasks.

Do task relaxation in an ad hoc
manner by requiring to specify
when to switch between control

objectives.

Marinho et al.
(2019)

Allow the definition of constraints
to keep the robot outside a

restricted region or inside a safe
region. Thus, it is possible to define

regions of interest by defining
suitable constraints.

May suffer from local minima.

Lastly, some of the regions of interest in the scene may be complicated to describe using

only the constraints proposed in the framework of Marinho et al. (2019). For instance,

to define a squared region of interest, it is needed to use at least four planes and four

inequalities in the control law. However, for relaxed tasks, the form of the region of interest

is not always important. In this sense, we adopt a new approach to define point-cone

constraints, which requires less complex calculations during running time and only one

inequality in the control law. This approach enables to define a circular region of interest

by using only a cone.

2.4 Conclusion

The first part of this chapter introduces different formalisms that allow solving the task

planning problem. Among other formalisms, LTL emerged as a suitable option to specify

CHAPTER 2. STATE OF THE ART 18

robotic tasks because it allows to specify different tasks such as coverage, sequencing,

conditions, avoidance and counting (Kress-Gazit et al., 2007; McMahon and Plaku, 2014).

LTL has been mainly used in mobile robotics, but it is used to describe manipulation tasks

in the planning framework of He et al. (2015). The second section of this chapter gives

an overview of ITMP and cites the ITMP solution in the work of He et al. (2015) that

still spends a significant amount of time with motion planning. Despite its drawbacks,

we have chosen to use the LTL based planning framework of He et al. (2015) because it

is specific for manipulation tasks without external interference—from a human—in the

robot task and has the LTL expressivity. The final part of this chapter is concerned about

manipulation tasks that can be best described using a region with multiple locations,

that is, the task is relaxed to a region of interest. Although a common solution is to

discretize the workspace into multiple locations, the framework of He et al. (2015) planning

complexity quickly grows with an increase in the number of locations. In this context, we

propose to solve the task relaxation problem with the framework proposed in Marinho et al.

(2019) to mitigate the state-space explosion problem, since it allows to add constraints and

keep the robot within a desired region of interest without discretization. As a result, the

planning framework becomes more computationally efficient for relaxed tasks and is also

reactive. Lastly, we propose a new approach to define conic constraints in the framework

of Marinho et al. (2019) which requires less complex calculations during runtime and only

one inequality in the control law. In contrast, the plane constraints require four inequalities

to define a region of interest.

3
Manipulation Planning Framework

In this chapter, we cover the manipulation planning framework of He et al. (2015). First,

we introduce linear temporal logic (LTL). In the sequence, we state the manipulation

problem in assistive robotics. Next, we describe the planning framework. It is composed

of a high-level planner, which receives task specifications in LTL, a coordinating layer,

which assigns weights proportional to the difficulty of executing a high-level plan and a

low-level motion planner, which generates motion plans for the high-level plans. Lastly,

we introduce a new approach to the manipulation planning framework that substitutes

the coordinating layer, the motion planning layer, and the motion controller for a single

constrained motion controller. Although, we lose the probabilistic completeness of the

original framework, the system is reactive to changes in the environment.

The high-level planner receives a task specification in LTL that is converted into a

deterministic finite automaton (DFA) that specifies all the ways the robot can execute

the task. Also, a manipulation abstraction, which captures all the ways the robot can

manipulate the objects in the workspace, is defined and combined to the DFA into a

product graph that represents all the ways the robot can execute the task. Afterward, the

Dijkstra’s algorithm is used to search for a path on the product graph that represents

a complete task plan. Finally, the task plan is sent to a low-level motion planner that

generates a motion plan and sends the result back to the coordinating layer, which then

sends the plan to the motion controller. If the motion planner does not find a solution, the

coordinating layer increase the weight for that plan on the product graph and requires a

new task plan on the product graph. This generates a synergy between the layers resulting

19

CHAPTER 3. MANIPULATION PLANNING FRAMEWORK 20

in the generation of feasible continuous trajectories for the manipulator. Meanwhile, in the

adapted framework, the task plan is sent to the constrained motion controller that executes

it. Hence, there is no need for a motion planner and, hence, there is no replanning phase,

thus saving computational time and resulting in a reactive system. Figure 3.1 depicts the

original and the adapted framework.

CHAPTER 3. MANIPULATION PLANNING FRAMEWORK 21

(a) Original manipulation planning framework proposed by He et al. (2015)

(b) Adapted manipulation planning framework

Figure 3.1: Manipulation planning frameworks: the red area represents the planning
framework and its steps in cyan; the green area represents the motion controller in gray.
The manipulation abstraction receives the robot actions, the objects locations and locations
labels as input.

CHAPTER 3. MANIPULATION PLANNING FRAMEWORK 22

3.1 Linear Temporal Logic

In LTL, a proposition is a statement that can be true or false, but not both, and atomic

propositions are the ones that do not depend on the truth or falsity of any other proposition.

Let A = {a0, a1, ..., aN} be a set of atomic propositions. LTL semantics is defined over

infinite traces, that is, words over the alphabet 2A, where 2A is the power set of A.

Given letters Ai ∈ 2A, with i = 0, 1, 2, . . ., words are finite or infinite sequences such as

σ = A0A1A2 · · ·An and σ = A0A1A2 · · · . For example, consider A = {a0, a1, a2}, hence,

a possible word would be σ = A0A1A0A1A0A1 · · · , with A0 = {a0, a1} and A1 = {a0},
which means that a0 is always true as it belongs to all letters, a1 alternates between true

(when it appears in a letter) and false (when it does not appear in a letter), and a2 is

always false, because it does not belong to any letter in the word σ.

A LTL formula ϕ is composed of atomic propositions, Boolean operators, and basic

temporal operators. More specifically, a formula ϕ over A results in

ϕ = a | ¬a |ϕ1 ∧ ϕ2 |ϕ1 ∨ ϕ2 |ϕ1Uϕ2 | Xϕ1 | Eϕ1, (3.1)

where a ∈ A, ϕ1 and ϕ2 are formulas. The Boolean operators are “negation” (¬), “and”

(∧), and “or” (∨). The temporal operators “until” (U) is such that ϕ1 is true until ϕ2

becomes true. The temporal operator “next” (X) means that ϕ will definitely be true at

the next step, and “eventually” (E)1 means that ϕ will become true at some point in the

future. It is also possible to include the operator “implication” (ϕ1 → ϕ2) and “equivalence”

(ϕ1 ↔ ϕ2), although we do not make use of them in our current work.

To clarify what is a formula ϕ and the operators mentioned above, let A = {a0, a1}.
Therefore,

1. ϕ = T2 is always true;

2. ϕ = a0 is true if and only if a0 is true;

3. ϕ = ¬a0 is true if and only if a0 is false;

4. if ϕ0 = a0, ϕ1 = a1, then ϕ = ϕ0 ∧ ϕ1 is true if and only if both a0 and a1 are true;

5. if ϕ0 = a0, ϕ1 = a1, then ϕ = ϕ0 ∨ ϕ1 is true if and only if a0 is true or a1 is true or

both are true;

6. if ϕ0 = a0, ϕ1 = a1, then ϕ = ϕ0Uϕ1 is true if and only if a1 becomes true after a0

was already true;

1In LTL literature, “eventually” is commonly represented as F . Because in our works F denotes
coordinate systems, we use E for “eventually”.

2The notation T and F indicates the Boolean values “true” and “false”.

CHAPTER 3. MANIPULATION PLANNING FRAMEWORK 23

7. if ϕ1 = a1, then ϕ = Xϕ1 will be definitely true if and only if a1 becomes true in the

next time step;

8. if ϕ1 = a1, then ϕ = Eϕ1 will be eventually true since a1 becomes true at some point

in the future.

The formulas for ϕ, ϕ1, and ϕ2 could be any formula containing the operators in (3.1)

with an arbitrary number of propositions. Although in the previous example we used

simple formulas for the sake of clarity, they can be arbitrarily more complex. For instance,

ϕ2 = E(a0∧XE(a1)) means that eventually a0 will be true and, afterward, a1 will eventually

be true. More specifically, the operation E(a0 ∧ XEa1) implies that a0 and XEa1 will

surely be true in an unknown time in the future. Let us assume, for the sake of example,

that a0 becomes true in time j. The operation Ea1 implies that a1 will surely be true in

an unknown time k in the future and XEa1 implies that k ≥ j + 1. Therefore, eventually

a0 will be true, and, after that, eventually a1 will be true. The formula ϕ2 could be used,

for instance, to specify a pick-and-place task that requires two objects to be eventually

manipulated in a given order.

The semantics of syntactically co-safe LTL formulas are defined over infinite words

from the set 2A. Given σ = A0A1A2 · · · , let suffix(σ, i) = AiAi+1 · · · and prefix(σ, i) =
A0A1 · · ·Ai−1. Recall that an atomic proposition is true when it belongs to a letter and false

otherwise. The satisfaction relation σ � ϕ indicates that the word σ contains letters that

satisfy the formula ϕ. For example, if A = {a0, a1, a2}, A0 = {a0, a1}, and ϕ = (a0∧a1)∨a2,

then σ = A0 satisfies ϕ because A0 � (a0 ∧ a1) and, hence, σ � (a0 ∧ a1) ∨ a2. Given

A = {a0, a1, . . . , aN}, the LTL formulas ϕ1 and ϕ2, a word σ = A0A1A2 · · · satisfies a LTL

formula ϕ, denoted by σ � ϕ, if one of the following is true.

1. σ � T;

2. σ � a0 ⇐⇒ A0 � a0, that is, a0 ∈ A0;

3. σ � ϕ1 ∧ ϕ2 ⇐⇒ σ � ϕ1 ∧ σ � ϕ2;

4. σ � ¬ϕ ⇐⇒ σ 2 ϕ;3

5. σ � Xϕ ⇐⇒ suffix(σ, 1) = A1A2A3 · · · � ϕ;

6. σ � ϕ1Uϕ2 ⇐⇒ there exists j ≥ 0 such that suffix(σ, j) = AjAj+1Aj+2 · · · � ϕ2

and suffix(σ, i) = AiAi+1Ai+2 · · · � ϕ1 for 0 ≤ i < j;

7. σ � Eϕ if and only if there exists j ≥ 0 and suffix(σ, j) � ϕ.

To exemplify each one of the properties above, let A ={a0, a1, a2, a3}, A0 = {a0}, A1 =
{a0, a1}, A2 = {a0, a1, a2}. Let also ϕ = a1, ϕ1 = a0, ϕ2 = a0∨ (a1∧a2), ϕ3 = a0∧a1∧a2,

ϕ4 = a3, and σ = A0A1A2. Thus,

3σ 2 ϕ means that σ does not satisfy ϕ.

CHAPTER 3. MANIPULATION PLANNING FRAMEWORK 24

1. σ � T because true does not depend on any proposition;

2. σ � a0 because all letters of σ contain a0, that is, a0 ∈ A0, a0 ∈ A1, and a0 ∈ A2;

3. σ � ϕ1∧ϕ2 means that σ � a0∧ (a0∨ (a1∧a2)) because σ � a0 and σ � a0∨ (a1∧a2)
since a0 ∈ A0, a0 ∈ A1 and a0 ∈ A2;

4. σ � ¬ϕ4 means that σ � ¬a3 because a3 /∈ A0, a3 /∈ A1, a3 /∈ A2, hence σ 2 ϕ4;

5. σ � Xϕ means that σ � Xa1 because a1 ∈ A1, and a1 ∈ A2, that is, suffix(σ, 1) =
A1A2 � ϕ;

6. σ � ϕ1Uϕ3 means that σ � a0U(a0 ∧ a1 ∧ a2) because a0 ∈ A0, a0 ∈ A1, and

a0, a1, a2 ∈ A2, that is, suffix(σ, 0) = A0A1A2 � ϕ1 and suffix(σ, 2) = A2 � ϕ3;

7. σ � Eϕ3 means that σ � E(a0∧a1∧a2) because a0, a1, a2 ∈ A2, that is, suffix(σ, 2) =
A2.

In this work, manipulation tasks must be achieved over a finite time horizon. Hence, we

use only co-safe LTL formulas, which are the ones that can be interpreted by considering

finite words (Kupferman and Y. Vardi, 2001). To define co-safe LTL formulas we recall

some definitions. First, a language is a set of finite or infinite words. A bad prefix for a

language is a finite word that does not belong to the language anymore when concatenated

to an infinite word (Kupferman and Y. Vardi, 2001). A safety language is such that every

word not in the language has a finite bad prefix. Meanwhile, a co-safety language is such

that every word in the language has a good prefix (i.e. a prefix that when concatenated to

an infinite word belongs to the language) (Kupferman and Y. Vardi, 2001). In this sense,

an LTL formula is safe if the set of words that satisfy the formula is a safety language

and an LTL formula is co-safe if the set of words that satisfy the formula is a co-safety

language (Kupferman and Y. Vardi, 2001). In other words, an LTL formula is co-safe if

and only if every infinite word satisfying the formula has a good finite prefix that can be

concatenated with any infinite word and still satisfy the formula. Syntactically, co-safe

LTL formulas contain only the temporal operators X , E , U , and the negation operator is

only allowed over atomic propositions, but not over temporal formulas.

Although the manipulation tasks in this work must be completed in finite time, other

fragments of LTL can describe infinite time horizon tasks. For instance, LTL x formulas,

which do not contain the operator “next”, are interpreted over infinite words of the alphabet

(Kloetzer and Mahulea, 2015). Tasks such as navigation and surveillance of more regions

in an arbitrary or specific order can be described in LTL x (Kloetzer and Mahulea, 2015).

Another class of LTL formulas called Generalized Reactivity(1) is used to describe tasks

that have a response to a given input (Kress-Gazit et al., 2007). For example, sensor-based

robotic tasks usually require a response of the robot after a sensor input occurs as in the

case of a robot that senses an obstacle and must stop.

CHAPTER 3. MANIPULATION PLANNING FRAMEWORK 25

See the works of Kupferman and Y. Vardi (2001); Baier and Katoen (2008) for more

formal definitions of the syntax and semantics of LTL. Examples of LTL specifications for

manipulation tasks used in this work are given in Section 3.3.1.

3.2 Problem Statement

We define our problem based on the requirements of the assistive robotics application

scenario presented in Chapter 1 (See Figure 1.1). The scenario is composed of a manipulator

that can pick-and-place objects between locations and a person with limited or no lower

limbs mobility. The manipulator must execute pick-and-place tasks specified by the

person. In this sense, our problem is defined as follows: given a finite set of cuboid

objects O, a finite set of locations L, and a finite set of actions M, find a sequence

of actions α0, α1, . . . , αm ∈ M that manipulate the objects o0, o1, . . . , on ∈ O between

locations loc0, loc1, . . . , lock ∈ L to satisfy a linear temporal logic (LTL) specification ϕ.

The sequence of actions is obtained by the planning framework that will be presented in

Section 3.3 and the actions are executed by the constrained motion controller presented in

Chapter 4.

3.3 Planning Framework

3.3.1 Linear Temporal Logic Task Specification

In the first step, a manipulation task ϕ is specified using co-safe LTL and it depends

only on the objects and the locations. For instance, in a pick-and-place task, we can

specify where each object must be at the end without mentioning anything about the

robot. Therefore, the propositions of the LTL formulas are defined as (oi, lj), which means

that “object oi is in location with the label lj” (He et al., 2015).

Given a scene with a finite set of objects O, a finite set of labels Γ, and a finite set

of locations L, with a function L that maps locations to labels, the atomic propositions

of this scene are elements of O × Γ. For instance, first, suppose a robot has to place an

object o1 ∈ O at the location with label l1 ∈ Γ. The specification for this task can be given

by ϕ1 = E(o1, l1), which means that “eventually object 1 is in location 1”. For the sake

of clarity, let us define pi = (oi, li) ∈ O × Γ. We specify a second task “Keep object 1 at

location 1 until object 2 and object 3 are sequentially placed at their locations”, which is

defined as ϕ2 = p1U(p2 ∧Xp3). More specifically, p1 will be true until (p2 ∧Xp3) becomes

true. If p2 becomes true in time k, then Xp3 will be true in time k + 1. Therefore p1 will

be true, at least, until time k. If we had multiple objects to be sorted, we would define

Ep1 ∧ Ep2 ∧ Ep3 ∧ · · · ∧ Epn that reads “eventually place object 1 in location 1 and so on”.

CHAPTER 3. MANIPULATION PLANNING FRAMEWORK 26

3.3.2 Manipulation Abstraction

The next step is to define an abstraction graph R = (V,E, L) that captures all the ways

the robot can manipulate the objects, in which the set of nodes V consists of the Cartesian

product between the setM of motion primitives, the set L of locations, the set O of objects,

and a set OL of objects locations. The set E contains the edges of R and L is a labeling

function that is defined later in Section 3.3.4 when we introduce the product graph. The

set of motion primitives contains the robot actions needed for pick-and-place tasks and is

defined as M , {GRASP,PLACE,HOLD,MOVE}. The motion graph M , (M, EM),
with EM ⊆ {(mi,mj) ∈ M ×M}, which is shown in Figure 3.2, defines the allowed

sequence of motions.

Figure 3.2: Motion graph M

The location set L , {loc1, ..., lock, locinter} represents the locations of interest in the

robot workspace where objects can be placed. Also, when an object is in the gripper,

it is considered to be in the intermediate location locinter. In other words, an object is

in the locinter when it is being manipulated. In the case of the manipulator end-effector

location, the locinter is defined as an arbitrary location in the workspace. Furthermore,

the location graph L , (L, EL) with EL ⊆ {(loci, locj) ∈ L × L}, which is shown in

Figure 3.3, represents how objects can be transferred between locations.

CHAPTER 3. MANIPULATION PLANNING FRAMEWORK 27

Figure 3.3: Location graph L

The set of objects is given by O = {o1, ..., on} and the set containing all the possibilities

for objects locations is given by OL = {(ō1,loc, . . . , ōn,loc) ∈ Ln : i 6= j ⇐⇒ ōi,loc 6= ōj,loc},
where ōi,loc is the location of the ith object. Finally, all sets are combined to obtain the set

of abstraction nodes V by doing the Cartesian product V =M×L× {O ∪ {∅}} ×OL.

Therefore, each node in V is given by the tuple V 3 v = (α, loc, o, oL), where α ∈ M is

an action, loc ∈ L is the end-effector location, o is the gripped object and oL ∈ OL is the

tuple that indicates the location of each object in the world.

The construction rules of the set of edges E ⊆ {(vi, vj) ∈ V ×V } that connect the nodes

V of R can be found in the work of He et al. (2015). Generally speaking, at least each

edge (v, v′) ∈ E in the abstraction must satisfy that (α, α′) ∈ EM and the unmentioned

elements remain the same, as explained next.

CHAPTER 3. MANIPULATION PLANNING FRAMEWORK 28

These are the construction rules of the set of edges E ⊆ {(ei, ej) ∈ V × V } that can be

found in the work of He et al. (2015). They were adapted to suit the formalism adopted in

this work.

1. v = (GRASP, loc, o, oL) and v′ =
(
HOLD, loc′, o′, oL

)
. In this case, there must be

some i such that ōi,loc = loc. This results in o′ = oi and ō′i,loc = locinter. In other

words, in the GRASP node, the object i being grasped must be in the end-effector

location. Thus, in the HOLD node, the object in the gripper will be the object i

and the location of object i will be gripper. In our case, the object is in the gripper,

when it is in the locinter location;

2. v = (HOLD, loc, o, oL) and v′ =
(
HOLD, loc′, o′, oL

)
. In this case, all elements

remain the same, except for loc′, which can take any value adjacent to that of loc in

the location graph. This means that, since an object is being held in the first node

HOLD, in the second node HOLD it can be held to any other location adjacent to

the first node in the location graph. For instance, if an object is being held at loc1,

it can either stay at the same location or be held to location locinter. See Figure 3.3;

3. v = (HOLD, loc, o, oL) and v′ =
(
PLACE, loc′, o′, oL

)
. There will be an edge transi-

tion between them if loc = loc′ 6= locinter, meaning that the robot will be holding the

object at one of the k locations in v and placing it at that location in v′;

4. v = (PLACE, loc, o, oL) and v′ =
(
MOVE, loc′, o′, oL

)
. In this case, o′ = ∅. Let i

be the object such that o = oi, then ōj,loc must not be loc for any j 6= i. Lastly,

ō′i,loc = loc. First, after an object is placed somewhere, the gripper will be empty.

Moreover, suppose object i is in the gripper, then all objects different from i must

not be at the location where the end-effector currently is. This condition must hold

because the end-effector must be at a location with no object in order to place the

object being held. Finally, the location of object i in the node MOVE will be equal

to the location of the end-effector at the node PLACE, which means that the object

i is placed where the end-effector currently is;

5. v = (MOVE, loc, o, oL) and v′ =
(
MOVE, loc′, o′, oL

)
. In this case, all elements

remain the same, except for loc′, which can take any value adjacent to that of loc
in the location graph. This rule is similar to rule 2. It means that the robot can

move the end-effector between any location connected in the location graph. For

example, if the end-effector is at loc1, it can either stay at the same location or move

to locinter. See Figure 3.3;

6. v = (MOVE, loc, o, oL) and v′ =
(
GRASP, loc′, o′, oL

)
. This edge exists as long as

loc = loc′ 6= locinter. This rule is similar to rule 3. This means that the robot can

only grasp an object if the end-effector is in one of the locations of interest.

CHAPTER 3. MANIPULATION PLANNING FRAMEWORK 29

Invalid nodes may be generated by the Cartesian product (He et al., 2015). For instance,

it is not possible that object 1 be at the gripper while at location 1. Therefore, in this

work, the set of reachable nodes is incrementally constructed by starting from an initial

node v0 ∈ V and following the construction rules of E that only point to valid nodes.

3.3.3 Deterministic Finite Automaton

After constructing the abstraction graph R, the formula ϕ is converted into a DFA Aϕ
that specifies all the ways the robot can execute the task while fulfilling the formula ϕ

(He et al., 2015). First, a Büchi automaton that accepts exactly the infinite words that

satisfy ϕ is constructed (Vardi and Wolper, 1994). If the words accepted are finite, it

becomes a finite automaton (Baier and Katoen, 2008, ch. 4). Finally, if the automaton

is nondeterministic, there is a DFA that accepts the same words (Vardi, 1996). See the

works of Kupferman and Y. Vardi (2001); Vardi and Wolper (1994); Vardi (1996) for more

details about the conversion from ϕ into Aϕ.

The DFA is defined as Aϕ = (Z, z0, Σ, δ, F), where Z is the finite set of states, z0 is the

initial state, Σ is the set of events that causes transitions in the automaton, δ : Z×Σ → Z

is the transition function, and F is the set of final states (also known as accepting or

marked states). The set of events Σ is also the alphabet of the LTL formula, that is,

Σ = 2A. The automaton begins in the initial state z0 and when an event represented by

the letters from Σ occurs, there is a transition to the next state following the transitions

in δ. This happens until a state in F is reached. The transitions between each state are

represented by letters and the path that leads to a state in F represents the sequence of

truth assignments of the propositions that satisfy the specification (He et al., 2015). In

other words, a sequence of letters represents a word accepted by the automaton.

For example, consider the automaton in Figure 3.4,4 with A = {p0, p1, p2}, where

pi = (o, li) and i ∈ {0, 1, 2}. Therefore, Σ = {∅, {p0}, {p1}, {p2}, {p0, p1}, {p1, p2},
{p0, p2}, {p0, p1, p2}}. Given Ai = {pi}, an example of an accepted word is σ = A0A1A2.

The letter A0 = {p0} means that object o will be placed at a location with label l0, which

causes the transition from state 3 to state 2 because the letter {p0} is equivalent to the

logical condition p0 ∧ ¬p1 ∧ ¬p2. Similarly, letters A1 and A2 cause the transitions to

state 1 and 0, respectively. Again, the letter {p1} is equivalent to the logical condition

¬p0 ∧ p1 ∧ ¬p2 and {p2} is equivalent to ¬p0 ∧ ¬p1 ∧ p2. Therefore, the object o will be in

locations with labels l0, l1, and l2 in this sequence, but not simultaneously.

Nonetheless, there may be words or paths that do not respect the physical world.

For instance, one transition may require that an object be at multiple locations at the

same time, that is, (o, lj) ∧ (o, lk). This is exemplified in Figure 3.4 by the one-letter

word σ = {p0, p1, p2}, which causes the transition from state 3 to the final state 0. This

4Generated at https://spot.lrde.epita.fr/app/ and then adapted.

CHAPTER 3. MANIPULATION PLANNING FRAMEWORK 30

Figure 3.4: Automaton Aϕ obtained from LTL specification ϕ = Ep0 ∧ Ep1 ∧ Ep2. State
0 is the final state. In this diagram the negation operator is given by ! and the Boolean
operator “and” is given by &. States marked red, green, blue, and magenta represents
the object in locations with labels l0, l1, and l2 and linter, respectively. The cyan arrows
represents an accepted path for an accepted word σ = A0A1A2. States marked with
multiple colors mean that the object can be at one of the locations indicated. For instance,
in state 1 the object may be in location with label l0 or l1 depending on the path taken.

transition means that the object will be simultaneously in locations with labels l0, l1, and

l2.

3.3.4 Product Graph

Last, the nodes in the set V of the abstraction graph R are combined with the states in

the set Z of the automaton Aϕ into a product graph P , (VP , EP), where VP = V × Z
and EP ⊆ {(pi, pj) ∈ VP × VP}. This combination represents how the robot can move the

objects to achieve the specified task (He et al., 2015). There is an edge (p, p′) ∈ EP from

p = (v, z) to p′ = (v′, z′), where p, p′ ∈ VP , if and only if there exists an edge (v, v′) ∈ E
and δ(z,Π(L(v′))) = z′, with L(v) being the labeling function

L(v) , {(p,P(v, p)) ∈ A× {T,F} : P(v, p) = T},

where

P(v, p) ,

T, if L ◦ F (oL, op) = lp,

F, otherwise.

CHAPTER 3. MANIPULATION PLANNING FRAMEWORK 31

The function P(v, p) determines if the object label lp in p = (op, lp) matches the label of

the corresponding object in the tuple oL of v = (α, loc, o, oL}. Furthermore, L : L → Γ

provides the corresponding label of a given location and F : O|O| ×O returns the object

location in oL corresponding to op. Lastly, Π(L) , {p : (p,T) ∈ L} generates the letter

that causes the transition in the automaton.

For example, consider O = {o1, o2}, Γ = {l1, l2}, L ={loc1, loc2, loc3}, A = {p1, p2, p3}
with p1 = (o1, l1), p2 = (o2, l1), and p3 = (o2, l2); also, L(loc1) = l1, L(loc2) = l1, and

L(loc3) = l2; lastly v = (MOVE, locinter,∅, oL), with oL = (loc1, loc2). In this case,

L(v) = {(p1,T), (p2,T), (p3,F)}

because the label of p1 = (o1, l1) and the location label of o1 (i.e., L(loc1)) are l1; hence,

(p1,T). Similarly, the label of p2 = (o2, l1) and the location label of o2 (i.e., L(loc2)) are l1;

therefore, (p2,T). The label of p3 = (o2, l2) is different from the location label of o2; thus,

(p3,F). Furthermore, the corresponding letter is Π(L(v)) = {p1, p2}.
As a result from the building process of P , a path from the start node p0 = (v0, z0) to

an accepting node pF = (vF , zF)—which consists of a node in which zF is an accepting

state—on P induces a path on R and a run on Aϕ. Furthermore, the path on R considers

that each object will be at exactly one location, at a given instant, and that objects

can be moved only by the manipulator (He et al., 2015). Finally, each node (v, z) ∈ P
contains the information v, which indicates what action the robot must do, where the

end-effector should be located, the object that should be on the gripper, and where the

objects should be placed in the world, and the state z that indicates the current state of

the automaton. Moreover, if an accepting state is reached, then the task plan executes

the task satisfying the specification. Therefore, a path is searched from the start node to

the accepting node. For instance, assume that (v, v′) ∈ E with v = (HOLD, loc1, oi, oL}
and v′ = (HOLD, locinter, oi, o

′
L}. This means that object i is on the gripper, which will

move from loc1 to locinter and oL =(. . . , locinter, . . .) and oL
′ = (. . . , locinter, . . .), since the

object begins in the gripper and stays in the gripper.

3.3.5 Searching for a Path in the Product Graph

Since there may be more than one solution in P , the Dijkstra’s algorithm is used to search

for the shortest accepting path on the product graph P, that is, the shortest path from

an initial node to an accepting one. The path found by Dijkstra’s algorithm will have a

minimum total edge weight. This path is passed to the low-level motion planner to plan

the necessary motions.

CHAPTER 3. MANIPULATION PLANNING FRAMEWORK 32

3.3.6 Coordinating Layer and Low-level Motion Planner

The path found by the high-level planner is sent to the coordinating layer that breaks the

path into the motion primitives. The GRASP and PLACE actions are precomputed and

mean to close and open the end-effector gripper, respectively. In the original framework,

the HOLD and MOVE actions initial and goal locations are mapped to configurations and

are sent to the low-level motion planner, which solves the continuous motion planning

query. In the work of He et al. (2015), sampling-based motion planning techniques are

used to implement the paths required (Sucan and Kavraki, 2012; Kuffner and LaValle,

2000).

The coordinating layer computes the path with the help of the low-level motion planner.

However, the low-level planning query may fail within the given time (He et al., 2015).

This may happen due to very complex obstacles in the environment not allowing a possible

solution. It may also fail because of the high dimensionality (generally 6 or higher) of

the manipulation planning problem. The presence of narrow passages may also require

more planning time than is given to the low-level planner, which may also be a cause for

failure. In the case of failure, the coordinating layer asks the high-level planner to generate

a new path. Moreover, it also updates the edge weights of the failed path on the product

graph proportional to the planning time used. Hence, in the next search for a path on the

product graph, the failed path will be avoided, since it has a greater total edge weight.

With this approach, there is a synergy between the layers resulting in the generation of

viable continuous trajectories for the robot. Last, the successful motion plan is passed to

the motion controller to be executed.

3.4 A New Approach for the Planning Framework

In this work, differently from the work of He et al. (2015), the high-level plan is executed

by a constrained motion controller (Marinho et al., 2019) (see Figure 3.1b). This way, we

remove the need for a motion planning layer and a coordinating layer. Note that without

these two layers, the edge weights in the product graph are kept constant and equal to

one. Although we have used Dijkstra’s algorithm to search for a path on the product

graph, breadth first search can also be used since it finds optimal paths with relation

to the number of edges. This approach and its advantages will be presented in the next

chapter. Now, we take a closer look at the execution of the manipulation actions.

3.5 Execution of Manipulation Actions

The main objective of the constrained motion controller is to execute the task plan actions

generated by the high-level planner. The activation of constraints depends on the action

CHAPTER 3. MANIPULATION PLANNING FRAMEWORK 33

to be performed. Recall from Section 3.3.2 that the robot actions are GRASP, HOLD,

PLACE, and MOVE. The grasp and place actions are executed by closing and opening the

gripper, respectively. The hold and move actions are executed by the motion controller.

The only difference between both is that during hold, the robot is holding an object from

one location to another, and during move, the robot is moving the empty end-effector from

one location to another. Also, recall from Section 3.3.2 that for the robot to move between

locations, it has to pass through the intermediate location (see Figure 3.3). Moreover,

the task plan actions will always follow the sequence of nodes in the motion graph (see

Figure 3.2). To execute the task plan, we iterate through the plan nodes. However, to

correctly pick-and-place objects between locations, we break down the move, grasp, hold,

and place actions into more steps.

The transferring of an object between two locations starts with a node that has an

action move and end-effector location at the intermediate location. The next node will be

a move node that is divided into two actions: pre-move and move. The pre-move action

moves the end-effector to a location above the object on the object centerline and the

move action makes the approach of the end-effector to the object location along the object

centerline. This is done to always approach the object from the correct side and prevent

undesirable displacements of the object since in this work the manipulable objects are

cuboids. In the sequence, we have a grasp node that is split into grasp and post-grasp

actions. The grasp action sends a command to close the gripper at the object’s location

and the post-grasp hold action makes the end-effector hold the object to a location above

the target plane where the object currently is. Afterward, we have a hold node with

intermediate location that makes the end-effector hold the object to the intermediate

location. Next, there is a relaxed hold node that holds the object to the target plane. The

relaxed hold allows placing the object anywhere within the relaxed target region. Lastly,

we have a place node that is divided into place and post-place move. The place node sends

a command to open the gripper and place the object on the target plane. The post-place

move node moves the end-effector to a location above the object. Finally, the last node

will be a move node to the intermediate location. From this point on, the process repeats

itself until all the objects are on the desired locations. See Figure 3.5.

CHAPTER 3. MANIPULATION PLANNING FRAMEWORK 34

Pre-Move Move Grasp
Post-Grasp

Move Grasp

Location
Object

Move

Move

Intermediate

Hold

Hold

Hold

Relaxed Hold

Target Plane

Place
Post-Place

Place

Target Plane

Location

Above
Object

Location
Above
Target

Intermediate

Location

Location
Above
Object

Location
Object
Location

Plane

Hold

Move

Figure 3.5: Task plan action sequence to transfer an object between two locations. The
blue, red, green, and orange nodes represent the move, grasp, hold, and place nodes,
respectively.

3.6 Conclusion

In this chapter, the manipulation planning framework of He et al. (2015) was presented

in detail. It consists of a high-level planner, a coordinating layer, and a low-level motion

planner. First, the high-level planner receives an LTL task specification, which is converted

into a DFA. In the sequence, a rich abstraction is constructed, which represents all the

ways the robot can manipulate objects in the workspace. Next, the abstraction and the

DFA are combined into a product graph, which represents all the ways the robot can

achieve the task respecting the LTL task specification. The Dijkstra’s algorithm runs

on the product graph and finds a path for the task plan, which is sent to a low-level

sampling-based motion planner. Finally, the generated motion planner is sent to a motion

controller, which executes it. In the case of a motion planning failure, the edge weights

of that path in the product graph are increased, and it is searched for a new high-level

plan. Because of the increased weights in the failed path, it is not chosen anymore. In this

way, there is a synergy between high- and low-level planning, which generates only viable

continuous trajectories for the robot. Afterward, we shortly mention a new approach for

the planning framework that uses a constrained motion controller, which will be discussed

on the next chapter. Last, we explain the relation between the task planner and the motion

controller and how the task plan actions are executed.

4
Constrained Motion Controller

In Chapter 3, we have addressed the planning framework of He et al. (2015) and have ended

the chapter mentioning that in this work we use a constrained motion controller instead of

a motion planning layer. Moreover, we have given a problem statement considering the

assistive robotics scenario. This chapter presents the controller and, afterward, defines

suitable constraints for our assistive robotics application. In addition to well known

constraints, it presents a new approach to define conic constraints. Next, we mention

the available control objectives. Afterward, we summarize the constraints and control

objectives used during each task plan action. Finally, we conclude the chapter with the

main advantages of the constrained motion controller.

4.1 Constrained Motion Controller

The controller is based on an optimization problem that minimizes the joint velocities,

q̇ ∈ Rn, in the `2-norm (i.e., the commonly used Euclidean norm) sense while respecting

hard constraints, such as obstacles in the workspace, joints limits, etc. Given a desired

task vector xd ∈ Rm, where ẋd = 0, ∀ t, the task error x̃ , x− xd, and a gain η ∈ (0,∞),

35

CHAPTER 4. CONSTRAINED MOTION CONTROLLER 36

the control input u is obtained as (Marinho et al., 2019)

u ∈ argmin
q̇

‖Jq̇ + ηx̃‖2
2 + λ ‖q̇‖2

2

subject to Wq̇ ≤ w (4.1)

where J ∈ Rm×n is the task Jacobian, λ ∈ [0,∞) is a damping factor and W ∈ Rl×n

and w ∈ Rl are used to impose linear constraints in the control inputs. In addition to

describing poses, the task vector xd can also be used to describe geometric primitives

(points, lines, planes, ...) in the workspace. In this sense, the end-effector will converge

to the specified desired task vector. In the case that the end-effector must follow a time

varying task-vector (i.e. ẋd 6= 0), a feedforward term can be added in the control law to

compute the control input to track a trajectory (Adorno and Marinho, 2020)

u ∈ argmin
q̇

‖Jq̇ + ηx̃− ẋd‖2
2 + λ ‖q̇‖2

2

subject to Wq̇ ≤ w . (4.2)

In order to prevent collisions with the workspace, we use the Vector Field Inequalities

(VFI) framework (Marinho et al., 2019), which requires distance functions between two

collidable entities and the corresponding Jacobian matrices.

The vector-field inequality for dynamic elements requires the following (Marinho et al.,

2019):

1. A function d , d(q, t) ∈ R, where t is the time and q ∈ Rn is the robot configuration

vector, that encodes the (signed) distance between the two collidable entities. The

robot entity is kinematically coupled to the robot, and the other entity, called the

restricted zone, is part of the workspace (or part of another robot).

2. A Jacobian relating the time derivative of the distance function and the joint’s

velocities in the general form

ḋ = ∂(d(q, t))
∂q︸ ︷︷ ︸
Jd

q̇ + ζ(t), (4.3)

in which the residual ζ(t) = ḋ− Jdq̇ contains the distance dynamics unrelated to

the joint’s velocities. More specifically, the residual contains the components that

cannot be controlled. Alternatively, ζ(t) = ∂(d(q,t))
∂t

.

CHAPTER 4. CONSTRAINED MOTION CONTROLLER 37

Since in this work we are not tracking or estimating the movement of the geometrical

entities, the residual is ζ(t) = 0 for all t.

To prevent collisions with the workspace, it is desired that the robot entity remains

outside a restricted region. Hence, the signed distance d̃ , d̃(q, t) = d− dsafe is defined,

where dsafe ∈ [0,∞) is an arbitrary constant safe distance and dsafe represents the boundary

of the restricted region (Marinho et al., 2019).

The restricted region ΩR and safe region ΩS are (Marinho et al., 2019):

ΩR , {q ∈ Rn : d̃(q, t) < 0, t ∈ [0,∞)}, (4.4)

ΩS , {q ∈ Rn : d̃(q, t) ≥ 0, t ∈ [0,∞)}. (4.5)

Furthermore, the following inequalities must hold for all t (Marinho et al., 2019):

˙̃d ≥ −ηdd̃ ⇐⇒ −Jdq̇ ≤ ηdd̃, (4.6)

where ηd ∈ [0,∞) is used to determine the maximum approach velocity. The greater is ηd,

the greater is the approach velocity.

Analogously, in order to make the robot entity remain inside a safe region, the dsafe is

redefined to generate the signed distance d̃ = dsafe − d, and the following inequalities must

hold for all t (Marinho et al., 2019):

Jdq̇ ≤ ηdd̃. (4.7)

In this sense, by using the definition of restricted and safe regions, the constraints allow

the definition of regions of interest.

4.2 Constraints

This section presents the constraints used in this work to prevent collisions with the

workspace, define regions of interest, impose joint limits, and constrain the end-effector

z-axis orientation.

4.2.1 Plane Constraints

Plane constraints can be used to prevent end-effector collisions with walls and objects in

the workspace, but also to constrain the end-effector inside a region of interest. In this

work, we use three plane constraints to prevent end-effector collisions with two walls and

the table in the workspace (Figure 4.2a) and four planes to constrain the end-effector

inside an inverted pyramid trunk region of interest as shown in Figure 4.1. Similarly to

CHAPTER 4. CONSTRAINED MOTION CONTROLLER 38

the work of Quiroz-Omana and Adorno (2019), these seven constraints can be written as

W(πi) : −Jp,nπi q̇ ≤ ηπd̃p,nπi , (4.8)

where i ∈ {1, 2, . . . , 7} and d̃p,nπi = dp,nπi − dπ,safe, with dπ,safe being the safe distance to

each plane and dp,nπi and Jp,nπi is the Jacobian that satisfies ḋp,nπi = Jp,nπi q̇ as shown in

(4.3) (Marinho et al., 2019).

Target plane

Plane constraints

Object

Inverted pyramid trunk

Figure 4.1: Region of interest composed of an inverted pyramid trunk. For the sake of
clarity, the infinite red and blue planes that define the region of interest were truncated.

4.2.2 Cylindrical Constraints

To prevent end-effector collisions with non-manipulated objects while a given object is

being manipulated, we add semi-infinite cylindrical constraints to each non-manipulated

object (see Figure 4.2). Therefore, each object is constrained by a cylinder cut by a plane.

Given k objects, to each one of them is associated a cylindrical and a plane constraint,

which yields the following inequalities

W(cj) : −
 J semi,j

Jp,nπj

 q̇ ≤
 ηlD̃p,objectj

ηπdp,nπj

 , (4.9)

where j ∈ {1, . . . , k}, and D̃p,objectj = Dp,lj −R2
j , with Rj being the radius of the cylinder

around the j-th object; Dp,lj and J semi,j ∈ R1×n, with n being the number of robot joints,

are the point-static-line squared distance and its Jacobian, respectively (Marinho et al.,

CHAPTER 4. CONSTRAINED MOTION CONTROLLER 39

2019), and

J semi,j =

Jp,lj if dp,nπj < 0,

01×n otherwise.
(4.10)

The constraints allow any increase in the distance between the robot entity and the

restricted region (Marinho et al., 2019). Nonetheless, in the case that the distance

decreases, there is a decrease in the robot entity approach velocity to the restricted region.

The robot entity can always approach with a slower velocity. When the signed distance

becomes zero, the constraint does not allow increases in the approach velocity. Note that

the constraints do not induce a repulsive motion in the robot entity (Marinho et al., 2019).

In this sense, the cylindrical constraint W(cj) does not require a discontinuity in the plane

constraint because the robot entity will always be able to approach the object without

colliding with it. Moreover, in our work, the robot entity (i.e. the end-effector) will always

approach the object from above and will not need to cross the object plane.

In addition to preventing end-effector collisions with non-manipulated objects, we also

add an infinite cylindrical constraint collinear to the z-axis of the robot coordinate system

to prevent twisted configurations caused by the end-effector passing over the robot (see

Figure 4.2a). The constraint W(lz) is given by

W(lz) : −Jp,lz q̇ ≤ ηlD̃p,lz , (4.11)

where D̃p,lz = Dp,lz −R2
z, with Rz being the radius of the cylinder around the z-axis of the

robot coordinate system; Dp,lz and Jp,lz are the point-static-line squared distance and its

Jacobian, respectively (Marinho et al., 2019).

CHAPTER 4. CONSTRAINED MOTION CONTROLLER 40

Rz

R2

R1

R3

l3
l1

l2

lobject
Locations

lz

(a) The red cuboid with the blue centerline is the
object to be manipulated, the other objects are already
in their region of interest. The semi-infinite cylinders
to prevent collisions with the non-manipulated objects
are represented by the light shaded purple cylinder,
with pink centerlines, around each object, and the
white planes that cut each cylinder. The light shaded
yellow planes are used to prevent collisions with the
environment. The coordinate frames indicate locations
in the scene. The light shaded green cylinder is the
cylinder around the z-axis of the robot coordinate
system.

(b) Cylindrical constraint combined with
plane constraint. The blue cuboid repre-
sents the object, the purple cylinder in-
dicates the cylindrical constraint, and the
white plane cuts the cylinder.

Figure 4.2: Plane and cylindrical constraints

4.2.3 Line Constraints

The approach action of the end-effector to grasp an object is constrained to the object

centerline that is parallel to the robot z-axis coordinate frame. Considering that the

manipulable objects are cuboids, this is done to prevent the end-effector of approaching

the object from the sideways causing unwanted collisions with the object. Given an object

to be grasped, we associate a line constraint to the object, which yields the following

equality constraint

W(lobject) : Jp,lobject q̇ = 0, (4.12)

where Jp,lobject is the point-static-line Jacobian. Figure 4.2a presents the line constraint to

which the end-effector is constrained while moving towards the object to be manipulated.

CHAPTER 4. CONSTRAINED MOTION CONTROLLER 41

4.2.4 Point-Cone Constraint: A New Approach to Define Conic

Constraints

In Section 4.2.1, the end-effector is constrained to an inverted pyramid trunk, and four

planes are used to define the squared target region. Now, consider a manipulation task in

which the end-effector must converge to a circular target region on a plane. In order to

accomplish that, we can define a cone cut by a plane with its centerline perpendicular to

the plane as in Figure 4.3.

π

H

h

R

l

r

φ

PA

l1

hc

PE

Figure 4.3: Point-cone constraint: the target circular region of interest is indicated in red,
the green inverted cone trunk is the conical region of interest to which the end-effector is
constrained.

First, we define the cone base radius R as the distance between the end-effector and

the line l that passes through the center of the cone. Then, the value of the target radius

r of the lower circle on the plane is chosen as desired. We define H as the height of the

whole cone. Next, we use the triangle relationship given by

R

r
= H

h
= hc + h

h
(4.13)

to obtain the distance h between the plane π and the cone apex PA as

h = hcr

R− r
, (4.14)

CHAPTER 4. CONSTRAINED MOTION CONTROLLER 42

where hc is the distance between the end-effector and the plane π. Now, we can calculate

the tangent of the angle φ between the cone center line l and the line l1 that connects the

cone apex PA to the end-effector PE as

tanφ = R

hc + h
. (4.15)

Up to now, everything is done only once.

Next, the first step is to update the value of the distance hc between the plane and the

end-effector. Afterward, the distance H ′ from the end-effector to the cone apex is obtained

as H ′ = h+ hc. Now, the squared distance R′2 between the end-effector and the cone is

obtained as

R′2 = (H ′tanφ)2. (4.16)

Finally, we calculate the squared distance D2 between the end-effector and the centerline

l to use it in the calculation of

D̃l = R′2 −D2, (4.17)

which is used to define the point-cone constraint given by

˙̃Dl ≥ −ηlD̃l, (4.18)

where
˙̃Dl = Ṙ′2 − Ḋ2. (4.19)

The derivative Ḋ2 with respect to time is given by Ḋ2 = Jp,lq̇ (Marinho et al., 2019). By

considering that Ṙ′ 6= 0, we have

˙̃Dl = d

dt
(R′2)︸ ︷︷ ︸
ζR′

− Jp,lq̇. (4.20)

Thus, we obtain

− Jp,lq̇ + ζR′ ≥ −ηlD̃l ⇒ Jp,lq̇ ≤ ηlD̃l + ζR′ . (4.21)

To calculate ζR′ = d
dt

(R′2), recall that R′2 = (H ′ tanφ)2 =
(
(h + hc) tanφ

)2
. To use the

same notation of Marinho et al. (2019), we define dπp,π , hc. Hence, ζR′ is given by

ζR′ = 2 tan2 φ(h+ dπp,π)ḋπp,π. (4.22)

Since ḋπp,π = Jp,πq̇ (Marinho et al., 2019) and applying 4.22 into 4.21 we obtain the

CHAPTER 4. CONSTRAINED MOTION CONTROLLER 43

point-cone constraint

W(lpoint
cone) :

[
Jp,l − 2 tan2 φ(h+ dπp,π)Jp,π

]
︸ ︷︷ ︸

Jcone,p

q̇ ≤ ηlD̃l. (4.23)

In comparison to the plane constraints used to define a squared region of interest in

Section 4.2.1, this approach of the point-cone constraint requires less complex calculations

during running time. During running time, only (4.16), (4.17) and J cone,p are necessary.

Meanwhile, in the case of using four planes to define a squared region of interest as in

Section 4.2.1, it is necessary to calculate four Jacobian matrices and four point-static-plane

distances. Last, four plane constraints require four inequalities in the control law, while

the point-cone constraint requires only one.

4.2.5 Additional Constraints

To prevent saturation of actuators we add joints velocities constraints W(q̇) (Quiroz-Omaña

and Adorno, 2018, Section 4.1.2). Lastly, since we will be manipulating objects that must

not suffer abrupt rotations along their axis, we add line-cone constraints W(lz,cone) to

constrain the end-effector z-axis within a cone (Quiroz-Omana and Adorno, 2019).

4.3 Control Objective

The constrained motion controller (4.1) presented in Section 4.1 allows to choose between

different control objectives such as the control of end-effector pose, orientation, or position,

as well as primitives attached to the end-effector, such as lines and planes, in addition to

distance control from target regions such as planes and cylinders (Adorno and Marinho,

2020). By choosing a control objective, the appropriate Jacobian J and task vector x ∈ Rm

are calculated for the current joint positions q ∈ Rn. Afterward, the control signal is

computed to regulate the closed-loop system to a set-point given by the task reference

xd ∈ Rm, which depends on the control objective (Adorno and Marinho, 2020).

In this work, one of the tasks that the robot must perform is to grasp objects with

specific poses. Hence, the control objective is set to pose control. More specifically, the

task vector x is the end-effector pose xRe with respect to the robot and the desired task

vector xd ∈ Rm is the grasp pose xRg with respect to the robot (see Figure (4.4)) and

J ∈ Rm×n is the pose Jacobian (Adorno and Marinho, 2020). The control input is given

by (4.1), where W ∈ Rl×n and w ∈ Rl are constructed by stacking the required constraint

matrices for each task plan action (see Table 4.1).

CHAPTER 4. CONSTRAINED MOTION CONTROLLER 44

zg

ygxg

ze

xe
ye
Fe

Fg

zR

yRxR

FR

xeg

xRe

xRg zw

ywxw
Fw

xwR

xwg

Figure 4.4: Pose control of the end-effector. The coordinate frames Fg, Fe, FR, and
Fw indicates the frames of the grasp pose, the end-effector, the robot, and the world,
respectively. The desired task vector is the grasp pose with respect to the robot given by
xd = xRg .

Recall from Section 2.3 that some tasks may be relaxed to a region. Instead of placing

an object with a specific pose, it may be placed at a target region at a target plane. To do

this, only one degree of freedom is required. Hence, there are more degrees of freedom

available to satisfy additional constraints. In this context, the other task that the robot

must perform is to move the end-effector towards a target plane. In this case, the control

objective is set to distance to plane control. Thus, the task vector x is the distance deff,nπi
between the end-effector and the target plane π (see Figure (4.5)). Moreover, the desired

task vector xd ∈ Rm is the desired distance ddesired between the end-effector and the target

plane π. Thus, similarly to (4.1), the distance to plane control input u is given by

u ∈ argmin ‖Jq̇ + ηd̃eff,nπ‖2 + λ ‖q̇‖2
2

subject to Wq̇ ≤ w , (4.24)

where d̃eff,nπ = deff,nπi − ddesired and J is the Jacobian that satisfies ḋeff,nπi = J eff,nπi q̇ as

shown in (4.3) (Marinho et al., 2019). Since we want the end-effector to move to the

target plane, we set ddesired = 0. As in the case of pose control, W ∈ Rl×n and w ∈ Rl are

constructed by stacking the required constraint matrices for each task plan action (see

CHAPTER 4. CONSTRAINED MOTION CONTROLLER 45

Table 4.1).

yπxπ

ze

xe
ye

Fπ

zπ

deff,nπi

zw

ywxw
Fw

Figure 4.5: Control of distance to target plane. The distance deff,nπi is the distance
between the end-effector and the red target plane.

The constraints that are activated during each action of Figure (3.5) and the control

objective used in this work are summarized in Table 4.1.

CHAPTER 4. CONSTRAINED MOTION CONTROLLER 46

Action Constraints Control

Objective

Pre-move W(q̇), W(π1), W(π2), W(π3), W(cj) for j ∈ {1, . . . , k},

W(lz), W(lz,cone).

Pose

Move W(q̇), W(π1), W(π2), W(π3), W(cj) for j ∈ {1, . . . , k},

W(lobject),W(lz), W(lz,cone).

Pose

Grasp — —

Post-grasp hold W(q̇), W(π1), W(π2), W(π3), W(cj) for j ∈ {1, . . . , k} and

j 6= ogripper, W(lz), W(lz,cone).

Pose

Hold W(q̇), W(π1), W(π2), W(π3), W(cj) for j ∈ {1, . . . , k} and

j 6= ogripper, W(lz), W(lz,cone).

Pose

Relaxed hold

(Plane constraints)

W(q̇), W(πi) for i ∈ {1, . . . , 7}, W(cj) for j ∈ {1, . . . , k} and

j 6= ogripper, W(lz), W(lz,cone).

Distance to target

plane

Relaxed hold

(Point-cone constraint)

W(q̇), W(π1), W(π2), W(π3), W(lpoint
cone), W(cj) for

j ∈ {1, ..., k} and j 6= ogripper, W(lz), W(lz,cone).

Distance to

target plane

Place — —

Post-place move W(q̇), W(π1), W(π2), W(π3), W(cj) for j ∈ {1, . . . , k},

W(lz), W(lz,cone).

Pose

Table 4.1: Constraints activation and control objective during each task plan action. The
ogripper is the number of the object currently in gripper.

4.4 Conclusion

In this chapter, we presented the constrained motion controller used to execute the high-

level plans generated by the high-level planner of the framework of He et al. (2015). The

controller is based on mathematical programming and uses the vector field inequalities

(VFI) framework of Marinho et al. (2019) to define the constraints. As a result, the system

becomes reactive, there is no need for a motion planning layer and it becomes possible

to define regions of interest. In Chapter 5, this advantage will be exploited to do task

relaxations and reduce the complexity of the planning framework. In Section 3.3.6, we

have described the coordinating layer and its relation with the motion planning layer in

the original framework. There is a need for more planning time for each motion planning

query that fails. Therefore the motion planning layer increases the total planning time. In

contrast, in the adapted framework, since the constrained motion controller executes the

task plan and does not require planning or replanning phases, no motion planning time is

added to the total planning time. With regard to the constraints used, we defined plane

and cylindrical constraints and a new approach to define conic constraints. We also showed

how the control inputs for pose and distance to plane control are defined and summarized

which constraint and control objective is used in each task plan action. The plane and

point-cone constraints defined in this chapter will be used to make task relaxations in the

next chapter.

5
Task Relaxation

The planning framework of He et al. (2015) was designed for pick-and-place tasks that are

described by multiple single locations. This means that each location is described by a

pose in the robot workspace. However, some tasks may benefit from the definition of a

region of interest—the relaxed task region—instead of a single location. First, we motivate

the use of the constrained motion controller by analyzing the complexity issues related

to relaxing tasks in the original planning framework of He et al. (2015). Afterward, we

present the task action that is relaxed. The relaxed task constrains the end-effector to

regions of interest, which are described using geometrical primitives represented by dual

quaternions. Hence, we give a short introduction about dual quaternion algebra. Next, we

give the definition of regions of interest and derive two regions that are used in this work.

5.1 Planning Complexity

The planning framework of He et al. (2015) depends, among other things, on the definition

of the set of locations. Recall from Section (3.3.2) that the set of locations contains all the

locations where objects can be in the environment. In this sense, the task space must be

discretized into locations where objects can be placed. The number of locations is related

to the size of the manipulation abstraction and, hence, to the computational complexity of

the high-level planner. If the amount of places for objects is increased, the planning time

will increase. Nonetheless, it may be interesting to define a region of interest for some

tasks. One way to do this is to discretize the region into multiple locations and sample

47

CHAPTER 5. TASK RELAXATION 48

one of the locations (see Figure 5.1). However, this would result in increasing the planning

complexity, since there would be an increase in the number of locations.

Figure 5.1: Discretization of regions in the workspace into multiple locations.

The number of valid nodes in the manipulation abstraction is given by 2(|L|+1)P (|L|+1)
|O|

(He et al., 2015), where |L| is the number of locations, |O| is the number of objects and P k
n

is the k-permutation from n elements. Therefore, the size of the manipulation abstraction

grows rapidly with the increase in the number of objects and locations. Hence, the

discretization of the workspace in multiple locations does not scale well. To solve this

issue, we adopt the constrained motion controller presented in Chapter 4, which allows

the definition of a target region of interest without the need for discretization, and the

system is reactive.

5.2 Task Relaxation

The planning framework proposed by He et al. (2015) was developed to solve the problem

of manipulating objects between locations to satisfy a given specification. However, some

tasks may be relaxed to a region, that is, the object may be placed anywhere within a

target region on a plane. In this sense, instead of requiring pose control (i.e., position

and orientation) during the whole task, it may be enough for the end-effector to move

CHAPTER 5. TASK RELAXATION 49

towards a relaxed target region of a target plane while staying within a region of interest

and satisfying additional constraints that prevent collisions with objects in the workspace

and keep the end-effector with the correct orientation. This means that we only need to

control the distance to the target plane and add constraints to define the region of interest

and to satisfy additional requirements. From the control point of view, this is the same as

relaxing the desired task vector to use fewer degrees of freedom (DOF). A possible solution

is to switch between control objectives during runtime depending on the geometric task

objective.

In the work of Figueredo et al. (2014), they propose to switch between desired task

vectors and control laws according to offline defined geometric task objectives. The

controller proposed by Figueredo et al. (2014) allows the use of different task vectors with

different number of DOF. The goal of the switching control strategy is to enable the use

of self-motion (i.e. movements of the links which do not disturb the end-effector location

(Bedrossian, 1990)) to obtain better performances when specifying secondary tasks such

as joint limits, obstacle avoidance, etc. To do this, complex tasks are divided into more

simple tasks such that each one requires less DOF. Instead of specifying a complete pose

configuration, bounded geometric regions are defined. In each region, a different task

vector is used. Hence, there is more room left for self-motion during some steps of the

task. This can be seen as a limitation of the task relaxation strategy of Figueredo et al.

(2014). If self-motion for secondary tasks is needed during some steps of the task, the task

may not be feasible. For instance, suppose that a task is divided into multiple steps such

that the number of DOF decreases with each step. If the robot is not redundant and pose

control is needed during any of these steps, all the available DOF will be used and there

will be no room for secondary tasks such as obstacle avoidance. Hence, the task may be

not physically feasible. Moreover, for feasible tasks, the switching strategy may cause error

overshoots when changing from a less restrictive control to a more restrictive control. In

addition to this, simple tasks such as the pick-and-place of objects in our manipulation

planning framework would still require the definition of different geometric regions.

In our adapted planning framework, the transfer of an object between two locations

is divided into the steps presented in Figure 3.5 and summarized in Table 4.1. In this

sense, we propose the relaxation of the step that consists in holding an object from the

intermediate location to a target plane. Instead of holding the object to a specific pose on

the target plane, we do a relaxed holding action that holds the object to a target region on

the target plane. This is done by controlling the end-effector distance to the target plane.

This way, instead of using six DOF to do pose control, only one DOF is used to control

the distance. The target region is obtained by using the plane or point-cone constraints

presented in Section 4.2 to obtain a rectangular or circular target region, respectively.

Table 5.1 recalls the actions used to pick-and-place an object between two locations, the

control objective used, and the number of DOF required.

CHAPTER 5. TASK RELAXATION 50

This work addressed the problem of relaxing the task of holding an object from an

intermediate location to a target region on a target plane. However, by taking a closer

look at each action of the pick-and-place sequence of actions, it can be seen that more

steps could be relaxed. More specifically, the holding of an object toward an intermediate

location could be relaxed to holding the object toward an intermediate region defined by

a plane. In this case, controlling the distance to a plane control objective could be used

again. Considering cuboid objects, the only action that could not be relaxed is the action

of moving the end-effector toward an object location to pick the object since it is necessary

to approach the object from specific directions to correctly grasp it. Table 5.1 summarizes

the actions and the possibility of doing task relaxation.

Action Control

Objective

Degrees of

freedom

Can be

relaxed?

Pre-move Pose 6 Yes
Move Pose 6 No1

Grasp — — —
Post-grasp hold Pose 6 Yes

Hold Pose 6 Yes
Relaxed hold

(Plane constraints)

Distance to target

plane

1 Relaxed

Relaxed hold

(Point-cone constraint)

Distance to

target plane

1 Relaxed

Place — — —
Post-place move Pose 6 Yes

Table 5.1: Task action, corresponding control objective, and number of degrees of freedom
required.

The remainder of this chapter describes the regions of interest to which the end-effector

is constrained while holding the object toward the rectangular or circular target region.

To describe regions of interest, we make use of geometrical primitives that are represented

by dual quaternions.

5.3 Dual Quaternion Algebra

Dual quaternions are dual numbers in which the primary and dual parts are quaternions.

Dual numbers were introduced by Clifford in the nineteenth century, who proposed the

dual unit ε to create a new algebra over the real numbers in which ε has the following

properties: ε 6= 0, ε2 = 0 (Adorno, 2017).

In a dual number a = a+εa′, a is the primary part and a′ the dual part. Both parts are

of the same type of elements. The usual operations of sum, subtraction, and multiplication

1This is true for cuboid objects, which is the case of this work.

CHAPTER 5. TASK RELAXATION 51

consider the ε operator and are defined in the work of Adorno (2017).

Quaternions were invented by Hamilton in the nineteenth century and are an extension

of the complex numbers (Adorno, 2017). They are elements of the set given by

H , {h1 + ı̂h2 + ̂h3 + k̂h4 : h1, h2, h3, h4 ∈ R} (5.1)

in which the imaginary units ı̂, ̂ and k̂ have the following properties ı̂2 = ̂2 = k̂2 = ı̂̂k̂ =
−1. Given a general quaternion h = h1 + ı̂h2 + ̂h3 + k̂h4, its conjugate is defined as

h∗ , h1 − h2ı̂ − h3̂ − h4k̂. The norm of a quaternion is ‖h‖ =
√
hh∗. Moreover, the

real part of h is obtained with Re (h) and contains the scalar h1. The imaginary part

Im (h) contains the imaginary components, that is, Im (h) , ı̂h2 + ̂h3 + k̂h4. As a result,

h = Re (h) + Im (h).
The set of pure quaternions Hp , {h ∈ H : Re (h) = 0} has a bijective relation with

R3. Thus, the point (x, y, z) ∈ R3 can be represented by p = pxı̂+ py ̂+ pzk̂. The set of

quaternions with a unit norm is S3 , {h ∈ H : ‖h‖ = 1}. They can be used to represent

a rotation r ∈ S3 given by r = cos(φ2) +n sin(φ2) of an angle φ ∈ R around a rotation axis

n ∈ S3∩Hp, such that n = nxı̂+ny ̂+nzk̂. Its conjugate is given by r∗ = cos(φ2)−n sin(φ2)
such that rr∗ = r∗r = 1. Sequential rotations r1, r2, . . . , rn are described by sequential

quaternion multiplications r1r2 . . . rn. Elements of the set of pure quaternions a, b ∈ Hp

can be used to calculate the inner product and cross product respectively (Adorno, 2017),

〈a, b〉 , −ab+ ba
2 ,a× b , ab− ba2 .

When the primary and dual parts of a dual number are quaternions, they are called

dual quaternions (Adorno, 2017) and form the set

H , {h1 + εh2 : h1,h2 ∈ H, ε 6= 0, ε2 = 0}. (5.2)

The conjugate of h ∈ H is h∗ = Re (h) − Im (h) and its norm is defined as ‖h‖ ,
√
hh∗ =

√
h∗h. The set of pure dual quaternions is defined as Hp , {h ∈ H : Re (h) = 0}.

A translation p can be combined with a rotation r to represent poses (position and

orientation) and are elements of the set of unit dual quaternion S , {h ∈ H : ‖h‖ = 1}.
A unit dual quaternion x ∈ S can always be written as x = r + 1

2 εpr (Adorno, 2017).

Last, the set S equipped with the multiplication operation forms the group Spin(3) nR3,

which double covers SE(3).
The operator vec4 : H→ R4 is defined and maps a quaternion to a four-dimensional

column vector. Moreover, a general dual quaternion is composed of eight elements g =
g1 +g2ı̂+g3̂+g4k̂+ε (g5 +g6ı̂+g7̂+g8k̂). Analogously, the operator vec8 : H → R8 is used

to map it into an eight-dimensional column real vector; i.e., vec8 g , [g1 g2 g3 g4 g5 g6 g7 g8]T .

CHAPTER 5. TASK RELAXATION 52

5.4 Regions of Interest

To do task relaxation, we need to define regions of interest. In this sense, this section

covers the definition of a few regions of interest. In this work, regions of interest can be

understood as areas or volumes in the three-dimensional euclidean space. Hence, we define

them as follows:

Definition 5.1 (Region of interest in R3). For the set of all points in R3, we have the

following subset I ⊆ R3, where I is the region of interest.

Regions of interest I stem from the combination of geometrical primitives, half-planes,

and half-spaces. Although regions of interest are usually represented in R3, we will define

them using geometrical primitives represented by dual quaternions. In this sense, we will

define them in the Hp.

Definition 5.2 (Region of interest in Hp). Since there is an isomorphism {Hp,+} ∼=
{R3,+} (Figueredo C., 2016, ch. 2), the set can be used to represent vectors of R3 within

the quaternion algebra. The isomorphism mapping between Hp and R3 is defined by

vec3 : Hp → R3, such that h = hxı̂+ hy ̂+ hzk̂ results in vec3 h = [hx hy hz]T . The inverse

mapping is defined by vec3 : R3 → Hp. Hence, for the set of all points in Hp, we have the

following subset I ⊆ Hp, where I is the region of interest.

5.4.1 Geometrical Primitives

Among the geometrical primitives, we shall use cylinders, planes, and half-spaces. By

combining such primitives we can obtain other primitives. For instance, a point on a plane

combined with a positive scalar yields a circle whereas a line combined with a positive

scalar result in an infinite cylinder. A finite cylinder is obtained from the intersection of a

cylinder with two planes. The intersection between planes forms polyhedra.

First, the definition of a line is given below.

Definition 5.3 (Plücker line (Adorno, 2017)). A Plücker line is an element of the set

Hp ∩ S and is represented by the dual quaternion

l = l + εm, (5.3)

where l ∈ Hp∩S3 represents the line direction and the line moment is given by m = pl× l,
in which pl ∈ Hp is an arbitrary point on the line.

A plane can be defined as follows.

Definition 5.4 (Plane (Adorno, 2017)). A Plane can be represented by the dual quaternion

π , nπ + εdπ, (5.4)

CHAPTER 5. TASK RELAXATION 53

where nπ ∈ Hp ∩ S3 is the normal to the plane and dπ ∈ R is the signed perpendicular

distance between the plane and the origin of the reference frame. Furthermore, given an

arbitrary point pπ in the plane, the signed perpendicular distance is given by dπ = 〈pπ,nπ〉.
Moreover, the set of all points on a plane is given by

Pπ , {pπ ∈ Hp : 〈pπ,nπ〉 = dπ}. (5.5)

In addition to Plücker lines and planes, we shall also use the definition of half-spaces.

Definition 5.5 (Half-space). The set of all points above a given plane π, i.e. they are on

the side to which the normal is pointing, is given by

Aπ , {pπ ∈ Hp : 〈pπ,nπ〉 > dπ} (5.6)

and the set of all points below a given plane, i.e. they are on the opposite side to which

the normal is pointing, is given by

Bπ , {pπ ∈ Hp : 〈pπ,nπ〉 < dπ}. (5.7)

As a result, the set of all points in space is given by

Hp = Aπ ∪ Bπ∪Pπ. (5.8)

5.4.2 Distance Functions

In addition to the geometrical primitives, we also need the definition of distance functions

between them to define more geometrical primitives such as cylinders, circles, and cones.

The distance between two points in space is given below.

Definition 5.6 (Point-to-point distance (Marinho et al., 2019)). Since the quaternion

norm is equivalent to the Euclidean norm, the Euclidean distance between two points

p1,p2 ∈ Hp is given by

dp1,p2 = ‖p1 − p2‖. (5.9)

Now we present the squared distance between a point and a line in space.

Definition 5.7 (Point-to-line squared distance (Marinho et al., 2019)). Given a point

p ∈ Hp in the space, the squared distance between p and an arbitrary line l = l+ εpl× l ∈
Hp ∩ S in space is given by

Dp,l , ‖p× l−m‖2. (5.10)

As a result, the point-to-line distance is given by

dp,l , ‖p× l−m‖. (5.11)

CHAPTER 5. TASK RELAXATION 54

Finally, the distance between a point and a plane is given.

Definition 5.8 (Point-to-plane distance (Marinho et al., 2019)). Given a frame Fπ
attached to an arbitrary plane in space, the signed distance between a point p ∈ Hp in the

space and the plane π, from the point of view of the plane, is given by

dπp,π = 〈p,nπ〉 − dπ. (5.12)

5.4.3 More Geometrical Primitives

The definition of a line can be used to define infinite solid cylinders.

Definition 5.9 (Infinite cylinder). An infinite cylinder is given by the set of all points

within a given distance from a line

c(l, R) , {p∈ Hp : dp,l ≤ R}, (5.13)

where R ∈ R is the cylinder radius, l ∈ Hp ∩ S is an arbitrary line in space and dp,l is the

point-to-line distance.

To define a cone, we will need the definition of line segments and a circle. First we

define a line segment.

Definition 5.10 (Line segment). A point p is on a line segment between points p1 and

p2, if the distance between p1 and p added to the distance between p and p2 is equal to

the distance from p1 to p2. Therefore the set of all points on a line segment is given by

ζp1,p2 = {αp1 + (1− α)p2 : α ∈ [0, 1]}. (5.14)

In addition to the definition of a line segment, we define a disk.

Definition 5.11 (Disk). A disk with boundary is the set of all points on a plane within a

given distance from a point

C(pπ, R) , {p ∈ Hp : 〈p,nπ〉 = dπ ∧ dp,pπ ≤ R}, (5.15)

where R ∈ R is the disk radius, pπ is the disk center, and dp,pπ is the point-to-point

distance. See Figure 5.2.

CHAPTER 5. TASK RELAXATION 55

π

pπ

R

n

dπ

p

dp,pπ

Figure 5.2: Disk C(pπ, R) with disk center pπ and radius R.

The definition of line segments and a disk can be used to define a right cone.

Definition 5.12 (Solid cone). A cone is the union of all line segments connecting a

common point, i.e. the apex, to all points on the cone base, i.e. a disk. Thus, the set of

all points on the cone can be given by

CC(pπ ,R)
pA

,
⋃

pC∈C(pπ ,R)
ζpA,pC , (5.16)

where pA ∈ HP is the cone apex, C(pπ, R) is the disk with center pπ and radius R ∈ R,

and pC ∈ C(pπ, R) is a point on the disk. See Figure 5.3.

CHAPTER 5. TASK RELAXATION 56

π

R

n

dπ

p
dp,pπ

pπ

pA

pC

ζpA,pC

Figure 5.3: Cone CC(pπ ,R)
pA

with apex pA and cone base given by the disk C(pπ, R).

5.4.4 Inverted Pyramid Trunk Region of Interest

The inverted pyramid trunk region of interest IQ constrained by planes in Section 4.2.1 can

be defined as the intersection of the half-space above the target plane with the half-spaces

that represent the points above the planes constraining the squared region. This can be

done by using (5.6). Hence, we obtain

IQ = Aπt ∩ Aπ1 ∩ Aπ2 ∩ Aπ3 ∩ Aπ4 , (5.17)

where AπtAπ1 , . . . ,Aπ4 are the half-spaces formed by the planes constraining the region of

interest. See Figure 5.4.

CHAPTER 5. TASK RELAXATION 57

nπ1

nπ2

nπ3

nπ4

nπt

Pπt Aπ2

Aπ3

Aπ1

Aπ4

Figure 5.4: Inverted pyramid trunk region of interest IQ. For the sake of clarity, the
infinite target plane Pπt and the four half-spaces Aπ1 , . . . ,Aπ4 were truncated.

5.4.5 Inverted Cone Trunk Region of Interest

The inverted cone trunk region of interest IC constrained by the cone trunk and the target

plane in Section 4.2.4 is given by the intersection of the target plane Pπt parallel to the

cone base plane PπC with the cone. Thus, we have

IC = Aπt ∩ C
C(pπC ,R)
pA , (5.18)

where Aπt is the set of points of the half-space above the target plane to where the

end-effector must move and C
C(pπC ,R)
pA is the set of points within the cone. See Figure 5.5.

CHAPTER 5. TASK RELAXATION 58

RpπC

pA

Pπt

PπC

nπt

Figure 5.5: Inverted cone trunk region of interest IC. For the sake of clarity, the infinite
target plane Pπt was truncated.

5.5 Conclusion

This chapter has started by describing the complexity issues related to discretizing the

workspace into multiple locations in the planning framework of He et al. (2015). It is

shown that the discretization of the workspace into multiple locations is not suitable for

the framework, since it increases the number of locations and hence the size of the planning

graph. Thus, this approach does not scale well if it is desired to do task relaxation. Next,

we have presented two task relaxation approaches that are based on the definition of

regions of interest. The first one is based on switching between task vectors that require

less DOF according to the region of interest and the second is based on choosing a control

objective that can achieve the task by constraining the end-effector to a single region of

interest. We adopt the latter and use dual quaternion algebra to describe the regions of

interest.

6
Experiments and Results

This chapter will address the evaluation of the adapted planning framework of He et al.

(2015) to use the constrained motion controller (Marinho et al., 2019). First, we present

the computational tools used and evaluate the planning framework by devising four tasks

and analyzing the generated task plans. The results show that by using the constrained

motion controller instead of a motion planning layer, the total planning time is reduced.

Afterward, in the second section of the chapter, we analyze the constraints imposed in the

constrained motion controller to relax the task.

6.1 Computational Tools

The implementation of the planning framework proposed by He et al. (2015) was done in

C++ with the Boost Graph Library1 and the automata utilities from the Open Motion

Planning Library (OMPL) (Sucan et al., 2012).2 The LTL task is processed using Spot

(Duret-Lutz and Poitrenaud, 2004) and we performed simulations on CoppeliaSim3 using

ROS.4 Furthermore, we used the DQ Robotics library (Adorno and Marinho, 2020) for

robot modeling and control and to define the geometrical constraints, and constrained

convex optimization was implemented using IBM ILOG CPLEX Optimization Studio.5

1https://www.boost.org/doc/libs/1_71_0/libs/graph/doc/index.html
2https://ompl.kavrakilab.org/
3http://www.coppeliarobotics.com/
4https://www.ros.org/
5https://www.ibm.com/products/ilog-cplex-optimization-studio

59

https://www.boost.org/doc/libs/1_71_0/libs/graph/doc/index.html
https://ompl.kavrakilab.org/
http://www.coppeliarobotics.com/
https://www.ros.org/
https://www.ibm.com/products/ilog-cplex-optimization-studio

CHAPTER 6. EXPERIMENTS AND RESULTS 60

All the experiments were done on a single computer running Ubuntu 18.04 x64 with an

Intel Core i7-8550U CPU with 16GiB of memory and a GeForce MX150.

6.2 Evaluation of the Planning Framework

To test the planning framework, we created a simulation scene on CoppeliaSim where a

Kinova JACO robot must execute assistive tasks for a seated person, with limited or no

lower limbs mobility, who cannot reach farther objects in the scene. The robot is placed

on a table and the person is seated on a chair in front of the table. There are four colored

cuboid objects omeat, osalad , obook, open representing, meat (red), salad (green), book (blue)

and a pen (orange), respectively. In addition, eight colored regions of interest are depicted

representing preparation area lprep (dark gray), heating area lheat (red), cooling area lcool

(green), waiting area lwait (cyan), book area lbook (blue), two person-areas lpers (yellow),

and pen area lpen (orange). Initially, the meat is in the preparation area, the salad is in

the waiting area, the pen is in the pen area, and the book is in one of the person areas, as

shown in Figure 6.1.

meat

waiting

book

person

cooling

pen

preparation

(a) Squared regions of interest. (b) Circular regions of interest.

Figure 6.1: Scene for an LTL specification. The red, green, blue and orange cuboids
represent the meat, salad, book, and pen, respectively. The regions of interest are indicated
in the figure.

The planning framework generates all the graphs and searches the product graph P for

an accepting path, that is, a task plan. Afterward, the robot iterates over the nodes of the

accepting path executing the actions considering the scene locations. During HOLD, the

CHAPTER 6. EXPERIMENTS AND RESULTS 61

robot holds an object from one location to another, and during MOVE, the robot moves

the empty gripper from one location to another. Let us assume the robot is currently at

node k with action MOVE and end-effector location loci. Assume that at the node k + 1,

the end-effector location is locj. Therefore, the end-effector will move from loci to locj.

Four tasks with increasing complexities were devised. All tasks require the planner to

identify that at least one location is occupied and an object must be removed from one

location before continuing the task.

Task 1: “First, heat the meat and serve the salad, next serve the

meat.”

To express task 1 in co-safe LTL, we define pm,h = (omeat, lheat), ps,p = (osalad, lpers) and

pm,p = (omeat, lpers). Hence,

ϕ1 = E(pm,h ∧ ps,p ∧ XE(pm,p)). (6.1)

The automaton generated from ϕ1 has three states and the planner explores 16975
nodes in the product graph. The total planning time average is 1.65 seconds. Since task 1

is a sequential task, the planner generates a task plan that follows the specified order of

manipulation. The formula for this task does not specify what should be done with the

book in front of the person. Hence, the planner generates a task plan that heats the meat,

then serves the salad and then serves the meat. However, after the salad is served, both

locations in front of the person are occupied by the book and the salad. Thus, the planner

decides to remove the salad instead of the book. Should both the meat and the salad be

served together, it would be necessary to explicitly specify that.

CHAPTER 6. EXPERIMENTS AND RESULTS 62

Task 2: “First, move book to the book region. Next, serve the

salad and heat the meat in any order. Afterward, serve the meat

while the salad is being eaten. Keep the book on the book posi-

tion during the whole task execution.”

For task 2, we define pb,b = (obook, lbook), ps,p = (osalad, lpers), pm,h = (omeat, lheat), and

pm,p = (omeat, lpers). As a result ϕ2 is given by

ϕ2 = E
pb,b ∧ ¬ps,p ∧ ¬pm,h∧

XE
(
pb,b ∧ E(ps,p) ∧ E(pm,h)∧

XE
(
pb,b ∧ ps,p ∧ XE(ps,p ∧ pm,p)

)). (6.2)

After moving the book to the book region, task 2 gives freedom to the robot to decide if

the salad will be served first or, instead, if the meat should be heated first. Next, it will

serve the meat while the salad is being eaten. In comparison to task 1, task 2 specifies

that the salad and the meat must be placed in front of the person. Otherwise, the robot

would be free to remove the salad and only then serve the meat. The automaton generated

from ϕ2 has eight states and the planner explores 25098 nodes in the product graph. The

total planning time average is 2.40 seconds.

Task 3: First, move pen to the person. While the person is

reading the book and making notes, cool the salad and heat the

meat in any order. Next, serve the meat and the salad in any

order.

To write task 3, we define pp,p = (open, lpers), ps,c = (osalad, lcool), pm,h = (omeat, lheat),
pm,p = (omeat, lpers), ps,p = (osalad, lpers), pb,p = (obook, lpers). Therefore,

ϕ3 = E
(
pp,p ∧ ¬ps,c ∧ ¬pm,h ∧ ¬pm,p ∧ ¬ps,p∧

XE
(
pp,p ∧ ps,c ∧ pm,h ∧ ¬pm,p ∧ ¬ps,p ∧ pb,p∧

XE
(
pm,p ∧ ps,p

)))
. (6.3)

As specified in task 3, first, the robot moves the pen to the person. As in task 2, the

CHAPTER 6. EXPERIMENTS AND RESULTS 63

robot has the freedom to decide what it does next: cool the salad or heat the meat. The

planner generates a plan that makes the robot heat the meat and afterward cools the

salad. At this point, both locations in front of the person will be occupied by the pen

and the book. The planner correctly identifies that, but the task specification does not

specify which location should be freed first and also does not indicate where the pen or

the book should be moved. Hence, the planner again has the freedom to decide what to

do. It first decides to move the pen to the preparation area. Once more, the planner can

decide whether to serve the meat or the salad. It decides to serve the meat. Since both

salad and meat must be served together, the planner arbitrarily moves the book to the

heating area and, finally, serves the salad. The automaton generated from ϕ3 has four

states and the planner explores 119037 nodes in the product graph. The total planning

time average is 12.94 seconds.

Task 4: First, move the pen to the person and the book to the

book area in any order. Also, eventuallydo the following in any

order: heat meat and eventually cool salad; serve meat and even-

tually serve salad; prepare salad and eventually place meat in

waiting area.

The fourth task uses the following definitions pp,pers = (open, lpers), pb,b = (obook, lbook),
pm,h = (omeat, lheat), ps,c = (osalad, lcool), pm,pers = (omeat, lpers), ps,pers = (osalad, lpers),
ps,prep = (osalad, lprep), and pm,w = (omeat, lwait). Hence,

ϕ4 = E
(
pp,pers ∧ pb,b ∧ ¬pm,h ∧ ¬ps,c ∧ ¬pm,pers ∧ ¬ps,pers ∧ ¬ps,prep ∧ ¬pm,w∧

E
(
pm,h ∧ Eps,c

)
∧ E

(
pm,pers ∧ Eps,pers

)
∧ E

(
ps,prep ∧ Epm,w

))
. (6.4)

Task 4 is very similar to the third task proposed by He et al. (2015) indicated as ϕ7

in Table 6.1. First, the generated plan makes the robot move the book to the book area

and next the pen to the person. In the sequence, the planner has a lot of options. It can

execute the first part of each subtask and, afterward, the second part or it can execute

both the first and second parts of each task sequentially. The planner chooses the former.

Note, however, that the planner could also make a combination of both approaches. The

automaton generated from ϕ4 has four states and the planner explores 288166 nodes in

the product graph. The total planning time average is 32.27 seconds.

Table 6.1 shows the planning data for the four tasks, which have the same number of

objects (four) and locations (eight). The number of states and edges in the DFA indicates

the complexity of the task. The planning time Tplanning with the associated standard

CHAPTER 6. EXPERIMENTS AND RESULTS 64

deviation (s.d.) corresponds to an average of 50 runs. As expected, an increase in the task

complexity increases the planning time because more nodes are explored in the product

graph and then Dijkstra runs on a larger graph. In addition, Table 6.1 also shows the

results for three tasks with similar complexities in the original framework of He et al.

(2015). Last, Figure 6.2 shows the plot of the planning time for tasks 1-4 from Table 6.1.

Tasks 1, 2, and 4 are similar in the adapted and original framework. Task 3 has no similar

task in the original framework. The total planning time of the adapted framework is lower

since there is no low-level motion planning time. Finally, to exemplify the execution of a

task, a video of task 2 can be seen at https://youtu.be/h3K-RsdAiCs.

Table 6.1: Planning data for ϕ1, ϕ2, ϕ3, and ϕ4.

Task |Aϕ| |EAϕ| |VP | Tplanning(s) Tlow-level(s)
Framework with constrained motion controller

ϕ1 3 5 16975 1.65418 (0.152028) —
ϕ2 8 20 25098 2.40551 (0.203752) —
ϕ3 4 7 119037 12.9369 (1.18004) —
ϕ4 28 218 288166 32.2673 (2.77166) —

Original framework
ϕ5 2 3 44100 2.76 12.32
ϕ6 8 27 75511 4.48 8.07
ϕ7 27 290 498000 33.12 31.15
|Aϕ| and |EAϕ | are the number of states and edges in the DFA, respectively, |VP | is the
total number of nodes in the product graph, Tplanning (s.d.) is the total high-level planning
time accounting for the generation of graphs and the Dijkstra search for a path in the
product graph P. Tlow-level is the total low-level motion planning time in the original
framework.

Figure 6.2: High-level and low-level planning time.

https://youtu.be/h3K-RsdAiCs

CHAPTER 6. EXPERIMENTS AND RESULTS 65

6.3 Evaluation of Relaxed Task Constraints

The main objective of task relaxation in this work is to make the end-effector place objects

within a target region on a target plane to release degrees of freedom that can be used

for secondary tasks such as avoiding obstacles and preventing joint limits. While the

end-effector holds the object toward the target plane, it must stay within a specified region

of interest. Two target regions were devised: a squared region and a circular region. The

squared region is defined by using planes as presented in Section 4.2.1 and the circular

region can be obtained by using a cone as discussed in Section 4.2.4. In the case of the

squared target region, the end-effector must stay within an inverted pyramid trunk region

of interest (Section 5.4.4). To move toward the circular target region, the end-effector

must stay within a inverted cone trunk region of interest (Section 5.4.5). To define the

squared and circular target regions it is necessary to determine some parameters.

6.3.1 Determining the Parameters of the Target Regions

To define the plane constraints, it is necessary to choose the side of the squared region.

The objects being manipulated in the simulation scene are cuboids (Figure 6.1) that must

always fit into the target region. To always fit a cuboid with side l within a square with side

L, the squared target region must be slightly smaller than the square. More specifically,

the desired squared region side is Ld = L− l
√

2 (see Figure 6.3a).

In the case of the point-cone constraint, the target radius of the circular target region

must be defined. To fit the cuboid with side l within a circular region with radius R, we

take a similar approach. The desired circular target region radius rd must be smaller than

the circular region radius R and is given by rd = R− l
√

2
2 (see Figure 6.3b).

CHAPTER 6. EXPERIMENTS AND RESULTS 66

L

l

L−l
√

2
2

Ld = L− l
√

2

(a) Squared region: the gray square with side L− l
√

2
indicates the squared target region, the yellow square
indicates the squared object with side l, and the pink
square with side L is the region where the cuboid must
placed.

R
l

rd = R− l
√

2
2

(b) Circular region: the pink circular region with radius
R indicates where the cuboid must be placed, the green

circle with radius rd = R − l
√

2
2 is the circular target

region, and the yellow square indicates the squared
object with side l.

Figure 6.3: Target regions.

In the simulation scene used in this work (Figure 6.1), the squared regions have

side L = 0.2m and the circular regions have radius R = 0.1m. The cuboid object has

side l = 0.08m. Now it is possible to define the side of the squared target region as

Ld = L− l
√

2 = 0.086863m and the circular target region radius as rd = R− l
√

2
2 obtaining

rd = 0.0434315m. These parameters were kept constant in all the tasks.

6.3.2 Constraints Parameters

The constraints parameters used for all simulations were kept constant. Each constraint

has its own parameters. They are presented in Table 6.2.

CHAPTER 6. EXPERIMENTS AND RESULTS 67

Constraint Gains Parameters
Joint limits W(q̇) k = 0.1, β = 0.98 Jaco robot joint limits

Walls and table W(π1), W(π2),
W(π3)

ηπ = 5.0 dπ,safe = 0.05m

Squared target

region

W(π4), W(π5),
W(π6), W(π7)

ηπ = 1.0 dπ,safe = 0.0m

Objects cylinders W(cj) for

j ∈ {1, . . . , k}
ηl = 5.0, ηπ = 5.0 R = 0.0567m,

dπ,safe = 0.15m
Robot z-axis

cylinder

W(lz) ηl = 5.0 Rz = 0.15m

Object
centerline

W(lobject) — —

End-effector

z-axis line-cone

W(lz,cone) ηl = 50.0 φsafe = 0.1rad

Circular target

region

W(lpoint
cone) ηl = 50.0 r = rd = 0.0434315m

Table 6.2: Constraints parameters used during all the experiments.

The coordinates of the geometric primitives used to define the constraints are defined

as follows:

• The coordinates of the walls and table planes are the coordinates of the light shaded

yellow planes in the simulation scene (see Figure 4.2a). Note that the planes are

slightly away from the walls and the table. This is done to increase safety and

prevent collisions;

• The objects cylinders coordinates are the object’s location at each time instant;

• The coordinates of the robot z-axis cylinder are the robot coordinate system coordi-

nates;

• The coordinates of the object centerline are the object coordinate system coordinates;

• The end-effector z-axis line-cone constraint is defined by two lines at each time

instant: the line collinear to the end-effector z-axis and the line parallel to the robot

z-axis that passes through the end-effector position;

• The squared and circular target region coordinates are the location where the object

must be placed (see Figure 4.2a).

6.3.3 Constrained Motion Controller Parameters

As the constraints parameters, the constrained motion controller parameters were also

kept constant during all simulations. In addition to the controller gain η and the damping

factor λ presented in Section 4.1, we also make use of three more parameters. The desired

CHAPTER 6. EXPERIMENTS AND RESULTS 68

task error norm means that the controller runs until the task error norm reaches the

specified value. The stability threshold indicates the norm of the task error derivative that

the controller must reach to be considered stable. Last, the number of iterations that the

controller must run with the stability threshold to be considered stable is the maximal

stability counter. All the controller parameters are presented below in Table 6.3.

Parameter Pose control Distance to plane control
Controller gain η = 100 η = 100
Damping factor λ = 0.001 λ = 0.001

Desired task error norm 0.009 0.009
Stability threshold 0.000001 0.0001

Maximal stability counter 100 100
Sampling time 5 ms 5 ms

Table 6.3: Constrained motion controller parameters.

6.3.4 Constraints Evaluation

The execution of each task presents several examples where it is possible to check the

satisfaction of the constraints imposed in the constrained motion controller. Regarding

the constraints satisfaction and the relaxed task regions, the focus of this work is to check

that the end-effector is satisfying the plane constraints and the point-cone constraint

from Section 4.2.1 and Section 4.2.4. This way, we ensure that it is possible to move the

end-effector from an initial configuration to a desired relaxed target region on a plane that

can be squared or circular. Moreover, the end-effector stays within a specified region of

interest during its trajectory towards the target region. More specifically, the end-effector

stays inside of the inverted pyramid trunk (Section 5.4.4) or of the inverted cone trunk

(Section 5.4.5). In this sense, we selected some examples obtained during the execution of

two of the tasks to illustrate the results.

First, we present the evaluation of a snapshot of task 1 when the meat is hold toward

the heating region. In addition to the plane and point-cone constraints results we also

present the results of the other constraints. Next, we show a snapshot of task 2 when the

book is hold toward the book region. Lastly, we present the evaluation of all constraints

during the whole execution of task 2.

Task 1: Moving the meat from the intermediate location to the heating region.

Inverted pyramid trunk region of interest The result of using the plane constraints

to make the end-effector to stay inside the inverted pyramid trunk region of interest (5.17)

and move toward a target squared region on the plane is shown in Figure 6.4. It can be

seen that the end-effector remains within the inverted pyramid trunk region of interest

and moves towards the target plane.

CHAPTER 6. EXPERIMENTS AND RESULTS 69

×10−1

×10−1

-4 -2 0 2

x(m)

-1

1

3

5

z
(m

)

End-effector trajectory

Region of interest

Target region

Target plane

Plane constraints

(a) Plane-xz.

0 2 4 6

y(m)

-1

1

3

5

z
(m

)

×10−1

×10−1

End-effector trajectory

Region of interest

Target region

Target plane

Plane constraints

(b) Plane-yz.

Figure 6.4: Lateral views of the end-effector trajectory using plane constraints: moving
the meat from the intermediate location to the heating location during task 1.

In addition to satisfying the plane constraints that constrain the end-effector to the

inverted pyramid trunk, the other constraints from Table 6.2 are also satisfied. To verify if

any collision happened, we analyze the signed distances d̃ between the constrained elements.

A negative signed distance means that a collision happened. Figure 6.5 shows the signed

distance between the end-effector and the planes in the environment. Figure 6.6 shows

the signed distance between the end-effector and the non-manipulated objects during the

task. Last, Figure 6.7 shows the signed distance between the end-effector and the infinite

cylinder about the robot z-axis. These figures show that no collision occurred and, hence,

that the constraints to prevent collisions with objects in the workspace were satisfied.

CHAPTER 6. EXPERIMENTS AND RESULTS 70

0 10 20 30 40

0.55

0.65

0.75

0.85

0.95

d
(m

)

d̃eff,πtable

Time (s)

(a) Constraint W(π1): d̃eff,πtable
.

0 10 20 30 40

Time(s)

0.3

0.4

0.5

0.6

d
(m

)

d̃eff,πr.wal

(b) Constraint W(π2): d̃eff,πr.wal
.

0 10 20 30 40

Time(s)

0.2

0.3

0.4

0.5

d
(m

)

d̃eff,πf.wall

(c) Constraint W(π3): d̃eff,πf.wall
.

Figure 6.5: Signed distances between end-effector and environment planes: the table top,
right wall (r. wall), and front wall (f. wall).

CHAPTER 6. EXPERIMENTS AND RESULTS 71

0 10 20 30 40
Time(s)

0.2

0.3

0.4

0.5
d

(m
)

d̃eff,lsalad

(a) Constraint W(csalad): d̃eff,lsalad
.

0 10 20 30 40
0.15

0.25

0.35

0.45

0.55

d
(m

)

d̃eff,πsalad

Time (s)

(b) Constraint W(csalad): d̃eff,πsalad
.

0 10 20 30 40
0.46

0.5

0.54

0.58

0.62

d
(m

)

d̃eff,lbook

Time (s)

(c) Constraint W(cbook): d̃eff,lbook
.

0 10 20 30 40
0.15

0.25

0.35

0.45

0.55

d
(m

)

d̃eff,πbook

d (m)

(d) Constraint W(cbook): d̃eff,πbook
.

0 10 20 30 40
0.32

0.36

0.4

0.44

0.48

0.52

d
(m

)

Time (s)

d̃eff,lpen

(e) Constraint W(cpen): d̃eff,lpen
.

0 10 20 30 40
Time(s)

0.15

0.25

0.35

0.45

0.55

d
(m

)

d̃eff,πpen

(f) Constraint W(cpen): d̃eff,πpen
.

Figure 6.6: Signed distances between end-effector and object cylinder line and plane.

CHAPTER 6. EXPERIMENTS AND RESULTS 72

0 10 20 30 40

Time(s)

0

0.1

0.2

0.3

d
(m

)

d̃eff,l
z

Figure 6.7: Constraint W(lz): signed distance d̃eff,lz between end-effector and robot z-axis
infinite cylinder.

Besides the constraints to prevent collisions with objects in the workspace, there is also

the line-cone constraint that limits the end-effector z-axis within a cone about a static

line in the workspace (Quiroz-Omana and Adorno, 2019). Figure 6.8 shows that the angle

between the end-effector z-axis and the static line remains within the safety angle.

0 10 20 30 40

Time(s)

0

0.02

0.04

0.06

0.08

0.1

0.12

A
n
gl

e
(r

a
d
)

φl
z

,l

φsafe

Figure 6.8: Constraint W(lz,cone): angle φlz ,l between end effector z-axis and static line l
parallel to robot z-axis. The safe angle φsafe is the cone maximum angle.

Finally, we have the joint limits constraint shown in Figure 6.9. It can be seen that

the joint limits are satisfied. The fifth joint approaches the upper joint limit.

CHAPTER 6. EXPERIMENTS AND RESULTS 73

Figure 6.9: Constraint W(q̇): joint limits constraints.

Inverted cone trunk region of interest Analogously to the plane constraints, Fig-

ure 6.10 shows the result of using the point-cone constraint to make the end-effector move

toward a circular target region while staying inside the inverted cone trunk region of

interest 5.18. The result shows that the end-effector stays within the desired region of

interest and moves towards the target plane.

×10−1

-4 -2 0 2

x(m)

-1

1

3

5

z
(m

)

×10−1

End-effector trajectory

Region of interest

Target region

Target plane

Cone surface

(a) Plane-xz.

0 2 4 6

y(m)

-1

1

3

5

z
(m

)

×10−1

×10−1

End-effector trajectory

Region of interest

Target region

Target plane

Cone surface

(b) Plane-yz.

Figure 6.10: Lateral views of the end-effector trajectory using the point-cone constraint:
moving the meat from the intermediate location to the heating location during task 1.

Additionally to the point-cone constraint, the other constraints from Table 6.2 were

also satisfied. As in the case of the inverted pyramid trunk region of interest, we also

analyzed the signed distance d̃ between the constrained elements. Figures 6.11-6.12 shows

the signed distance between the end-effector and environment planes and the end-effector

CHAPTER 6. EXPERIMENTS AND RESULTS 74

and the non-manipulated objects during the task. Also, Figure 6.13 shows the signed

distance between the end-effector and the infinite cylinder about the robot z-axis. These

figures show that no collision occurred and, hence, that the constraints to prevent collisions

with objects in the workspace were satisfied.

CHAPTER 6. EXPERIMENTS AND RESULTS 75

0 10 20 30 40

Time(s)

0.55

0.65

0.75

0.85

0.95

d
(m

)

d̃eff,πtable

(a) Constraint W(π1): d̃eff,πtable
.

0 10 20 30 40

Time(s)

0.3

0.4

0.5

0.6

d
(m

)

d̃eff,πr.wal

(b) Constraint W(π2): d̃eff,πr.wal
.

0 10 20 30 40

Time(s)

0.2

0.3

0.4

0.5

d
(m

)

d̃eff,πf.wall

(c) Constraint W(π3): d̃eff,πf.wall
.

Figure 6.11: Signed distances between end-effector and environment planes: the table
top, right wall (r. wall), and front wall (f. wall).

CHAPTER 6. EXPERIMENTS AND RESULTS 76

0 10 20 30 40
Time(s)

0.2

0.3

0.4

d
(m

)

d̃eff,lsalad

(a) Constraint W(csalad): d̃eff,lsalad
.

0 10 20 30 40
Time(s)

0.15

0.25

0.35

0.45

0.55

d
(m

)

d̃eff,πsalad

(b) Constraint W(csalad): d̃eff,πsalad
.

0 10 20 30 40
0.46

0.5

0.54

0.58

0.62

0.66

d
(m

)

d̃eff,lbook

Time (s)

(c) Constraint W(cbook): d̃eff,lbook
.

0 10 20 30 40
0.15

0.25

0.35

0.45

0.55

d
(m

)

d̃eff,πbook

Time (s)

(d) Constraint W(cbook): d̃eff,πbook
.

0 10 20 30 40
0.36

0.4

0.44

0.48

0.52

d
(m

)

d̃eff,lpen

Time (s)

(e) Constraint W(cpen): d̃eff,lpen
.

0 10 20 30 40
0.15

0.25

0.35

0.45

0.55

d
(m

)

d̃eff,πpen

Time (s)

(f) Constraint W(cpen): d̃eff,πpen
.

Figure 6.12: Signed distances between end-effector and object cylinder line and plane.

CHAPTER 6. EXPERIMENTS AND RESULTS 77

0 10 20 30 40

Time(s)

0

0.1

0.2

0.3

d
(m

)

d̃eff,lz

Figure 6.13: Constraint W(lz): signed distance d̃eff,lz between end-effector and robot
z-axis infinite cylinder.

As in the case of the inverted pyramid trunk region of interest, there is also the

line-cone constraint that limits the end-effector z-axis within a cone about a static line

in the workspace (Quiroz-Omana and Adorno, 2019). Figure 6.14 shows that the angle

between the end-effector z-axis and the static line remains within the safety angle.

0 10 20 30 40

Time(s)

0

0.02

0.04

0.06

0.08

0.1

0.12

A
n
gl

e
(r

ad
)

φlz,l

φsafe

Figure 6.14: Constraint W(lz,cone): angle φlz ,l between end effector z-axis and static line l
parallel to robot z-axis. The safe angle φsafe is the cone maximum angle.

Lastly, we have the joint limits constraint shown in Figure 6.15. It can be seen that

the joint limits are satisfied. The fifth joint approaches the upper joint limit.

CHAPTER 6. EXPERIMENTS AND RESULTS 78

Figure 6.15: Constraint W(q̇): joint limits constraints.

Task 2: Holding the book from the intermediate location to the book region

In addition to analyzing the results of a snapshot of task 1, we also analyze the results of

a snapshot of task 2. More specifically, we selected the action of holding the book from

the intermediate location to the book region during task 2.

Inverted pyramid trunk region of interest Figure 6.16 shows the action of holding

the book to the book region during task 2. The end-effector remains within the plane

constraints and moves toward the target plane, as expected.

CHAPTER 6. EXPERIMENTS AND RESULTS 79

Figure 6.16: Lateral views of the end-effector trajectory using the plane constraints:
holding the book from the intermediate location to the book location during task 2.

Inverted cone trunk region of interest Figure 6.17 shows the action of holding the

book to the book region during task 2. It can be seen that the end-effector remains within

the point-cone constraint and moves toward the target plane as expected.

CHAPTER 6. EXPERIMENTS AND RESULTS 80

Figure 6.17: Lateral views of the end-effector trajectory using the point-cone constraint:
holding the book from the intermediate location to the book location during task 2.

Task 2: Evaluation of constraints during the whole task execution

Now we evaluate the other constraints from Table 6.2 during the whole execution of task

2. As before, we analyze the signed distance d̃ between the constrained elements.

Inverted pyramid trunk region of interest Figures 6.18 shows the signed distance

between the end-effector and environment planes. The signed distance remains positive

during the whole task execution. Hence, there is no collision between the end-effector and

the environment planes.

CHAPTER 6. EXPERIMENTS AND RESULTS 81

Figure 6.18: Plane constraints: signed distance between the end-effector and the planes
in the environment (table top, right wall, and front wall). The dotted black lines indicate
when an object is grasped or placed.

Also, Figure 6.19 shows the signed distance between the end-effector and the objects.

In the first part of the task, the end-effector must grasp the book, hence, it approaches the

book and the signed distance to the book becomes negative. However, the signed distance

to the other non-manipulated objects remains positive indicating no collision occured. In

the second part of the task, the end-effector manipulates the book (i.e. the signed distance

remains negative, since we do not detect collisions with the manipulated object). Next,

the end-effector places the book on the book region and moves away from the book (i.e.

the signed distance becomes positive). In the sequence, the end-effector approaches the

salad (i.e. the signed distance decreases and becomes negative). This procedure repeats

until all the objects are manipulated and placed in the locations specified by the task.

Also, the signed distance to the objects planes remains positive during the whole task

execution indicating that the end-effector does not cross the objects planes.

CHAPTER 6. EXPERIMENTS AND RESULTS 82

Figure 6.19: Plane constraints: signed distance between the end-effector and the objects.
The dotted black lines indicate when an object is grasped or placed.

Figure 6.20 shows the signed distance between the end-effector and the robot z-axis.

It remains positive during the whole task execution indicating that the constraint was

satisfied.

Figure 6.20: Plane constraints: signed distance between the end-effector and the robot
z-axis. The dotted black lines indicate when an object is grasped or placed.

As before, there is also the line-cone constraint that limits the end-effector z-axis within

a cone about a static line in the workspace (Quiroz-Omana and Adorno, 2019). Figure 6.21

CHAPTER 6. EXPERIMENTS AND RESULTS 83

shows that the angle between the end-effector z-axis and the static line remains within

the safety angle.

Figure 6.21: Plane constraints: line-cone constraint angle between end effector z-axis
and static line parallel to robot z-axis. The dotted black lines indicate when an object is
grasped or placed.

Last, Figure 6.22 shows the joints limits during the task. All joints angles are kept

within the joints limits indicating that the constraint is satisfied.

Figure 6.22: Plane constraints: joints limits constraint. The dotted black lines indicate
when an object is grasped or placed.

CHAPTER 6. EXPERIMENTS AND RESULTS 84

Inverted cone trunk region of interest Analogously to the inverted pyramid trunk

region of interest, the same analysis can be made for the inverted cone trunk region of

interest using the point-cone constraints. Figures 6.23-6.25 shows that the signed distances

remain negative when expected. Figure 6.26 shows that the line-cone constraint is satisfied.

Last, all joints remains within the joints limits in Figure 6.27.

Figure 6.23: Point-cone constraint: signed distance between the end-effector and the
planes in the environment (table top, right wall, and front wall). The dotted black lines
indicate when an object is grasped or placed.

Figure 6.24: Point-cone constraint: signed distance between the end-effector and the
objects. The dotted black lines indicate when an object is grasped or placed.

CHAPTER 6. EXPERIMENTS AND RESULTS 85

Figure 6.25: Point-cone constraint: signed distance between the end-effector and the
robot z-axis. The dotted black lines indicate when an object is grasped or placed.

Figure 6.26: Point-cone constraint: line-cone constraint angle between end effector z-axis
and static line parallel to robot z-axis. The dotted black lines indicate when an object is
grasped or placed.

CHAPTER 6. EXPERIMENTS AND RESULTS 86

Figure 6.27: Point-cone constraint: joints limits constraint. The dotted black lines indicate
when an object is grasped or placed.

6.3.5 Evaluation of Plane and Point-Cone Constraints Time Per-

formance

At the end of Section 4.2.4 it was mentioned that the point-cone constraint requires less

complex calculations during running time than the plane constraints. Recall that the

point-cone constraint is used to define the circular target region and four plane constraints

are used to define the squared target region. To verify the time performance of both

constraints we calculated the constraint matrices and signed distances for each of them

and measured the time duration. We calculated the Jacobian matrix J cone,p and the

signed squared distance D̃l for the point-cone constraint. For the plane constraints, we

calculated four Jacobian matrices Jp,nπ and four signed distances d̃p,nπ . Table 6.4 shows

the time performance results for both constraints. The calculation time Tcalculation with

the associated standard deviation (s.d.) corresponds to an average of 10000 calculations

with random joint configurations. As expected, the calculation time for the point-cone

constraint is lower than the calculation time for the four plane constraints.

Table 6.4: Constraints time performance.

Constraint Tcalculation(ms)
Plane constraints 0.180781 (0.0357274)

Point-cone constraint 0.0513916 (0.0105354)
Tcalculation (s.d.) is the total calculation time for the necessary constraint matrices and

signed distances.

CHAPTER 6. EXPERIMENTS AND RESULTS 87

6.4 Conclusion

This chapter evaluated the adapted planning framework by devising four tasks with

increasing complexity. The results show that the total planning time for the tasks is

reduced in comparison to the original framework implementation since there is no need

for additional low-level motion planning time. Moreover, the adapted approach greatly

reduced the number of generated task plan nodes, which also reduced the planning time.

Concerning task relaxation, the end-effector trajectory remained within the desired regions

of interest and moved towards the target regions on the target plane while satisfying the

imposed additional constraints. With regard to the time performance of the point-cone and

plane constraints, the results show that the calculation time for the point-cone constraint

is 71.57% lower than for the plane constraints. Lastly, since we define regions of interest

instead of single locations of interest, the number of states in the planner is reduced thanks

to a smaller discretization of the workspace.

7
Conclusion and Future Works

7.1 Conclusions

Motivated by the challenge of making a robot manipulator autonomously complete a task

based on a given specification, in this work we studied how to specify, plan, and execute a

manipulation task. This problem is called the integration of task and motion planning

(ITMP). More specifically, we were concerned with the generation and execution of task

plans from a given specification for pick-and-place of objects that can be placed anywhere

within regions of interest. This kind of task constantly appears in the industry when it is

needed to sort objects between locations. In some cases, the locations can be interpreted

as a region as in the case of placing objects within boxes. Similarly, manipulators working

at homes also face such situations when placing objects within drawers, boxes, countertops,

etc. In this work, we focused on an assistive robotics application that requires a robot

to do pick-and-place relaxed tasks for a person with motor disabilities. The person has

limited or no lower limbs mobility and cannot reach farther objects in the environment.

By using regions of interest instead of discrete poses, we focused on solving the ITMP

problem for tasks that can be relaxed. To solve the ITMP problem we combine state of

the art techniques presented in Chapter 2.

The task planning is done by using the manipulation planning framework proposed

by He et al. (2015), which is described in Chapter 3. The framework receives a task

specification based on linear temporal logic (LTL) that allows expressing the order of

execution of actions by using temporal operators. In this sense, the chapter begins by

88

CHAPTER 7. CONCLUSION AND FUTURE WORKS 89

introducing the syntax and semantics of LTL. The second step in the framework is to create

a suitable manipulation abstraction that describes how the manipulator can manipulate

objects in the environment. Next, the LTL formula is converted into a deterministic finite

automaton (DFA) that specifies all the ways the manipulator can complete the task. In the

sequence, the abstraction is combined with the DFA into a product graph that contains

all the possible sequences of actions the manipulator must execute to finish the task while

satisfying the task specification. Afterward, Dijkstra’s algorithm is used to search for the

shortest task plan in the product graph. At this point, instead of using a coordinating and

a motion planning layer as in the original framework, we propose to use the constrained

motion controller proposed by Marinho et al. (2019) to execute the task plan. This way,

no additional motion planning time is needed besides the task planning time.

The constrained motion controller (Marinho et al., 2019), presented in Chapter 4,

allows, among other control objectives, to control the end-effector pose and the end-effector

distance to a target plane. Furthermore, it also enables defining constraints such as

obstacles in the workspace and joint limits. This way, we prevent collision with objects

by using cylindrical constraints and constrain the end-effector to regions of interest while

it moves towards a pose or a target plane by using plane and conical constraints. An

additional cylindrical constraint was added to the z-axis of the manipulator coordinating

frame to avoid twisted configurations. Four plane constraints were used to define a squared

target region similar to the work of Quiroz-Omana and Adorno (2019) and a new approach

to define conic constraints, called point-cone constraint, was used to define a circular

target region. The advantage of the point-cone constraint is that it requires less complex

calculations during runtime. Besides the aforementioned constraints, a line-cone constraint

(Quiroz-Omana and Adorno, 2019) was added to constrain the end-effector z-axis within a

cone and joint limits constraints were added to prevent saturation of actuators (Quiroz-

Omaña and Adorno, 2018). After defining all constraints, the relaxed task regions of

interest were defined in Chapter 5.

In Chapter 5, the relaxed regions of interest were defined using geometric primitives

represented by elements of dual quaternion algebra. A brief introduction to dual quaternion

algebra and distances between geometric primitives was presented. Basic geometric

primitives such as lines, planes, and half-spaces were used to derive infinite cylinders,

line segments, circles, and cones. Afterward, they were combined to obtain an inverted

pyramid trunk in the case of the squared target region and an inverted cone trunk in the

case of the circular target region. In this sense, the end-effector can be constrained to one

of these regions of interest. We focused on relaxing the action of holding an object from

the intermediate location to the target region of interest. However, by analyzing the other

actions, more steps could also be relaxed. From the point of view of the task planner,

the implemented planner task relaxation cannot be efficiently done by discretizing the

workspace into multiple locations because an increase in the number of locations in the

CHAPTER 7. CONCLUSION AND FUTURE WORKS 90

workspace results in an increase in the size of the manipulation abstraction. An increase

in the number of nodes in the abstraction results in longer planning time. Hence, the

definition of regions of interest is a computationally efficient way to relax the tasks and

still take advantage of the capabilities of the planner.

To evaluate both our approach to do task relaxation and the planner capabilities,

simulations were done in the CoppeliaSim with a Kinova Jaco robot in an assistive

environment, and the results were presented in Chapter 6. We devised four planning tasks

for the planner with increasing complexity. The planner found solutions for all the tasks

and used a reduced total planning time in comparison to the original planning framework

proposed by He et al. (2015) since no additional motion planning time is needed. Moreover,

there is no need to search for more than one task plan due to changes in the scene, in

terms of the modeled geometric primitives, as long as there are mechanisms to track their

changes. As a consequence, there is no increase in the number of generated planning

nodes during the task planning phase, and Dijkstra’s algorithm searches for a task plan

on a static graph. With regard to task relaxation, all the tasks were executed relaxing

the placing of objects to a target region. Both the squared and circular target region

approaches were tested. It was shown that the manipulator remains within the defined

region of interest and moves toward the target region on the target plane. Furthermore,

the evaluation of the time performance of the constraints showed that the point-cone

constraint requires less calculation time than the plane constraints.

As discussed above and evaluated in Chapter 6, the adapted framework presents

advantages in comparison to the original framework concerning planning time, size of

the abstraction and the possibility to relax tasks. Furthermore, the system is reactive.

However, the task planner with the constrained motion controller also has disadvantages.

By removing the motion planning layer, the method is not probabilistic complete. Moreover,

the constrained motion controller may suffer from local minima. With regard to planning

complexity although it is possible to relax tasks without incurring in an increase of

computational complexity, if the number of objects and regions of interest are increased,

the size of the abstraction quickly grows. Thus, there is an increase in the high-level

planning time. Additionally, an increase in the complexity of the specification results in a

larger automaton demanding more time in the conversion from the LTL formula to the

automaton. From the application point of view, the system needs the information about

all the objects poses in the environment. While in the original framework the information

is used to build a map for the motion planner, in the adapted framework this information

is used to correctly define the constraints. In this sense, the system is reactive to changes

in the environment, in terms of the modeled geometric primitives, as long as there are

mechanisms to track their changes.

During the development of this thesis other similar state of the art techniques also

appeared. As mentioned in Section 2.2, there is a work that used the framework of He et al.

CHAPTER 7. CONCLUSION AND FUTURE WORKS 91

(2015) as a benchmark for ITMP. Dantam et al. (2018) propose an ITMP method that uses

planning domain description language (PDDL) and satisfiability modulo theories (SMT)

to solve the task planning problem and sampling-based motion planners to do motion

planning. For scenarios with multiple objects, it achieves a better time performance than

the framework of He et al. (2015). However, the method strongly couples the motion

planner with the task planning phase by using the information of failed motion plans in

the SMT solver. This way, it would not be possible to eliminate motion planning time. In

this sense, one can choose between having less task planning time and needing motion

planning time or having only a longer task planning time. We have chosen the latter and

combined it with the constrained motion controller that allows alleviating the problem

of increasing the number of locations by doing task relaxation. Concerning the planning

domain description, LTL allows expressing tasks with temporal conditions for the objects

without the need of considering the action to be executed while PDDL associates an action

and effect on each object. Hence, the PDDL framework requires the whole task to be

specified whereas the LTL framework requires only the specification of the locations for

each object. Once again, we have chosen the latter to avoid needing to describe every

action for each task.

Besides the work of Dantam et al. (2018), the work of He et al. (2019b) proposes a

reactive synthesis planning framework that allows considering human interference on the

task being executed by the manipulator. Instead of using a manipulation abstraction,

the work uses PDDL to describe the planning domain, that is, the actions of the robot

and the human. Also, the robot task specification is given by an LTL formula that is

converted into a DFA. The novelty of that work is that the PDDL actions are converted

into a binary decision diagram (BDD) and, afterward, the BDD is combined with the DFA.

Since the LTL task is often much smaller than the planning domain, the only bottleneck

becomes the conversion of the LTL to a DFA. Last, a symbolic synthesis tool computes

a task plan on the product between the BDD and the DFA. The results show that the

conversion from the planning domain to BDD is orders-of-magnitude faster than combining

the planning domain (i.e. the actions the human and the robot execute) and the task

specification (i.e. the location of each object along the task execution) into a single LTL

formula. Nonetheless, because we were not considering human interference in the robot

task, we have chosen the framework of He et al. (2015).

In addition to the works of He et al. (2015), Dantam et al. (2018), and He et al.

(2019b), the work of Lindemann (2018) appears as a possibility to solve the task planning

problem without the need for motion planning and an abstraction. Thus, it is more

computationally efficient because it does not require the discretization of the system into

an abstraction. Lindemann (2018) proposes to generate control laws that satisfy temporal

logic specifications for dynamical systems. However, it is a more general approach for both

single- and multi-agents systems and not specific to the manipulation problem. Hence, it

CHAPTER 7. CONCLUSION AND FUTURE WORKS 92

requires more steps to associate its control inputs to manipulation actions. Moreover, it

uses signal temporal logic (STL) that allows not only the temporal ordering of tasks, but

also timing duration of certain operators. The adaption of the work of Lindemann (2018)

to manipulation task planning remains to future works.

7.2 Future works

To enhance the current framework, there are improvements and evaluations that can

be made both in the implementation and in the used technique. In the short term, the

following issues could be resolved:

• The conversion from the LTL formula into a DFA is currently generating a DFA

with transitions that are not physically feasible. For instance, in the automaton from

Figure 3.4, there are transitions that require an object to be into multiple locations

at the same time. Hence, after the DFA is obtained, a possible improvement would

be to add a pruning step to remove undesired transitions. Alternatively, the DFA

construction could already take into account the not physically feasible transitions;

• Also regarding the transitions in the DFA: the way we implemented the application

of the labeling function checks all propositions in each state of the automaton. From

the application of the labeling function, a letter that causes a transition in the

automaton is obtained. Next, the transition that accepts the letter occurs. However,

there are transitions that depend only on a few propositions. If those propositions

are valid, the transition occurs. Nonetheless, since we check all the propositions,

there may be extra valid propositions that are not needed for the transition, but the

transition still occurs. This may cause unwanted behaviors in task execution. For

instance, if a transition requires only propositions p0 and p5, but propositions p2 and

p3 are also valid, the objects that depend on p2 and p3 will also be moved in addition

to the objects that depend on p0 and p5. Currently, we overcome this problem by

being redundant in the task specification: we specify what the robot must do and

must not do (see the tasks 2, 3, and 4 in Chapter 6). To fix this issue, only the

propositions used in each transition should be checked for a transition to happen;

• The tasks evaluated in this work consider that each region is only occupied by one

object at a time. Further experiments could be done to place multiple objects in the

same region simultaneously.

On the long term, the following steps could be done:

• The framework could be tested on a real robot by starting with a similar scenario to

Figure 6.1 as long as there are a vision system that can track all the locations and

objects poses;

CHAPTER 7. CONCLUSION AND FUTURE WORKS 93

• Currently, when an object is being transferred between two locations, only one phase

of the transferring process is being relaxed. However, a closer look reveals that

most steps could be relaxed by controlling the end-effector distance to a plane (see

Table 4.1 and Table 5.1);

• The LTL formula is converted into a DFA by the Spot library (Duret-Lutz and

Poitrenaud, 2004) and the automata utilities from OMPL (Sucan et al., 2012) are

being used. To reduce the dependency on external libraries, an automata library

could be written to accommodate the DFA generated by the Spot library;

• The conversion from the LTL into a DFA could be studied. Depending on the

conversion procedure difficulty, it could be implemented. This way, there would be

no need of using the Spot library (Duret-Lutz and Poitrenaud, 2004);

• Other ITMP frameworks could be explored. Dantam et al. (2018) propose a frame-

work with better time performance than the framework of He et al. (2015) and He

et al. (2019b) propose a framework that is also LTL-based and considers human

interference in the task.

• The use of LTL with abstraction-based methods usually discretize the system in

space to obtain a finite state automaton. However, as can be seen from the current

work, these methods suffers from the curse of dimensionality. With an increase in

the number of objects and locations in the environment or the task complexity, the

abstraction quickly grows leading to an intractable problem. A possible solution for

this problem is to use abstraction-free frameworks as proposed by Lindemann (2018)

in which control laws are derived from temporal logic specifications, thus, combining

the expressiveness of temporal logic with the robustness of different control methods.

Bibliography

Adorno, B. V. (2017). Robot Kinematic Modeling and Control Based on Dual Quaternion

Algebra-Part I: Fundamentals. Technical report, <hal-01478225>.

Adorno, B. V. and Marinho, M. M. (2020). DQ Robotics: A Library for Robot Modeling

and Control. IEEE Robot. Autom. Mag., pages 0–0.

Baier, C. and Katoen, J.-P. (2008). Principles of model checking. MIT Press.

Bedrossian, N. (1990). Classification of singular configurations for redundant manipulators.

In Proceedings., IEEE Int. Conf. Robot. Autom., pages 818–823. IEEE Comput. Soc.

Press.

Bhatia, A., Maly, M. R., Kavraki, L. E., and Vardi, M. Y. (2011). Motion Planning with

Complex Goals. IEEE Robot. Autom. Mag., 18(3):55–64.

Bryant (1986). Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans.

Comput., C-35(8):677–691.

Cambon, S., Alami, R., and Gravot, F. (2009). A Hybrid Approach to Intricate Motion,

Manipulation and Task Planning. Int. J. Rob. Res., 28(1):104–126.

Cha, E., Forlizzi, J., and Srinivasa, S. (2015). Robots in the Home: Qualitative and

Quantitative Insights into Kitchen Organization. In Proc. 2015 Int. Conf. Human-Robot

Interact. (HRI 2015).

Choset, H. M., Lynch, K., Hutchinson, S., Kantor, G. A., Burgard, W., Kavraki, L. E., and

Thrun, S. (2005). Principles of robot motion : theory, algorithms, and implementation.

MIT Press.

Dantam, N. T., Kingston, Z. K., Chaudhuri, S., and Kavraki, L. E. (2018). An incremental

constraint-based framework for task and motion planning. Int. J. Rob. Res., 37(10).

Dornhege, C., Gissler, M., Teschner, M., and Nebel, B. (2009). Integrating symbolic and

geometric planning for mobile manipulation. In 2009 IEEE Int. Work. Safety, Secur.

Rescue Robot. (SSRR 2009), pages 1–6. IEEE.

94

BIBLIOGRAPHY 95

Duret-Lutz, A. and Poitrenaud, D. (2004). SPOT: an extensible model checking library

using transition-based generalized buchi automata. In IEEE Comput. Soc. 12th Annu.

Int. Symp. Model. Anal. Simul. Comput. Telecommun. Syst. 2004. (MASCOTS 2004).

Proceedings., pages 76–83. IEEE.

Erdem, E., Haspalamutgil, K., Palaz, C., Patoglu, V., and Uras, T. (2011). Combining

high-level causal reasoning with low-level geometric reasoning and motion planning for

robotic manipulation. In 2011 IEEE Int. Conf. Robot. Autom., pages 4575–4581. IEEE.

Escande, A., Mansard, N., and Wieber, P.-B. (2014). Hierarchical quadratic programming:

Fast online humanoid-robot motion generation. Int. J. Rob. Res., 33(7):1006–1028.

Figueredo, L., Adorno, B., Ishihara, J., and Borges, G. (2014). Switching strategy

for flexible task execution using the cooperative dual task-space framework. In 2014

IEEE/RSJ Int. Conf. Intell. Robot. Syst., pages 1703–1709. IEEE.

Figueredo C., L. F. (2016). Kinematic control based on dual quaternion algebra and its

application to robot manipulators. PhD thesis, Universidade de Braśılia.

Fikes, R. E. and Nilsson, N. J. (1971). Strips: A new approach to the application of

theorem proving to problem solving. Artif. Intell., 2(3-4):189–208.

Garrett, C. R., Lozano-Pérez, T., and Kaelbling, L. P. (2018). FFRob: Leveraging symbolic

planning for efficient task and motion planning. Int. J. Rob. Res., 37(1):104–136.

Gelfond, M. and Lifschitz, V. (1998). Action Languages. Electron. Trans. AI, 3.

Ghallab, M., Knoblock, C., Wilkins, D., Barrett, A., Christianson, D., Friedman, M.,

Kwok, C., Golden, K., Penberthy, S., Smith, D., Sun, Y., and Weld, D. (1998). PDDL -

The Planning Domain Definition Language.

Goncalves, V. M., Fraisse, P., Crosnier, A., and Adorno, B. V. (2016). Parsimonious

Kinematic Control of Highly Redundant Robots. IEEE Robot. Autom. Lett., 1(1):65–72.

Hager, G., Okamura, A., Kazanzides, P., Whitcomb, L., Fichtinger, G., and Taylor, R.

(2008). Surgical and interventional robotics: part III [Tutorial]. IEEE Robot. Autom.

Mag., 15(4):84–93.

He, K., Lahijanian, M., Kavraki, L. E., and Vardi, M. Y. (2015). Towards manipulation

planning with temporal logic specifications. In 2015 IEEE Int. Conf. Robot. Autom.,

pages 346–352. IEEE.

He, K., Lahijanian, M., Kavraki, L. E., and Vardi, M. Y. (2017). Reactive synthesis for

finite tasks under resource constraints. In 2017 IEEE/RSJ Int. Conf. Intell. Robot.

Syst., pages 5326–5332. IEEE.

BIBLIOGRAPHY 96

He, K., Lahijanian, M., Kavraki, L. E., and Vardi, M. Y. (2019a). Automated Abstraction

of Manipulation Domains for Cost-Based Reactive Synthesis. IEEE Robot. Autom. Lett.,

4(2):285–292.

He, K., Wells, A. M., Kavraki, L. E., and Vardi, M. Y. (2019b). Efficient Symbolic Reactive

Synthesis for Finite-Horizon Tasks. In 2019 Int. Conf. Robot. Autom., pages 8993–8999.

IEEE.

Iskandar, M., Quere, G., Hagengruber, A., Dietrich, A., and Vogel, J. (2019). Employing

Whole-Body Control in Assistive Robotics. In 2019 IEEE/RSJ Int. Conf. Intell. Robot.

Syst., pages 5643–5650.

Kaelbling, L. P. and Lozano-Perez, T. (2011). Hierarchical task and motion planning in

the now. In 2011 IEEE Int. Conf. Robot. Autom., pages 1470–1477. IEEE.

Kambhampati, S., Cutkosky, M., Tenenbaum, M., and Hong Lee, S. (1991). Combining

Specialized Reasoners and General Purpose Planners: A Case Study. In Proc. 9th Natl.

Conf. Artif. Intell., Anaheim.

Khatib, O., Yeh, X., Brantner, G., Soe, B., Kim, B., Ganguly, S., Stuart, H., Wang, S.,

Cutkosky, M., Edsinger, A., Mullins, P., Barham, M., Voolstra, C. R., Salama, K. N.,

L’Hour, M., and Creuze, V. (2016). Ocean One: A Robotic Avatar for Oceanic Discovery.

IEEE Robot. Autom. Mag., 23(4):20–29.

Kloetzer, M. and Belta, C. (2008). A Fully Automated Framework for Control of Linear

Systems from Temporal Logic Specifications. IEEE Trans. Automat. Contr., 53(1):287–

297.

Kloetzer, M. and Mahulea, C. (2015). LTL-Based Planning in Environments With

Probabilistic Observations. IEEE Trans. Autom. Sci. Eng., 12(4):1407–1420.

Kress-Gazit, H., Fainekos, G. E., and Pappas, G. J. (2007). Where’s Waldo? Sensor-Based

Temporal Logic Motion Planning. In Proc. 2007 IEEE Int. Conf. Robot. Autom., pages

3116–3121. IEEE.

Kuban, D. P. and Martin, H. L. (1984). Advanced remotely maintainable force-reflecting

servomanipulator concept.

Kuffner, J. and LaValle, S. (2000). RRT-connect: An efficient approach to single-query

path planning. In Proc. 2000 ICRA. Millenn. Conf. IEEE Int. Conf. Robot. Autom.

Symp. Proc. (Cat. No.00CH37065), volume 2, pages 995–1001. IEEE.

Kundu, T. and Saha, I. (2019). Energy-Aware Temporal Logic Motion Planning for Mobile

Robots. In 2019 Int. Conf. Robot. Autom., pages 8599–8605. IEEE.

BIBLIOGRAPHY 97

Kupferman, O. and Y. Vardi, M. (2001). Model Checking of Safety Properties. Form.

Methods Syst. Des., 19(3):291–314.

Lana, E. P., Adorno, B. V., and Maia, C. A. (2015). A new algebraic approach for the

description of robotic manipulation tasks. In 2015 IEEE Int. Conf. Robot. Autom.,

pages 3083–3088. IEEE.

Laryssa, P., Lindsay, E., Layi, O., Marius, O., Nara, K., Aris, L., and Ed, T. (2002).

International Space Station Robotics: A Comparative Study of ERA, JEMRMS and

MSS. In 7th ESA Work. Adv. Sp. Technol. Robot. Autom. ’ASTRA 2002’, Noordwijk.

Latombe, J.-C. and Jean-Claude (1991). Robot motion planning. Kluwer Academic

Publishers.

Laumond, J.-P., Mansard, N., and Lasserre, J. B. (2015). Optimization as motion selection

principle in robot action. Commun. ACM, 58(5):64–74.

Liégeois, A. (1977). Automatic Supervisory Control of the Configuration and Behavior of

Multibody Mechanisms. IEEE Trans. Syst. Man. Cybern., 7(12):868–871.

Lindemann, L. (2018). Robust and Abstraction-free Control of Dynamical Systems under

Signal Temporal Logic Tasks. PhD thesis, KTH, School of Electrical Engineering and

Computer Science (EECS).

Lozano-Perez, T., Jones, J., Mazer, E., O’Donnell, P., Grimson, W., Tournassoud, P., and

Lanusse, A. (1987). Handey: A robot system that recognizes, plans, and manipulates.

In Proceedings. 1987 IEEE Int. Conf. Robot. Autom., volume 4, pages 843–849. Institute

of Electrical and Electronics Engineers.

Lozano-Perez, T. and Kaelbling, L. P. (2014). A constraint-based method for solving

sequential manipulation planning problems. In 2014 IEEE/RSJ Int. Conf. Intell. Robot.

Syst., pages 3684–3691. IEEE.

Mansard, N. and Chaumette, F. (2009). Directional Redundancy for Robot Control. IEEE

Trans. Automat. Contr., 54(6):1179–1192.

Marinho, M. M., Adorno, B. V., Harada, K., and Mitsuishi, M. (2019). Dynamic Active

Constraints for Surgical Robots Using Vector-Field Inequalities. IEEE Trans. Robot.,

35(5):1166–1185.

McMahon, J. and Plaku, E. (2014). Sampling-based tree search with discrete abstractions

for motion planning with dynamics and temporal logic. In 2014 IEEE/RSJ Int. Conf.

Intell. Robot. Syst., pages 3726–3733. IEEE.

BIBLIOGRAPHY 98

Plaku, E. and Hager, G. D. (2010). Sampling-Based Motion and Symbolic Action Planning

with geometric and differential constraints. In 2010 IEEE Int. Conf. Robot. Autom.,

pages 5002–5008. IEEE.

Quiroz-Omaña, J. J. and Adorno, B. V. (2018). Whole-Body Kinematic Control of

Nonholonomic Mobile Manipulators Using Linear Programming. J. Intell. Robot. Syst.,

91(2):263–278.

Quiroz-Omana, J. J. and Adorno, B. V. (2019). Whole-Body Control With (Self) Collision

Avoidance Using Vector Field Inequalities. IEEE Robot. Autom. Lett., 4(4):4048–4053.

Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S., and Abbeel, P. (2014). Combined

task and motion planning through an extensible planner-independent interface layer. In

2014 IEEE Int. Conf. Robot. Autom., pages 639–646. IEEE.

Sucan, I. A. and Kavraki, L. E. (2012). A Sampling-Based Tree Planner for Systems With

Complex Dynamics. IEEE Trans. Robot., 28(1):116–131.

Sucan, I. A., Moll, M., and Kavraki, L. E. (2012). The Open Motion Planning Library.

Robot. Autom. Mag., 19(4):72–82.

Vardi, M. and Wolper, P. (1994). Reasoning about Infinite Computations. Inf. Comput.,

115(1):1–37.

Vardi, M. Y. (1996). An automata-theoretic approach to linear temporal logic. pages

238–266. Springer, Berlin, Heidelberg.

W. Spong, M., Hutchinson, S., and Vidyasagar, M. (2005). Robot Modeling and Control -

Mark W. Spong, Seth Hutchinson, M. Vidyasagar.

Wongpiromsarn, T., Topcu, U., and Murray, R. M. (2010). Receding horizon control

for temporal logic specifications. In Proc. 13th ACM Int. Conf. Hybrid Syst. Comput.

Control - HSCC ’10, page 101, New York, New York, USA. ACM Press.

	List of Figures
	List of Tables
	Acronyms
	Notation
	Introduction
	Objective and Contributions
	Structure of the Text

	State of the Art
	Task Planning
	Integration of Task and Motion Planning
	Task Relaxation
	Conclusion

	Manipulation Planning Framework
	Linear Temporal Logic
	Problem Statement
	Planning Framework
	Linear Temporal Logic Task Specification
	Manipulation Abstraction
	Deterministic Finite Automaton
	Product Graph
	Searching for a Path in the Product Graph
	Coordinating Layer and Low-level Motion Planner

	A New Approach for the Planning Framework
	Execution of Manipulation Actions
	Conclusion

	Constrained Motion Controller
	Constrained Motion Controller
	Constraints
	Plane Constraints
	Cylindrical Constraints
	Line Constraints
	Point-Cone Constraint: A New Approach to Define Conic Constraints
	Additional Constraints

	Control Objective
	Conclusion

	Task Relaxation
	Planning Complexity
	Task Relaxation
	Dual Quaternion Algebra
	Regions of Interest
	Geometrical Primitives
	Distance Functions
	More Geometrical Primitives
	Inverted Pyramid Trunk Region of Interest
	Inverted Cone Trunk Region of Interest

	Conclusion

	Experiments and Results
	Computational Tools
	Evaluation of the Planning Framework
	Evaluation of Relaxed Task Constraints
	Determining the Parameters of the Target Regions
	Constraints Parameters
	Constrained Motion Controller Parameters
	Constraints Evaluation
	Evaluation of Plane and Point-Cone Constraints Time Performance

	Conclusion

	Conclusion and Future Works
	Conclusions
	Future works

	Bibliography

