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Abstract

Takagi-Sugeno (TS) fuzzy analysis and control techniques extend several results from linear robust con-
trol theory to nonlinear systems. However, in many cases, the conditions used do not explore the mem-
bership functions’ information aside from the fact that they belong to the standard unit simplex. In
addition, since we are dealing with nonlinear systems, the use of quadratic Lyapunov functions carries
a certain conservatism.

In this work, we propose different ways to exploit the membership functions’ information in pa-
rameter dependent Linear Matrix Inequalities (LMIs) as well as new classes of candidate Lyapunov
functions that cover other existing classes in the literature.

Asymptotically necessary conditions for parameter dependent LMIs are proposed based on parti-
tioning the membership functions’ image space. Such partitions are also used to propose a switched
control law and we present ways to modify the conditions of this controller such that a continuous
controller can be recovered.

An alternative way to reduce the number of rules of a given Takagi-Sugeno model, based on the
Higher Order Singular Value Decomposition (HOSVD), is presented as well as how to model the uncer-
tainty introduced by this rule reduction scheme.

We propose the use of local transformations of the membership functions in conjunction with piece-
wise fuzzy Lyapunov functions so as to find more relaxed stability conditions than others available in
the literature.

A novel way to deal with the time derivative of the membership functions, in cases where they
are functions of the states, is proposed. This new proposition avoids the use of direct bounds over the
membership functions time-derivative, and new stability and stabilization conditions are presented.

Finally, we propose new LMI synthesis conditions based on piecewise-like Lyapunov functions.
This class of Lyapunov functions behaves similarly to piecewise functions (in the sense that we can un-
derstand that a different function is valid for each region) while using a fuzzy formulation. By adapting
recent conditions to deal with bounds on the Lyapunov function’s membership functions time deriva-
tive, new synthesis conditions are presented to guarantee local stabilization.
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Resumo

As técnicas de análise e controle de sistemas Takagi-Sugeno (TS) estendem vários resultados de controle
robusto de sistemas lineares para sistemas não-lineares. Entretanto, em muitos dos casos, as condições
utilizadas não exploram a informação das funções de pertinência do sistema, com exceção do fato de
elas pertencerem ao simplex unitário padrão. Além disso, por se tratarem de sistemas não-lineares, o
uso de funções de Lyapunov quadráticas carrega consigo um certo conservadorismo.

Neste trabalho são propostas algumas formas diferentes de se explorar a informação das funções de
pertinência nas Desigualdades Matriciais Lineares (LMIs) dependentes de parâmetros bem como novas
classes de funções de Lyapunov candidatas que cobrem outras classes existentes na literatura.

São propostas condições assintoticamente necessárias para LMIs dependentes de parâmetros baseadas
em partições do espaço imagem das funções de pertinência. Tais partições são também utilizadas para
se propor uma lei de controle chaveada de acordo com tais partições e como modificar as condições
dessa lei de controle chaveada para que se possa recuperar um controlador contínuo.

Uma maneira alternativa, baseada na Decomposição de Valores Singulares de Alta Ordem (HOSVD)
para a redução do número de regras de modelos TS é proposta, bem como formas de se modelar a
incerteza introduzida pelo procedimento de redução de regras proposto.

É proposto o uso de transformações locais das funções de pertinência em conjunto com funções de
Lyapunov fuzzy por partes de modo a se encontrar condições de estabilidade mais relaxadas do que
outras apresentadas na literatura.

Uma nova forma de lidar com a derivada temporal das funções de pertinência é proposta para
os casos em que as funções de pertinência são funções das variáveis de estado somente. Esta nova
proposição evita o uso de limitantes sobre as derivadas temporais das funções de pertinência, e novas
condições de estabilidade e estabilização são apresentadas.

Finalmente, são apresentadas novas condições LMI de síntese baseadas em funções de Lyapunov
quase-por-partes. Esta classe de funções de Lyapunov se comporta de maneira similar às funções por
partes (no sentido de que pode-se entender que uma função diferente é válida para cada região) e faz uso
de uma formulação fuzzy. Adaptando-se condições recentes na literatura sobre limitantes superiores nas
derivadas temporais das funções de pertinência da função de Lyapunov, novas condições de síntese são
propostas para garantir a estabilização local.
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1 Introduction

Takagi-Sugeno (TS) fuzzy models (Takagi and Sugeno 1985) are capable of representing nonlinear dynamical sys-
tems as a convex combination of linear models (or in some cases affine models - Campos et al. 2013; Johansson,
Rantzer, and Arzen 1999; Wang and Yang 2013). This representation allows that some of these systems’ analysis
and synthesis conditions be written as optimization problems subject to LMIs (Boyd et al. 1994; Teixeira and As-
sunção 2007).

However, most of the conditions presented in the literature do not make much use of the membership functions
information, aside from the fact that they belong to the standard unit simplex (i.e. they add up one and are all
bigger than or equal to zero) (Sala 2009). Such conditions are, therefore, conservative since they are valid for a
larger family of systems than the one we wish to analyze/control. Since we are dealing with nonlinear systems,
another source of conservatism comes from the family of candidate Lyapunov functions used in the conditions.

1.1 Motivation

Takagi-Sugeno models with a Tensor Product (TP) structure (Ariño 2007; Ariño and Sala 2007) (also
known as multisimplex structure - Tognetti, Oliveira, and Peres 2011; Tognetti, Oliveira, and Peres 2012)
are models whose membership functions can be written as the product of one-variable membership
functions, and are really common in the literature (Bernal and Guerra 2010; Campos et al. 2013; Guerra
et al. 2012; Mozelli, Palhares, and Avellar 2009; Rhee and Won 2006). This class of models covers those
found using the well-known sector nonlinearity approach (Tanaka and Wang 2001), as well as those
found using the Tensor Product model transformation (Baranyi 2004; Baranyi et al. 2003).

Examples of use of this class of TS models in the literature include:

• Less conservative sufficient conditions for double fuzzy summations (Ariño and Sala 2007);

• A fuzzy Lyapunov function whose stability analysis conditions do not depend on the time deriva-
tives of the membership functions (Rhee and Won 2006);

• Replacing the time derivative of the membership function by partial derivatives regarding the
states and considering local analysis/synthesis conditions instead of global ones (Bernal and
Guerra 2010; Guerra et al. 2012).

Another advantage of this TP representation, little explored in the literature, is the fact that this
representation allows the decomposition of the image space of the membership functions into the ten-
sor product of the image spaces of the one-variable membership functions. These decomposed image
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OBJECTIVES INTRODUCTION

spaces are simpler, and can, for example, be approximated by a finite number of samples from the func-
tions and an approximation error (that can be calculated by means of the Mean Value Theorem). These
approximations, in turn, allow the study of the membership functions’ “shape” to be carried in a finite
dimensional space.

When studying this “shape” information, it might be useful to split the image space into regions.
In cases where the premise variables are all state variables, one can map these regions to regions in the
system’s state space. In these cases, an interesting approach is to employ a different Lyapunov function
for each region, or a “fuzzy blending” of them.

A different problem for these systems’ analysis and synthesis conditions, unrelated to their conser-
vativeness, is that they become computationally intractable for models with a high number of rules.
Due to the nature of the conditions, it is not always easy to develop conditions that scale well with the
number of rules. A simple workaround to this problem is to employ an uncertain simpler model with a
smaller number of rules.

1.2 Objectives

This work aims to present forms of incorporating the membership functions’ “shape” information (ad-
ditional information aside from the usual one that they belong to the standard unit simplex) into the
LMI conditions, as well as alternative ways of reducing the number of rules of a TS model (and how to
model the error introduced by this reduction as an uncertainty).

Specifically, we aim to:

• Present sufficient and asymptotically necessary conditions for LMIs with a fuzzy summation,
taking into consideration the shape of the membership functions;

• Propose new control laws for TS systems whose synthesis conditions make use of the membership
functions’ shape;

• Propose novel families of candidate Lyapunov functions whose analysis/synthesis conditions
make better use of the membership functions’ shape;

• Propose alternative ways of reducing the number of rules of TS models in a way that the reduced
model’s behaviour is “close” to the original, and how to use the error between the models to
generate an uncertain model;

1.3 Outline

This work aims to study different ways of exploiting the knowledge of TS systems’ membership func-
tions, whether for obtaining less conservative analysis/synthesis conditions, or reducing the number
of rules of a given TS model. Some of the results presented here may be applied to TS models with
any sort of membership functions, whereas others can only be applied in cases where the membership
functions are only allowed to be functions of the state variables. To that end, the remainder of this thesis
is structured as follows1:

Chapter 2 presents definitions and results used throughout all of the work.

1note that, even though the text was structured in this order, it does not reflect the chronological
order. If the chapters were presented in chronological order, after chapter 2, the order would be: 5, 3, 4,
6, and 7
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INTRODUCTION OUTLINE

Part I groups the results that are independent of which variables are used as premise variables in
the TS model. Chapter 3 presents ways of exploring the membership functions’ shape. And chapter 4
presents an alternative way of reducing the number of rules of a given TS model based on techniques
from the Tensor Product Model Transformation, as well as how to model the error introduced by this
rule reduction as different forms of uncertainty.

Part II groups the results that assume that the TS model’s premise variables are state variables (or
functions of them). Chapter 5 presents two novel families of piecewise fuzzy Lyapunov functions for
affine TS models, as well as their stability analysis conditions. Chapter 6 presents a novel way to deal
with the membership functions’ time derivative when making use of fuzzy Lyapunov functions (sharing
the same membership functions as the TS system). Chapter 7 presents a family of fuzzy Lyapunov
functions whose membership functions are different from the TS system, but that give conditions similar
to those one would expect to get for piecewise Lyapunov functions.

Part III is composed only of chapter 8, that summarizes, discusses and presents conclusions regard-
ing this thesis.
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2 Theoretical Foundation

2.1 Takagi-Sugeno Fuzzy Models

Throughout this work, we consider, in a general way, two distinct types of TS fuzzy models (Takagi and
Sugeno 1985): those whose premise variables might be any signal, and those whose premise variables
are state variables.

Free premise variables

A representative model, in this work, for cases in which the premise variables might be any signal is:

Rule i: If v1 ∈ Mαi1
1 and . . . and v` ∈ Mαi`

` ,
then ẋ = Aix + Biu

in which x ∈ Rn is the state vector; u ∈ Rm is the control input vector; v ∈ R` is the premise variables
vector (vi is the i-th element of vector v); Ai ∈ Rn×n and Bi ∈ Rn×m are matrices describing the dynam-
ical behaviour of the system; i represents the rule number;Mαij

j represents the fuzzy sets related to the
premise variable vj; αij is an index that relates each fuzzy set of the premise variable vj with rule i (i.e.
an index α21 = 3 indicates that the third fuzzy set of the premise variable v1 is used on the second rule);
and 1 ≤ αij ≤ rj with rj the number of fuzzy sets related to the premise vj.

Considering that each fuzzy setMαij
j has a corresponding membership function ω

αij
j (vj) with

0 ≤ ω
αij
j (vj) ≤ 1.

A normalized membership function can be obtained from ω
αij
j (xj), by

µ
αij
j (vj) =

ω
αij
j (vj)

∑
rj
αij=1 ω

αij
j (vj)

.

These normalized functions have the properties

µ
αij
j (vj) ≥ 0;

rj

∑
αij=1

µ
αij
j (vj) = 1. (2.1)

Such properties endow the inferred TS membership functions with the properties

Property 2.1: Membership functions decomposition

hi(v) =
`

∏
j=1

µ
αij
j (vj), (2.2)

5
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Property 2.2: convex sum property

hi(v) ≥ 0,
r

∑
i=1

hi(v) = 1,
r

∑
i=1

ḣi(v) = 0. (2.3)

where r =
`

∏
j=1

rj is the TS model’s total rule number.

The second property may also be seen as imposing that the membership function take values in the
standard (r− 1)-dimensional simplex whose vertices are given by the standard unit vectors of Rr.

Making use of the membership functions (2.2), the inferred TS model can be written in a compact
way as:

ẋ =
r

∑
i=1

hi(v) (Aix + Biu) . (2.4)

Premises are state variables

The only difference in the case where the premises variables are restricted to being state variables is that
the premise vector is substituted by the state vector (or a subset of the state vector). However, in chapter
5, we’ll also deal with affine TS models. A representative model in this case is given by (Campos et al.
2013):

Rule i: If x1 ∈ Mαi1
1 and . . . and xn ∈ Mαin

n ,
then ẋ = Aix + ai

in which x ∈ Rn is the state vector; Ai ∈ Rn×n and ai ∈ Rn×1 are matrices and column vectors describ-
ing the dynamical behaviour of the system (and ai is zero for every rule that is active at the origin); i
represents the rule number; Mαij

j represents the fuzzy sets related to the premise variable xj; αij is an
index that relates each fuzzy set of the premise variable xj with rule i; and 1 ≤ αij ≤ rj with rj the
number of fuzzy sets related to the premise xj.

It is worth noting that relations (2.1), (2.2) and (2.3) are also valid for this model (just substitute v by
x), and, in this case, the inferred model can be compactly written as:

ẋ =
r

∑
i=1

hi(x)Aix, (2.5)

in which

x =

[
x
1

]
, Ai =

[
Ai ai

0 0

]
.

From this point forward, whenever it will not cause confusion we will the drop the dependence of
the membership functions hi(x) or hi(v) and simply present them as hi.

2.2 Fuzzy Summations

Many of the analysis and synthesis conditions for TS systems may be expressed as matrix inequalities
involving fuzzy sums.

6
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Some of these conditions, specially those related to the analysis of TS systems, may be written as
r

∑
i=1

hiQi > 0, (2.6)

in which Qi are matrices containing parameters describing the systems and the decision variables of the
optimization problem. In some parts of this work, expression (2.6) will be referred as a “single fuzzy
summation”.

Other conditions, like many of the synthesis conditions for TS systems available in the literature,
may be written as

r

∑
i=1

r

∑
j=1

hihjQij > 0, (2.7)

in which Qij are matrices containing parameters describing the systems and the decision variables of the
optimization problem. In some parts of this work, expression (2.7) will be referred as a “double fuzzy
summation”.

Useful Results

In order to guarantee that condition (2.7) is valid, several sufficient conditions have been proposed in
the literature. Some examples of these conditions are presented below:

Lemma 2.1: (Tanaka and Wang 2001)

A sufficient condition for expression (2.7) to be valid, with i, j ∈ {1, . . . , r}, is

Qii > 0,

Qij + Qji > 0, j > i.

Proof. Note that
r

∑
i=1

r

∑
j=1

hihjQij

=
r

∑
i=1

h2
i Qii +

r−1

∑
i=1

r

∑
j=i+1

hihj
(
Qij + Qji

)

Therefore the conditions on the lemma are sufficient for expression (2.7).

Lemma 2.2: Theorem 2.2 - 1 in (Tuan et al. 2001)

A sufficient condition for expression (2.7) to be valid, with i, j ∈ {1, . . . , r}, is

Qii > 0,
2

r− 1
Qii + Qij + Qji > 0, j 6= i.

Proof. Note that
r

∑
i=1

r

∑
j=1

hihjQij

=
r

∑
i=1

r−1

∑
j=i+1

[
1

r− 1
h2

i Qii +
1

r− 1
h2

j Qjj + hihj
(
Qij + Qji

)]

7
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Therefore the conditions on the lemma are sufficient for expression (2.7).

Lemma 2.3: Adapted from Theorem 2 in (Xiaodong and Qingling 2003)

A sufficient condition for expression (2.7) to be valid, with i, j ∈ {1, . . . , r}, is that there exist matrices
Θij = ΘT

ji such that

Qii > Θii,

Qij + Qji > Θij + Θji, j > i,

Θ =




Θ11 . . . Θ1r
...

. . .
...

Θr1 . . . Θrr


 > 0.

Proof. Note that the first two conditions of the lemma imply in

r

∑
i=1

r

∑
j=1

hihjQij

≥
r

∑
i=1

r

∑
j=1

hihjΘij

=




h1 I
...

hr I




T 


Θ11 . . . Θ1r
...

. . .
...

Θr1 . . . Θrr







h1 I
...

hr I




and the last condition implies that this expression is positive definite, therefore the conditions on the
lemma are sufficient for (2.7).

Remark 2.1

Despite having presented three different sets of sufficient conditions, for simplicity, this work makes
use of the conditions presented in Lemma 2.1. Note, however, that any of the other two conditions
could be used without problems.

If we are working with multiple fuzzy summations instead of a double summation, the following
Lemma (which is a generalization of Lemma 2.1 ) will be employed in this work

Lemma 2.4: (Sala and Ariño 2007)

A sufficient condition for
r

∑
i1=1
· · ·

r

∑
iq=1

(
q

∏
`=1

hi`

)
Li1 ...iq > 0,

is that, for every combination of (i1, i2, . . . , iq) with i` ∈ {1, 2, . . . , r}, the sum of its permutations is positive
definite.

Example 2.1. Consider that we have a condition of the form

2

∑
i1=1

2

∑
i2=1

2

∑
i3=1

hi1 hi2 hi3 Li1i2i3 > 0,

8
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the possible combinations of (i1, i2, i3) are (1, 1, 1), (1, 2, 1), (1, 2, 2) and (2, 2, 2) and the use of Lemma
2.4 says that sufficient conditions for the LMIs are

L111 > 0,

L112 + L121 + L211 > 0,

L122 + L212 + L221 > 0,

L222 > 0.

These conditions can easily be seen to be sufficient because the initial condition can be rewritten as

h3
1L111 + h2

1h2 (L112 + L121 + L211) + h1h2
2 (L122 + L212 + L221) + h3

2L222 > 0.

In addition to these fuzzy sum relaxations, the following two lemmas (modified from Bernal, Guerra,
and Kruszewski 2009) will be useful throughout this work.

Lemma 2.5: Adapted from Lemma 1 in (Bernal, Guerra, and Kruszewski 2009)

Consider the normalized membership functions hi, with i ∈ {1 . . . r}, and h̃j, with j ∈ {1 . . . r}, belong-
ing to the standard simplex of dimension r − 1. Consider also the vectors h, formed by grouping the hi

membership functions, and h̃ formed by grouping the h̃j membership functions. Given a matrix G ∈ Rr×r

describing a transformation from h̃ to h, h = Gh̃:

r

∑
i=1

hiQi > 0⇔
r

∑
j=1

h̃j

(
r

∑
i=1

gijQi

)
> 0,

with gij the element of row i and column j of matrix G.

Lemma 2.6: Adapted from Lemma 2 in (Bernal, Guerra, and Kruszewski 2009)

Consider the normalized membership functions hi, with i ∈ {1 . . . r}, and h̃j, with j ∈ {1 . . . r}, belong-
ing to the standard simplex of dimension r − 1. Consider also the vectors h, formed by grouping the hi

membership functions, and h̃ formed by grouping the h̃j membership functions. Given a matrix G ∈ Rr×r

describing a transformation from h̃ to h, h = Gh̃:

r

∑
i=1

r

∑
j=1

hihjQij > 0⇔

r

∑
k=1

r

∑
l=1

h̃k h̃l

(
r

∑
i=1

r

∑
j=1

gikgjlQij

)
> 0,

with gij the element of row i and column j of matrix G.

2.3 Function Approximation

Under certain circumstances, the use of function approximations might simplify, or even allow, certain
developments that would otherwise be too complex with the original function. Throughout this work,
zero order interpolations (that generate piecewise constant functions) have a fundamental part and en-
able developments that would otherwise be too complex.

9



FUNCTION APPROXIMATION THEORETICAL FOUNDATION
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Figure 2.1: Example of a piecewise constant approximation

In that regard, this section aims to present, in a quick fashion, a way to consider these approxima-
tions and how to calculate an upper bound for the error between the original and the approximated
function.

Zero order interpolation - piecewise constant functions

Consider a vector function of one variable f(x) in the interval x ∈ [x, x] and n samples equally spaced,
which is equivalent to a sampling step of

h =
x− x
n− 1

A possible approximation for function f(x) is given by

f̃(x) =





f(x), x ≤ x < x + h
2

f(x + ih), x + (2i−1)h
2 ≤ x < x + (2i+1)h

2

f(x), x− h
2 ≤ x ≤ x

with

i ∈ N such that 1 ≤ i < n

Figure 2.1 presents an example of this approximation.
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Error polytope

Assuming that f(x) is continuously differentiable, for each function fk(x) composing vector f(x), we
may employ the Mean Value Theorem (Mean Value Theorem 2012)

fk(x)− fk(x− δ) = δ f ′k(y), y ∈ [x− δ, x]

fk(x + δ)− fk(x) = δ f ′k(y), y ∈ [x, x + δ]

⇓

| fk(x)− fk(y)| ≤
h
2

max
z
| f ′k(z)|, y ∈

[
x− h

2
, x +

h
2

]
, z ∈

[
x− h

2
, x +

h
2

]

⇓

| fk(x)− f̃k(x)| ≤ h
2

max
y
| f ′k(y)|, y ∈

[
x− h

2
, x +

h
2

]

Using this relationship for each element of function f(x) separately, we can find an upper bound for
the error in each component ζk and use it to build an error polytope around each sample.

This polytope will have 2κ components, in which κ is the number of components of vector f(x), and
its vertices will be given by the combinations of f̃k(x) + ζk and f̃k(x)− ζk for each component.

Error maximum 2-norm

In case of the error 2-norm, we may make use of the generalization of the Mean Value Theorem for
vector functions (Mean Value Theorem 2012)

||f(x)− f̃(x)||2 ≤
h
2

max
y
|| ∂

∂x
f(y)||2, y ∈

[
x− h

2
, x +

h
2

]

in which ∂
∂x f(z) is the Jacobian vector of function f(x) evaluated at z.

Several variables function - tensor product

In order to calculate the error bounds, we assume that the functions to be approximated have the fol-
lowing form

f(x) = f1(x1)⊗ f2(x2)⊗ · · · ⊗ fn(xn).

Therefore, the approximation will have the form

f̃(x) = f̃1(x1)⊗ f̃2(x2)⊗ · · · ⊗ f̃n(xn).

Error calculation in several variables - tensor product

As shown in the following, for the polytopic error representation, it suffices to take the tensor product
(Kronecker product) of the matrices representing the polytope.

11
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µi ∈ Polytopei

⇒ µi =
ni

∑
j=1

αi
jp

i
j, αi

j ≥ 0
ni

∑
j=1

αi
j = 1

pi
j are vertices of Polytopei

Pi =
[
pi

1 pi
2 . . . pi

ni

]
, matrix representing Polytopei

If h = µ1 ⊗ µ2 ⊗ · · · ⊗ µm

⇒ h =

(
n1

∑
j1=1

α1
j1 p1

j1

)(
n2

∑
j2=1

α2
j2 p2

j2

)
. . .

(
nm

∑
jm=1

αm
jm pm

jm

)

h =
n1

∑
j1=1

n2

∑
j2=1
· · ·

nm

∑
jm=1

(
m

∏
i=1

αi
ji

)(
m

∏
i=1

pi
ji

)

h =
n

∑
j=1

αjpj, by reordering the indices with n =
m

∏
i=1

ni

αjis given by the product of αi
ji with the indices according to the reordering

pjis given by the product of pi
ji with the indices according to the reordering

⇒ h ∈ Polytope

P =
[
pi

1 pi
2 . . . pi

ni

]
, matrix that represents the Polytope

P = P1 ⊗ P2 ⊗ · · · ⊗ Pm

Unfortunately, a simple way to propagate the bound on the 2-norm of the error was not found. Two
different alternatives in this case are: using the Mean Value Theorem for several variables and recalculate
the bound (it can be rather troublesome in some cases), or finding the smallest ball that contains the error
polytope (since the center is known, it suffices to find the farthest vertex from the center and use that
distance as radius. This approach is simple but at the same time might be conservative).

2.4 Tensor Product Model Transformation

The tensor product model transformation (Baranyi 2004; Baranyi et al. 2003) is a numerical technique
that, given a quasi-Linear Parameter Varying (qLPV) system representation, finds an equivalent convex
representation. It has interesting applications in numerically obtaining a TS model of a system, as well
as reducing the number of rules of a given model.

In order to ease the presentation, initially we present some multilinear algebra concepts and the
singular value decomposition generalization Higher Order Singular Value Decomposition (HOSVD).
Afterwards, the tensor product model transformation is presented. Finally, we present an example
applying the technique to a dynamical system.

The following presentation was based on the master’s dissertation (Campos 2011), which in turn
was based on (Baranyi 2004; De Lathauwer, De Moor, and Vandewalle 2000a).

12
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Preliminary Concepts

The key point of the tensor product model transformation is using the HOSVD to find, among all the
sampled values, those that really carry information (think of something similar to finding a base of
linearly independent vectors for a subspace). However, in order to enunciate the theorem that defines
this decomposition, some definitions are necessary.

The first of them, called n-mode matrix or unfolding matrix of a tensor, is a matrix representation of
high order tensors that allow some tensor operations to be represented as matrix operations.

Definition 2.1: n-mode matrix of a tensor

Consider an N-th order tensor A ∈ RI1×I2×···×IN . Its n-mode matrix, A(n) ∈ RIn×J , with J =
N

∏
k=1
k 6=n

Ik,

is a possible matrix representation of the tensor. This matrix contain the tensor’s element ai1i2 ...iN in
row in and column

(in+1 − 1)In+2 In+3 . . . IN I1 I2 . . . In−1 + (in+2 − 1)In+3 In+4 . . . IN I1 I2 . . . In−1 + . . .
+(iN − 1)I1 I2 . . . In−1 + (i1 − 1)I2 I3 . . . In−1 + (i2 − 1)I3 I4 . . . In−1 + · · ·+ in−1.

In other words, this definition shows that the n-mode unfolding will be such that:

• The n-th index of each element indicates in which row it will be on the n-mode matrix.

• The columns are “unfolded” on the following order: first the (n− 1)-th element, followed by the
(n− 2)-th element and so on in a circular fashion.

Example 2.2. Given a tensor A ∈ R2×2×2, its unfolding is done as described above.

In the case of the 1-mode matrix, the first index indicates the elements row and the columns are
“unfolded” first by the third index and next by the second.

In the case of the 2-mode matrix, the second index indicates the elements row and the columns are
“unfolded” first by the first index and next by the third.

In the case of the 3-mode matrix, the third index indicates the elements row and the columns are
“unfolded” first by the second index and next by the first.

Its unfolding matrices are given by:

A(1) =

[
a111 a112 a121 a122

a211 a212 a221 a222

]
,

A(2) =

[
a111 a211 a112 a212

a121 a221 a122 a222

]
,

A(3) =

[
a111 a121 a211 a221

a112 a122 a212 a222

]
.

By defining the scalar product between two tensors, we can use it to define a norm and orthogonality
between two tensors.

13
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Definition 2.2: Scalar product of two tensors

The scalar product 〈A,B〉 of two tensors A,B ∈ RI1×I2×···×IN is defined as

〈A,B〉 = ∑
i1

∑
i2

· · ·∑
iN

bi1i2 ...iN ai1i2 ...iN .

Definition 2.3: Tensors orthogonality

Two tensors are said orthogonal if their scalar product is 0.

Definition 2.4: Frobenius norm of a tensor

The Frobenius norm of a tensor A is given by

‖A‖ =
√
〈A,A〉.

Finally, we need to define the n-mode product between a tensor and a matrix. This product can
be seen as a generalization of left and right matrix multiplications (equivalent to 1-mode and 2-mode
products in this notation).

Definition 2.5: n-mode product

The n-mode product of a tensor A ∈ RI1×I2×···×IN by a matrix U ∈ RJn×In , represented as A×n U,
is a tensor belonging to RI1×I2×···In−1×Jn×In+1×···×IN whose elements are given by

(A×n U)i1i2 ...in−1 jnin+1 ...iN = ∑
in

ai1i2 ...in−1inin+1 ...iN ujnin .

This operation may be described in terms of the n-mode matrices of the tensor A and of the
resulting tensor as

(A×n U)(n) = UA(n).

Property 2.3

Given a tensor A ∈ RI1×I2×···×IN and matrices F ∈ RJn×In and G ∈ RJm×Im , with n 6= m, then

(A×n F)×m G = (A×m G)×n F = A×n F×m G.

Property 2.4

Given a tensor A ∈ RI1×I2×···×IN and matrices F ∈ RJn×In and G ∈ RKn×Jn , then

(A×n F)×n G = A×n (GF).

From these definitions, we can enunciate the HOSVD, which will be essential for the tensor product
model transformation.
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Theorem 2.1: HOSVD - (De Lathauwer, De Moor, and Vandewalle 2000a)

Every tensor A ∈ RI1×I2×···×IN may be written as the product

A = S ×1 U(1) ×2 U(2) · · · ×N U(N),

represented in a short manner as

A = S N×
n=1

U(n),

in which

1. U(n) =
[

u(n)
1 u(n)

2 . . . u(n)
In

]
is an unitary matrix of dimensions In × In called n-mode sin-

gular matrix;

2. S ∈ RI1×I2×···×IN , called core tensor, is a tensor whose subtensors Sin=α, obtained by fixing the n-th
index in α, has the following properties:

a) all-orthogonality: two subtensors Sin=α and Sin=β are orthogonal if for all possible values of
n, α and β subject to α 6= β:

〈Sin=α,Sin=β〉 = 0 ∀ α 6= β;

b) ordering:
‖Sin=1‖ ≥ ‖Sin=2‖ ≥ · · · ≥ ‖Sin=In‖ ≥ 0

for all possible values of n.

The Frobenius norm ‖Sin=i‖, symbolized as σ
(n)
i , are the n-mode singular values of A and vector u(n)

i
is the corresponding n-mode singular vector.

The calculus of this decomposition is done in two steps 1. Initially, the n-mode singular matrices are
calculated followed by the core tensor.

The n-mode singular matrices are the matrices of left singular vectors of the unfolding matrices.
Therefore, each matrix (and the respective n-mode singular values) is found by a singular value decom-
position of each of the tensor’s unfolding matrices.

Having calculated the singular matrices, the core tensor is found by

S = A×1 U(1)T ×2 U(2)T · · · ×N U(N)T
.

Tensor Product Model Transformation - Steps

The tensor product model transformation is a numerical technique that finds convex approximations
for functions, valid inside of a compact region of the function’s domain. These convex approximations
can be represented by a polytope of values (not necessarily belonging to the function’s image space)
whose convex combination is capable of representing the function’s behaviour. This representation is
equivalent to a TS fuzzy model of the function.

When applied to a qLPV model of a dynamical system, this technique is thus capable of finding a
TS fuzzy representation of the system. In this case, we have a polytope of linear systems, because by
fixing the parameter (state) values of the qLPV model, it becomes a linear model. This representation,
in turn, allows the use of LMIs for controller synthesis, or analysis of the system.

1For more details, see (De Lathauwer, De Moor, and Vandewalle 2000a)
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In the following, the tensor product model transformation steps and its use in a general setting are
presented. Afterwards, an example of its specific use in obtaining a TS model of a system is presented.

Sampling and Tensor Representation

The first step when applying the tensor product model transformation is, given a function to be approx-
imated, sample it inside of an hyper-rectangular region (that corresponds to the validity domain of the
approximation) and store these samples in a tensor.

Given a function f : [x1, x1]× · · · × [xN , xN ] → RM1×···×Mm , in which [x1, x1]× · · · × [xN , xN ] is an
hyper-rectangular subset of RN , define a sample grid of size I1 × · · · × IN over the function’s domain.

Define a tensor, Sd ∈ RI1×···×IN×M1×···×Mm , that stores the sampled values of f for each grid point.

Assumption 2.1

The usual basic assumption when employing the tensor product model transformation is that the
function we are approximating can be exactly represented as an interpolation (be it piecewise con-
stant, piecewise linear or some different interpolation scheme a) of the samples. This amounts to
saying that the approximation error between the original function and the interpolated function is
not taken into account in this procedure.

aA requirement to guarantee that we get a convex representation at the end of the transforma-
tion is that the interpolation scheme only generates values given by the convex combination of the
sample points. Some schemes with interesting properties are presented in (Campos, Tôrres, and
Palhares 2015).

Therefore, the interpolation can be written as

f (x) ≈ Sd
N×

n=1
λ(n)(xn). (2.8)

in which the functions λ(n)(xn) are weight functions that, when multiplied by the samples, generate the
desired interpolation (e.g. piecewise Lagrange polynomials (de Boor 2001, Theorem 3)).

Example 2.3. Consider the function f (x, y) = xy(1+ sin(x) cos(y)), with x ∈ [−10, 10] and y ∈ [−10, 10],
presentend in Figure 2.2. Consider that f : [−10, 10]× [−10, 10]→ R.

By defining a sampling grid step of 0.1 in x and in y, we get a sampling grid of size 201 × 201.
Evaluating the function in each grid point and storing it in tensor Sd, we actually get a matrix of size
201× 201, because the last direction is a singleton (a direction of dimension 1).

Higher Order Singular Value Decomposition

Having defined tensor Sd ∈ RI1×···×IN×M1×···×Mm storing the samples of the function to be approxi-
mated, we make use of the HOSVD presented in the previous section to decompose the tensor.

The idea here is presenting the sample tensor as weighted sum, where the weights change according
to the function’s variables. In that regard, it is not interesting to decompose the tensor in all N + m
different dimensions. In this case, it is decomposed only in the first N dimensions, that represent the
variables of the function being approximated.

We can then write it as:

Sd = S N×
n=1

U(n).
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Figure 2.2: f (x, y) = xy(1 + sin(x) cos(y)), used in example 2.3.

In this notation, we may understand the sample tensor as a weighted sum, in which each matrix
U(n) represents the weights relative to variable n in the sample grid. Each column vector u(n)

i represents
a different weighting function for that variable.

As previously presented, the HOSVD calculation happens in two steps. In the first step, a singular
value decomposition of each of the unfolding matrices is done to find the U(n) matrices and the n-mode
singular values. In this stage, each column u(n)

i found corresponds to an n-mode singular value.

Keeping only the columns whose singular values are different than zero, we find an exact represen-
tation for the tensor. Discarding columns whose singular values are not different than zero, we get a
representation with a smaller complexity, but with a certain error. This reduced representation does not
have the property of being the best reduced representation (in terms of mean squared error), as opposed
to the case of reducing a matrix by means of the singular value decomposition. However, it is possible to
show that the approximation error for discarding a column whose singular value is nonzero is bounded
(and an upper bound for this approximation error can be calculated using the discarded singular values)
(De Lathauwer, De Moor, and Vandewalle 2000a).

Thus, this is the tensor product model transformation step that allows a choice between the final
complexity of the representation (number of weight functions for each variable, that is equivalent to the
number of columns of the U(n) matrices) and the approximation precision (Baranyi 2004).

17



TENSOR PRODUCT MODEL TRANSFORMATION THEORETICAL FOUNDATION

Example 2.4. Considering still the function used in example 2.3 and the tensor (matrix) Sd. Keeping
only the u(n)

i columns whose singular values are greater than 1× 10−5 times the greatest singular value
of that mode, we get a representation with U(1) ∈ R201×2, U(2) ∈ R201×2 and S ∈ R2×2.

Thinking of the U(n) matrices, presented in Figure 2.3, as weighting functions of the grid’s n-th
variable, we have that, inside of the approximation domain, the function f (x, y) = xy(1+ sin(x) cos(y))
can be represented by the weighted sum of the elements of the core tensor S with the u(n)

i columns as
weighting functions.

In this example’s case, we have:

f (x, y) =
2

∑
i=1

2

∑
j=1

u(1)
i u(2)

j Sij.
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1 u(1)

2
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u
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i

u(2)
1 u(2)

2

Figure 2.3: weighting functions from example 2.4.

Convex representations (convex hull manipulation)

The use of the HOSVD allowed us to decompose the function as a weighted sum of one-variable terms.
However, in some cases, we wish for a representation with additional characteristics.

In order to obtain a representation similar to a TS model, it is necessary for the weighting functions to
have properties similar to those of a fuzzy set’s membership functions. In the case of the tensor product
model transformation, these properties are imposed as certain characteristics of the weight matrices
U(n), which, in turn, can be seen as characteristics of the core tensor S .

For the purpose of imposing characteristics over a given weight matrix, it is multiplied on the right
by a square transformation matrix. For this transformation to be valid, it is necessary that the transfor-
mation matrix be invertible.

Considering Ũ(n) = U(n)Tn, we have that U(n) = Ũ(n)T−1
n . By making use of properties 2.3 and 2.4,

we can show that
S N×

n=1
U(n) = S̃ N×

n=1
Ũ(n),

with S̃ given by

S̃ = S N×
n=1

T−1
n .

In the literature, the characteristics are usually defined on the weighting functions (obtained after
interpolating the column weight matrices). However, since the transformations used to impose these
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characteristics are applied to the weight matrices, in this work, we define these characteristics on the
weight matrices directly.

In the following, we present the most common characteristics used in the literature (Petres et al.
2005) and why they are desirable.

Sum Normalized and Non Negative

Definition 2.6: Sum Normalized

Sum Normalized (SN) - A matrix U(n) is said sum normalized if the sum of its columns, u(n)
i , results

in a vector whose components are all equal to one (represented by 1). Written differently, a matrix
U(n) with r columns is said sum normalized if

r

∑
i=1

u(n)
i = 1.

Definition 2.7: Non Negative

Non Negative (NN) - A matrix U(n) is said non negative if none of its elements is negative. Written
differently, a matrix U(n) is said non negative if

u(n)
ij ≥ 0, ∀i, j.

When all weight matrices are SN and NN, the resulting model is equivalent to a TS model and
the weighting functions (corresponding to the columns of the weight matrices) are equivalent to the
membership functions of a TS model. In that regard, whenever we would like to find a TS fuzzy ap-
proximation, all weight matrices must be SN and NN.

An algorithm that calculates, separately, the SN and NN transformation of the weight matrices is
presented in (Baranyi 1999).

Example 2.5. Considering the weight matrices obtained in example 2.4 and applying a transformation to
make them SN and NN, we get the weighting function in Figure 2.4. It is interesting to note that in both
cases it was not possible to obtain a transformation without increasing the number of columns of the
weight matrices (and, accordingly, a new function has been added to each plot in Figure 2.4 comparing
to the ones in Figure 2.3).

Remark 2.2

In order for the SN transformation to be possible without increasing the number of columns, it
is necessary that the vector 1 belongs to the image space of the weight matrix we would like to
transform. When it does not, it is necessary to include a new column so that the image space will
include the 1 vector. In this case, the SN transformation has a trivial solution given by the inclusion

of the column 1−
r

∑
i=1

u(n)
i .
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Figure 2.4: SN-NN weighting functions obtained in example 2.5.

Normalized and Close to Normalized

Definition 2.8: Normalized

Normalized (NO) - A matrix U(n) is said normalized if it is SN and NN and, in addition, the
maximum values of each column, u(n)

i , are the same and equal to one. Written differently, a matrix
U(n) is said normalized if it is SN, NN and

max(u(n)
i ) = 1, ∀i.

When the weight matrices are NO, the set represented by the polytope formed by the vertices stored
in the core tensor is equivalent to the convex hull of the sampled points used for the tensor prod-
uct model transformation. However, in most cases, this characteristic leads to a very large number
of columns, thus increasing the approximation’s complexity.

An algorithm for the NO transformation of a given SN and NN weight matrix is presented in
(Baranyi 1999). As presented in the paper, the problem of finding this transformation boils down to
finding the convex hull of the points formed by the rows of the weight matrix.

There are many packages available online (e.g.: Qhull 2011) for finding the convex hull vertices of a
given point cloud.

Definition 2.9: Close to Normalized - usual definition

Close to Normalized (CNO) - A matrix U(n) is said close to normalized if it is SN, NN and the
maximum values of each column are close to one.

In the case of the CNO representation, the set formed by the core tensor polytope is not equivalent
to the convex hull anymore. In this case, however, we search for a representation with a fixed number
of rules (weight matrices columns), that is close to the NO representation, such that the core tensor
polytope is close to the convex hull. For that reason, in most cases, we search for a CNO representation
instead of NO one, because, usually we seek a representation with reduced complexity.

Since we are searching for a representation whose polytope is close to the convex hull in the CNO
representation, in this work we make use of an alternative definition for this characteristic.
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Definition 2.10: Close to Normalized - alternative definition

CNO - A matrix U(n) is said close to normalized if it is SN, NN, and the convex hull of its row
vectors has the largest possible volume inside of the standard unit simplex (i.e. it is not possible to
enlarge the convex hull without violating the SN and NN conditions).

Based on this definition, we have that the CNO transformation will be given by the smallest volume
simplex that covers the row vectors of the weight matrix. Transforming this simplex into the standard
unit simplex, we get a CNO matrix.

CNO Transformation

The following presentation is a transposed version of the presentation in (Campos et al. 2013).
In order to reduce the computational cost of the optimization problem, one may find the convex hull

of the row vectors, and keep only its vertices in order to find the transformation (since if the smallest
volume simplex covers the convex hull, it will also cover all points). Note that this is an optional step
(and in high dimensional cases may be quite costly by itself) and the transformation can be calculated
using all the points.

The aim of this transformation is finding a matrix K such that

U = ŨK, (2.9)

and matrix Ũ is SN and NN.
That is the same as imposing that the rows of Ũ have the convex sum property and imposing that

sum(UT) = 1,

UT � 0,

in which T = K−1, and the first constraint means that the sum of the rows of UT must be equal to a
vector of ones.

On the other hand, the volume v of a r− 1 dimensional simplex described by r vertices is given by
(Stein 1966)

v =
1

(r− 1)!
det







k11 k12 . . . k1(r−1) 1
k21 k22 . . . k2(r−1) 1

...
...

...
... 1

kr1 kr2 . . . kr(r−1) 1







.

But, since the rows of K must satisfy the convex sum property, we get

v =
1

(r− 1)!
det

(
K

[
Ir−1 1r−1

0T
r−1 1

])
=

1
(r− 1)!

det (K) .

Therefore, in order to find the smallest volume simplex that covers the points in the rows of U, we
want to minimize

J = det(K) = det(T)−1.

Finally, we can enunciate the result below.
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Theorem 2.2: CNO Transformation

The transformation matrix T that endows the weight matrix U with the CNO characteristic can be found by
solving the following optimization problem

min
T
− ln(det(T))

s.t. sum(UT) = 1,

UT � 0.

Example 2.6. Still considering the weight matrices obtained in example 2.4 and applying the CNO trans-
formation described above, we get the weighting functions presented in Figure 2.5.
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Figure 2.5: CNO weighting functions obtained in example 2.6.

Relaxed Normalized and Inverse Normalized

Definition 2.11: Relaxed Normalized

Relaxed Normalized (RNO) - A matrix U(n) is said relaxed normalized if it is SN, NN, and in
addition the maximum value of all of its columns, u(n)

i , are the same. Written differently, a matrix
U(n) is said relaxed normalized if it is SN, NN, and

max(u(n)
i ) = max(u(n)

j ), ∀i, j.

Definition 2.12: Inverse Normalized

Inverse Normalized (INO) - A matrix U(n) is said inverse normalized if it is SN, NN and in addi-
tions the minimum of each of its columns u(n)

i are the same and equal to zero. Written differently,
a matrix U(n) is said inverse normalized if it is SN, NN and

min(u(n)
i ) = 0, ∀i.
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Just like the CNO characteristic, the RNO and INO characteristics are relaxed forms of imposing
characteristics over the polytope in a way that it represents a smaller set that the one we would get
when imposing only the SN and NN characteristics over the weight matrices.

It is noteworthy that, for matrices with two columns, the INO condition is equivalent to the NO
condition. In addition, imposing that all columns of the weight matrices have the same maximum value
(RNO) together with imposing that all columns have a minimum value equal to zero (INO) implies in
well distributed weighting functions, so that no weighting function has more importance over another
(so the same can be said of the corresponding vertices).

An algorithm for finding, simultaneously, a RNO and INO weight matrix, given a SN and NN
matrix, is presented in (Varkonyi et al. 2005).

Example 2.7. Considering the weight matrices obtained in example 2.5 (since the transformation used
in this stage requires a SN and NN matrix) and applying the RNO-INO transformation, we get the
weighting functions presented in Figure 2.6.
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Figure 2.6: RNO-INO weighting functions obtained in example 2.7.

It is interesting to note that, as commented above, we found functions with similar representative-
ness for all vertices. Which is a little different from what happened in the CNO transformation, and
justifies the use of the RNO-INO in certain cases.

It is interesting to note that all these representations are equivalent, and therefore generate the same
approximation for function f (x, y). As a matter of completeness, Figure 2.7 presents the squared ap-
proximation error obtained by using the RNO-INO weighting functions (which is the same for all the
other representations).

Approximating the weight matrices

Having found the weight matrices with the desired characteristics, it is necessary to find functions that
replace each of the columns of each weight matrix, such that the approximation found can be employed
for points that do not belong to the sampling grid.
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Figure 2.7: Squared approximation error when using the weight functions from example 2.7.

From equation (2.8):

f (x) ≈ Sd
N×

n=1
λ(n)(xn),

f (x) ≈
(
S N×

n=1
U(n)

)
N×

n=1
λ(n)(xn),

f (x) ≈ S N×
n=1

(λ(n)(xn)U(n)),

f (x) ≈ S N×
n=1

u(n)(xn), (2.10)

in which u(n)(xn) is a row vector whose components are given by the interpolation of the columns of
U(n).

This result shows that the same weighting functions that were considered to generate an interpo-
lation of the original sampling values are used to generate the interpolation of the weighting matrices
and, in turn, generate the membership functions. In that regard, we seek interpolation schemes whose
weighting functions have properties similar to normalized membership functions (i.e. they are non neg-
ative and they add up to one).

In the following we present some weighting functions that could be used, initially presented in
(Campos, Tôrres, and Palhares 2015). They are illustrated in Figure 2.8.
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Figure 2.8: Illustration of possible weighting functions, λ
(n)
j (xn), that can be used in the sampling step.

The first one illustrates a rectangular (piecewise constant) membership function. The second, a triangu-
lar (piecewise linear) membership function. The third, a piecewise sinusoidal function. And the last, a
piecewise fifth degree polynomial function.
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In the definition of the interpolation weighting functions λ
(n)
j (xn) below, we consider the sampling

grid over [xn, xn] to be defined by samples xnj with j ∈ 1, 2, ..., In and xn(j−1) < xnj.

Rectangular (Piecewise Constant) Functions The simplest membership function shape. Guar-
antees that the approximation error between the approximation and the original function in equation
(2.8) gets smaller as the number of samples increases. This weighting function can be written as

λ
(n)
j (xn) =

{
1, xn ∈

[ xn(j−1)+xnj
2 ,

xnj+xn(j+1)
2

]
,

0, otherwise.

Triangular (Piecewise Linear) Functions A commonly used weighting function shape (Baranyi
et al. 2003), that in the sampling step is equivalent to making a linear interpolation of the samples. Guar-
antees the continuity of the interpolated functions. This weighting function can be written as

λ
(n)
j (xn) =





xn−xn(j−1)
xnj−xn(j−1)

, xn ∈
[

xn(j−1), xnj

]
,

−xn+xn(j+1)
xn(j+1)−xnj

, xn ∈
[

xnj, xn(j+1)

]
,

0, otherwise.

Piecewise Sinusoidal Functions A weighting function shape that guarantees that the interpo-
lated membership functions will be continuously differentiable. This weighting function can be de-
scribed by

λ
(n)
j (xn) =





1
2

(
1 + sin

(
π(2xn−xnj−xn(j−1))

2(xnj−xn(j−1))

))
, xn ∈

[
xn(j−1), xnj

]
,

1
2

(
1− sin

(
π(2xn−xn(j+1)−xnj)

2(xn(j+1)−xnj)

))
, xn ∈

[
xnj, xn(j+1)

]
,

0, otherwise.

Piecewise Fifth Degree Polynomial A weighting function shape that guarantees the continu-
ity of the second derivative of the interpolated membership functions. This weighting function can be
described by

λ
(n)
j (xn) =





1− 6x5
n+a1x4

n+a2x3
n+a3x2

n+a4xn+a5

(xn(j−1)−xnj)
5 , xn ∈

[
xn(j−1), xnj

]
,

6x5
n+b1x4

n+b2x3
n+b3x2

n+b4xn+b5

(xnj−xn(j+1))
5 , xn ∈

[
xnj, xn(j+1)

]
,

0, otherwise.
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with

a1 = −15
(

xn(j−1) + xnj

)
,

a2 = 10
(

x2
n(j−1) + 4xn(j−1)xnj + x2

nj

)
,

a3 = −30xn(j−1)xnj

(
xn(j−1) + xnj

)
,

a4 = 30x2
n(j−1)x

2
nj,

a5 = −x3
nj

(
10x2

n(j−1) − 5xn(j−1)xnj + x2
nj

)
,

b1 = −15
(

xnj + xn(j+1)

)
,

b2 = 10
(

x2
nj + 4xnjxn(j+1) + x2

n(j+1)

)
,

b3 = −30xnjxn(j+1)

(
xnj + xn(j+1)

)
,

b4 = 30x2
njx

2
n(j+1),

b5 = −x3
n(j+1)

(
10x2

nj − 5xnjxn(j+1) + x2
n(j+1)

)
.

For simplification purposes, whenever we do not say otherwise, in this work we employ piecewise
linear weighting functions for the columns of the weight matrices. These functions can be implemented
as a linear interpolation table, with the domain points given by the grid points in the direction corre-
sponding to the direction of the weight matrix, and the image points given by the values in the columns
of the weight matrices.

It is possible to rewrite (2.10) as:

f (x) ≈
I1

∑
i1=1

. . .
IN

∑
iN=1

u(1)
i1

(x1) . . . u(N)
iN

(xN)Si1 ...iN , (2.11)

in which Si1 ...iN , just like f (x), belongs to RM1×···×Mm . If the weight matrices used in the interpolation
step have the SN and NN characteristics, this expression shows that f (x) can be approximated by a
convex combination of the Si1 ...iN points. In this case, these points are called the vertices of the convex
representation.

Example applied to Dynamical Systems

When applying the tensor product model transformation to dynamical system, we usually have the
following situation: given a qLPV model of a nonlinear dynamical system find a TS fuzzy representation
of the system.

Consider the qLPV model given by:

ẋ = A(x)x + B(x)u,
y = C(x)x + D(x)u,

in which x ∈ Rn, u ∈ Rm, y ∈ Rk, A(x) ∈ Rn×n, B(x) ∈ Rn×m, C(x) ∈ Rk×n and D(x) ∈ Rk×m.
A possible approach would be to define the function

f (x) =

[
A(x) B(x)
C(x) D(x)

]

and inside of an hyper-rectangular region , find an approximation as was done previously. In this way,
we end up with a TS representation for the system.
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In this case, Si1 ...iN represents the matrices of the vertex linear systems that compose the TS model
of the system.

However, in most of the cases, not all the states in x affect the values of the A, B, C and D matrices
and in some cases some of these matrices may be constants.

Thus, in most cases, it is useful to find a subset of the state vector, x̆, that influences the system
matrices and find an approximation for the function f (x̆), reducing the final size of the sampling grid.
In addition to this, in order to alleviate the computational burden, form a function containing only the
non constant terms from the matrices.

When we do not include all matrices to form the f (x̆) function, Si1 ...iN will contain only the ones that
were included. However, since the other terms are constant, they are the same for all the vertex systems.

Some recent works (Baranyi et al. 2007; Nagy et al. 2009) present other ways to reduce the computa-
tional effort of the tensor product model transformation. However, this reduction is outside of the scope
of this work and, therefore, is not dealt with here.

Example 2.8. Consider the kinematic equations of a mobile robot whose movement has been con-
strained to the xy plane:

ẋ = v cos(θ),
ẏ = v sin(θ),
θ̇ = w.

In which x is the robot’s position in the x direction, y is the robot’s position in the y direction, θ is
the robot’s yaw angle, v is the robot’s translational velocity, and w its angular velocity. Considering that
the state space is composed by z = [ x y θ ]T , the input vector is given by u = [ v w ]T , and the
output vector is given by p = [ x y ]T , we get:

ż = B(z)u
p = Cz

B(z) =




cos(θ) 0
sin(θ) 0

0 1




C =

[
1 0 0
0 1 0

]

In this example’s case we get to see what was commented above. Out of the three state variables,
only one of them, θ, influences the system matrices. In addition to this, only the B matrix changes with
the state. The A and D matrices are zero matrices, whereas the C matrix is a constant matrix.

Therefore, the function we must approximate in this example is B(θ) and we know that the other
matrices will be the same for all the vertex systems found in the final model.

Since θ is the yaw angle, we know that θ ∈ [−π, π]. In that regard, we have decided to use 101
samples over θ ∈ [−π, π]. We have that B(θ) ∈ R3×2, and, thus, with 101 samples we get a tensor
Sd ∈ R101×3×2.

By following the same steps presented previously, it is possible to find several representations for
the model. The different weighting functions in each representation are presented in Figure 2.9.

Since all the representations are equivalent, they have the same representation mean square error
for the points belonging to the grid. In this example, this error is 1.2321× 10−25.
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Figure 2.9: Different weighting functions obtained in example 2.8.

2.5 Membership Functions Transformations

Membership functions transformations can be useful in different situations: be it for finding a system
representation with certain special properties, be it to apply (even if only locally) lemmas 2.5 and 2.6 to
reduce the conservativeness of sufficient conditions.

Transformations combination

When dealing with TS models whose membership functions have a tensor product structure (i.e. models
in which property 2.1 is valid), one can usually simplify the transformation calculations by finding a
transformation for the normalized one-variable membership functions, µ

αij
j (vj), for each of the premise

variables separately and then combining these to form a transformation of the multivariable normalized
membership functions, hi(v).

In order to do so, consider the column vector h, whose ith element is hi(v) given in (2.2), and the
column vector µj, whose elements are µ

αij
j (vj), with 1 ≤ αij ≤ rj. In this case, using the Kronecker

product operation, one has that from (2.2)

h = µ1(v1)⊗ µ2(v2)⊗ · · · ⊗ µ`(v`). (2.12)
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Consider also the transformed column vectors h̃ and µ̃j satisfying

h̃ = µ̃1(v1)⊗ µ̃2(v2)⊗ · · · ⊗ µ̃`(v`),

with each transformed vector µ̃j given by a linear transformation such that

µj(vj) = Kjµ̃j(vj),

and Kj ∈ Rrj×r̃j .
We can therefore rewrite (2.12) as

h(v) = K1µ̃1(v1)⊗ K2µ̃2(v2)⊗ · · · ⊗ K`µ̃`(v`).

In addition, by repeatedly employing the Kronecker product property that (A⊗ B)(C⊗D) = AC⊗ BD
(Bernstein 2009)

h(v) = (K1 ⊗ K2 ⊗ · · · ⊗ K`) (µ̃1(v1)⊗ µ̃2(v2)⊗ · · · ⊗ µ̃`(v`)) ,

h(v) = Gh̃(v),

with
G = (K1 ⊗ K2 ⊗ · · · ⊗ K`), (2.13)

and G ∈ Rr×r̃.
The aforementioned equations show that if one finds the Kj transformation matrices for each premise

variable separately, they can be combined to yield a transformation of the membership functions hi by
taking their Kronecker product.

If, in addition, we impose that the Kj matrices have the convex sum property, then the transformed
membership functions will also have this property.

Transformations combination - alternative presentation

For completeness, we present here an alternative development for combining these transformations,
using the tensor product representation (from the tensor product model transformation presented in
this chapter).

Considering a TS model for which the property 2.1 is valid, as well as a convex combination of
arbitrary matrices Li ∈ Rκ1×κ2 , such that

Y(v) =
r

∑
i=1

hi(v)Li.

This relationship can be rewritten as

Y(v) = L `×
j=1

µT
j (vj), (2.14)

in which µj(vj) is a vector containing the normalized unidimensional membership functions, as defined
previously; L ∈ Rr1×···×r`×κ1×κ2 is a tensor of order (`+ 2) containing the Li matrices such that the first
` indices (k1, . . . , k`) indicate which fuzzy setsMk1

1 , . . . ,Mk`
` are related to the corresponding rule (i.e. L

is a tensor whose element lk1 ...k`k`+1k`+2
correspond to the element in row k`+1 and column k`+2 of matrix

Li obtained from rule i, whose premise variables fuzzy sets areMk1
1 , . . . ,Mk`

n ); Y(v) ∈ R1×···×1×κ1×κ2 is
a tensor constructed from matrix Y(v) by putting all indices equal to 1 before the indices of matrix Y(x)
(i.e. they are different representations of the same object).

In the tensor product model transformation literature, it is usual to transform the vectors µj(vj) in or-
der to find better suited representations (Baranyi 1999, 2004; Varkonyi et al. 2005). These transformations
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are done considering each premise variable separately, but can be combined as a single transformation
of the hi(v) membership functions. In that regard, we can generate transformations that can be used
with lemmas 2.5 and 2.6.

These transformations usually have the form

µ̃T
j (vj) = µT

j (vj)Tj,

in which the vectors µ̃j(vj) satisfy the convex sum property.
In addition, by using property 2.4 of the n-mode product, equation (2.14) can be rewritten as

Y(v) = (L `×
j=1

Kj)
`×

j=1
µ̃T

j (vj), (2.15)

in which

Kj = T−1
j .

By using the fact that the n-mode product between a tensor and the identity matrix in any direction
is equal to the tensor, equations (2.14) and (2.15) can be rewritten as

Y(v) = L `×
j=1

µT
j (vj)×`+1 Iκ1 ×`+2 Iκ2 , (2.16)

Y(v) = H `×
j=1

µ̃T
j (vj)×`+1 Iκ1 ×`+2 Iκ2 , (2.17)

in which

H = (L `×
j=1

Kj ×`+1 Iκ1 ×`+2 Iκ2). (2.18)

Note that the `+ 1 unfolding matrix of Y , denoted by Y(`+1) is equivalent to the Y(v) matrix, and using
the unfolding matrix of the right side of equation (2.16), we get

Y(v) = Iκ1L(`+1)(Iκ2 ⊗ µT
1 (v1)⊗ · · · ⊗ µT

` (v`))
T ,

Y(v) = L(`+1)

[
Iκ2 ⊗ (µT

1 (v1)⊗ · · · ⊗ µT
` (v`))

T
]

,

Y(v) = L(`+1) [Iκ2 ⊗ h] , (2.19)

with h given by equation (2.12).
By using the unfolding matrix in (2.18), we get

H(`+1) = Iκ1L(`+1)(Iκ2 ⊗ K1 ⊗ · · · ⊗ K`)
T ,

H(`+1) = L(`+1)

[
Iκ2 ⊗ (K1 ⊗ · · · ⊗ K`)

T
]

,

H(`+1) = L(`+1) [Iκ2 ⊗ G] , (2.20)

in which

G = (K1 ⊗ · · · ⊗ Kn)
T . (2.21)

By making use of (2.19) and (2.17), we get

Y(v) = H(`+1)
[
Iκ2 ⊗ h̃

]
, (2.22)

with

h̃ = (µ̃T
1 (v1)⊗ · · · ⊗ µ̃T

` (v`))
T .
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From (2.19), (2.20) and (2.22)

L(`+1) [Iκ2 ⊗ h] = L(`+1) [Iκ2 ⊗ G]
[
Iκ2 ⊗ h̃

]
,

[Iκ2 ⊗ h] = [Iκ2 ⊗ G]
[
Iκ2 ⊗ h̃

]
,

and applying the Kronecker product property that (A⊗ B)(C⊗ D) = AC⊗ BD (Bernstein 2009)

Iκ2 ⊗ h = Iκ2 ⊗ Gh̃, ⇒ h = Gh̃.

This last equation shows that the G matrix defines a linear relationship between h and h̃.

Remark 2.3

Note that the G matrix given by equation (2.21) seems to be given by the transpose of the G matrix
given in (2.13). They are however the same G matrix. The transpose appears in equation (2.21) due
to the form the Kj matrices are usually defined in the tensor product model transformation litera-
ture (matrices that transform row vectors) instead of the usual form used in the previous section
(matrices that transform column vectors).

2.6 Usual Uncertainty Representations

The uncertainty representations for TS models can usually be divided in two categories:

• Models with uncertainty in the consequent: are the usual form found in the literature, and possess a
structure similar to that found in uncertainty representations usually found in the robust control
of linear systems;

• Models with uncertainty in the premise: are a less usual form of representing uncertainty.

In the following some examples of uncertainty representations found in the literature are presented.

Uncertainty in the consequent

Norm Bounded Uncertainty A simple extension of the norm bounded uncertainty usually found in
the robust control of linear systems (Tanaka and Wang 2001, chapter 5), (Mansouri et al. 2009).
Format:

ẋ =
r

∑
i=1

hi(z)
[
(Ai + Dai ∆ai Eai ) x +

(
Bi + Dbi

∆bi
Ebi

)
u
]

,

||∆ai ||2 ≤ 1, ||∆bi
||2 ≤ 1

Lumped (matched) Uncertainty An uncertainty representation usually found in works dealing with
variable structure control (Lin et al. 2007, chapter 5), (Choi 2008), (Choi 2010). Example of format:

ẋ =
r

∑
i=1

hi(z) [Aix + Bi (I + ∆i) u + fi(x, u, t)] ,

∆i bounded, fi = Bi f̃i, ||f̃|| bounded

32



THEORETICAL FOUNDATION USUAL UNCERTAINTY REPRESENTATIONS

Structured Linear Fractional Form An extension of the norm bounded uncertainty that manages to be
less conservative by being more structured. (Feng 2011, chapter 8), (Zhang, Zhou, and Li 2007),
(Zhou et al. 2005). Format:

ẋ =
r

∑
i=1

hi(z)
[
Ãix + B̃iu

]
,

[
Ãi B̃i

]
=
[

Ai Bi

]
+ Wi∆

[
N1i N2i

]

∆ = F [I − JF]−1 or ∆ = [I − JF]−1 F

I − J JT > 0 and J known

||F||2 ≤ 1

Polytopic Uncertainty Despite being heavily used in the robust control of linear systems, this repre-
sentation (Sofianos and Kosmidou 2009) is seldom used for TS systems due to the increase in the
number of LMIs. Format:

ẋ =
r

∑
i=1

hi(z) [(Ai + ∆Ai) x + (Bi + ∆Bi) u] ,

[
∆Ai ∆Bi

]
=

m

∑
k=1

αik

[
Ãik B̃ik

]
,

αik ≥ 0,
m

∑
k=1

αik = 1

Elemental Parametric Uncertainty An uncommon representation (Chen, Ho, and Chou 2009; Ho, Tsai,
and Chou 2007) and quite similar to the polytopic uncertainty (in the sense that one can be easily
converted into the other). Format:

ẋ =
r

∑
i=1

hi(z) [(Ai + ∆Ai) x + (Bi + ∆Bi) u] ,

[
∆Ai ∆Bi

]
=

m

∑
k=1

αik

[
Ãik B̃ik

]
,

αik ≤ αik ≤ αik

Uncertainty in the premise

The use of representations of this form is less common (though lately it has been gaining more atten-
tion), due to the fact that it has no equivalent in the robust control of linear systems. Unlike the other
representations, that lump all uncertainty into the local linear models, the uncertainty is lumped in the
membership functions of the model.

A specific format is presented in the following.

Interval Type 2 TS Fuzzy Model

This representation makes use of TS interval type 2 fuzzy models (that can be seen as a collection of TS
models) to represent the model’s uncertainty (Lam and Leung 2011, chapter 10).

In this representation case, the membership of each rule returns a closed interval, instead of return-
ing a scalar.

hi =
[

hi, hi

]
.
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In order to represent the uncertainty in the memberships, at each instant, another “membership”
(that many times is unknown) selects values from these intervals to do the model’s inference. The
inferred model can, therefore, be written as:

ẋ =
r

∑
i=1

(
νi(z)hi(z) + νi(z)hi(z)

)
[Aix + Biu] =

r

∑
i=1

h̃i(z) [Aix + Biu] .

Since the unknown “membership”, νi and νi, chooses values inside of the interval for each rule,
we have that νi + νi = 1. Note that the limit values of the intervals generated by the memberships do
not have to necessarily obey the characteristics of a normalized membership function (i.e. they do not
necessarily belong to the standard unit simplex), but the “real membership functions”, h̃i, have to.
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Premise variables are free
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3 Exploiting the membership functions

In the last years, several asymptotically exact conditions for fuzzy summations have been proposed in the literature
(Kruszewski et al. 2009; Lo and Liu 2010; Montagner, Oliveira, and Peres 2009; Sala 2007). However, for not
taking into account the shape of the membership functions directly, these conditions are asymptotically exact only
in cases where the membership functions may assume any combination of values in the standard unit simplex (as
said in Kruszewski et al. 2009, Remark 1).

In (Campos, Tôrres, and Palhares 2012), asymptotically exact conditions that take into account the membership
functions’ shape, by means of simplicial partitions of the membership functions’ image space, were proposed. In
this chapter, these conditions are presented, as well as ways to extend them and different uses and interpretations
for the simplicial partitions.

3.1 Asymptotically necessary conditions

As discussed in section 2.2, several TS analysis and synthesis conditions can be written as fuzzy sum-
mations. Even though the usual is to apply sufficient conditions for the summations (like the lemmas
presented in section 2.2), many sufficient and asymptotically necessary conditions have been proposed
in the literature. However, as explained above, these conditions are not always asymptotically necessary.

Despite this, these conditions may serve as motivation for the development of conditions that are
asymptotically necessary in all situations. In this work’s case, the conditions presented in (Kruszewski
et al. 2009) served as inspiration.

The main idea of the conditions presented in (Kruszewski et al. 2009) is to partition the standard
unit simplex, ∆, into n simplices in a way that

∆(m), m ∈ {1, . . . , n},
∆(1) ∪ · · · ∪ ∆(n) = ∆.

An example of this partition is presented in Figure 3.1 for a system with three rules (note that, since the
third rule is given by one minus the sum of the other two rules, its information is omitted in the plot).

Afterwards, the condition with the fuzzy summation is replaced by multiple conditions with fuzzy
summations over each of the ∆(m) simplices. Letting the ∆(m) simplices volume tend to zero is equiv-
alent to demanding that the fuzzy summation condition be valid for all points in the standard unit
simplex, and, therefore, in the case where the membership functions assume values over all of ∆, leads
to necessary conditions.
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Figure 3.1: Example of a standard unit simplex partition of a 3 rule system using the methodology
proposed in (Kruszewski et al. 2009).
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Figure 3.2: Example of the conservativeness generated by the methodology proposed in (Kruszewski
et al. 2009).
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Figure 3.3: Example of a partition that satisfy the proposed condition.

Consider, however, the case presented in Figure 3.2 in which the membership functions only assume
values over the curve presented. In this case, it is easy to realize that the methodology proposed in
(Kruszewski et al. 2009) imposes unnecessary conditions (as can be seen by the filled simplices in Figure
3.2).

In that regard, the main idea presented in (Campos, Tôrres, and Palhares 2012) is to generate a
partition of the standard simplex ∆ composed of n simplices such that

∆(m), m ∈ {1, . . . , n},
h(v) ⊆ ∆(1) ∪ · · · ∪ ∆(n). (3.1)

Which is equivalent to requiring that the n simplices contain all possible values of the membership
functions for all possible values of the premises v.

An example of this partition is presented in Figure 3.3.

Particularly, we desire a sequence of partitions such that

lim
n→∞

∆(1) ∪ · · · ∪ ∆(n) = h(v). (3.2)

In addition, we consider that there exists a transformation of the points interior to simplex ∆(m) to
another space, in which simplex ∆(m) is the standard unit simplex, and that can be written as (Kruszewski
et al. 2009, equation (17))

h = G(m)h̃(m), (3.3)

in which G(m) are matrices formed by grouping the column vectors g(m)
j that represent the vertices of

simplex ∆(m), h is a point in the original space, and h̃(m) is a point in the transformed space.
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Remark 3.1

It is interesting to note that a sufficient condition for the feasibility of expressions (2.6) and (2.7)
(single and double fuzzy summations respectively) is that they are simultaneously feasible for all
the points inside of all of the ∆(m) simplices. If, in addition, when n→ ∞ the union of the simplices
contain only points that belong in the membership functions’ image space, this conditions also
becomes asymptotically necessary.

In that regard, making use of lemmas 2.5 and 2.6, we can enunciate the following theorems.

Theorem 3.1: Asymptotically necessary condition for a single fuzzy summation

Given a partition of the standard simplex ∆, composed of n simplices, according to equation (3.1), sufficient
conditions for (2.6) are that conditions

∀m ∈ {1, . . . , n},





∑r
j=1 h̃(m)

j Q̃(m)
j > 0,

Q̃(m)
j = ∑r

i=1 g(m)
ij Qi,

be feasible for every point of the simplicial partition. In which g(m)
ij is the ith element of vertex g(m)

j from

simplex ∆(m). In the limit case, if the sequence of partitions is such that condition (3.2) is satisfied, then
these conditions are also necessary.

Theorem 3.2: Asymptotically necessary condition for a double fuzzy summation

Given a partition of the standard simplex ∆, composed of n simplices, according to equation (3.1), sufficient
conditions for (2.7) are that conditions

∀m ∈ {1, . . . , n},
{

∑r
k=1 ∑r

l=1 h̃(m)
k h̃(m)

l Q̃(m)
kl > 0,

Q̃(m)
kl = ∑r

i=1 ∑r
j=1 g(m)

ik g(m)
jl Qij,

(3.4)

be feasible for every point of the simplicial partition. In which g(m)
ij is the ith element of vertex g(m)

j from

simplex ∆(m). In the limit case, if the sequence of partitions is such that condition (3.2) is satisfied, then
these conditions are also necessary.

Remark 3.2

In some cases, conditions may occur with a higher number of fuzzy summations. Despite not being
directly dealt with in this chapter, the generalization for such cases is obtained by applying the
generalization of lemma 2.6 presented in (Bernal, Guerra, and Kruszewski 2009, Remark 2).

Unlike other asymptotically necessary conditions in the literature, the conditions above allow for
the relaxation of the single fuzzy summation (Theorem 3.1) by making use of the membership functions’
shape. Something that cannot be done in case we consider that the membership functions may assume
any combination of values. In this case, the use of Theorem 3.1 is limited to verifying

Q̃(m)
j > 0, ∀m, j.
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The use of Theorem 3.2, on the other hand, allows the use of any sufficient condition for double
fuzzy summations (like lemmas 2.1, 2.2 and 2.3 presented in section 2.2) in order to guarantee that
(3.4) is feasible. However, when the ∆(m) simplices volume goes to zero, the difference between these
conditions will also go to zero, and the choice of any sufficient condition will generate a sequence of
asymptotically necessary conditions.

Remark 3.3

In the work of (Kruszewski et al. 2009), a sequence of sufficient and asymptotically necessary con-
ditions and a sequence of necessary and asymptotically sufficient conditions for the double fuzzy
summation are presented (the sequence of necessary and asymptotically sufficient conditions is
found by using only the Q̃kk > 0 conditions for the double summation). However, the sequence
of necessary conditions proposed in (Kruszewski et al. 2009) is only necessary in cases where the
membership functions may assume any combination of values over the standard unit simplex.

Remark 3.4

It is worth noting that Theorems 3.1 and 3.2 present asymptotically necessary conditions for (2.6)
and (2.7), but that may not be necessary for conditions of the form

xT

(
r

∑
i=1

hiQi

)
x > 0,

and

xT

(
r

∑
i=1

r

∑
j=1

hihjQij

)
x > 0,

if any of the premise variables is a state variable (i.e. the parametric LMIs may not be necessary
conditions for the quadratic form, since they do not take into account any relationship the variables
from the quadratic form may have with the premise variables).

Partition Strategies - Part I

Theorems 3.1 and 3.2 present sufficient conditions for any partition generating strategy, as long as the
partitions satisfy condition (3.1). If, in the limit case, condition (3.2) is also satisfied, then the conditions
on both theorems are also asymptotically necessary.

Note then, that the biggest problem of this approach is generating partitions in a way that, at each
step, a more refined mesh of simplices is generated around the possible values of the membership func-
tions, while simplices that cover invalid areas are discarded.

In order for the partition strategies to be implemented, the membership functions are approximated
by piecewise constant functions, given by the zero order interpolation of samples over the domain of the
premise variables (that can be represented as a point cloud in the membership functions’ image space).

In this first part, we consider the approach presented in (Campos, Tôrres, and Palhares 2012), and
disregard the approximation error between the piecewise constant functions and the membership func-
tions. In the following parts, we propose extensions of the partitions methods presented here to deal
with this approximation error.
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Figure 3.4: Steps from strategy Dividing and Discarding. Find the greatest volume simplex and split it.
For each new simplex, check whether or not it contains at least one point. If it does, keep it in the
partition. If it does not, discard it.

Remark 3.5

As presented in section 2.3, by making use of the Mean Value Theorem and assuming that the func-
tions to be approximated are continuously differentiable, it is easy to show that this approximation
error is limited and goes to zero when the sampling step goes to zero. In that regard, given a very
dense sampling, it is reasonable to disregard the approximation error and make use of the partition
strategies proposed in this part.

Dividing and Discarding

The first partition scheme, named Dividing and Discarding, can be seen as an adaptation of the first
partition algorithm presented in (Kruszewski et al. 2009).

At each step, we search for the largest edge from the simplex with the greatest volume and add a
new vertex in its middle. By doing so, the simplex with the greatest volume is split into new simplices.

For each of the new simplices, we check if they contain at least one of the points from the point cloud
of the piecewise constant functions (representing the membership functions). If at least one point is in
the interior of the simplex, we preserve it. Otherwise, it is discarded from the partition.

Figure 3.4 illustrates one step of this partition strategy.

In order to check if a point belongs to the interior of a simplex, note that, from equation (3.3)

h̃(m) =
[

G(m)
]−1

h. (3.5)

In addition, since G(m) defines a linear transformation in which simplex ∆(m) is the standard unit sim-
plex (in the transformed space), only its interior points will belong to the standard simplex in the trans-
formed space.
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Figure 3.5: Steps from strategy Grouping the membership points. Find the largest grouping (the one with
the greatest dispersion) and divide it into two new groupings. For each one of them, find a simplex that
covers all of its points.

Therefore, a point, h, belongs to the interior of a simplex ∆(m) if and only if the transfomed point ,
h̃(m), satisfy

h̃(m)
i ≥ 0, ∀i
r

∑
i=1

h̃(m)
i = 1.

Grouping the membership points

The second partition strategy, named Grouping the membership points, aims to solve the problem from a
different angle. Instead of generating an increasingly finer mesh of simplices by their subdivision, we
work with groupings of points in the image space.

At each iteration, choose a grouping (preferably the one with the greatest dispersion of its points)
and divide it into two new groupings. For each of these groupings, find a simplex that covers all of its
points.

Figure 3.5 illustrates one step of this partition strategy.

The regrouping step (the step in which a grouping is split into two new groupings) can be realized
by making use of any clustering algorithm, like the k-means (MacQueen 1967). In this work, we made
use of the MATLAB function kmeans, that in addition to providing a way to divide the group of points,
also gives a measure of the size of the new groups.

Different ways of finding a simplex covering a set of points are commonly presented in the tensor
product model transformation literature (Baranyi 2004). These transformations, similarly to equation
(3.3), can be seen as different ways of finding simplices with desired properties that cover a set of points.
The CNO and RNO-INO transformations, for instance, find, respectively, the smallest volume simplex
and a simplex whose every face is touched.
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Remark 3.6

Note that the transformations proposed in the tensor product model transformation literature are
usually presented as a transposed version of equation (3.5). Therefore, the G(m) matrix, contain-
ing the vertices of the simplex that covers the points can be found transposing the inverse of the
transformation matrix.

Remark 3.7

The default behaviour of the k-means implementation in MATLAB is to use random starting posi-
tions for the cluster’s centroids. Therefore, different realizations of the same problem may lead to
different partitions. However, once the number of steps from the partition increases, the difference
between the realizations should decrease.

Partition Strategies - Part II

The partition strategies proposed above disregard the approximation error, and consider that the mem-
bership function can be perfectly represented as a point cloud in the image space. However, by making
use of the content presented in section 2.3, we may consider an uncertain representation for the piece-
wise constant functions, using the error polytopes and balls as an added uncertainty that guarantees
that this representation covers the original membership functions, and extend the strategies proposed
to take the approximation error into consideration.

Note that, even then, we still have sufficient and asymptotically necessary conditions. However, in
this new format, it is necessary for the number of simplices and the number of samples to go to infinity
(so that the simplices volume and the approximation error go to zero).

Figure 3.6 illustrates the approximation of the membership functions by piecewise constant func-
tions, and different possible representations for the approximation error (two different error polytope
schemes and an error ball).

Remark 3.8

Note that, since we are dealing with membership functions, the sum of the errors must always be
equal to zero in order for us to only consider points that belong to the same hyperplane as the
membership functions (the hyperplane of sum equal to one). Therefore we must impose that the
sum of the coordinates of the polytope vertices is equal to zero (which is equivalent to taking the

intersection of the error polytope ∆h(x) with the hyperplane
r

∑
i=1

∆hi = 0).

Another approach, which is a little more conservative, is the following: consider a system with
r rules. Given the values of r − 1 membership functions, the value of the other function is always
exactly known (one less the sum of the other membership functions). Therefore we can take the
maximum and minimum values of only r − 1 approximation errors and complete the remaining
dimension with the value that makes the sum of the coordinates equal to zero. In that regard, we
reduce the number of vertices of the uncertainty polytope from 2r to 2r−1.

In the case presented in Figure 3.6 (c), we made use of only the bounds on the first and second
membership function, and the values of the third are calculated as those that make the sum equal to
zero, simplifying an 8 vertices polytope (or 6 vertices after the intersection with the zero sum plane,
as presented in Figure 3.6 (b)) to 4 vertices.
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Figure 3.6: Approximation of the membership functions by piecewise constant functions. (a) presents
the approximation by piecewise constant functions. (b) presents the corresponding point cloud in the
image space using the error polytope obtained by the intersection of the error polytope with the zero
sum plane and the standard simplex edges. (c) presents the error polytope described in Remark 3.8. (d)
presents the error ball obtained using the Mean Value Theorem generalization for vector functions.

Dividing and discarding

In the first strategy proposed, we can make use of the error ball representation. In that regard, we
substitute the tests of whether a point belongs to a simplex by tests of whether the simplex touches any
uncertainty ball.

This test can be carried out in the following way: find the interior point of the simplex that is closest
to the ball center (which is the point in the image space that was considered in the approach present in
the previous subsection) and check if its distance to the center is less than or equal to the uncertainty
radius. If it is, then the simplex contains points that belong to the uncertainty ball and cannot be dis-
carded. Otherwise, test it with the other samples and uncertainty balls. If the test is negative for all of
the samples, the simplex is discarded.

In order to find the simplex’s closest interior point to the sample, note that a simplex is a convex
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polygon and that every point in its interior can be written as

v =
r

∑
i=1

αivi,

αi ≥ 0,
r

∑
i=1

αi = 1

Given an external point p, the interior point of a simplex closest to this point can be found by solving
the optimization problem

min
αi

[
(

r

∑
i=1

αivi)− p

]T [
(

r

∑
i=1

αivi)− p

]

s.t. αi ≥ 0,
r

∑
i=1

αi = 1

Note that the objective function can be rewritten as

[
α1 α2 . . . αr −1

]




vT
1 v1 vT

1 v2 . . . vT
1 vr vT

1 p
∗ vT

2 v2 . . . vT
2 vr vT

2 p
...

...
. . .

...
...

∗ ∗ . . . vT
r vr vT

r p
∗ ∗ . . . ∗ pTp







α1

α2

. . .
αr

−1




Which allows us to rewrite the optimization problem as a quadratic optimization problem subject
to linear equality and inequality constraints

min
αi ,ρ

f0 =
[
α1 α2 . . . αr ρ

]




vT
1 v1 vT

1 v2 . . . vT
1 vr vT

1 p
∗ vT

2 v2 . . . vT
2 vr vT

2 p
...

...
. . .

...
...

∗ ∗ . . . vT
r vr vT

r p
∗ ∗ . . . ∗ pTp







α1

α2

. . .
αr

ρ




s.t.

fi ≤ 0, g0 = 0, g1 = 0

fi = −αi, g0 = (
r

∑
i=1

αi)− 1, g1 = ρ + 1

Or, in vector form

min
x

f0 = xT Ax

s.t.

f = Hx ≤ 0

g = Gx− b = 0
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with

A =




vT
1 v1 vT

1 v2 . . . vT
1 vr vT

1 p
∗ vT

2 v2 . . . vT
2 vr vT

2 p
...

...
. . .

...
...

∗ ∗ . . . vT
r vr vT

r p
∗ ∗ . . . ∗ pTp




,

H =




−1 0 . . . 0 0
0 −1 . . . 0 0
...

. . .
...

...
0 0 . . . −1 0




,

G =

[
1 1 . . . 1 0
0 0 . . . 0 1

]
, b =

[
1
−1

]
.

The objective function’s gradient is given by

∂ f0

∂x
= 2Ax

and its Hessian by

∂2 f0

∂x2 = 2A

We can then make use of any method available to solving quadratic optimization problems (which
are not usually that computationally expensive to solve), like the quadprog command from MATLAB
or even a primal-dual interior point method (Boyd and Vandenberghe 2004, cap. 11.7) (which, in this
problem, was implemented specifically for this problem).

Grouping the membership points

In the second strategy proposed, it suffices to do a simple modification: the clustering algorithm in the
regrouping step still considers only the point cloud in the image space. However, the step of finding a
simplex that cover the grouping’s points uses the vertices of the uncertainty polytopes of each sample
from the grouping. As a result of that, we find a simplex that covers the vertices of the polytopes and,
thus, also covers the points in the interior of the polytope (since a simplex is convex).

Discussing the case with several premise variables

Since in this work we consider TS models with a tensor product structure in its membership functions
(i.e. models whose membership functions satisfy equation (2.2)), two different approaches are possible
for the partition strategies of the image space:

1. Separately dividing the simplices of the image spaces of µi(vi) and compounding the equivalent
simplices in the image space of h(v). As can be inferred from the results presented in section 2.5,
this composition is given by the tensor product of the vertices of the simplices for all possible
combinations.

The problem with this approach is that the number of simplices grows too fast and in neither of
the two partition strategies proposed we have a clear way of choosing what image space is going
to be split next.

The advantage of this approach is that we can use a reduced number of samples.
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2. Directly dividing the simplices in the image space of h(v).

The problem of this approach is that, in this case, we will need a considerably higher number of
samples (for the same approximation error as in the other approach), since the samples will be
given by the tensor product of the samples of every function (in order for us to be able to find the
error polytope, or error ball, according to the contents presented in section 2.3).

The advantage of this approach is that we get more control over the growth of the number of
simplices and the partition strategies presented can be directly applied (as long as one knows
how to calculate the approximation error).

3.2 Switched representation

A different point of view

Despite the partition strategies presented having been conceived in order to generate a set of constraints
in order to decrease the conservativeness of constraints commonly found in the literature (and reaching
equivalency in the limit case), they can also be seen from another interesting point of view: a way of
finding exact switched nonlinear representations for a nonlinear system.

In order to illustrate, consider the TS system defined by equation (2.4):

ẋ =
r

∑
i=1

hi(v) (Aix + Biu) .

In each ∆(m) simplex, we will have a description given by:

ẋ =
r

∑
i=1

h̃(m)
i

[
A(m)

i x + B(m)
i u

]

h̃(m) =
[

G(m)
]−1

h

A(m)
j =

r

∑
i=1

gij Ai

B(m)
j =

r

∑
i=1

gijBi

in which h is the vector of the original membership functions, h̃(m) is the vector of transformed mem-
bership functions, and G(m) defines a linear transformation in which simplex ∆(m) is the standard unit
simplex.

In addition, we have a switching signal, σ, given by

σ = m, if h ∈ ∆(m).

In cases where there exists a conflict (h belongs to more than one simplex), the switching signal is free
to be chosen as any of the conflicting simplices. In this work case, in order to resolve the conflicts, we
choose the switching signal according to the active simplex whose centroid is closer, in terms of the
2-norm, to the current value of vector h.

Switching control according to the partitions

The idea of using a switched control law according to partitions on the image space of the membership
functions is not a novelty of this work. This type of control law was proposed in (Ko, Lee, and Park
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2012), however the authors do not present any method in order to partition the image space of the
membership functions.

In this work, we propose the use of a control law switched according to the partitions. However,
since the idea of the partition strategies is having simplicial meshes whose simplices volume (in the im-
age space) is ever smaller, the vertex systems are ever closer to each other (which by itself asymptotically
implies in the partitions having a linear behaviour) and we choose to use a linear control law for each of
the partitions.

This control law can be written as

u = K(m)x, if σ = m.

A different proposal of this work is the use of the tensor product model transformation (presented
in section 2.4) to recover a continuous controller (simpler to implement, since ideally we would like to
have a large number of partitions).

To that end, however, we must impose, on the synthesis conditions, that the controller of region (m)

also stabilizes the neighboring regions. With those extra conditions, we can prove that the solutions of
any switching between the controllers of neighboring regions stabilizes the system (because we will be
proving the stability of the Filipov solutions). Therefore, by making use of (Liberzon 2003, corollary 2.3,
page 25) or even the convexity property of the LMIs, we can show that any convex combination of the
controllers will stabilize the system.

Remark 3.9

In this work, two regions are called neighbors if their simplices touch or intercept. Numerically,
this can be verified by checking if at least one of the vertices of one of the simplices is contained in
the other one.

In particular, we may take several samples from the controller gain (walking through the image
space of the membership functions) and the controller given by the linear interpolation of these gains
will stabilize the system (given that we draw at least one sample from each partition). These samples can
then be used in the tensor product model transformation and we can recover the TS representation of
the controller. It is interesting to note that, instead of generating a different set of samples from the mem-
bership functions’ image space, the samples used to generate the partitions can be reused (guaranteeing
that we draw at least one sample from each partition).

However, note that when using a large number of partitions (which is the idea when we are try-
ing to achieve the necessity of the conditions), the difference between neighboring regions becomes
ever smaller and the chance of one partition’s controller also stabilizing its neighboring regions is high.
Therefore, a possible synthesis methodology is to find the controller without adding the extra constraints
to the optimization problems, and checking afterwards if they are valid for the controller values found.
If they are, the procedure described above can be done without any problems. Otherwise, we try to
solve the optimization problem a second time, but this time adding the extra conditions. In this way, the
optimization problem (which is the longest step of the methodology) can be reduced.

Remark 3.10

By making use of this methodology to reconstruct a continuous controller, we find a fuzzy control
law for the system. In doing so, we can think that this method allow us to search, at the same time,
for the controller gains and its membership functions (unlike PDC control laws usually employed
in the literature that employ the same membership functions as the system).
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3.3 Examples

In this section, two possible use cases for the conditions in this chapter are presented. We consider, first,
the problem of stabilizing a TS system and, in the following, the problem of finding a controller that
minimizes an upper bound of the system’sH∞ norm.

In both cases we’ll make use of a quadratic Lyapunov function, and the conditions used are largely
known in the literature (or have some minor modifications)1. In that regard we do not present these
conditions derivation (as that is not the focus of this section).

Stabilization

Consider a TS system defined by equation (2.4):

ẋ =
r

∑
i=1

hi(v)Aix + Biu.

By making use of a linear state feedback control law, u = Kx, we may look for a stabilizing controller
by means of the conditions

r

∑
i=1

hiQi < 0,

P > 0,

Qi = AiP + PAT
i + BiX + XT BT

i .

And the controller gains can be recovered by K = XP−1.

By making use of a PDC state feedback control law, u =
r

∑
j=1

hjKjx, we may look for a stabilizing

controller by means of the conditions

r

∑
i=1

r

∑
j=1

hihjQij < 0,

P > 0,

Qij = AiP + PAT
i + BiXj + XT

j BT
i .

And the controller gains can be recovered by Kj = XjP−1.
Both of the above presented conditions can be solved by making use of the techniques presented

in this chapter. Taking advantage of the partitions generated by these techniques, we may define a
switched control law (as presented in the previous section). Such a control law can be written as

u = K(m)x, if σ = m.

In that regard, we may look for a stabilizing controller by means of the conditions

r

∑
j=1

h̃(m)
j

r

∑
i=1

g(m)
ij Q(m)

i < 0, ∀m

P > 0,

Q(m)
i = AiP + PAT

i + BiX(m) + (X(m))T BT
i .

1To the interested reader, the stabilization conditions are presented in (Tanaka and Wang 2001, Sec-
tion 3.3) and (Tuan et al. 2001, Theorem 3.2). Some slightly different conditions for the H∞ control are
presented in (Tuan et al. 2001, Theorem 5.1)
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And the controller gains will be given by K(m) = X(m)P−1.
In addition, as explained in the previous section, we may look for a switched controller that can be

represented in a continuous fashion (as discussed in the previous section) by imposing that the switched
gains are also stabilizing for the neighbouring regions. Therefore, the conditions presented can be mod-
ified to

r

∑
j=1

h̃(m)
j

r

∑
i=1

g(m)
ij Q(n)

i < 0, ∀m, n = m or n is a neighbour of m

P > 0,

Q(n)
i = AiP + PAT

i + BiX(n) + (X(n))T BT
i .

In which the controller gains are given by K(m) = X(m)P−1 and a continuous control law can be recoverd
by making use of the Tensor Product Model Transformation.

Remark 3.11

Note that, the way the above conditions were defined, the quadratic Lyapunov function found is of
the form

V(x) = xT P−1x.

Example 3.1. Consider the TS model with a free b parameter presented in (Campos, Tôrres, and Palhares
2012):

ẋ =
3

∑
i=1

hi(x1) [Aix + Biu] ,

with

A1 =

[
1.59 −7.29
0.01 0

]
, B1 =

[
1
0

]
,

A2 =

[
0.02 −4.64
0.35 0.21

]
, B2 =

[
8
0

]
,

A3 =

[
−2 −4.33
0 0.05

]
, B3 =

[
−b + 6
−1

]
,

and

h1(x1) =
sin(x1) + 1

3
,

h2(x1) =
sin(x1 + 2π/3) + 1

3
,

h3(x1) =
sin(x1 − 2π/3) + 1

3
.

We would like to find the largest value of b for which we are able to find a quadratically stabilizing
control law, and to that end, we will make use of the conditions presented above as well as the partition
strategies presented in this chapter (taking the approximation error into account) and other similar ap-
proaches available in the literature. Particularly, we will compare the results from this chapter with (Sala
and Ariño 2007, Proposition 2), (Sala and Ariño 2007, Theorem 5), (Kruszewski et al. 2009, Algorithm
1), all of these conditions as well as this chapter conditions augmented with the shape relaxation from
(Sala and Ariño 2008, Proposition 3.1), and the conditions from (Lam and Narimani 2010, Theorem 2).
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Figure 3.7: Partition generated by the Divinding and Discarding strategy after 12 steps.

In order to take the approximation error into consideration, note that the membership functions

vector h =
[

sin(x1)+1
3

sin(x1+2π/3)+1
3

sin(x1−2π/3)+1
3

]T
derivative regarding the premise variable x1 is

given by

∂

∂x1
h =




1
3 cos(x1)

1
3 cos(x1 + 2π/3)
1
3 cos(x1 − 2π/3)


 .

Whose elements all have the same maximum, equal to 1/3, and the same minimum, equal to −1/3. In
addition, its vector 2-norm is equal to

√
6/6.

Note that the membership functions are periodic and share the same period, 2π. Thus, it suffices to
take samples from the premise variable in the interval [−π, π] in order to cover all of the membership
functions’ image space (this same observation is valid for the conditions from Lam and Narimani 2010,
Theorem 2).

By taking 1001 samples, we have a sampling step equal to π/500, which leads to an uncertainty

radius of π
√

6
6000 and a possible uncertainty polytope equal to




π
3000

π
3000 − π

1500
π

3000 − π
3000 0

− π
3000

π
3000 0

− π
3000 − π

3000
π

1500




, in which every

row is a polytope vertex.
Figures 3.7 and 3.8 illustrate the partition strategies after 12 iterations.
In order to make use of the shape relaxation from (Sala and Ariño 2008, Proposition 3.1), note that

the membership functions are such that

hTSh + wTh + v ≤ 0,

with S = 6I, w =
[
−4 −4 −4

]T
, and v = 1. It is interesting to note that when applied to single

fuzzy summation conditions, this relaxation transforms it into double fuzzy summation conditions, and
thus allows the use of sum relaxations that are not available for the single summation case. It is also
interesting to note that this shape inequality is actually an equality in this example (meaning that all of
the membership functions values lie over the curve given by hTSh + wTh + v = 0).
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Figure 3.8: Partition generated by the Grouping the membership points strategy after 12 steps on Example
3.1. The left partition was generated using the CNO transformation, whereas the one on the right was
generated by the RNO-INO transformation.

In addition, the Γ matrix representing the γij elements used in the inequalities hihj− h̄i h̄j ≥ γij, with
h̄i the staircase approximation of hi used in the conditions in (Lam and Narimani 2010, Theorem 2), can
be described by

Γ =
−2π

np




1.3
9

1.77
18

1.77
18

1.77
18

1.3
9

1.77
18

1.77
18

1.77
18

1.3
9


 ,

with np the number of points used in the staircase approximation.

Tables 3.1, 3.2, 3.3 present the minimum number of rows of LMIs for each of the methods to find a
stabilizing PDC, linear and switched controller for a given value of b. Figures 3.9 to 3.17 present these
same comparisons, but showing the largest feasible value of b for a given number of rows of LMIs. Note
that, due to the random initialization of the k-means, the values presented for the Grouping the membership
points partition strategy may change. Finally, Table 3.4 presents the complexity analysis of each of the
methods used for this example (by means of comparison we also present the complexity analysis for the
usual conditions for a linear control law and a PDC control law).

Note that conditions (Sala and Ariño 2007, Proposition 2), (Sala and Ariño 2007, Theorem 5) and
(Kruszewski et al. 2009, Algorithm 1) are shape-independent, and when used without the relaxation from
(Sala and Ariño 2008, Proposition 3.1) are intrinsically more conservative than the other conditions (since
they use less information). We can find an upper bound for shape-independent conditions by using the
necessary and asymptotically sufficient conditions from (Kruszewski et al. 2009). In this example the
upper bound found b was 6.661.

These same necessary and asymptotically sufficient conditions could be used in conjunction with
(Sala and Ariño 2008, Proposition 3.1) to find an upper bound for the shape-dependent case. However,
we were not able to find a value with the number of partitions we tried in this example. Interestingly
though, we found that using Lemma 2.3 together with (Sala and Ariño 2008, Proposition 3.1) (which
is the same as using Sala and Ariño 2007, Theorem 5 with 2 summations and Sala and Ariño 2008,
Proposition 3.1) found the largest feasible value of b, which was the same for the PDC, the linear and

53



EXAMPLES EXPLOITING THE MEMBERSHIP FUNCTIONS

Table 3.1: Comparison of different methods of sum relaxation for a PDC control law in example 3.1
(minimum number of rows of LMIs required to find a stabilizing control law)

Method/b 4 5 5.5 6 6.3 6.6 6.7 6.72 6.75
Sala and Ariño 2007, Proposition 2 158 464 994 3194 12212 - - - -

Sala and Ariño 2007, Theorem 5 34 34 34 34 34 60 - - -
Kruszewski et al. 2009, Algorithm 1 74 386 722 1538 - - - - -
Kruszewski et al. 2009, Algorithm 1 26 50 50 50 74 122 - - -with Lemma 2.3
Sala and Ariño 2007, Proposition 2 24 24 34 46 94 760 3910 - -with Sala and Ariño 2008, Proposition 3.1

Sala and Ariño 2007, Theorem 5 32 32 32 32 32 32 32 32 32with Sala and Ariño 2008, Proposition 3.1
Kruszewski et al. 2009, Algorithm 1 28 28 28 40 52 52 1720 1720 1720with Sala and Ariño 2008, Proposition 3.1

Dividing and Discarding 98 170 170 170 170 170 - - -
Dividing and Discarding 38 74 74 74 146 254 - - -with Lemma 2.3
Dividing and Discarding 28 28 28 40 52 88 628 760 760with Sala and Ariño 2008, Proposition 3.1

Grouping the membership points-CNO 26 26 50 50 50 170 194 350 -
Grouping the membership points-CNO 38 38 74 74 74 254 290 380 -with Lemma 2.3
Grouping the membership points-CNO 28 28 28 40 52 64 76 100 184with Sala and Ariño 2008, Proposition 3.1

Grouping the membership points-RNO-INO 62 98 98 110 194 362 - - -
Grouping the membership points-RNO-INO 74 92 146 164 290 542 - - -with Lemma 2.3
Grouping the membership points-RNO-INO 28 52 64 76 112 184 376 376 556with Sala and Ariño 2008, Proposition 3.1

Lam and Narimani 2010, Theorem 2 54 74 94 134 194 494 1114 1474 2934

the switched control law, equal to 6.7803 (and that’s the reason why the tables do not show any method
using both Lemma 2.3 and (Sala and Ariño 2008, Proposition 3.1)).

From these tables and figures, we can see that, for this particular example, the conditions proposed
performed well against the other conditions and can be used as an alternative to them.

Note that the Grouping the membership points partition strategy performed better than the Dividing
and Discarding strategy, but, as can be seen from the Figures presented, it does not guarantee that it will
be less conservative with every partition iteration (unlike the other sum relaxation strategies presented).
This stems from the fact that a simplex found to cover a new group that has just been split can add points
that were not being considered in the LMIs before. This problem is however mitigated as the simplices
volume approaches zero.

It is also interesting to note that, for this example, after a reasonable number of iterations of the
proposed partition strategies, the use of Lemma 2.3 instead of Lemma 2.1 did not reduce the conser-
vativeness and only increased the computational cost (as can be more explicitly seen by comparing the
results for the CNO transformation with and without Lemma 2.3 on Table 3.1).
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Table 3.2: Comparison of different methods of sum relaxation for a linear control law in example 3.1
(minimum number of rows of LMIs required to find a stabilizing control law)

Method/b 4 5 5.5 6 6.3 6.6 6.7 6.72 6.75
Sala and Ariño 2007, Proposition 2 24 34 46 114 276 2760 - - -with Sala and Ariño 2008, Proposition 3.1

Sala and Ariño 2007, Theorem 5 32 32 32 32 32 32 32 32 32with Sala and Ariño 2008, Proposition 3.1
Kruszewski et al. 2009, Algorithm 1 28 40 124 124 148 472 1720 1720 -with Sala and Ariño 2008, Proposition 3.1

Dividing and Discarding 86 134 248 398 - - - - -
Dividing and Discarding 28 40 124 172 172 292 760 760 928with Sala and Ariño 2008, Proposition 3.1

Grouping the membership points-CNO 20 26 26 26 38 86 176 - -
Grouping the membership points-CNO 28 28 28 40 52 64 172 172 -with Sala and Ariño 2008, Proposition 3.1

Grouping the membership points-RNO-INO 50 50 86 98 128 278 - - -
Grouping the membership points-RNO-INO 52 52 64 100 172 376 556 556 640with Sala and Ariño 2008, Proposition 3.1

Table 3.3: Comparison of different methods of sum relaxation for a switched control law in example 3.1
(minimum number of rows of LMIs required to find a stabilizing control law)

Method/b 4 5 5.5 6 6.3 6.6 6.7 6.72 6.75
Dividing and Discarding 86 86 86 86 86 110 - - -
Dividing and Discarding 28 28 52 52 100 136 760 760 760with Sala and Ariño 2008, Proposition 3.1

Grouping the membership points-CNO 14 20 26 26 26 86 98 128 -
Grouping the membership points-CNO 28 28 28 40 52 52 172 172 352with Sala and Ariño 2008, Proposition 3.1

Grouping the membership points-RNO-INO 26 32 50 56 98 182 - - -
Grouping the membership points-RNO-INO 52 52 52 64 112 196 376 544 640with Sala and Ariño 2008, Proposition 3.1
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Figure 3.9: Maximum feasible b for a given number of rows of LMIs using the conditions in (Sala and
Ariño 2007). Since these are shape-independent conditions, the maximum feasible value was found using
the necessary and asymptotically sufficient conditions from (Kruszewski et al. 2009) and is displayed as
the dashed line.
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Figure 3.10: Maximum feasible b for a given number of rows of LMIs using the conditions in
(Kruszewski et al. 2009, Algorithm 1). Since these are shape-independent conditions, the maximum fea-
sible value was found using the necessary and asymptotically sufficient conditions from (Kruszewski
et al. 2009) and is displayed as the dashed line.
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Figure 3.11: Maximum feasible b for a given number of rows of LMIs using the conditions in (Sala and
Ariño 2007) and (Kruszewski et al. 2009, Algorithm 1) together with the shape relaxation from (Sala and
Ariño 2008). The blue line represents a PDC control law, whereas the red one represents a linear control
law. The maximum feasible value of b found with any of the methods in Example 3.1 is displayed as a
dashed line.
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Figure 3.12: Maximum feasible b for a given number of rows of LMIs using the Dividing and Discarding
partition strategy. The blue line represents the conditions for a PDC control law using Lemma 2.1, the
green one represents the conditions for a PDC control law using Lemma 2.3, the red one represents a
linear control law, and the magenta line represents a switched control law. The maximum feasible value
of b found with any of the methods in Example 3.1 is displayed as a dashed line.
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Figure 3.13: Maximum feasible b for a given number of rows of LMIs using the Dividing and Discarding
partition strategy together with proposition 3.1 from (Sala and Ariño 2008). The blue line represents a
PDC control law, the red one represents a linear control law, and the magenta line represents a switched
control law. The maximum feasible value of b found with any of the methods in Example 3.1 is displayed
as a dashed line.
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Figure 3.14: Maximum feasible b for a given number of rows of LMIs using the Grouping the membership
points partition strategy. The blue line represents the conditions for a PDC control law using Lemma
2.1 and the green one represents the conditions for a PDC control law using Lemma 2.3. The maximum
feasible value of b found with any of the methods in Example 3.1 is displayed as a dashed line.
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Figure 3.15: Maximum feasible b for a given number of rows of LMIs using the Grouping the membership
points partition strategy. The red line represents a linear control law, and the magenta line represents a
switched control law. The maximum feasible value of b found with any of the methods in Example 3.1
is displayed as a dashed line.
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Figure 3.16: Maximum feasible b for a given number of rows of LMIs using the Grouping the membership
points partition strategy together with proposition 3.1 from (Sala and Ariño 2008). The blue line repre-
sents the conditions for a PDC control law using Lemma 2.1. The maximum feasible value of b found
with any of the methods in Example 3.1 is displayed as a dashed line.
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Figure 3.17: Maximum feasible b for a given number of rows of LMIs using the Grouping the membership
points partition strategy together with proposition 3.1 from (Sala and Ariño 2008). The red line represents
a linear control law, and the magenta line represents a switched control law. The maximum feasible
value of b found with any of the methods in Example 3.1 is displayed as a dashed line.
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Table 3.4: Complexity analysis for the different methods of sum relaxation used in example 3.1.

Method Number of rows of LMIs Number of scalar decision variables
Linear control law 8 5

PDC control law using Lemma 2.1 14 9
PDC - Sala and Ariño 2007, Proposition 2 with q
summations

2 +
(2 + q)!

q!
9

PDC - Sala and Ariño 2007, Theorem 5
with degree q





16 +
floor(q/2)

∑
i=0

2
(

2 + q− 2i
q− 2i

)
, if q is even,

8 +
floor(q/2)

∑
i=0

2
(

2 + q− 2i
q− 2i

)
, if q is odd

9 +
floor(q/2)

∑
i=0

3i(2× 3i + 1)

PDC - Kruszewski et al. 2009, Algorithm 1 with
ns simplices 2 + 12ns 9

PDC - Kruszewski et al. 2009, Algorithm 1 with
Lemma 2.3 and ns simplices 2 + 18ns 9 + 15ns

Partition strategies proposed in this chapter
with ns simplices - PDC control 2 + 12ns 9

Partition strategies proposed in this chapter
with ns simplices - linear control 2 + 6ns 5

Partition strategies proposed in this chapter
with ns simplices - switched control 2 + 6ns 3 + 2ns

PDC - Lam and Narimani 2010, Theorem 2 with
np points 14 + 2np 27

Using Sala and Ariño 2008, Proposition 3.1 for
PDC control (any of the methods) +2 +3

Using Sala and Ariño 2008, Proposition 3.1 for
linear control (any of the methods) same as PDC with (Sala and Ariño 2008) 4 less than PDC

Using Sala and Ariño 2008, Proposition 3.1 for
switched control (Partition strategies proposed
in this chapter)

same as PDC with (Sala and Ariño 2008) +3
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Figure 3.18: Linear stabilizing controller’s phase plane for b = 6.75. The arrows represent the direction
of the vector field in each point in space, the red level curves are the level curves of the Lyapunov
function, and the blue lines are the system’s trajectory from two different initial conditions.

As discussed earlier, none of the shape-independent conditions are able to find a stabilizing controller
for b > 6.661 whereas some of the shape-dependent conditions were able to find stabilizing controllers up
to 6.7803.

In order to illustrate the system’s behaviour in closed loop, we obtained controllers using the Group-
ing the membership points strategy for b = 6.75.

In the linear control law case, we made use of the RNO-INO transformation to find the simplices,
and the controller gains found were

K =
[
−0.9260 0.2970

]
,

and the Lyapunov parameter matrix

P =

[
27.2336 −1.1192
−1.1192 1.8838

]
.

The system’s phase plane in closed loop is presented in Figure 3.18.

In the PDC control law case, we made use of the CNO transformation to find the simplices, and the
controllers gains found were

K1 =
[
−1.2018 2.1324

]
,

K2 =
[
0.3414 −0.9099

]
,

K3 =
[
−0.5113 3.1824

]
,
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Figure 3.19: PDC stabilizing controller’s phase plane for b = 6.75. The arrows represent the direction of
the vector field in each point in space, the red level curves are the level curves of the Lyapunov function,
and the blue lines are the system’s trajectory from two different initial conditions.

and the Lyapunov parameter matrix

P =

[
27.0756 −1.0860
−1.0860 1.8352

]
.

The system’s phase plane in closed loop is presented in Figure 3.19.
In the switched control law case, we made use of the CNO transformation to find the simplices. The

Lyapunov parameter matrix found was

P =

[
28.3290 −1.1073
−1.1073 1.8532

]
.

The system’s phase plane in closed loop is presented in Figure 3.20.
We are not presenting the controller gains found for this case since 100 partitions of the image space

were used (correspoding to 100 different gain matrices). In addition, in order to fully describe the control
law found, we would also need to present the simplices that describe each image space partition.

Finally, we also made use of modification to allow for a continuous controller to be found from the
piecewise controller. The conditions were found to be feasible for b = 6.75 for the same simplices used
in the switched control law synthesis.

An initial idea could be to make use of the original 1001 samples from the membership functions’
image space to sample the controller gains (thus guaranteeing that at least one sample from each switch-
ing region is sampled) and consider that the intersample values are given by linear interpolation so that
we can make use of the Tensor Product Model Transformation to recover a continuous more compact
representation of the controller.

Note, however, that since we are using a lot more samples than switching regions we would be
sampling the same value many times inside of each region, thus leading to a staircase-like membership
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Figure 3.20: Stabilizing switched controller’s phase plan for b = 6.75. The arrows represent the direction
of the vector field in each point in space, the red level curves are the level curves of the Lyapunov
function, and the blue lines are the system’s trajectory from two different initial conditions.

function for the gains (implying that the membership values would change too fast from one switching
region to the other).

In order to avoid this and “smooth” the controller’s membership functions a little, we go through
the 1001 samples and check their current switching region. By doing this we are capable of defining
intervals in the premise variable corresponding to each switching region2. We then pick only one sample
from each region. For the extremal regions, we pick the extremes, whereas for all the other regions we
pick the middle point. In addition, we make use of the piecewise sinusoidal functions proposed in 2.4
to generate continuously differentiable membership functions.

The membership functions obtained from both approaches are presented in Figure 3.21.
The fuzzy controller gains found were

K1 =
[
1.1617 11.2484

]
,

K2 =
[
−1.4358 11.0590

]
,

K3 =
[
−0.4847 −5.8339

]
,

and the Lyapunov parameter matrix found was

P =

[
29.2791 −1.1450
−1.1450 1.9159

]
,

and the system’s phase plane is presented in Figure 3.22.

2note that for a case with more than one premise variable, this would mean dealing with each of
the image spaces of the tensor product separately - i.e. we would only be able to deal with the first case
discussed previously in this chapter.
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Figure 3.21: Fuzzy controller’s membership functions. The plot on the top presents the membership
functions using all 1001 samples and linear interpolation. The plot on the bottom presents a “smoothed”
approach using less samples and a piecewise sinusoidal interpolation.

Guaranteed costH∞ controller

Consider a system described by:

ẋ =
r

∑
i=1

hi [Aix + Biu + Bwi w]

z =
r

∑
i=1

hi [Cix + Diu + Dwi w]

itsH∞ norm is the smallest γ such that

‖z(t)‖2 ≤ γ‖w‖2,

for a system with zero initial conditions.

By making use of a linear state feedback control law, u = Kx, we may search for a controller with
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Figure 3.22: Stabilizing fuzzy (reconstructed from a switched controller) controller’s phase plan for
b = 6.75. The arrows represent the direction of the vector field in each point in space, the red level
curves are the level curves of the Lyapunov function, and the blue lines are the system’s trajectory from
two different initial conditions.

minimum guaranteed cost by minimizing δ, subject to

r

∑
i=1

hiQi < 0,

P > 0,

Qi =




AiP + PAT
i + BiX + XT BT

i Bwi PCT
i + XT DT

i
∗ −I DT

wi

∗ ∗ −δI




and the H∞ norm is guaranteed to be less than γ =
√

δ and the controller gains will be given by
K = XP−1.

This problem can be solved using the techniques proposed in this chapter. In addition to this, the
partitions generated by these techniques can be taken advantage of and used to define a control law
that switches according to each region of the membership functions’ image space (as presented in the
previous section). This control law will have the form

u = K(m)x, if σ = m.
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In that regard, we may look for a guaranteed cost controller by minimizing δ, subject to

r

∑
j=1

h̃(m)
j

r

∑
i=1

g(m)
ij Q(m)

i < 0, ∀m

P > 0,

Q(m)
i =




AiP + PAT
i + BiX(m) + (X(m))T BT

i Bwi PCT
i + (X(m))T DT

i
∗ −I DT

wi

∗ ∗ −δI




and the H∞ norm is guaranteed to be less than γ =
√

δ and the controller gains will be given by
K(m) = X(m)P−1.

In addition, as explained previously, by changing the LMI conditions such that the switched gains
are also valid in the neighbouring regions, we will be able to reconstruct a continuous controller from
the conditions. In that regard we modify the LMI to

r

∑
j=1

h̃(m)
j

r

∑
i=1

g(m)
ij Q(n)

i < 0, ∀m, n = m or n is a neighbour of m

P > 0,

Q(n)
i =




AiP + PAT
i + BiX(n) + (X(n))T BT

i Bwi PCT
i + (X(n))T DT

i
∗ −I DT

wi

∗ ∗ −δI




so that the H∞ norm is guaranteed to be less than γ =
√

δ, the controller gains will be given by K(m) =

X(m)P−1, and a continuous controller may be reconstructed by means of the Tensor Product Model
Transformation (in a similar way as done in the previous example).

Example 3.2. Consider the 3 rule system described by matrices:

A1 =

[
1.59 −7.29
0.01 0

]
, B1 =

[
1
0

]
, Bw1 =

[
1
0

]
, C1 =

[
1 1

]
, D1 = 0, Dw1 = 0

A2 =

[
0.02 −4.64
0.35 0.21

]
, B2 =

[
8
0

]
, Bw2 =

[
1
1

]
, C2 =

[
1 1

]
, D2 = 0, Dw2 = 0

A3 =

[
−2 −4.33
0 0.05

]
, B3 =

[
0
−1

]
, Bw3 =

[
1
0

]
, C3 =

[
1 1

]
, D3 = 0, Dw3 = 0

with the membership functions

h1(θ) =
cos(10x1) + 1

4
, h2(θ) =

sin(10x1) + 1
4

, h3(θ) = 0.5− cos(10x1) + sin(10x1)

4

By taking 1001 samples from x1 ∈ [−π/10, π/10] (since the membership functions are periodic,
this interval covers all of their image space), we find an approximation error polytope (in the image

space) that will be smaller than




π
4000

π
4000 − π

2000
π

4000 − π
4000 0

− π
4000

π
4000 0

− π
4000 − π

4000
π

2000




, with everyone row representing a vertex. In

addition, we get an approximation error radius equal to π
2000 .

We made use of the Dividing and Discarding partition strategy and the Grouping the membership points
partition strategy with RNO-INO transformation to find both a linear control law and a switched control
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Figure 3.23: Guaranteed H∞ norm for a given number of simplices. The top plot presents the results
obtained for the number of simplices tested, whereas the bottom plot presents a zoom in of the upper
plot. The blue line represents the guaranteed cost found by the linear control law using the Dividing and
Discarding partition strategy. The red line represents the linear control law using the Grouping the mem-
bership points partition strategy with RNO-INO transformation. The dashed magenta line represents the
guaranteed cost found by the switched control law using the Dividing and Discarding partition strategy.
The black dashed line represents the linear control law using the Grouping the membership points partition
strategy with RNO-INO transformation.

law. Figure 3.23 presents a comparison of the results obtained from these methods by checking the
guaranteedH∞ norm they were able to find according to the number of simplices used.

In addition to this, we also made use of the Grouping the membership points partition strategy with
RNO-INO transformation to find a continuous controller, reconstructed from a switched one by means
of the Tensor Product Model Transformation.

We made use of 4001 samples of the membership functions from x1 ∈ [−π/10, π/10], resulting in

an error polytope of




π
16000

π
16000 − π

8000
π

16000 − π
16000 0

− π
16000

π
16000 0

− π
16000 − π

16000
π

8000




.

We made use of 600 groupings of the samples and the controller found had a guaranteed cost of
1.5374. Just as in the previous example, we are able to reconstruct a fuzzy controller from the switched
controller found by making use of the Tensor Product Model Transformation (and the same observa-
tions are valid here as to how to obtain a smoother set of membership functions). In that regard the
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Figure 3.24: Membership functions found in Example 3.2. A single period of the function is presented.
The plot on the top presents the membership functions using all 4001 samples and linear interpolation.
The plot on the bottom presents a “smoothed” approach using less samples and a piecewise sinusoidal
interpolation.

membership functions are presented in Figure 3.24. The controller gains found were

K1 =
[
1.1011 1.0872

]
,

K2 =
[
−2.3099 2.9830

]
,

K3 =
[
−2.9565 −0.0449

]
.

In order to check the controller’s performance in closed loop we simulated it with zero initial con-
dition and a disturbance signal w(t) = cos( π

10 t). The system’s output z(t), as well as the disturbance
signal are presented in Figure 3.25.
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Figure 3.25: System’s disturbance rejection in Example 3.2. The top plot is the disturbance signal w(t) =
cos( π

10 t), whereas the bottom plot is the system’s output z.
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4 Rule Reduction

Quite often, a model with a large number of rules might be undesirable. Be it because their analysis/synthesis
conditions require a too large number of LMIs that make them prohibitly costly, be it because we are searching for
a more convenient representation, and thus require a model with a reduced number of rules.

In this chapter, we propose the use of the tensor product model transformation technique for rule reduction. We
aim to show that, even without the sampling step, the HOSVD and the convex hull manipulation steps could
be used to reduce the number of rules of a given TS fuzzy system. In addition, we also present how a polytopic
uncertainty could be added to the reduced system such that this uncertain reduced system represents the original
one. Afterwards, we present LMI conditions that allow the transformation of this polytopic uncertainty into other
kinds of uncertainty that are more common in the TS literature.

The presentation and the results in this chapter were based on (Campos, Tôrres, and Palhares 2015).

4.1 Rule reduction by means of tensor approximation

As stated in Section 2.4 (in the equivalence between equations (2.10) and (2.11)), a tensor product TS
representation of a matrix function L(v) : R` → Rκ1×κ2

L(v) =
r1

∑
i1=1

r2

∑
i2=1
· · ·

r`

∑
i`=1

`

∏
n=1

µ
(n)
in (vn)Li1i2 ...i` ,

with Li1i2 ...i` ∈ Rκ1×κ2 , can be written with tensor notation as

L(v) = L `×
n=1

µT
n (vn), (4.1)

in which L ∈ Rr1×r2×···×r`×κ1×κ2 is a tensor whose element li1i2 ...i`k1k2 corresponds to the element in row
k1 and column k2 of matrix Li1i2 ...i` , and µn(vn) is a vector formed by stacking the membership functions
related to premise variable vn.

By applying the HOSVD over tensor L, we arrive at an approximation

L ≈ S `×
n=1

Ui.

Note that the HOSVD step may be used simply to find a minimal TS representation, by discarding no
nonzero higher order singular values. In this case, the equation above is actually an equality.
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In cases where singular values are discarded, we can write a tensor describing the approximation
error

L̂ = L−
(
S `×

n=1
Ui

)
,

whose Frobenius norm will be limited by (De Lathauwer, De Moor, and Vandewalle 2000a, equation 24)

∥∥L̂
∥∥ ≤

k1

∑
i1=1

σ
(1)2

i1
+

k2

∑
i2=1

σ
(2)2

i2
+ · · ·+

k`

∑
i`=1

σ
(`)2

i`
,

in which σ
(m)2

im denotes the square of the discarded m-mode singular values, and km the number of m-mode
singular values discarded.

This reduction step can be seen as searching for a tensor with rank restrictions that approximates
L. Note, however, that if we discard columns in more than one direction (i.e. if we impose a rank
constraint in more than one direction), the solution given by the truncation of the HOSVD will not
usually be optimal. This solution can be refined, for instance, by using the Higher Order Orthogonal
Iteration (HOOI) (De Lathauwer, De Moor, and Vandewalle 2000b) which is an alternating least squares
method that converges to a locally optimal solution.

Note that, the weight matrices found by the HOSVD (or HOOI) do not posses membership func-
tions’ characteristics (SN and NN) and induce transformations over the original membership functions
that would make them loose these characteristics. In that regard, just like in the usual tensor product
model transformation technique, we make use of the convex hull manipulation step in order to im-
pose desired characteristics over the weight matrices. Since this step does not really change the tensor
approximation, we have

L ≈ L̃ `×
n=1

Ũi = S
`×

n=1
Ui.

A naïve method to find a norm bounded uncertainty that could be added to the reduced model so
that the uncertain model covers the original one, would be to use the upper bound of the Frobenius norm
of the error between the original tensor and the approximated one. That approach would, however,
completely ignore the structure of the rule reduction error.

Instead of doing that, note that we can rewrite equation (4.1) as

L(v)

=

((
L̃ `×

n=1
Ũi

)
+ L̂

)
`×

n=1
µT

n (vn),

=

(
L̃ `×

n=1
Ũi

)
`×

n=1
µT

n (vn) + L̂
`×

n=1
µT

n (vn),

= L̃ `×
n=1

µT
n (vn)Ũi + L̂

`×
n=1

µT
n (vn),

= L̃ `×
n=1

µ̃T
n (vn) + L̂

`×
n=1

µT
n (vn),

with µ̃T
n (vn) = µT

n (vn)Ũi.
This last equation, in turn, can be rewritten using the summations as

L(v) =
r̃1

∑
i1=1

r̃2

∑
i2=1
· · ·

r̃`

∑
i`=1

`

∏
n=1

µ̃
(n)
in (vn)L̃i1i2 ...iν + ∆L,

with

∆L =
r1

∑
i1=1

r2

∑
i2=1
· · ·

r`

∑
i`=1

`

∏
n=1

µ
(n)
in (vn)L̂i1i2 ...iν . (4.2)

Given the discussion above, we may state the following result.
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Theorem 4.1

The matrix function

L(v) =
r1

∑
i1=1

r2

∑
i2=1
· · ·

r`

∑
i`=1

`

∏
n=1

µ
(n)
in (vn)Li1i2 ...i`

can be represented by the uncertain matrix function

L̃(v) + ∆L

found by the procedure described in this section, with

L̃(v) =
r̃1

∑
i1=1

r̃2

∑
i2=1
· · ·

r̃`

∑
i`=1

`

∏
n=1

µ̃
(n)
in (vn)L̃i1i2 ...iν ,

∆L =
r1

∑
i1=1

r2

∑
i2=1
· · ·

r`

∑
i`=1

`

∏
n=1

α
(n)
in L̂i1i2 ...iν ,

and α
(n)
in unknown functions with the properties

rn

∑
in=1

α
(n)
in = 1, α

(n)
in ≥ 0.

Proof. Note that ∆L in equation (4.2) is a polytopic description of the approximation error of the proce-
dure described in this chapter, and thus the original matrix function is recovered in the uncertain matrix
function by taking α

(n)
in = µ

(n)
in (vn).

As presented in this section, we see that, in cases where we have a tensor product TS representation,
the HOSVD and convex hull manipulation steps can be used to find an approximate model with a
reduced number of rules. As a byproduct, we are also able to find a polytopic uncertainty, represented
by equation (4.2), that, when added to the approximate model, covers the original one.

Note that, even though the rule reduction steps were presented for Tensor Product TS models, they
could also be used for generic TS models by means of the change of representation

r

∑
i=1

hi(v)Li = L×1 hT(v),

instead of equation (4.1).

Remark 4.1

Comparing the strategy proposed in this section with the usual tensor product model transforma-
tion, we can think that when we find the Ũi matrices, we are finding membership functions for the
membership functions.
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Remark 4.2

Note that the strategy proposed in this section is different from the usual strategies found in the
literature (Baranyi 1999; Taniguchi et al. 2001), since we are dealing with approximating the tensor
L instead of directly dealing with aproximating function L(v).

This rule reduction strategy is best used in cases where all the membership functions attain the
value 1 at some point, as is the case of the tensor product TS representations found by the sampling
step. In these cases, we can think that most of the information regarding the membership functions
are present in the tensor L and this model reduction scheme will yield good results. When that
is not the case, the sampling step could always be used in order to generate tensor product TS
representations with this property, reducing the conservativeness of the rule reduction.

4.2 Uncertainty transformation

Even though we were able to find an uncertain model with a reduced number of rules, the polytopic
uncertainty is not very common in the TS literature since it will usually yield an even larger number
of LMIs than the original model. In that regard, in the following we present LMI conditions that allow
us to transform this polytopic uncertainty into a norm bounded uncertainty or into a structured linear
fractional form. The conditions presented here were inspired by those in (Balas, Packard, and Seiler
2009).

Before we present the conditions, note that equation (4.2), can be rewritten, by a simple change of
indices, as

∆L =
r

∑
i=1

hi(v)L̂i,

with r = ∏`
i=1 ri and hi(v) = ∏`

n=1 µ
(n)
in (vn).

Norm bounded uncertainty

We seek a norm bounded representation for the uncertainty such that

∆L ⊂ D∆E

‖∆‖2 ≤ 1.

We need, therefore, conditions that satisfy

r

∑
i=1

hi(v)L̂i ⊂ D∆E,

||∆||2 ≤ 1.

In order for these conditions to be true, one has that

∆ = D−1

(
r

∑
i=1

hi(v)L̂i

)
E−1,

78
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for some ∆ respecting the norm condition and assuming that matrices D and E are square and invertible.
This condition can be rewritten as

∆∆T ≤ I

I − ∆∆T ≥ 0

I − D−1

(
r

∑
i=1

hi(v)L̂i

)
E−1E−T

(
r

∑
i=1

hi(v)L̂T
i

)
D−T ≥ 0

r

∑
i=1

hi(v)

[
I D−1 L̂i

∗ ETE

]
≥ 0, (4.3)

where the last step comes from Schur’s complement.
The problem is then reduced to finding matrices D and E that satisfy (4.3). We may then state the

following result.

Theorem 4.2

Given a polytopic model

r

∑
i=1

hi(v)L̂i,

r

∑
i=1

hi(v) = 1, hi(v) ≥ 0,

the norm bounded uncertain model

D∆E,

||∆||2 ≤ 1,

is such that

r

∑
i=1

hi(v)L̂i ⊂ D∆E,

if the LMIs

Y = YT > 0,

Z = ZT > I,
r

∑
i=1

hi(v)

[
I ZL̂i

∗ Y

]
≥ 0,

are feasible with D = Z−1, ETE = Y.

From the theorem, we see that a way to search for a “small” uncertainty representation is through
the optimization problem

min tr(Y)

s.t. Y = YT > 0

Z = ZT > I
r

∑
i=1

hi(v)

[
I ZL̂i

∗ Y

]
≥ 0
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and matrices D and E are recovered by

D = Z−1, ETE = Y.

Structured linear fractional form

We seek a structured linear fractional form representation for the uncertainty such that

r

∑
i=1

hi(v)L̂i ⊂ D∆E,

∆ = F [I − JF]−1

I − J JT > 0 and J known

||F||2 ≤ 1.

In order for these conditions to be true, one has that

∆ = D−1

(
r

∑
i=1

hi(v)L̂i

)
E−1,

for some ∆ and assuming that matrices D and E are square and invertible. However, ∆ = F [I − JF]−1,
which implies that

F = D−1

(
r

∑
i=1

hi(v)L̂i

)
E−1 [I − JF] ,

F = Λ−1D−1

(
r

∑
j=1

hi(v)L̂i

)
E−1,

with

Λ = I + D−1

(
r

∑
j=1

hi(v)L̂i

)
E−1 J.

Since FT F ≤ I, we may write

E−T

(
r

∑
j=1

hi(v)L̂i

)T

D−TΛ−TΛ−1D−1

(
r

∑
j=1

hi(v)L̂i

)
E−1 ≤ I.

By making use of Schur’s complement,

 I E−T

(
∑r

j=1 hi(v)L̂i

)T

∗ DΛΛT DT


 ≥ 0,


 I E−T

(
∑r

j=1 hi(v)L̂i

)T

∗ Λ̃Λ̃T


 ≥ 0, (4.4)

with

Λ̃ = D +

(
r

∑
j=1

hi(v)L̂i

)
E−1 J.

By taking J = ERD−T ,

Λ̃Λ̃T = DDT +

(
r

∑
j=1

hi(v)L̂i

)
R + RT

(
r

∑
j=1

hi(v)L̂i

)T

+

(
r

∑
j=1

hi(v)L̂i

)
RD−T D−1RT

(
r

∑
j=1

hi(v)L̂i

)T

.
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We then use the fact that

Λ̃Λ̃T ≥ DDT +

(
r

∑
j=1

hi(v)L̂i

)
R + RT

(
r

∑
j=1

hi(v)L̂i

)T

,

to write the following sufficient condition to (4.4)




I E−T
(

∑r
j=1 hi(v)L̂i

)T

∗ DDT +
(

∑r
j=1 hi(v)L̂i

)
R + RT

(
∑r

j=1 hi(v)L̂i

)T


 ≥ 0. (4.5)

Another condition imposed by this uncertainty representation model is that J JT ≤ I, which can be
rewritten as

[
I ER
∗ DDT

]
≥ 0,

which, by making use of Schur’s Complement, is equivalent to

[
E−1E−T R
∗ DDT

]
≥ 0. (4.6)

By noting that

E−1E−T ≥ E−1 + E−T − I,

we can write the following sufficient condition to (4.6)

[
E−1 + E−T − I R

∗ DDT

]
≥ 0. (4.7)

It then suffices to find matrices E, D and R satisfying equations (4.5) and (4.7). We may then state
the following result.
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Theorem 4.3

Given a polytopic model

r

∑
i=1

hi(v)L̂i,

r

∑
i=1

hi(v) = 1, hi(v) ≥ 0,

the structured linear fractional uncertain model

D∆E,

∆ = F [I − JF]−1

||F||2 ≤ 1,

is such that

r

∑
i=1

hi(v)L̂i ⊂ D∆E,

if the LMIs

Y = YT > 0,
r

∑
j=1

hi(v)

[
I XT L̂T

i
∗ Y + L̂iR + RT L̂T

i

]
≥ 0,

[
X + XT − I R

∗ Y

]
≥ 0,

are feasible with DDT = Y, E = X−1, and J = ERD−T .

From the theorem, we see that a way to search for a “small” uncertainty representation is through
the optimization problem

min tr(Y)

s.t. Y = YT > 0
r

∑
j=1

hi(v)

[
I XT L̂T

i
∗ Y + L̂iR + RT L̂T

i

]
≥ 0

[
X + XT − I R

∗ Y

]
≥ 0

and matrices E, D and J are recovered by

E = X−1,

DDT = Y,

J = ERD−T .
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4.3 Numerical Example

In this section we apply the uncertainty modelling presented above to find a controller for a TS fuzzy
model with a reduced number of rules that will still work for the original TS model.

We consider the TORA benchmark system (Baranyi et al. 2006; Bupp, Bernstein, and Coppola 1998;
Petres, Baranyi, and Hashimoto 2010; Petres et al. 2007), described by equations

ẋ = A(x)x + B(x)u,

with x the system states, u the input signal, and

A(x) =




0 1 0 0
−1

1−ε2 cos2 x3
0 0 εx4 sin x3

1−ε2 cos2 x3

0 0 0 1
ε cos x3

1−ε2 cos2 x3
0 0 −ε2x4 cos x3 sin x3

1−ε2 cos2 x3




,

B(x) =




0
−ε cos x3

1−ε2 cos2 x3

0
1

1−ε2 cos2 x3




.

We find an approximate model by means of the TP model transformation sampling step. We con-
sider that x3 ∈ [−π/4, π/4], x4 ∈ [−0.5, 0.5] and we use a sampling grid with 25 samples in x3 and 25
samples in x4 and triangular shaped membership functions. These considerations lead us to a tensor
S ∈ R25×25×4×5 when approximating the matrix function S(x) = [A(x)B(x)].

When applying the HOSVD to this tensor, we find σ
(1)
1 = 51.2576, σ

(1)
2 = 0.7258, σ

(1)
3 = 0.6903, σ

(1)
4 =

0.0111 and σ
(1)
5 = 0.0074 as singular values for the x3 direction, and σ

(2)
1 = 51.263 and σ

(2)
2 = 0.69043 as

singular values for the x4 direction.

We decide to keep only the first singular value in the x3 and x4 directions. Since we are discarding
nonzero singular values, this rule reduction will generate an uncertain model. Ideally, that would lead
us to an uncertain system with a single rule. However, when applying the convex hull manipulation
step to the weight matrices, we were forced to add an extra column to the x3 weight matrix in order to
attain the SN property. After imposing the CNO property the weight matrices, we arrive at an uncertain
TS model with 2 rules.

The reduced order model is represented by

A1 =




0 1 0 0
−1.0416 0 0 0

0 0 0 1
0.20898 0 0 0




, B1 =




0
−0.20898

0
1.0416




,

A2 =




0 1 0 0
−1.0202 0 0 0

0 0 0 1
0.14551 0 0 0




, B2 =




0
−0.14551

0
1.0202




and membership functions presented in Figure 4.1.

In addition, by making use of the LMI conditions presented in the previous section, we are able
to find a norm bounded uncertainty that, when used in conjunction with the reduced TS model, is
capable of covering the TS model obtained in the sampling step. This uncertainty can be represented by
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Figure 4.1: Membership functions found for the TORA system with a reduced number of rules.

∆ [A|B] = D∆E, with

D =




0.69314 0 0 0
0 0.9999 0 0
0 0 0.69295 0
0 0 0 0.9999




,

E =




0.003407 0 0 0 −0.0011
0 0.003162 0 0 0
0 0 0.003162 0 0
0 0 0 0.073518 0
0 0 0 0 0.0097257




.

By following similar steps to ones deriving the LMI conditions in (Tanaka and Wang 2001, chapter
5), we know that a robustly stabilizing controller

u =
2

∑
i=1

wi(x3)Kix

can be found by solving the LMI feasibility problem

P > 0,
2

∑
i=1

2

∑
j=1

wi(x3)wj(x3)

[
AiP + PAT

i + BiSj + ST
j BT

i + DDT PET
a + ST

j ET
b

∗ −I

]
< 0,

with Ea the first 4 columns of E and Eb the last column, and the controller gains recovered by Ki = SiP−1.
In the case of this example, we have found the gains

K1 =
[
1.5565 −0.63924 −1.6553 −2.1105

]
,

K2 =
[
1.6325 −0.61135 −1.6619 −2.1293

]

for the system. Finally, the system’s closed loop behaviour with initial conditions [0.1, 0.1, 0.1, 0.1]T and
the control signal are presented in Figure 4.2.
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Figure 4.2: Evolution of the states and input signal through time for the closed loop TORA system.
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Premise variables are state variables
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5 New stability analysis conditions
using piecewise fuzzy Lyapunov
functions

As it is known in the literature (Sala 2009), LMI conditions for TS systems have many sources of conservativeness.
In this chapter, we try to deal with two of these sources: the fact that, in general, the conditions are independent of
the membership functions shape, and the choice of the family of candidate Lyapunov functions to be used.

The presentation and the results in this chapter were based on (Campos et al. 2013).

5.1 Introduction

Recent results in the literature have shown how to relax fuzzy summation conditions by incorporating
the ordering relations of the membership functions by means of local transformations (Bernal, Guerra,
and Kruszewski 2009). Taking these results as motivation, we propose the use of local transformations
according to the shape of the membership functions such that the corresponding LMIs need to be valid
for a smaller class of systems, thus reducing the conservativeness of the conditions. In addition, it is
important to note that the search for these transformations can be done in a way that does not increase
the number of rules of the corresponding local fuzzy model (e.g. by making use of the transformations
from the tensor product model transformation literature presented in section 2.4).

Regarding the choice of the family of candidate Lyapunov functions, despite the use of a common
quadratic Lyapunov function usually leading to simpler conditions, they are inherently conservative
since they are sufficient for a larger class of systems (Johansson, Rantzer, and Arzen 1999). With that in
mind, different families of candidate Lyapunov families have been proposed for TS systems (e.g. fuzzy
Lyapunov functions and piecewise quadratic Lyapunov functions).

Fuzzy Lyapunov functions (Bernal and Guerra 2010; Faria, Silva, and Oliveira 2012; Guedes et al.
2013; Guerra et al. 2012; Ko and Park 2012; Ko, Lee, and Park 2012; Lee, Park, and Joo 2012; Mozelli,
Palhares, and Avellar 2009; Mozelli et al. 2009; Rhee and Won 2006; Tanaka, Hori, and Wang 2003;
Tognetti, Oliveira, and Peres 2011; Zhang and Xie 2011) are those composed by the fuzzy mixture of
quadratic Lyapunov functions, using the same membership functions as the system. Some of these
works (Faria, Silva, and Oliveira 2012; Guedes et al. 2013; Ko and Park 2012; Ko, Lee, and Park 2012; Lee,
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Park, and Joo 2012; Mozelli et al. 2009; Tanaka, Hori, and Wang 2003; Tognetti, Oliveira, and Peres 2011;
Zhang and Xie 2011) make use of bounds over the time derivative of the membership functions, others
(Mozelli, Palhares, and Avellar 2009; Rhee and Won 2006) impose a special structure over the parameter
matrices in order to obtain conditions that are independent of these bounds, still others (Bernal and
Guerra 2010; Guerra et al. 2012) make use of bounds over the partial derivatives of the membership
functions and generate a set of conditions that guarantee the time derivative bound will be respected in
a local region.

Piecewise quadratic Lyapunov functions (Bernal, Guerra, and Kruszewski 2009; Chen et al. 2009;
Feng et al. 2005; Johansson, Rantzer, and Arzen 1999; Zhang, Li, and Liao 2005) divide the system into
regions and make use of a different quadratic Lyapunov functions for each region. Some additional
considerations over each of these functions need to be made in order for their combination to generate
a proper candidate Lyapunov function.

In this chapter, two different piecewise fuzzy Lyapunov functions are proposed, depending on
whether or not bounds on the time derivatives of the membership functions are known, together with
the use of local transformations of the membership functions according to their image space distribution
(instead of using their ordering relations as in Bernal, Guerra, and Kruszewski 2009).

The main contribution of this chapter is the fact that this nontrivial combination of strategies, in
the sense that new theorems had to be demonstrated in order to prove these methodologies, has shown
itself to be very interesting in the stability analysis of TS fuzzy models. Specifically, by applying the
proposed methodologies to a standard exampled found in many recent works in the literature (Faria,
Silva, and Oliveira 2012; Guedes et al. 2013; Ko and Park 2012; Ko, Lee, and Park 2012; Lee, Park, and
Joo 2012; Mozelli, Palhares, and Avellar 2009; Rhee and Won 2006; Tognetti, Oliveira, and Peres 2011;
Zhang and Xie 2011), significant improvement was noticed, as presented in section 5.4.

Throughout this chapter, we consider TS models whose premise variables are state variables. Specif-
ically, we consider models that can be represented like the one in equation (2.5):

ẋ =
r

∑
i=1

hi(x)Aix,

in which

x =

[
x
1

]
, Ai =

[
Ai ai

0 0

]
,

and relationships (2.1), (2.2) and (2.3) are valid.

5.2 Local Transformation Matrices

The main motivation of the transformation matrices presented in (Campos et al. 2013) is finding a trans-
formation matrix that reduces the conservativeness of the conditions, by means of lemma 2.5, but with-
out increasing the number of conditions (differently from what happens when we make use of the trans-
formation matrices proposed in Bernal, Guerra, and Kruszewski 2009, that always increase the number
of conditions).

The main point behind this reduction is the fact that, most of the LMI conditions presented in the
literature prove some property (like stability) for all the systems that can be represented by the local
linear models of the TS model. In that way, this property is not proven only for the desired system,
but for a whole family of system, and reducing the “size” of this family leads to a reduction in the
conservativeness of the conditions.
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As stated previously, in this chapter we consider TS systems that can be written with a tensor prod-
uct structure. This class of systems covers those found using the sector nonlinearity approach (Tanaka
and Wang 2001), as well as those found by making use of the tensor product model transformation
technique (Baranyi 2004).

As presented in section 2.5, whenever models with a tensor product structure are used, the trans-
formations of the normalized premise membership functions (which are functions of one variable) can
be carried out separately and combined later to generate a transformation of the membership functions
hi(x) according to equation (2.13).

In addition to this, in this chapter, the CNO transformation (proposed in (Campos et al. 2013) and
presented in section 2.4) is used to find the transformation matrices of the normalized premise member-
ship functions.

Note that, the way we calculate the transformation matrices proposed in this work is not capable
of dealing directly with functions (since the CNO transformation was proposed to deal with a point
cloud instead of a function). Therefore, just like in chapter 3, the membership functions we would like
to transform are sampled and represented as points in the image space. In this chapter, just like in
the original work presented in (Campos et al. 2013), we simply consider that we have a large enough
number of sample points and disregard the approximation error between the original functions and
their piecewise constant approximations to find the transformations. However, this approximation error
could be taken into consideration by making use of the error polytope from section 2.3 in the same way
it was considered for the Grouping the membership points partition strategy in chapter 3.

The method used to obtain the Gq transformation matrices is summarized in Algorithm 1. Note that
this algorithm makes use of equation (2.21) instead of equation (2.13) due to the way the Kj matrices are
defined in the CNO transformation in equation (2.9).

Algorithm 1: Algorithm used to calculate the local Gq transformation matrices
using the CNO approach.

for all premise variables of the model do
-Sample the normalized premise variable membership functions µ

αij
j (xj) inside of the desired

region and use each point (or the vertices of each point polytope) as rows in the Uj;
-Solve the optimization problem:

min
Tj
− ln(det(Tj))

s.t. sum(UjTj) = 1,

UjTj � 0.

-Find matrix Kj = T−1
j ;

endFor
-Calculate the local transformation Gq = (K1 ⊗ · · · ⊗ Kn)T ;

Remark 5.1

As previously stated, contrarily to the transformation matrices proposed in (Bernal, Guerra, and
Kruszewski 2009). the methodology presented in this section does not increase the number of rules of
the transformed systems, and therefore does not incur in an increase of the conditions generated
when using lemma 2.5.
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Remark 5.2

It is worth noting that, when we are dealing with tensor product models whose premise variables
possess only two fuzzy sets, like those obtained via sector nonlinearity (Tanaka and Wang 2001)
if we only have at most one nonlinearity for each state, the convex hull of the sample points (or
the uncertainty vertices) is always a simplex with 2 vertices. In this case, finding the Kj matrices
reduces to finding the extrema of these points, and the optimization problem in algorithm 1, albeit
costly, can be seen as an alternative to doing this search.

Remark 5.3

Despite the discussion and the algorithm presented for the local transformation matrices have been
directed towards models with a tensor product structure, they can also be applied to find a trans-
formation when that is not the case. In that case, we search directly for the Gq matrices, instead of
the Kj matrices, and samples of the hi(x) functions, instead of the µ

αij
j (xj) functions. Note however

that, in order to find an approximation of these functions, we usually need a much larger number
of samples, leasing to a possibly costlier optimization problem.

5.3 Relaxed Stability Conditions

In order to make the most out of the relaxations introduced by the transformations discussed in the
previous section, it is interesting to apply them over local regions (as suggested by the name of the
previous section) instead of the whole state space. In this case, an interesting methodology (similar to
the one presented in (Bernal, Guerra, and Kruszewski 2009)) is to use piecewise Lyapunov functions.
In that regard, we propose the use of two different piecewise fuzzy Lyapunov functions (leading to
two different sets of LMI stability conditions) together with the local transformation matrices from the
previous section. Note as well that the results presented in this section could be used regardless of the
transformations, but are more relaxed when the transformations are considered.

In order to apply the new stability conditions, the state space is partitioned into polyhedral regions
Ωq, q = 1, 2, . . . , nq, such that the following assumptions are valid.

Assumption 5.1

In each Ωq region, the relation

Eqx � 0, ∀ x ∈ Ωq, (5.1)

is valid, and Eq
=
[

Eq eq
]
, with eq = 0 for regions that include the origin of the state space. In

addition, given two neighboring regions Ωq and Ωp, we have that

Fqx = Fpx, ∀ x ∈ Ωq ∩Ωp, (5.2)

in which Fq
=
[

Fq fq
]
, with fq = 0 for regions that include the origin.

It is important to note that, given the vertices of each polyhedral region, matrices Eq, Fq and Fp from
Assumption 5.1 can be found using the procedures described in (Johansson, Rantzer, and Arzen 1999).
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In a different way, the Eq are easily found by stacking the inequalities that describe the region, and the
Fq matrices can be found by solving a set of homogeneous linear equations for each state variable.

Assumption 5.2

In each Ωq region there are Gq ∈ Rr×r̃q matrices describing local transformations of the hi(x) mem-
bership functions such that

h = Gqh̃q,

in which h is the vector formed by stacking the hi(x), i ∈ 1, . . . , r membership functions, and h̃
is the vector formed by stacking the h̃q

j (x), j ∈ 1, . . . , r̃q membership functions. In addition, the
transformed membership functions are such that (2.1), (2.2) and (2.3) are still valid.

Note that, if this is not the case, we can take Gq to be the r× r identity matrix.
Besides the transformation matrices discussed in the previous section, an alternative, from (Bernal,

Guerra, and Kruszewski 2009), to find transformed membership functions that satisfy Assumption 5.2
is found by splitting the state space such that the possible ordering relations among the membership
functions can be taken into consideration. As a consequence of this procedure, it is possible to find Gq

matrices with the additional property that Gq � 0.

Membership derivative independent conditions

For each Ωq region, it is possible to write a fuzzy candidate Lyapunov function (Rhee and Won 2006) of
the form:

Vq(x) = 2
∫

Γ[0,x]
〈

r

∑
i=1

hi(s)Pq
i s, ds〉, (5.3)

in which Γ[0, x] is an arbitrary trajectory from the origin to x, with s ∈ Rn+1 being the trajectory variable
and s ∈ Rn equal to the first n components of s.

The Pq
i ∈ R(n+1)×(n+1) matrices parametrize the candidate Lyapunov function, and in order for

Vq(x) to be similar to potential energy functions, such that the integral in (5.3) is path independent, it is
sufficient that the Pq

i matrices be symmetric and have the following structure (Rhee and Won 2006):

Pq
i =

[
Pq

i pq
1

∗ pq
2

]
,

Pq
i = Dq

0 + Dq
i ,

Dq
0 =




0 d12q · · · d1nq

d12q 0 · · · d2nq
...

...
. . .

...
d1nq d2nq · · · 0




,

Dq
i =




dαi1
11q 0 · · · 0

0 dαi2
22q · · · 0

...
...

. . .
...

0 0 · · · dαin
nnq




. (5.4)

The structure in (5.4) indicates that, in each region Ωq, the elements of Pq
i outside of the diagonal, and

the elements pq
1 and pq

2 have to be the same for all of the rules. Nevertheless, the diagonal elements of
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Pq
i , d

αij
jjq, may change according to the rules, but need to be the same for two rules sharing the same fuzzy

set regarding variable xj; i.e. given two rules i and k, if αij = αkj, then d
αij
jjq = d

αkj
jjq .

For regions Ωq that contain the origin, pq
1 = 0 and pq

2 = 0, and equation (5.3) can be rewritten as

Vq(x) = 2
∫

Γ[0,x]
〈

r

∑
i=1

hi(s)Pq
i s, ds〉, (5.5)

with the Pq
i matrices following the structure presented in equation (5.4). Having made these assump-

tions, the following theorem can be stated.

Theorem 5.1: Membership functions’ time derivative independent stability conditions

Given matrices Eq
=
[

Eq eq
]

and Fq
=
[

Fq fq
]

satisfying conditions (5.1) and (5.2), together with

matrices Gq ∈ Rr×r̃q describing membership functions transformations such that Assumption 5.2 is valid,

system (2.5) is asymptotically stable if there are matrices M =

[
M m1

mT
2 m3

]
and N =

[
N n1

nT
2 n3

]
, symmetric

matrices Uq
i � 0 and Wq

i � 0, and symmetric matrices Ti, such that the following conditions are met:

Pq
i − (Eq

)TUq
i Eq

> 0, (5.6)
r

∑
i=1

gq
ijLiq < 0, j ∈ 1, . . . , r̃q, (5.7)

with Pq
i = (Fq

)TTiF
q having the structure in (5.4), and

Liq =

[
MT Ai + AT

i M + (Eq
)TWq

i Eq Pq
i −MT

+ AT
i N

∗ −N − NT

]
, (5.8)

for regions that do not contain the origin of the state space. In a similar way,

Pq
i − (Eq)TUq

i Eq > 0, (5.9)
r

∑
i=1

gq
ijLiq < 0, j ∈ 1, . . . , r̃q, (5.10)

with Pq
i = (Fq)TTiFq having the structure in (5.4), and

Liq =

[
MT Ai + AT

i M + (Eq)TWq
i Eq Pq

i −MT + AT
i N

∗ −N − NT

]
, (5.11)

for regions that contain the origin of the state space.

Proof. Consider that the state space is divided into Ωq polyhedral regions described by (5.1). If we
would like to use a piecewise combination of (5.3) and (5.5) as a candidate Lyapunov function, we must
guarantee the continuity of this combination when we switch from one region to the other. Therefore,
we would like that

Vq(x) = Vp(x),

2
∫

Γ[0,x]
〈

r

∑
i=1

hi(s)Pq
i s, ds〉 = 2

∫

Γ[0,x]
〈

r

∑
i=1

hi(s)Pp
i s, ds〉, (5.12)

be true for two neighboring regions Ωq and Ωp, whenever x is on the border of these two regions.
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Since the structure imposed by equation (5.4) over the Pq
i and Pq

i matrices guarantees that the line
integral is path independent (Rhee and Won 2006), choosing the path s = τx, with τ ∈ [0, 1], condition
(5.12) can be rewritten as

∫ 1

0
τxT

r

∑
i=1

hi(τx)Pq
i xdτ =

∫ 1

0
τxT

r

∑
i=1

hi(τx)Pp
i xdτ,

∫ 1

0
τ

r

∑
i=1

hi(τx)xT Pq
i xdτ =

∫ 1

0
τ

r

∑
i=1

hi(τx)xT Pp
i xdτ. (5.13)

A sufficient condition for (5.13) is that

r

∑
i=1

hi(τx)xT Pq
i x =

r

∑
i=1

hi(τx)xT Pp
i x,

which, in turn, can be assured by
xT Pq

i x = xT Pp
i x, (5.14)

whenever x is on the intersection of regions Ωq and Ωp.
Assuming that there are Fq matrices such that, whenever x lies on the switching surface of the two

regions, condition (5.2) is valid, matrices Pq
i can be written as

Pq
i = (Fq

)TTiF
q

to satisfy condition (5.14). By doing this,

xT(Fq
)TTiF

qx = xT(Fp
)TTiF

px.

On the other hand, the condition that the candidate Lyapunov function must be positive definite
implies that, over region Ωq,

xT Pq
i x > 0, for regions not including the origin, (5.15)

xT Pq
i x > 0, for regions including the origin. (5.16)

The inequalities above need be satisfied only when x ∈ Ωq; i.e. only when expression (5.1) is true. In
order to deal with this problem, the following quadratic constraints are considered

xT(Eq
)TUq

i Eqx ≥ 0, (5.17)

xT(Eq)TUq
i Eqx ≥ 0, (5.18)

which, from (5.1) and picking copositive Uq
i matrices, are satisfied for every x ∈ Ωq. Note that it is

possible that these inequalities are also valid for some x 6∈ Ωq; i.e. the inequalities above are only
sufficient for (5.15) and (5.16).

In order to simplify the problem, we use non-negative matrices (matrices whose elements are non-
negative), which is a subset of the copositive matrices (Bundfuss 2009).

Therefore, a sufficient condition to ensure that the candidate Lyapunov function is positive definite
over each region Ωq is that (5.15)) and (5.16) be valid whenever (5.17) and (5.18), respectively, are valid.
And by applying the S-procedure we get conditions (5.6) and (5.9).

In regions that do not include the origin, the time derivative of the Lyapunov function can be written
as

V̇(x) =

[
x
ẋ

]T r

∑
i=1

hi(x)

[
0 Pq

i
∗ 0

] [
x
ẋ

]
, (5.19)
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whereas in regions that include the origin, it can be written as

V̇(x) =

[
x
ẋ

]T r

∑
i=1

hi(x)

[
0 Pq

i
∗ 0

] [
x
ẋ

]
. (5.20)

Consider arbitrary real matrices M =

[
M m1

mT
2 m3

]
and N =

[
N n1

nT
2 n3

]
. The following null-term (Mozelli,

Palhares, and Avellar 2009)

[
x
ẋ

]T r

∑
i=1

hi(x)

[
MT Ai + AT

i M −MT
+ AT

i N

∗ −N − NT

] [
x
ẋ

]
= 0, (5.21)

can be added to the time derivative in regions that do not include the origin. And the null-term

[
x
ẋ

]T r

∑
i=1

hi(x)

[
MT Ai + AT

i M −MT + AT
i N

∗ −N − NT

] [
x
ẋ

]
= 0, (5.22)

in regions that include the origin.
By making use of quadratic constraints, similar to the one presented above, to represent regions that

contain each region Ωq, from (5.1), and using Wq
i matrices whose elements are non-negative, we can

write
[

x
ẋ

]T r

∑
i=1

hi(x)

[
(Eq

)TWq
i Eq 0

∗ 0

] [
x
ẋ

]
≥ 0,

[
x
ẋ

]T r

∑
i=1

hi(x)

[
(Eq)TWq

i Eq 0
∗ 0

] [
x
ẋ

]
≥ 0.

Therefore, adding each term to the respective time derivative in (5.19) and (5.20), we assure that the time
derivative of the Lyapunov function is negative definite over regions Ωq, and at the same time, allow
for a relaxation of this constraint outside of these regions (where this conditions is not really necessary).
The final expression can be written as

r

∑
i=1

hi(x)Liq < 0, for regions not including the origin,

r

∑
i=1

hi(x)Liq < 0, for regions including the origin,

in which Liq and Liq are given by (5.8) and (5.11), respectively.
If there are Gq ∈ Rr×r̃q matrices defining valid transformations of the membership functions accord-

ing to Assumption 5.2, we can make use of lemma 2.5 in the conditions above to write

r̃q

∑
j=1

h̃q
j

(
r

∑
i=1

gq
ijLiq

)
< 0, (5.23)

for regions not including the origin,

r̃q

∑
j=1

h̃q
j

(
r

∑
i=1

gq
ijLiq

)
< 0, (5.24)

for regions including the origin.
And it is clear that conditions (5.7) and (5.10) are sufficient for (5.23) and (5.24).
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Remark 5.4

Since the Fq matrices change according to each Ωq polyhedral region considered, a generic way
of imposing structure (5.4) to matrices Pq

i is by means of linear equality constraints (since, in this
case, the decision variables are the Ti matrices instead of the Pq

i matrices). However, it is possible to
remove the equality constraints from the optimization problem by means of a reduction of the set of
decision variables, which also reduces the computational time associated with the optimization. In
the case here presented, these constraints (if well posed) determine a well behaved transformation
basis, such that numerical problems should not occur from eliminating the constraints a.

athis can be done, for instance, using YALMIP (Löfberg 2004) and asking the interpreter to
reduce the decision variables based on the equality constraints.

Membership derivative dependent conditions

For each region, it is also possible to write a fuzzy candidate Lyapunov function (Tanaka, Hori, and
Wang 2003):

Vq(x) =
r

∑
i=1

hi(x)xT Pq
i x, (5.25)

in which Pq
i ∈ R(n+1)×(n+1) are matrices parametrizing the Lyapunov function. In a similar way to what

was previously presented, these matrices can be written as

Pq
i =

[
Pq

i pq
1i

∗ pq
2i

]
.

However, unlike the previous case, there are no restrictions over the structure of the Pq
i matrices regard-

ing the rules of the TS model. Instead, we assume that the membership functions’ time derivatives are
bounded such that1

|ḣi(x)| ≤ φi, i = 1, 2, . . . , r. (5.26)

For regions containing the origin, pq
1i
= 0 and pq

2i
= 0, and the corresponding candidate Lyapunov

function can be rewritten as

Vq(x) =
r

∑
i=1

hi(x)xT Pq
i x. (5.27)

Given these assumptions, the following theorem can be stated.

1In order to simplify the demonstration, we make use of the same bounds for every region in the
state space. Note however that we are not forced to do so, and different bounds could be used for each
region.
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Theorem 5.2: Membership functions’ time derivative dependent stability conditions

Given matrices Eq
=
[

Eq eq
]

and Fq
=
[

Fq fq
]

satisfying conditions (5.1) and (5.2), together with

matrices Gq ∈ Rr×r̃q describing membership functions transformations such that Assumption 5.2 is valid,
and considering that the time derivative of the membership functions is bounded according to (5.26), system

(2.5) is asymptotically stable if there are matrices M =

[
M m1

mT
2 m3

]
and N =

[
N n1

nT
2 n3

]
, symmetric

matrices Uq
i � 0 and Wq

i � 0, and symmetric matrices Ti and Qq (or Qq), such that the following conditions
are met:

Pq
i − (Eq

)TUq
i Eq

> 0, (5.28)

Pq
i + Qq

> 0, (5.29)
r

∑
i=1

gq
ijLiq < 0, j ∈ 1, . . . , r̃q, (5.30)

with Pq
i = (Fq

)TTiF
q, and

Liq =
[

Pq
φ + MT Ai + AT

i M + (Eq
)TWq

i Eq Pq
i −MT

+ AT
i N

∗ −N − NT

]
, (5.31)

Pq
φ =

r

∑
i=1

φi(Pq
i + Qq

),

for regions not containing the origin of the state space. In a similar way,

Pq
i − (Eq)TUq

i Eq > 0, (5.32)

Pq
i + Qq > 0, (5.33)
r

∑
i=1

gq
ijLiq < 0, j ∈ 1, . . . , r̃q, (5.34)

with Pq
i = (Fq)TTiFq, and

Liq =
[

Pq
φ + MT Ai + AT

i M + (Eq)TWq
i Eq Pq

i −MT + AT
i N

∗ −N − NT

]
, (5.35)

Pq
φ =

r

∑
i=1

φi(Pq
i + Qq),

for regions containing the origin of the state space.

Proof. Consider that the state space is divided into Ωq polyhedral regions described by (5.1). If we would
like to use a piecewise combination of (5.25) and (5.27) as a candidate Lyapunov function, we must
guarantee the continuity of this combination when switching from one region to another. Therefore,
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∀x ∈ Ωq ∩Ωp,

Vq(x) = Vp(x),
r

∑
i=1

hi(x)xT Pq
i x =

r

∑
i=1

hi(x)xT Pp
i x.

A sufficient condition for that is that

xT Pq
i x = xT Pp

i x, ∀x ∈ Ωq ∩Ωp.

On the other hand, from (5.2), this can be guaranteed by rewriting the Pq
i matrices as

Pq
i = (Fq

)TTiF
q,

as was shown in the proof of Theorem 5.1.
Conditions (5.28) and (5.32) are sufficient to guarantee that the piecewise combination of these Lya-

punov functions will be positive definite over regions Ωq. This can be proved by following the same
development done in the proof of Theorem 5.1.

In regions not including the origin, the time derivative of the Lyapunov function can be written as

V̇(x) =

[
x
ẋ

]T r

∑
i=1

hi(x)

[
∑r

k=1 ḣk(x)Pq
k Pq

i
∗ 0

] [
x
ẋ

]
, (5.36)

whereas, for regions including the origin, it can be written as

V̇(x) =

[
x
ẋ

]T r

∑
i=1

hi(x)

[
∑r

k=1 ḣk(x)Pq
k Pq

i
∗ 0

] [
x
ẋ

]
. (5.37)

Taking into account the bounds in (5.26) over the membership functions time derivatives, and consid-
ering that conditions (5.29) and (5.33) are satisfied, we can make use of the idea presented in (Mozelli
et al. 2009) to write

r

∑
k=1

ḣk(x)Pq
k =

r

∑
k=1

ḣk(x)(Pq
k + Qq

) ≤ Pq
φ =

r

∑
k=1

φk(Pq
k + Qq

),

r

∑
k=1

ḣk(x)Pq
k =

r

∑
k=1

ḣk(x)(Pq
k + Qq) ≤ Pq

φ =
r

∑
k=1

φk(Pq
k + Qq),

which, from (5.36) and (5.37), leads to

V̇(x) ≤
[

x
ẋ

]T r

∑
i=1

hi(x)

[
Pq

φ Pq
i

∗ 0

] [
x
ẋ

]
,

for regions not including the origin, and

V̇(x) ≤
[

x
ẋ

]T r

∑
i=1

hi(x)

[
Pq

φ Pq
i

∗ 0

] [
x
ẋ

]
,

for regions including the origin.
By following the same steps of using the null-terms (5.21) and (5.22), and the same relaxations re-

garding the Wq
i variables that were used in the proof of Theorem 5.1, sufficient conditions for the time

derivative of the Lyapunov function to negative definite can be written as

r

∑
i=1

hi(x)Liq < 0, for regions not including the origin, (5.38)

r

∑
i=1

hi(x)Liq < 0, for regions including the origin, (5.39)
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in which Liq and Liq are given by (5.31) and (5.35), respectively.
As in Theorem 5.1, considering that there exist valid Gq transformation matrices according to as-

sumption 5.2, conditions (5.30) and (5.34) are sufficient for (5.38) and (5.39) to be true.

Remark 5.5

It is important to note that, when dealing with piecewise Lyapunov functions, the stability will
only be proven for the largest Lyapunov sublevel set that is contained in the union of all of the state
space regions considered. However, if the regions are written and used as in (Johansson, Rantzer,
and Arzen 1999) (which is the case in this chapter) and all of the regions considered contain the
origin, the conditions will be valid for all of the state space. However, in the case of Theorem
5.2, we will only get global stability if the bound used for the time derivative of the membership
functions is global. In the other cases, the stability region proven will be the largest sublevel set
of the Lyapunov function that is contained in the region where the bound is valid. In case we
would like to use local conditions, an interesting approach is to employ instead bounds the partial
derivatives of the membership functions, as in (Bernal and Guerra 2010).

Remark 5.6

Note that Theorems 5.1 and 5.2 are more general than (Bernal, Guerra, and Kruszewski 2009, Theo-
rem 2), if the bound used for the time derivative of the membership functions considered in Theo-
rem 5.2 is valid in all of the regions considered. In both cases, if the Pq

i matrices are chosen to change
only with q, conditions in Theorems 5.1 are 5.2 relaxed versions of (Bernal, Guerra, and Kruszewski
2009, Theorem 2).

Proof. In order to prove the remark above, we will show only the proof for the regions that contain the
origin of the state space. The proof for the other regions follows by analogy.

Note that conditions from (Bernal, Guerra, and Kruszewski 2009, Theorem 2) can be written as

Pq − (Eq)T UqEq > 0, ∀q, (5.40)
r

∑
i=1

hi

(
AT

i Pq + Pq Ai + (Eq)T Wq
i Eq

)
< 0, ∀q. (5.41)

By taking Pq
i = Pq and Uq

i = Uq in (5.9) and (5.32), we recover (5.40).
By making use of Finsler’s lemma (Mozelli, Palhares, and Mendes 2010), the constraint (5.41) can be

written as

r

∑
i=1

r

∑
j=1

hihj

[
AT

i Mj + MT
j Ai + (Eq)T Wq

i Eq Pq −MT
j + AT

i Nj

∗ −Nj − NT
j

]
< 0, ∀q.

However, note that, if the above constraint is satisfied, there are matrices M and N such that
r

∑
i=1

hiLiq < 0, ∀q,

Liq =

[
AT

i M + MT Ai + (Eq)T Wq
i Eq Pq −MT + AT

i N
∗ −N − NT

]
.

Applying the local transformation matrices, we can write

r

∑
i=1

gq
ijLiq < 0, ∀q, j ∈ 1, . . . , r̃q. (5.42)
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Note that, by taking Pq
i = Pq in (5.10), we recover (5.42). In addition, by taking Pq

i = Pq and
Qq = −Pq in (5.34), we also recover (5.42).

Therefore, the conditions in Theorems 5.1 and 5.2 will always be satisfied whenever the conditions in
(Bernal, Guerra, and Kruszewski 2009, Theorem 2) are. In that regard, the conditions presented in 5.1 are
more general than those presented in (Bernal, Guerra, and Kruszewski 2009, Theorem 2), and conditions
in Theorem 5.2 are also more general, given a bound that is valid in all of the regions considered.

5.4 Example

In this section, a numerical example is presented to illustrate that the proposed stability conditions give
better results than previous conditions available in the literature.

Example 5.1 (Example 1 from (Rhee and Won 2006)). The following TS fuzzy system is considered:

Rule 1: If x1 ∈ M1
1 and x2 ∈ M1

2 Then ẋ = A1x,

Rule 2: If x1 ∈ M1
1 and x2 ∈ M2

2 Then ẋ = A2x,

Rule 3: If x1 ∈ M2
1 and x2 ∈ M1

2 Then ẋ = A3x,

Rule 4: If x1 ∈ M2
1 and x2 ∈ M2

2 Then ẋ = A4x,

with

A1 =

[
−5 −4
−1 a

]
,

A2 =

[
−4 −4

1
5 (3b− 2) 1

5 (3a− 4)

]
,

A3 =

[
−3 −4

1
5 (2b− 3) 1

5 (2a− 6)

]
,

A4 =

[
−2 −4
b −2

]
,

for constants a and b. The normalized premise membership functions ofM1
i andM2

i are given by

µ1
i (xi) =





(1− sin(xi))/2 for |xi| ≤ π/2,
0 for xi > π/2,
1 for xi < −π/2,

µ2
i (xi) = 1− µ1

i (xi).

The membership functions associated with the fuzzy rules are then written as

h1(x) = µ1
1(x1)µ

1
2(x2), h2(x) = µ1

1(x1)µ
2
2(x2),

h3(x) = µ2
1(x1)µ

1
2(x2), h4(x) = µ2

1(x1)µ
2
2(x2).

The system’s stability was checked for different values of a and b by using the proposed conditions,
as well as Theorems 1 and 4 from (Mozelli, Palhares, and Avellar 2009), Theorem 2 from (Bernal, Guerra,
and Kruszewski 2009), Theorem 1 from (Guedes et al. 2013), Theorem 4.3 from (Faria, Silva, and Oliveira
2012), Theorem 2 from (Lee, Park, and Joo 2012), Theorem 1 from (Ko, Lee, and Park 2012), and Theorem
1 from (Tognetti, Oliveira, and Peres 2011) with g = 3 and d = 3.
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In order to apply Theorem 5.1 and 5.2, as well as Theorem 2 from (Bernal, Guerra, and Kruszewski
2009), the system was divided into 4 regions according to the ordering relations of the membership
functions (this was done to allow the use, for comparison purposes, of the local transformation matrices
proposed in Bernal, Guerra, and Kruszewski 2009). The following regions were chosen

Region 1: x1 < 0, x2 < 0
h1 > h2 > h4 and h1 > h3 > h4

Region 2: x1 < 0, x2 > 0
h2 > h4 > h3 and h2 > h1 > h3

Region 3: x1 > 0, x2 < 0
h3 > h1 > h2 and h3 > h4 > h2

Region 4: x1 > 0, x2 > 0
h4 > h2 > h1 and h4 > h3 > h1

The following Eq and Fq matrices satisfying conditions (5.1) and (5.2) were used:

E1 =




−0.1 0
0 0
0 −0.1
0 0




, F1 =




0 0
−0.1 0

0 0
0 0
0 −0.1
0 0




,

E2 =




−0.1 0
0 0
0 0
0 0.1




, F2 =




0 0
−0.1 0

0 0
0 0
0 0
0 0.1




,

E3 =




0 0
0.1 0
0 −0.1
0 0




, F3 =




0 0
0 0

0.1 0
0 0
0 −0.1
0 0




,

E4 =




0 0
0.1 0
0 0
0 0.1




, F4 =




0 0
0 0

0.1 0
0 0
0 0
0 0.1




.

In order to allow the use of Theorem 5.2, Theorem 1 from (Mozelli, Palhares, and Avellar 2009),
Theorem 1 from (Guedes et al. 2013), Theorem 4.3 from (Faria, Silva, and Oliveira 2012), Theorem 2
from (Lee, Park, and Joo 2012), Theorem 1 from (Ko, Lee, and Park 2012), and Theorem 1 from (Tognetti,
Oliveira, and Peres 2011), the following bound on the time derivative of the membership functions was
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used:

φi = 0.85, ∀i.

Note that, most likely, this is not a global bound for the membership functions time derivative in this
example (and given large values of a and b, most likely, is valid only for a very small region around the
origin). Therefore, as stated in Section 5.3, conditions based on this bound will only assert the system’s
local stability. Nevertheless, this is a very common value for this bound found on the literature (Faria,
Silva, and Oliveira 2012; Guedes et al. 2013; Ko and Park 2012; Ko, Lee, and Park 2012; Lee, Park, and
Joo 2012; Mozelli, Palhares, and Avellar 2009; Rhee and Won 2006; Tognetti, Oliveira, and Peres 2011;
Zhang and Xie 2011) and will be used for comparison purposes.

In order to compare the relaxation brought about by the transformation matrices, both the method
proposed in (Bernal, Guerra, and Kruszewski 2009) as well as the method discussed in Section 5.2 were
used.

Using the constructing method detailed in (Bernal, Guerra, and Kruszewski 2009), the transforma-
tion matrices are

G1 =




0.5 0.5 0.5 0.5 1
0 1 0 0 1
0 0 0 1 1
0 0 0 0 1




,

G2 =




0 0 0 1 1
0.5 0.5 0.5 0.5 1
0 0 0 0 1
0 1 0 0 1




,

G3 =




0 1 0 0 1
0 0 0 0 1

0.5 0.5 0.5 0.5 1
0 0 0 1 1




,

G4 =




0 0 0 0 1
0 1 0 0 1
0 0 0 1 1

0.5 0.5 0.5 0.5 1




.
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Using the method presented in Section 5.2, the transformation matrices are:

G1 =




1 0.5 0.5 0.25
0 0.5 0 0.25
0 0 0.5 0.25
0 0 0 0.25




,

G2 =




0.5 0 0.25 0
0.5 1 0.25 0.5
0 0 0.25 0
0 0 0.25 0.5




,

G3 =




0.5 0.25 0 0
0 0.25 0 0

0.5 0.25 1 0.5
0 0.25 0 0.5




,

G4 =




0.25 0 0 0
0.25 0.5 0 0
0.25 0 0.5 0
0.25 0.5 0.5 1




.

The results are presented in Tables 5.1 and 5.2, where a line search method was used to find the
largest value of b, given a fixed a, in which the conditions were still feasible. Table 5.1 shows the results
obtained using different derivative independent conditions (Theorem 5.1, Theorem 4 from Mozelli, Pal-
hares, and Avellar 2009, and Theorem 2 from (Bernal, Guerra, and Kruszewski 2009)), whereas Table 5.2
shows the results obtained using different derivative dependent conditions (Theorem 5.2, Theorem 1
from Mozelli, Palhares, and Avellar 2009, Theorem 1 from (Guedes et al. 2013), Theorem 4.3 from Faria,
Silva, and Oliveira 2012, Theorem 2 from Lee, Park, and Joo 2012, Theorem 1 from Ko, Lee, and Park
2012, and Theorem 1 from Tognetti, Oliveira, and Peres 2011).

From these tables, we can see that Theorem 5.1 has a better performance than the other derivative
independent conditions, as well as better performance than many derivative dependent conditions for
a = −2 (with the exception of Theorem 5.2). In addition, note that, when Theorem 5.1 is used in
conjunction with the CNO transformation it behaves better than Theorem 1 from (Mozelli, Palhares, and
Avellar 2009) (which is a derivative dependent condition). From Table 5.2, we also see that Theorem 5.2
had a better perfomance than the other derivative dependent conditions.

Note that, in general, the derivative dependent conditions presented a superior performance than
the independent conditions for this example. However, in this case, the larger the values of a and b,
the smaller the corresponding region on the state space for which these conditions assure the stability.
Whereas, in this example, the derivative independent conditions always assure the global stability of the
system when they are feasible (and for that reason they are valid for a smaller set of a and b parameters
than the derivative dependent conditions).

Another interesting observation that can be made regarding the tables is that, in this example, the
use of the CNO transformation against the use of the transformation presented in (Bernal, Guerra, and
Kruszewski 2009) yielded better results.

Figures 5.1 to 5.5 illustrate the conditions and transformations proposed for a ∈ [−18, 0] and b ∈
[0, 1000].

Figure 5.1 compares Theorem 5.1, using the transformation matrices from (Bernal, Guerra, and
Kruszewski 2009), with other conditions from the literature.
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Table 5.1: Maximum feasible values of b, in the example, for the derivative independent conditions.
Compares Theorem 5.1 used in conjunction with the transformation proposed in (Bernal, Guerra, and
Kruszewski 2009) and the CNO transformation, (Bernal, Guerra, and Kruszewski 2009, Theorem 2) used
in conjunction with the transformation proposed in (Bernal, Guerra, and Kruszewski 2009) and the CNO
transformation, and (Mozelli, Palhares, and Avellar 2009, Theorem 4).

Method a
-16 -12 -8 -4 -2

Mozelli, Palhares, and Avellar 2009, Th.4 441 339 233 120 65
Bernal, Guerra, and Kruszewski 2009, Th.2 317 222 139 74 48+ Bernal, Guerra, and Kruszewski 2009

Bernal, Guerra, and Kruszewski 2009, Th.2 + CNO 421 292 186 103 70
Th.5.1 + Bernal, Guerra, and Kruszewski 2009 780 638 390 288 201

Th.5.1 + CNO 1012 782 558 352 253

Table 5.2: Maximum feasible values of b, in the example, for the derivative dependent conditions.
Compares Theorem 5.2 used in conjunction with the transformation proposed in (Bernal, Guerra, and
Kruszewski 2009) and the CNO transformation, (Mozelli, Palhares, and Avellar 2009, Theorem 1),
(Guedes et al. 2013, Theorem 1), (Faria, Silva, and Oliveira 2012, Theorem 4.3), (Lee, Park, and Joo 2012,
Theorem 2), (Ko, Lee, and Park 2012, Theorem 1), and (Tognetti, Oliveira, and Peres 2011, Theorem 1)
with g = 3 and d = 3.

Method a
-16 -12 -8 -4 -2

Mozelli, Palhares, and Avellar 2009, Th.1 964 603 323 123 51
Guedes et al. 2013, Th.1 1284 805 431 161 66

Faria, Silva, and Oliveira 2012, Th.4.3 1360 850 452 167 66
Lee, Park, and Joo 2012, Th.2 1914 1072 547 202 88
Ko, Lee, and Park 2012, Th.1 2836 1704 853 286 104

Tognetti, Oliveira, and Peres 2011, Th.1(3,3) 4727 2789 1383 469 188
Th.5.2 + Bernal, Guerra, and Kruszewski 2009 37244 39911 4979 463 219

Th.5.2 + CNO 983122 992028 726248 4529 846

Figure 5.2 compares Theorem 5.2, using the transformation matrices from (Bernal, Guerra, and
Kruszewski 2009), with other conditions from the literature.

Figures 5.3, 5.4 and 5.5 compare the results obtained with the transformation discussed in Section
5.2 with those obtained with the transformation proposed in (Bernal, Guerra, and Kruszewski 2009).
They deal, respectively, with Theorem 2 from (Bernal, Guerra, and Kruszewski 2009), Theorem 5.1, and
Theorem 5.2. There are no guarantees that the transformation matrices discussed in Section 5.2 will
have a better behaviour than the transformation matrices from (Bernal, Guerra, and Kruszewski 2009).
However, as can be seen from the figures presented, that was the case in this example.
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−15 −10 −5 0
0
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800

1000

a

b

Figure 5.1: Feasibility space for different conditions using the local transformation matrices in (Bernal,
Guerra, and Kruszewski 2009). Theorem 2 from (Bernal, Guerra, and Kruszewski 2009) is feasible in
the × and + region. Theorem 4 from (Mozelli, Palhares, and Avellar 2009) is feasible in the ×, � and ·
region. Theorem 1 from (Mozelli, Palhares, and Avellar 2009) is feasible in the ×, �, © and 4 region.
Theorem 5.1 is feasible in the ×, �,©, ∗, + and · region.
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Figure 5.2: Feasibility space for different conditions using the local transformation matrices in (Bernal,
Guerra, and Kruszewski 2009). Theorem 2 from (Bernal, Guerra, and Kruszewski 2009) is feasible in
the × and + region. Theorem 4 from (Mozelli, Palhares, and Avellar 2009) is feasible in the ×, � and ·.
Theorem 1 from (Mozelli, Palhares, and Avellar 2009) is feasible in the ×, � and© region. Theorem 5.2
is feasible for all the points shown in the figure.
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Figure 5.3: Feasibility space for different transformation matrices using Theorem 2 from (Bernal, Guerra,
and Kruszewski 2009). With the transformation proposed in (Bernal, Guerra, and Kruszewski 2009),
conditions are feasible in the × region. With the transformation discussed in Section 5.2, conditions are
valid for all the points shown in the figure.
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Figure 5.4: Feasibility space for different transformation matrices using Theorem 5.1. With the transfor-
mation proposed in (Bernal, Guerra, and Kruszewski 2009), conditions are feasible in the× region. With
the transformation discussed in Section 5.2, conditions are valid for all the points shown in the figure.
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Figure 5.5: Feasibility space for different transformation matrices using Theorem 5.2. With the transfor-
mation proposed in (Bernal, Guerra, and Kruszewski 2009), conditions are feasible in the× region. With
the transformation discussed in Section 5.2, conditions are valid for all the points shown in the figure.
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6 A Novel Way to Deal with
Nonquadratic Lyapunov Functions in
Continuous Time TS Systems:
Stability and Stabilization Conditions

A novel way to deal with the time-derivative of nonquadratic Lyapunov functions in local conditions is proposed.
This new proposition allow us to avoid the use of direct bounds over the time-derivative of the membership func-
tions, and therefore avoid the need of a separate set of conditions to guarantee those bounds. New stability and
stabilization conditions are presented as well as examples to illustrate their uses.

The work presented in this chapter was done in collaboration with Raymundo Márquez under the supervision of
Prof. Thierry Marie Guerra.

6.1 Introduction

Since TS systems are nonlinear systems, an important source of conservatism in the LMIs comes from
the family of candidate Lyapunov functions used in the conditions (Sala 2009). Among these families of
functions, quadratic Lyapunov functions yield the simplest LMI conditions and can be readily applied
in most of the cases due to their simplicity. However, they usually yield the most conservative results
(since other families of functions are usually constructed in a way that they cover quadratic functions).

Nonquadratic, or fuzzy Lyapunov functions (Tanaka, Hori, and Wang 2003) use a quadratic function
for each of the system’s rules with the same membership functions, yielding a convex sum of quadratic
functions. When deriving stability conditions for continuous-time systems using these functions, the
time derivative of the membership functions usually appears.

Many conditions in the literature (Campos et al. 2013; Faria, Silva, and Oliveira 2012; Guedes et al.
2013; Ko and Park 2012; Ko, Lee, and Park 2012; Mozelli, Palhares, and Avellar 2009; Mozelli et al. 2009;
Tognetti, Oliveira, and Peres 2011; Zhang and Xie 2011) make use of previously known upper bounds
on these time derivatives in order to present LMI analysis and synthesis conditions. In the analysis case,
these upper bounds can usually be found beforehand and this does not usually represent a restriction.
In the synthesis case, however, if any of the premise variables are state variables, this assumption is
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violated and stability is only assured for the largest sublevel-set of the Lyapunov function inside the
region given by the upper bound used.

Trying to get rid of a priori bounds on the time-derivatives, recent works in the literature (Bernal and
Guerra 2010; Guerra et al. 2012; Lee, Joo, and Tak 2014; Lee and Kim 2014; Lee, Park, and Joo 2012; Pan et
al. 2012) give up on asserting global stability and instead pursue a local certification. Some (Bernal and
Guerra 2010; Guerra et al. 2012) use the state space region the model is confined in, as well as bounds
on the membership functions partial derivatives regarding the states and bounds on the control effort
to enforce previously specified bounds on the time derivatives. Others (Lee and Kim 2014; Lee, Park,
and Joo 2012; Pan et al. 2012), present conditions that need not directly bound the control efforts, while
some others (Lee, Joo, and Tak 2014) also remove the need to specify the time derivative bounds (in the
analysis case).

By making use of a polytopic representation of a local region in state space and some novel ma-
nipulations, this chapter avoids the use of bounds on the membership functions time derivative by
explicitly including the state vector into the stability conditions. In the stabilization case, we make use
of a non-PDC control law and some sufficient conditions to adapt the results from the stability case. The
stabilization conditions are, in a way, conservative but are still guaranteed to give better results than
those with a quadratic Lyapunov function.

6.2 Considerations and special notation

Throughout this chapter, we consider continuous-time TS systems described by

ẋ =
r

∑
i=1

hi(x)Aix, (6.1)

for the stability conditions, or

ẋ =
r

∑
i=1

hi(x) (Aix + Biu) , (6.2)

for the stabilization conditions. In these equations, x ∈ Rn is the state vector, u ∈ Rm is the input vector,
Ai ∈ Rn×n and Bi ∈ Rn×m are the system matrices, hi(x) are the membership functions (that we assume
may only depend on the system’s states), and r is the number of rules.

Since we are dealing with TS models, the membership functions respect condition (2.3).
Throughout this chapter, we also consider a TS model for the Jacobian of the membership functions’

vector h =
[

h1 h2 . . . hr

]T
∈ Rr (which can be found either by sector nonlinearity (Tanaka and

Wang 2001), or by the Tensor Product Model Transformation (Baranyi 2004)). We consider this model to
be described by

∂h
∂x

=
ng

∑
j=1

gj(x)Jj, (6.3)

with Jj ∈ Rr×n the matrices that represent the Jacobian, ng the number of rules that describe its TS
model, and gj(x) its membership functions with properties

gj ≥ 0,
ng

∑
j=1

gj = 1.

For the stability case, we restrict our analysis to a polytopic region around the origin given by

x =
nα

∑
k=1

αkxk,
nα

∑
k=1

αk = 1, αk ≥ 0, (6.4)
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with xk the vertices of the polytopic region and nα the number of vertices describing the region.
In the stabilization case, we work instead with a transformed state space (represented in this chapter

by the variable s). In the same manner as in the stability case, we restrict our conditions to a polytopic
region around the origin given by

s =
nα

∑
k=1

αksk,
nα

∑
k=1

αk = 1, αk ≥ 0. (6.5)

with sk the vertices of the polytopic region and nα the number of vertices describing the region.
For the remainder of the chapter, the following short representations will be used for a single fuzzy

sum and its inverse

Ph =
r

∑
i=1

hi(x)Pi,

P−1
h =

(
r

∑
i=1

hi(x)Pi

)−1

.

Similarly, the following short representations will be used for a multiple fuzzy sum and its inverse

Phq =
r

∑
i1=1
· · ·

r

∑
iq=1

(
q

∏
`=1

hi`(x)

)
Pi1 ...iq ,

P−1
hq =




r

∑
i1=1
· · ·

r

∑
iq=1

(
q

∏
`=1

hi`(x)

)
Pi1 ...iq



−1

.

In addition to h, we also consider that g and α can also be used as subscripts in this same manner to
denote fuzzy summations. Therefore, if at some point we have a matrix Lhqgα, it will represent

Lhqgα =
r

∑
i1=1
· · ·

r

∑
iq=1

ng

∑
j=1

nα

∑
k=1

(
q

∏
`=1

hi`

)
gjαkLi1 ...iq jk.

The following Lemmas will prove useful in later developments

Lemma 6.1: Finsler’s Lemma (Mozelli, Palhares, and Mendes 2010)

The following statements are equivalent:

1. xTQx < 0, ∀x | Bx = 0,

2. B⊥TQB⊥ < 0, BB⊥ = 0 (i.e. B⊥ is a base for the null space of B),

3. ∃N | xT (Q + NT B + BT N
)

x < 0,

4. ∃µ > 0 | xT (Q− µBT B
)

x < 0.

Lemma 6.2: Derivative of the matrix inverse

The derivate of the inverse of a matrix function is related to the derivative of the matrix function by means
of the following equality

˙(Q−1(t)) = −Q−1(t)Q̇(t)Q−1(t).

Proof. By taking the derivative of both sides of the equality

Q−1(t)Q(t) = I,

111



CONSIDERATIONS AND SPECIAL NOTATION NONQUADRATIC LYAPUNOV FUNCTIONS

we get that

˙(Q−1(t))Q(t) + Q−1(t)Q̇(t) = 0,
˙(Q−1(t)) = −Q−1(t)Q̇(t)Q−1(t).

Since in this chapter we work with multiple fuzzy summations, we make use of Lemma 2.4 to
computationally implement them.

In order to illustrate the assumptions and notations presented in this section, we present an example
system.

Example 6.1. Consider a system with four rules, with

A1 =

[
−3 2
0 −0.9

]
, A2 =

[
−0.8 3

0 −0.9

]

A3 =

[
−1.9 2
−0.5 0.1

]
, A4 =

[
0.1 3
−0.5 −2

]

in a polytopic region given by vertices

x1 =

[
2
2

]
, x2 =

[
−2
2

]
, x3 =

[
2
−2

]
, x4 =

[
−2
−2

]

and membership functions

h1(x) =

(
4− x2

1
) (

4− x2
2
)

16
, h2(x) =

(
4− x2

1
)

x2
2

16
,

h3(x) =
x2

1
(
4− x2

2
)

16
, h4(x) =

x2
1x2

2
16

,

The Jacobian of the membership functions’ is given by

∂h
∂x

=
1
8




−x1(4− x2
2) −x2(4− x2

1)

−x1x2
2 x2(4− x2

1)

x1(4− x2
2) −x2x2

1
x1x2

2 x2x2
1




,
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and we can write a 16 rule TS model for it with

J1 =




0 0
1 0
0 1
−1 −1




, J2 =




0 2
1 −2
0 −1
−1 1




, J3 =




2 0
−1 0
−2 1
1 −1




, J4 =




2 2
−1 −2
−2 −1
1 1




,

J5 =




0 −2
1 2
0 1
−1 −1




, J6 =




0 0
1 0
0 −1
−1 1




, J7 =




2 −2
−1 2
−2 1
1 −1




, J8 =




2 0
−1 0
−2 −1
1 1




,

J9 =




−2 0
1 0
2 1
−1 −1




, J10 =




−2 2
1 −2
2 −1
−1 1




, J11 =




0 0
−1 0
0 1
1 −1




, J12 =




0 2
−1 −2
0 −1
1 1




,

J13 =




−2 −2
1 2
2 1
−1 −1




, J14 =




−2 0
1 0
2 −1
−1 1




, J15 =




0 −2
−1 2
0 1
1 −1




, J16 =




0 0
−1 0
0 −1
1 1




.

and

g1(x) = ω11ω21ω31ω41, g2(x) = ω11ω21ω31ω42,

g3(x) = ω11ω21ω32ω41, g4(x) = ω11ω21ω32ω42,

g5(x) = ω11ω22ω31ω41, g6(x) = ω11ω22ω31ω42,

g7(x) = ω11ω22ω32ω41, g8(x) = ω11ω22ω32ω42,

g9(x) = ω12ω21ω31ω41, g10(x) = ω12ω21ω31ω42,

g11(x) = ω12ω21ω32ω41, g12(x) = ω12ω21ω32ω42,

g13(x) = ω12ω22ω31ω41, g14(x) = ω12ω22ω31ω42,

g15(x) = ω12ω22ω32ω41, g16(x) = ω12ω22ω32ω42,

with

ω11(x) =
2− x1

4
, ω12(x) =

2 + x1

4
,

ω21(x) =
2− x2

4
, ω22(x) =

2 + x2

4
,

ω31(x) =
8− x1x2

2
16

, ω32(x) =
8 + x1x2

2
16

,

ω41(x) =
8− x2x2

1
16

, ω42(x) =
8 + x2x2

1
16

.

6.3 Stability Conditions

The main idea of the stability conditions proposed in this section is to avoid using bounds over the
membership functions time derivative by explicitly including the state vector into the stability condi-
tions. By using a polytopic representation of a local region in state space, we are then able to get LMI
conditions.
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Consider a Lyapunov function of the form

V(x) = xT Phx,

its time derivative is given by

V̇(x) = ẋT Phx + xT Phẋ + xT Ṗhx.

However, note that the last term can be written as

xT Ṗhx =
r

∑
k

ḣkxT Pkx,

=xT
[

P1x . . . Prx
]



ḣ1
...

ḣr


 ,

=xT
[

P1x . . . Prx
]

ḣ,

and, by considering a polytopic region in the state space given by (6.4), we get that

xT Ṗhx = xT
[

P1xα . . . Prxα

]
ḣ,

= xTQαḣ,

=
1
2

(
xTQαḣ + ḣTQT

α x
)

,

in which we used xα to indicate that we replace the state vector by its polytopic representation.

From this point forward, we only need the relations

ẋ = Ahx,

ḣ = Jgẋ,
r

∑
i=1

ḣi = 0,

in order to get suitable LMI conditions for the stability problem.

In the following, we present a generalization of this idea to the case in which the Lyapunov function
may be described by multiple fuzzy summations. In addition, we apply the conditions to the system in
Example 6.1 to illustrate its use.
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Theorem 6.1: Nonquadratic stability conditions

Given a system described by (6.1) in a polytopic region given by (6.4) whose membership functions’ Jacobian
matrix can be described by (6.3), and a desired number q of fuzzy summations in the Lyapunov function

V(x) = xT Phq x. (6.6)

If there exists Phq and Nhq−1α such that

Phq > 0,

Λhqα + NT
hq−1α

Ãhg + ÃT
hgNhq−1α < 0,

with

Λhqα =




0 Phq 1
2 Qhq−1α

∗ 0 0
∗ ∗ 0


 ,

Ãhg =




Ah −I 0
0 Jg −I
0 0 1T


 ,

and

Qhq−1α =
[

P(1)
hq−1 xα . . . P(r)

hq−1 xα

]
, (6.7)

P(k)
hq−1 =

r

∑
i1=1

. . .
r

∑
iq−1=1

(
q−1

∏
`=1

hi`(x)

)(
Pki1 ...iq−1 + Pi1k...iq−1 + · · ·+ Pi1 ...kiq−1 + Pi1 ...iq−1k

)
, (6.8)

then the system is locally asymptotically stable with the Lyapunov function (6.6) and an estimate of its
domain of attraction is given by the largest sublevel set of the Lyapunov function that is inside the polytopic
region described by (6.4).

Proof. Consider that we have a fuzzy Lyapunov function of the form (6.6).

In order to assure that it is positive definite, it suffices that

Phq > 0.

Its time derivative is given by

V̇(x) = ẋT Phq x + xT Phq ẋ + xT Ṗhq x.
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However, note that we can write

Ṗhq =
r

∑
i1=1
· · ·

r

∑
iq=1


ḣi1

q

∏
`=1
` 6=1

hi`(x) + · · ·+ ḣiq

q

∏
`=1
` 6=q

hi`(x)


 Pi1 ...iq ,

=
r

∑
i1=1
· · ·

r

∑
iq=1




q

∑
κ=1

ḣiκ

q

∏
`=1
` 6=κ

hi`(x)


 Pi1 ...iq ,

=
r

∑
k

ḣk

r

∑
i1=1
· · ·

r

∑
iq−1=1

(
q−1

∏
`=1

hi`(x)

)

(
Pki1 ...iq−1 + Pi1k...iq−1 + · · ·+ Pi1 ...kiq−1 + Pi1 ...iq−1k

)
.

By using P(k)
hq−1 defined in (6.8) we get that

xT Ṗhq x =
r

∑
k

ḣkxT P(k)
hq−1 x,

=xT
[

P(1)
hq−1 x . . . P(r)

hq−1 x
]



ḣ1
...

ḣr


 ,

=xT
[

P(1)
hq−1 x . . . P(r)

hq−1 x
]

ḣ.

Inside the region described by (6.4), we can write

xT Ṗhq x =xT
[

P(1)
hq−1 xα . . . P(r)

hq−1 xα

]
ḣ,

=xTQhq−1αḣ,

=
1
2

xTQhq−1αḣ +
1
2

ḣTQT
hq−1α

x,

with Qhq−1α given by (6.7).
Therefore, the time derivative of the Lyapunov function can be written as

V̇(x) = ẋT Phq x + xT Phq ẋ +
1
2

xTQhq−1αḣ +
1
2

ḣTQT
hq−1α

x,

=
[
xT ẋTḣT

]



0 Phq 1
2 Qhq−1α

∗ 0 0
∗ ∗ 0







x
ẋ
ḣ


 ,

= ζTΛhqαζ.

So to check if V̇(x) < 0, we need only to check that ζTΛhqαζ < 0 under the equality constraints




Ah −I 0
0 Jg −I
0 0 1T







x
ẋ
ḣ


 = 0,

Ãhgζ = 0,

in which 1T represents a row vector of ones.
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x
1

x 2
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−0.5

0

0.5

1

Figure 6.1: Largest domain of attraction found in Example 6.2 using Theorem 6.1 with q = 1.

So applying Finsler’s Lemma (3 implies 1), and choosing the slack matrices in a way that we do not
increase the number of fuzzy summations, we get that sufficient conditions for V̇(x) < 0 are given by

Λhqα + NT
hq−1α

Ãhg + ÃT
hgNhq−1α < 0.

Remark 6.1

By making use of Lemma 2.4 to implement Theorem 6.1, we have
(r + q− 1)!
r!(q− 1)!

(n + (2n + r)ngnα)

rows of LMIs and
rq(n2 + n)

2
+ nαrq−1(n + r + 1)(2n + r) scalar decision variables, with n the num-

ber of states, r the number of rules of the TS model of the system, nα the number of vertices used
to described the local region, q the number of fuzzy summations in the Lyapunov function, and ng

the number of vertices used to describe the Jacobian of the membership functions vector.

Example 6.2. Consider the system in Example 6.1. If we apply the conditions from Theorem 6.1 with
q = 1, they are not feasible for the region presented in Example 6.1. However, by doing a bisection
search, we find that the conditions are feasible in the region ‖x‖∞ ≤ 1.178. Figure 6.1 presents the
largest Lyapunov sublevel set that fits inside of the polytopic region which is the largest domain of
attraction we are able to estimate using q = 1 in Theorem 6.1.

Using Theorem 6.1 with q = 2, the conditions work inside of the desired region, i.e. ‖x‖∞ ≤ 2.
Figure 6.2 presents the largest Lyapunov sublevel set that fits inside of the polytopic region which is the
largest domain of attraction we are able to estimate using q = 2 in Theorem 6.1. Figure 6.3 compares
this domain of attraction with the ones found using (Lee, Joo, and Tak 2014, Theorem 1) and (Lee and
Kim 2014, Theorem 1).
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Figure 6.2: Largest domain of attraction found in Example 6.2 using Theorem 6.1 with q = 2.
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Figure 6.3: Different domains of attraction found in Example 6.2. The outermost region is the one found
by Theorem 6.1 with q = 2 and ‖x‖∞ ≤ 2. The middle one is the one found by using the V-s iteration
algorithm of (Lee, Joo, and Tak 2014) with q = 2 and 20 iterations. The innermost region is the one found
by Theorem 1 of (Lee and Kim 2014) with q = 2 and φ1 = φ2 = φ3 = φ4 = 2.59.
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6.4 Stabilization Conditions

The main idea of the stabilization conditions proposed in this section is to adapt the idea of the stability
conditions to the closed loop scenario. If we were to directly substitute the closed loop system in the
conditions from the previous section, it is not possible to get a set of LMI conditions. Therefore we
present a set of conservative sufficient conditions to solve the problem, but that are guaranteed to give
better results than a quadratic Lyapunov function coupled with a PDC control law would.

Theorem 6.2: Nonquadratic stabilization conditions

Given a system described by (6.2) whose membership functions’ Jacobian matrix can be described by (6.3), a
desired number q of fuzzy summations in the Lyapunov function and control gains, a scalar value µ, and a
polytopic design region given by (6.5), if there exists matrices Phq , Khq , Fhq and Xhq−1 , and a scalar β solving
the optimization problem

max β,

β > 0,

Phq > βI,
[

AhPhq + Phq AT
h + Bh (Khq + Fhq) +

(
KT

hq + FT
hq
)

BT
h ∗

Jg
(

Phq AT
h + KT

hq BT
h
)
+ µQ̄hq−1α −µ

(
4I − Q̄T

hq−1α
JT
g − JgQ̄hq−1α

)
]
< 0,

with
Q̄hq−1α =

[(
P(1)

hq−1 + Xhq−1

)
sα . . .

(
P(r)

hq−1 + Xhq−1

)
sα

]
, (6.9)

and P(k)
hq−1 in (6.8), then the system is locally asymptotically stable in closed loop with control law

u =

(
Khq + Fhq

(
I − 1

2
JT
g Q̄T

hq−1α

))
P−1

hq x,

and Lyapunov function
V(x) = xT P−1

hq x (6.10)

inside of the region Phq s, where s is given by (6.5). In addition, an estimate of its domain of attraction is
given by the largest sublevel set of the Lyapunov function that is inside this region.

Proof. Consider we have a Lyapunov function as in (6.10), its time derivative would be given by

V̇(x) = ẋT P−1
hq x + xT P−1

hq ẋ + xT ˙(
P−1

hq

)
x.

By remembering the fact the time derivative of the inverse of a matrix can be written as

˙(
P−1

hq

)
= −P−1

hq Ṗhq P−1
hq ,

we get that
V̇(x) = ẋT P−1

hq x + xT P−1
hq ẋ− xT P−1

hq Ṗhq P−1
hq x.

Similarly to the stability conditions, note that we can write

xT P−1
hq Ṗhq P−1

hq x =
r

∑
k

ḣkxT P−1
hq P(k)

hq−1 P−1
hq x,

=xT P−1
hq

[
P(1)

hq−1 P−1
hq x . . . P(r)

hq−1 P−1
hq x

]
ḣ,
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with P(k)
hq−1 given by (6.8).

Since
r

∑
k

ḣkxT P−1
hq Xhq−1 P−1

hq x = 0,

we can add the extra matrix Xhq−1 into this equality to get

xT P−1
hq Ṗhq P−1

hq x = xT P−1
hq

[(
P(1)

hq−1 + Xhq−1

)
P−1

hq x . . .
(

P(r)
hq−1 + Xhq−1

)
P−1

hq x
]

ḣ.

By defining s = P−1
hq x and choosing a design region given by (6.5), we get that

xT P−1
hq ṖhP−1

hq x =xT P−1
hq

[(
P(1)

hq−1 + Xhq−1

)
sα . . .

(
P(r)

hq−1 + Xhq−1

)
sα

]
ḣ,

=xT P−1
hq Q̄hq−1αḣ,

=
1
2

(
xT P−1

hq Q̄hq−1αḣ + ḣTQ̄T
hq−1α

P−1
hq x

)
,

with Q̄hq−1α given by equation (6.9).
By using these last developments in the Lyapunov function’s time derivative equation leads to

V̇(x) = ẋT P−1
hq x + xT P−1

hq ẋ− 1
2

(
xT P−1

hq Q̄hq−1αḣ + ḣTQ̄T
hq−1α

P−1
hq x

)
.

By using the relations that

ẋ =Ahx + Bhu,

u =

(
Khq + Fhq

(
I − 1

2
JT
g Q̄T

hq−1α

))
P−1

hq x,

ḣ =Jgẋ,

we get that

ẋ =

(
Ah + Bh

(
Khq + Fhq

(
I − 1

2
JT
g Q̄T

hq−1α

))
P−1

hq

)
x,

ḣ =Jg

(
Ah + Bh

(
Khq + Fhq

(
I − 1

2
JT
g Q̄T

hq−1α

))
P−1

hq

)
x,

such that sufficient conditions for the time derivative of the Lyapunov function to be negative definite
are given by

P−1
hq Ah + (∗) + P−1

hq

(
Bh

(
Khq + Fhq

(
I − 1

2
JT
g Q̄T

hq−1α

))
+ (∗)

)
P−1

hq

− 1
2

P−1
hq Q̄hq−1α Jg

(
Ah + Bh

(
Khq + Fhq

(
I − 1

2
JT
g Q̄T

hq−1α

))
P−1

hq

)
− (∗) < 0,

in which (∗) represents the transpose of the term just before it.
By multiplying it left and right by Phq , we get

AhPhq + (∗) + Bh

(
Khq + Fhq

(
I − 1

2
JT
g Q̄T

hq−1α

))
+ (∗)

− 1
2

Q̄hq−1α Jg

(
AhPhq + Bh

(
Khq + Fhq

(
I − 1

2
JT
g Q̄T

hq−1α

)))
− (∗) < 0,

(
I − 1

2
Q̄hq−1α Jg

)
(AhPhq + BhKhq) + (∗)

+

(
I − 1

2
Q̄hq−1α Jg

)(
BhFhq + FT

hq BT
h

)(
I − 1

2
JT
g Q̄T

hq−1α

)
< 0.
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From the matrix inversion lemma, we get that

(
I − 1

2
JT
g Q̄T

hq−1α

)−1
= I + JT

g

(
2I − Q̄T

hq−1α
JT
g

)−1
Q̄T

hq−1α

and by multiplying the last inequality we had on the left by
(

I − 1
2 Q̄hq−1α Jg

)−1
and on the right by

(
I − 1

2 JT
g Q̄T

hq−1α

)−1
, we get

(AhPhq + BhKhq + BhFhq) + (∗) + (AhPhq + BhKhq) JT
g

(
2I − Q̄T

hq−1α
JT
g

)−1
Q̄T

hq−1α
+ (∗) < 0,

which can be recast in the form L⊥T
∆L⊥ < 0, with

∆ =

[
AhPhq + Bh (Khq + Fhq) + (∗) ∗

Jg
(

Phq AT
h + KT

hq BT
h
)

0

]
,

L⊥ =


 I(

2I − Q̄T
hq−1α

JT
g

)−1
Q̄T

αhq−1


 < 0.

By noting that L⊥ is a base to the null space of

L =
[

Q̄T
hq−1α

−
(

2I − Q̄T
hq−1α

JT
g

)]
,

and by making use of Finsler’s Lemma statements (2) and (3), another equivalent condition would be

∆ + MT L + LT M < 0. (6.11)

By choosing a specific M with the structure,

M =
[
0 µI

]
,

we get that a sufficient condition for the time derivative of the Lyapunov function to be negative definite
is given by

[
AhPhq + Phq AT

h + Bh (Khq + Fhq) +
(
KT

hq + FT
hq
)

BT
h ∗

Jg
(

Phq AT
h + KT

hq BT
h
)
+ µQ̄hq−1α −µ

(
4I − Q̄T

hq−1α
JT
g − JgQ̄hq−1α

)
]
< 0.

Note, however, that, when we defined the design variable s and chose a design region, our condi-
tions became only valid inside of the region x = Phq s, with s given by (6.5). In that regard, we will search
for the “largest” Phq matrices such that our conditions are valid in the largest region possible. In order to
do that, instead of solving a feasiblilty problem, we will solve a maximization problem over β and add
the conditions

β > 0,

Phq > βI.

In doing so, not only do we search for the “largest” Phq matrices, but also assure that the Lyapunov
function is positive definite.
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Remark 6.2

We have
(r + q− 1)!

(r− 1)!(q− 1)!

(
n
r
+

(n + r)nαng(r + q)
q(q + 1)

)
+ 1 rows of LMIs in Theorem 6.2 when we em-

ploy Lemma 2.4 to implement it, as well as 1 + rq−1n
(

r(n + 1)
2

+ n + 2rm
)

scalar decision vari-

ables . In these relations, n is the number of states, m the number of controlled inputs, r the number
of rules of the TS model of the system, nα the number of vertices used to describe the design region,
q the number of fuzzy summations in the Lyapunov function and control gains, and ng the number
of vertices used to describe the Jacobian of the membership functions vector.

Remark 6.3

Note that if we take Phq = P, and Xhq−1 = −P(k)
hq−1 (note that P(k)

hq−1 does not depend on k when
Phq = P), we will have Q̄hq−1α = 0 in Theorem 6.2. In this case, if we take a large enough value of µ,
we will recover the quadratic stabilization conditions.

In order to avoid having to find the largest Lyapunov sublevel set by inspection, we make use of
a set of LMI conditions that find an estimate of the largest sublevel set that is guaranteed to be inside
of the region under which the conditions presented are valid. These conditions are presented in the
following lemma.

Lemma 6.3

Given a Lyapunov function of the form sT Phq s = xT P−1
hq x, and a polytopic region described by |aT

i s| ≤
bi, i ∈ {1, 2, . . . , nineq}, the solution of the LMI optimization problem

max γ,
[
−b2

i
√

γaT
i

∗ −Phq

]
< 0, ∀i ∈ {1, 2, . . . , nineq},

gives a maximum guaranteed sublevel set of the Lyapunov function (sT Phq s ≤ γ) that fits inside of the
polytopic region.

Proof. Consider that the region in s can be written, in an inequality representation, as |aT
i s| ≤ bi, and

we want to find the maximum γ such that sT Phq s ≤ γ is guaranteed to be inside the limiting region.
Since Phq > 0, there exists a matrix R(x) such that Phq = R(x)T R(x), therefore, an equivalent repre-

sentation of the Lyapunov sublevel set is s = R−1(x)y, ‖y‖2 ≤
√

γ.
By using the Cauchy-Schwarz inequality on the limiting region we get that

|aT
i s| ≤ ‖aT

i R−1(x)‖2‖y‖2,

≤ √γ‖aT
i R−1(x)‖2.

Then, a sufficient condition for the Lyapunov sublevel set to fit inside the desired region is that

√
γ‖aT

i R−1(x)‖2 ≤ bi,

γaT
i R−1(x)R−T(x)ai ≤ b2

i ,

γaT
i P−1

hq ai ≤ b2
i ,
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and, using Schur’s complement,
[
−b2

i
√

γaT
i

∗ −Phq

]
< 0.

Remark 6.4

By making use of Lemma 2.4 to implement Lemma 6.3 we have
(r + q− 1)!
r!(q− 1)!

nineq(n + 1) rows of

LMIs and one scalar decision variable, with n the number of states, r the number of rules of the
Lyapunov function, nineq the number of inequalities used to described the region, and q the number
of fuzzy summations in the Lyapunov function.

Remark 6.5

It is important to observe that, these exact same conditions could also be applied to the stability
case to find an estimate of the largest Lyapunov sublevel set that fits inside of the region. Even
though the results obtained may be a little more conservative than the ones obtained by means
of inspection, the estimate found is guaranteed to be contained within the polytopic region and
usually yield good results (with optimal results if we have a quadratic Lyapunov function). In
addition, it is a lot simpler to employ Lemma 6.3 than to try and find the largest Lyapunov sublevel
set by inspection for systems with more than 3 states (since we can’t draw the state space in this
case).

Remark 6.6

Note that conditions from Lemma 6.3 could easily be incorporated directly into either Theorems
6.1 or 6.2. However, by doing them separately, we reduce the computational cost (as solving these
optimization problems probably does not scale linearly with the number of conditions).

Example 6.3. Consider the two rule system given by

A1 =

[
4 −4
−1 −2

]
, B1 =

[
1
10

]
,

A2 =

[
−2 −4
20 −2

]
, B2 =

[
1
−8

]
.

with membership functions

h1(x) =
1 + sin(x1)

2
, h2(x) = 1− h1(x).

The Jacobian of the membership functions’ is then given by

∂h
∂x

=

[
cos(x1)

2 0

− cos(x1)
2 0

]

123



STABILIZATION CONDITIONS NONQUADRATIC LYAPUNOV FUNCTIONS

x
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Figure 6.4: Largest domain of attraction found for the closed loop in Example 6.3 using Theorem 6.2
with q = 2, µ = 1.4 and Lemma 6.3, as well as the system’s trajectory from different initial conditions.

which can be globally described by the vertex matrices

J1 =

[
0.5 0
−0.5 0

]
, J2 =

[
−0.5 0
0.5 0

]
,

with membership functions

g1(x) =
1 + cos x1

2
, g2(x) =

1− cos x1

2
.

We consider a region in s given by ‖s‖1 ≤ 1, which can be described by the vertices

s1 =

[
1
0

]
, s2 =

[
−1
0

]
, s3 =

[
0
1

]
, s4 =

[
0
−1

]

and also as |aT
i s| ≤ bi with

a1 =
[
−1 1

]T
, b1 = 1,

a2 =
[
1 1

]T
, b2 = 1.

Using Theorem 6.2 with the design region in s above, q = 2 and µ = 1.4, we are able to find a control
law that locally stabilizes the system. Figure 6.4 presents the estimation of the domain of attraction of
the Lyapunov function found by using Lemma 6.3 as well as the system’s trajectory in closed loop for
different initial conditions. Figure 6.5 presents the domains of attraction found by using Theorem 6.2
with q = 2, q = 4 and q = 6. It is worth noting that the conditions in (Pan et al. 2012, Theorem 2) and
(Lee and Kim 2014, Theorem 2) (with q ≤ 6) were found to be unfeasible for this example.
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x
1

x 2

−0.2 −0.1 0 0.1 0.2
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0
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0.3

Figure 6.5: Different domains of attraction found in Example 6.3 with Theorem 6.2. The outermost
region is the one found with q = 6. The middle one is the one found with q = 4. The innermost region
is the one found with q = 2.
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7 LMI synthesis conditions using
piecewise-like Lyapunov functions

Even though we showed that, by making use of local transformation matrices, piecewise Lyapunov functions can
yield very nice stability analysis conditions (as shown in chapter 5), they are usually too cumbersome to be used in
synthesis conditions (we usually end up with Bilinear Matrix Inequalities (BMIs) (Feng et al. 2005), or we need
to augment the system with virtual stable dynamics that allow us to invert the parameter matrices (Qiu, Feng,
and Gao 2013)).

The work presented in this chapter was done under the supervision of Prof. João Pedro Hespanha.

7.1 Problem definition

Given a nonlinear system that can be described, in an hyperrectangle Ω of the state space including the
origin, by a qLPV model

ẋ = A(x)x + B(x)u, (7.1)

with x ∈ Rn, u ∈ Rm, A(x) a continuous and bounded function fromRn toRn×n, and B(x) a continuous
and bounded function from Rn to Rn×m, we would like to find a set of sufficient LMI conditions for the
synthesis of a control law that renders the origin locally asymptotically stable.

Remark 7.1

Note that every input affine nonlinear system

ẋ = f(x) + B(x)u,

with the origin as an equilibrium point, f(x) a continuous and bounded function, and B(x) a contin-
uous and bounded function, can be cast as a qLPV model as in (7.1). However, this representation
is generally not unique.
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7.2 Solution proposed

Given

Ω = [x1, x̄1]× [x2, x̄2]× · · · × [xn, x̄n],

define a partition of each interval [xi, x̄i] as

[xi, x̄i] =
ri⋃

k=1

ω
(i)
k ,

ω
(i)
k =

{
[xi + (k− 1)δi, xi + kδi), if k < ri,
[xi + (ri − 1)δi, x̄i] , if k = ri,

with ri the number of desired subintervals and δi =
(x̄i − xi)

ri
, so that

Ω =
⋃

Ωi1i2 ...in ,

Ωi1i2 ...in = ω
(1)
i1
×ω

(2)
i2
× · · · ×ω

(n)
in . (7.2)

This amounts to dividing Ω into r =
n

∏
i=1

ri hyperrectangles.

Remark 7.2

By defining a specific ordering of the indices (i1, i2, . . . , in) (or a one-to-one relation between them
and the set of positive integers less than or equal to r) a single index can be used to represent each
region. Therefore, whenever it will not create confusion, a single index will be used to represent the
region.

Inside each Ωi region, the system in (7.1) may be exactly represented by a TS fuzzy model

ẋ =
qi

∑
j=1

hij(x)
[
Aijx + Biju

]
,

= Ahi
x + Bhi

u,

with qi the number of linear models composing the TS model, hij(x) the system’s membership functions
with

qi

∑
j=1

hij(x) = 1, hij(x) ≥ 0,
qi

∑
j=1

ḣij(x) = 0,

and Ahi
and Bhi

short notations for the fuzzy summations over the matrices composing the model.
By making use of the Ωi regions’ indicator functions, the TS models can be combined to represent

the system in the Ω region as

ẋ =
r

∑
i=1

θi(x)
[
Ahi

x + Bhi
u
]
= Aθhi

x + Bθhi
u, (7.3)

with

θi(x) =

{
1, if x ∈ Ωi,
0, otherwise.
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Remark 7.3

Note that the representation in (7.3) is simply a TS representation of the piecewise TS model found.
Therefore a straightforward way of deriving less conservative LMI conditions for the system would
be to make use of a piecewise Lyapunov function. However, when deriving synthesis conditions,
the special structure imposed over the parameter matrices hinders their use in continuous time
systems (they imply in either getting BMI conditions (Bernal, Guerra, and Kruszewski 2009), or
augmenting the system with artificial dynamics (Qiu, Feng, and Gao 2013)). In that regard, this
chapter proposes the use of a piecewise-like Lyapunov function (which is a fuzzy Lyapunov func-
tion whose premise variables are different from the system’s, but have some special properties)
to deal with these piecewise systems. In order to deal with the time derivative of the Lyapunov
function’s membership functions, it adapts the ideas from (Lee and Kim 2014; Lee, Park, and Joo
2012) to derive sufficient conditions that guarantee that a bound over the time derivatives will be
respected in closed loop.

Remark 7.4

A piecewise TS model could also be obtained from finding a single TS model for the system and
applying the local transformation proposed in chapter 5 inside each of the Ωi regions, or applying
the transformation proposed in (Bernal, Guerra, and Kruszewski 2009) in the regions induced by
the ordering relations of the membership functions.

Due to the nature of the partitions proposed in this chapter, the Lyapunov function’s membership
functions can be defined with a tensor product structure, i.e. each partition’s membership function
is given by the product of single variable membership functions relating to each of the intervals that
compose the partition. This particular structure eases the proposition of the membership functions since
it is simply a combination of the membership functions devised for each of the state variables separately
and endows the region’s function with some interesting properties. Namely, if its written as

gi(x) =
n

∏
k=1

α
(k)
ik

(xk),

and

rk

∑
j=1

α
(k)
j (xk) = 1,

α
(k)
j (xk) ≥ 0,

α
(k)
j (xk) 6= 0 only if xk ∈ ω

(k)
j or neighbours(ω(k)

j ), (7.4)

then

r

∑
i=1

gi(x) = 1,

gi(x) ≥ 0,

gi(x) 6= 0 only if x ∈ Ωi or neighbours(Ωi),

in which two partitions are said to be neighbours if they share at least one common vertex.
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Considering membership functions with these properties, we can define a piecewise-like Lyapunov
function as

V(x) = xT

(
r

∑
i=1

gi(x)Pi

)−1

x = xT P−1
g x (7.5)

and a continuous piecewise-like control law as

u =

(
r

∑
i=1

gi(x)Ki

)(
r

∑
i=1

gi(x)Pi

)−1

x = KgP−1
g x,

with P−1
g a short notation for

(
r

∑
i=1

gi(x)Pi

)−1

and Kg a short notation for

(
r

∑
i=1

gi(x)Ki

)
.

Remark 7.5

Defining this fuzzy Lyapunov function and control law leads to conditions one would expect to get
from using a piecewise quadratic Lyapunov function. The main difference, however is that, instead
of enforcing a special structure upon the Pi matrices guaranteeing the function’s continuity (that,
as stated before, leads to either BMI conditions or augmenting the system with virtual dynamics),
one needs to deal with the membership functions’ time derivative and the fact that they are also
“active” on the neighbouring regions.

7.3 LMI conditions - generic membership functions

The Lyapunov function’s time derivative is given by

V̇(x) = ẋT P−1
g x + xT P−1

g ẋ + xT ˙P−1
g x,

= ẋT P−1
g x + xT P−1

g ẋ− xT P−1
g ṖgP−1

g x,

= xT
(

AT
θhi

P−1
g + P−1

g Aθhi
+ P−1

g

(
KT

g BT
θhi

+ Bθhi
Kg − Ṗg

)
P−1

g

)
x.

Sufficient conditions to ensure the system’s stability are then given by

P−1
g > 0,

AT
θhi

P−1
g + P−1

g Aθhi
+ P−1

g

(
KT

g BT
θhi

+ Bθhi
Kg − Ṗg

)
P−1

g < 0.

By performing a similarity transformation with Pg (i.e by multiplying it on the right by this value
and on the left by its transpose),

Pg > 0,

Pg AT
θhi

+ Aθhi
Pg + KT

g BT
θhi

+ Bθhi
Kg − Ṗg < 0.

which actually represent

r

∑
i=1

gi(x)Pi > 0,

r

∑
i=1

r

∑
j=1

qj

∑
k=1

gi(x)θj(x)hjk(x)

[
Pi AT

jk + AjkPi + KT
i BT

jk + BjkKi −
(

r

∑
`=1

ġ`(x)P`

)]
< 0. (7.6)
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By noting that

gi(x)θj(x) 6= 0, only if i = j or i is a neighbor of j,

ġi(x)θj(x) 6= 0, only if i = j or i is a neighbor of j,

the following sufficient conditions are sufficient to ensure the system’s stability

Pi > 0, ∀i ∈ {1, . . . , r}

Pi AT
jk + AjkPi + KT

i BT
jk + BjkKi −


 ∑

`∈L(j)
ġ`(x)P`


 < 0, ∀

j ∈ {1, . . . , r},
i ∈ L(j),
k ∈ {1, . . . , qj}

in which L(j) denotes the set composed by j and its neighbors.
Because of the membership functions gi properties, their time derivatives have the interesting prop-

erty that

∑
`∈L(j)

ġ`(x)P` = ∑
`∈L(j)

ġ`(x)
(

P` + Xj
)

.

Considering this property, one way to deal with the ġ` terms is to consider that |ġ`| ≤ φ` and that
P` + Xj > 0, ∀` ∈ L(j), in that way

− ∑
`∈L(j)

ġ`(x)P` ≤ ∑
`∈L(j)

φ`

(
P` + Xj

)
= Pφj

and the summation term can be replaced by Pφj to get LMI conditions.
In order to enforce the bound |ġ`| ≤ φ` in closed loop, the ideas from (Lee and Kim 2014; Lee,

Park, and Joo 2012) are adapted to a piecewise scenario. The main idea in those papers was to make
the square of the membership functions’ time derivative less than φ2

k times the Lyapunov function and
assuring that the 1-sublevel set of the Lyapunov function is inside the desired region. By doing that, the
LMI conditions assures the system’s stability only inside of the 1-sublevel set of the Lyapunov function
(which also serves as the best estimate of the domain of attraction their conditions can find). In that
regard, the authors search for the “largest” 1-sublevel set trying to find the largest domain of attraction
possible with their conditions.

However, those ideas cannot be directly applied in this context because of the several different
regions. In that regard, this work uses an auxiliary function in every region and forces it to be less
than 1 for every value inside of the region (in that regard, one could think of the approach here as an
outer approximation of the regions instead of the inner approximation used in (Lee and Kim 2014; Lee,
Park, and Joo 2012)). The main drawback, however, is that we do not get an explicit approximation of
the domain of attraction.

In that regard, we want that

ġ2
`

φ2
`

≤ xT P−1
g Qgθ P−1

g x ≤ 1, x ∈ Ωj, ` ∈ L(j). (7.7)

The first inequality can be written as

xT
(

P−1
g KT

g BT
θhi

+ AT
θhi

)
∇gT

` φ−2
` ∇g`

(
Aθhi

+ Bθhi
KgP−1

g

)
x ≤ xT P−1

g Qgθ P−1
g x,

r

∑
i=1

r

∑
j=1

qj

∑
k=1

gi(x)θj(x)hjk(x)

[
−Qij

(
Pi AT

jk + KT
i BT

jk

)
∇gT

`

∗ −φ2
`

]
< 0,
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for which a sufficient condition is that

[
−Qij

(
Pi AT

jk + KT
i BT

jk

)
∇gT

`

∗ −φ2
`

]
< 0, ∀

j ∈ {1, . . . , r},
i, ` ∈ L(j),
k ∈ {1, . . . , qj}

The second inequality can be written as

xT P−1
g Qgθ P−1

g x ≤ 1,
[
−1 xT

∗ −PgQ−1
gθ Pg

]
< 0,

and by using the fact that, for Qgθ > 0, −PgQ−1
gθ Pg < −2Pg + Qgθ , sufficient conditions for it are

[
−1 xT

∗ −2Pg + Qgθ

]
< 0, ∀x ∈ Ωj,

r

∑
i=1

r

∑
j=1

gi(x)θj(x)

[
−1 xT

∗ −2Pi + Qij

]
< 0, ∀x ∈ Ωj,

Since Ωj is a hyper-rectangle (and thus a polytope), a necessary and sufficient condition is that the
condition above is fulfilled at the vertices of Ωj. By remembering the remark about the membership
functions only being different than zero in neighbouring regions, we then get that sufficient conditions
to find a stabilizing controller are

Pi > 0, ∀i ∈ {1, . . . , r}
P` + Xj > 0, ∀j ∈ {1, . . . , r}, ` ∈ L(j)

Pφj = ∑
`∈L(j)

φ`

(
P` + Xj

)

Pi AT
jk + AjkPi + KT

i BT
jk + BjkKi + Pφj < 0, ∀

j ∈ {1, . . . , r},
i ∈ L(j),
k ∈ {1, . . . , qj}

[
−Qij

(
Pi AT

jk + KT
i BT

jk

)
∇gT

`

∗ −φ2
`

]
< 0, ∀

j ∈ {1, . . . , r},
i, ` ∈ L(j),
k ∈ {1, . . . , qj}

[
−1 xT

v

∗ −2Pi + Qij

]
< 0, ∀

j ∈ {1, . . . , r}
xv ∈ V(j)
i ∈ L(j)

with φ` given, L(j) the set composed by j and its neighbors, and V(j) the set of vertices composing Ωj.
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Remark 7.6

It is important to notice two things about the above conditions. First is that, since they are local
conditions, they only ensure local stability inside of the largest Lyapunov sublevel-set that fits in-
side of Ω. Second is that, whenever we would like to apply these conditions, we need to choose
the values of φ` that are going to upper bound the time derivative of our membership functions.
A smaller value usually lead to less restrictive LMI conditions regarding the time derivative of the
Lyapunov function (because they lead to a smaller Pφj term), however they also lead to harder re-
strictions upon the control gains (since we would have tighter bounds on the membership functions
time derivative). A higher value of φ` would lead to the opposite situation. Notice also that as φ`

tends to infinity, our conditions tend to the quadratic stability conditions (since we would be forced
to choose all of the Pi with the same value and Xj = −Pi and we would not impose any condition
over the time derivative of the membership functions).

Remark 7.7

Note that the LMI conditions proposed in this work do not make explicit use of the system’s mem-
bership function (so they give them, locally, the same treatment as polytopic uncertainties). A way
to further relax the conditions could be employ the system’s membership functions in the control
law and in the Q matrices (at the cost of an increased number of LMIs and decision variables.

Remark 7.8

The advantages of the proposed solution in this work over others available on the literature is
that, unlike piecewise Lyapunov function, we have LMI synthesis conditions, and, unlike the reg-
ular fuzzy Lyapunov function approach (using the system’s membership function in the Lyapunov
function), the system’s membership function need not be continuously differentiable.

7.4 Choice of the membership functions

Notice that the choice of the membership functions used for the Lyapunov function and the control law
directly affects the LMI stabilization conditions proposed above. Notice as well that, in order to truly
have LMI conditions, we need to find a polytopic representation for them, similar to what we did to use
x in the conditions.

Because of the tensor product structure, we get that

gi(x) =
n

∏
k=1

α
(k)
ik

(xk)

∇gi(x) =

[
d

dx1
α
(1)
i1

(x1)
n

∏
k=2

α
(k)
ik

(xk) . . . d
dxn

α
(n)
in (xn)

n−1

∏
k=1

α
(k)
ik

(xk)

]
. (7.8)

Therefore, we would like to choose a set of α
(k)
ik

(xk) whose derivative
d

dxk
α
(k)
ik

(xk) is small (so that

we get less conservative LMI conditions).
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In that regard, we can write an optimization problem to search for an optimal “worst case” set of
membership functions. That is, we can write an optimization program to search for a set of α

(k)
j (xk)

membership functions respecting (7.4) and minimizing the maximum norm of their derivative. In other
words,

min t,

s.t.
rk

∑
j=1

α
(k)
j (xk) = 1,

α
(k)
j (xk) ≥ 0,

α
(k)
j (xk) 6= 0 only if xk ∈ ω

(k)
j or neighbours(ω(k)

j ),
∣∣∣∣

d
dxk

α
(k)
j (xk)

∣∣∣∣ < t, ∀xk ∈ [xk, x̄k], ∀j. (7.9)

By approximating the membership functions as piecewise linear functions, the search for the mem-
bership functions can be replaced with the search for points along [xk, x̄k], and the inequality involving
the norm of the derivative (which now will only be valid almost everywhere), can be replaced by the
norm of the difference between a point and its neighbour. With this approximation, the optimization
problem presented above becomes a linear optimization problem and can be efficiently solved for a large
number of points in [xk, x̄k].

An important step when doing this approximation is ensuring that the points on the borders of two
ωj regions is always chosen by the optimization problem, in order to guarantee that the neighbouring
constraint will be respected. Notice also that, due to the neighbouring constraint, we only need to seek
the values of the membership functions when they are active (i.e. when they are in their own regions, or
in a neighbouring region).

Figure 7.1 presents the result obtained for xk ∈ [−5, 5] with 2, 3, 4, 5, 6, and 7 regions. Note that, if
we have less than 4 regions in xk, it is better to assume a single region in that variable (since, just like in
the LMI conditions presented, it does not make a difference). For that reason, in this work, we suppose
that either rk = 1 or rk > 3.

Note also that, from 4 regions upwards, the shape of the membership functions is fixed. The mem-
bership functions that are not active in the limit regions (i.e. the ones that are zero in -5 and 5 in the
figure) all have a trapezoidal shape, whereas the others have a different shape (a little strange, proba-
bly due to a “border effect”). However, the derivative in these regions are all less than the worst case,
and we can impose a trapezoidal structure to these regions as well without changing the “worst case”
derivative.

Figure 7.2 presents the alternative optimal membership functions obtained for xk ∈ [−5, 5] with 4,
5, 6, and 7 regions. Note that these membership functions are simpler to implement and grant our LMI
synthesis conditions with some interesting properties (that will be presented in the following section).

The optimization problem used to find these membership functions does not depend on the range
used for xk, but rather it depends only on the number of regions used. In that case, we can say, consider-
ing that j ∈ 1, 2, . . . , rk and rk > 3, that an almost everywhere differentiable solution to the optimization
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problem in (7.9) is given by

α
(k)
j (xk) =





0.5, if





xk ∈ ω
(k)
j ,

xk ∈ ω
(k)
1 , j = 2,

xk ∈ ω
(k)
rk , j = rk − 1,

xk − xk(j−1)

xk(j−1) − xk(j−2)
, if xk ∈ ω

(k)
j−1, j > 2,

−xk + xk(j+2)

xk(j+2) − xk(j+1)
, if xk ∈ ω

(k)
j+1, j < rk − 1,

0, otherwise.

(7.10)

with xkj = xk + (j− 1)δk, δk =
(x̄k − xk)

rk
, and its derivative, for xk 6= xkm with m ∈ 1, 2, . . . , rk, is given

by

dα
(k)
j

dxk
(xk) =





1
δk

, if xk ∈ ω
(k)
j−1, j > 2,

−1
δk

, if xk ∈ ω
(k)
j+1, j < rk − 1,

0, otherwise.

For the simple case, in which rk = 1, we have

α
(k)
1 (xk) = 1,

dα
(k)
1

dxk
(xk) = 0. (7.11)

Remembering from (7.8) that

∂gi
∂xk

(x) =
d

dxk
α
(k)
ik

(xk)
n

∏
j=1,j 6=k

α
(j)
ij
(xj)

and noting that, since the maximum of α
(j)
ij
(xj) is 1 if rj = 1, or 0.5 if rj > 3,

n

∏
j=1,j 6=k

α
(j)
ij
(xj) ∈ [0, (0.5)κk ]

with κk being the number of regions, aside from k, that have more than 3 regions. We have that

∂gi
∂xk

(x) ∈





co
{

0,
(0.5)κk

δk

}
, if xk ∈ ω

(k)
ik−1, ik > 2,

co
{ −(0.5)κk

δk
, 0

}
, if xk ∈ ω

(k)
ik+1, ik < rk − 1,

0, otherwise,

(7.12)

which, as desired in the beginning of this section, allow us to write a polytopic representation for ∇gi.
Note that this expression for the gradient will not be valid for xk = xkm with m ∈ 1, 2, . . . , rk for every k,
which is a zero Lebesgue measure set, and thus our expression in only valid almost everywhere.

It is important to note that, even though α
(k)
j (xk) is not continuously differentiable, it is bounded and

Lipschitz continuous (with Lipschitz constant 1/δk). This ensures that the gi(x) membership functions
are also Lipschitz continuous and that the Lyapunov in (7.5) is locally Lipschitz continuous.
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Figure 7.1: Optimal membership functions for xk ∈ [−5, 5] with 2, 3, 4, 5, 6, and 7 regions in (a), (b), (c),
(d), (e), and (f) respectively.
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Figure 7.2: Alternative optimal membership functions for xk ∈ [−5, 5] with 4, 5, 6, and 7 regions in (a),
(b), (c), and (d) respectively.

7.5 LMI conditions - optimal membership functions

In this section, we present how to take further advantage from the structure on the optimal membership
functions found in the previous section to further relax the LMI conditions proposed in section 7.3.

First, note that, due to the trapezoidal shape of the membership functions, we have that

ġi(x)θi(x) = 0,

so that the summation
r

∑
j=1

r

∑
`=1

θj((x))ġ`(x)P` in (7.6) can now be replaced by
r

∑
j=1

∑
`∈S(j)

θj((x))ġ`(x)P`,

with S(j) the set of neighbours of j. That means that now we use the set S(j), instead of L(j), in the
definition of Pφj and in P` + Xj > 0.

Second, note that, from (7.8) we can write (7.12) as

∂gi
∂xk

(x) = λik(x)(0.5)κk
d

dxk
α
(k)
ik

(xk)

with λik(x) ∈ [0, 1]. But this implies that

ġ2
` =

n

∑
k=1

(
ẋk

∂g`
∂xk

)2
=

n

∑
k=1

(
ẋkλ`k(0.5)κk

d
dxk

α
(k)
`k

)2
=

n

∑
k=1

ẋ2
kλ2

`k(0.5)2κk

(
d

dxk
α
(k)
`k

)2

≤
n

∑
k=1

ẋ2
k(0.5)2κk

(
d

dxk
α
(k)
`k

)2
=

r

∑
j=1

θj(x)ẋTν`jν
T
`jẋ.
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with ν`j a vector whose k-th element, ν`jk, given by

ν`jk =





(0.5)κk

δk
, if `k > 2, `k = jk − 1,

−(0.5)κk

δk
, if `k < rk − 1, `k = jk + 1,

0, otherwise,

(7.13)

and this means that we can replace ∇gT
` by ν`j in the LMIs in order to get sufficient conditions for (7.7)

at the points where g` is differentiable.
Note that, with the optimal membership functions, our LMI conditions only assure that ∇Vẋ < 0

almost everywhere in the state space. But, since ẋ is continuous (because of our assumptions and the
fact that we are using a continuous control law) and V(x) is locally Lipschitz continuous, by applying
(Hespanha, Liberzon, and Teel 2008, Lemma 1) we get that V(t) is absolutely continuous and V̇(x(t)) <
0 almost everywhere on t (which implies that the system is locally asymptotically stable).

Having discussed all of this, we can enunciate the following theorem.

Theorem 7.1: LMI synthesis conditions for piecewise-like Lyapunov functions

Given a system described by (7.3) in a region given by Ω in (7.2), and scalars φi > 0, if there exists matrices
Pi, Ki, and Qij solving the LMI feasibility problem

Pi > 0, ∀i ∈ {1, . . . , r}
P` + Xj > 0, ∀j ∈ {1, . . . , r}, ` ∈ S(j)

Pφj = ∑
`∈S(j)

φ`

(
P` + Xj

)

Pi AT
jk + AjkPi + KT

i BT
jk + BjkKi + Pφj < 0, ∀

j ∈ {1, . . . , r},
i ∈ L(j),
k ∈ {1, . . . , qj}

[
−Qij

(
Pi AT

jk + KT
i BT

jk

)
ν`j

∗ −φ2
`

]
< 0, ∀

j ∈ {1, . . . , r},
i ∈ L(j), ` ∈ S(j),
k ∈ {1, . . . , qj}

[
−1 xT

v

∗ −2Pi + Qij

]
< 0, ∀

j ∈ {1, . . . , r}
xv ∈ V(j)
i ∈ L(j)

with ν`j given by (7.13), then the system is locally asymptotically stable with control law

u =

(
r

∑
i=1

gi(x)Ki

)(
r

∑
i=1

gi(x)Pi

)−1

x

and Lyapunov function

V(x) = xT

(
r

∑
i=1

gi(x)Pi

)−1

x = xT P−1
g x

with gi(x) =
n

∏
k=1

α
(k)
ik

(xk) and α
(k)
ik

(xk) given by either (7.10) or (7.11).
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Figure 7.3: Phase plane of the system in example 7.1 with the control law found. The curves presented
in the figure are Lyapunov level curves.

7.6 Example

In this section, a numerical example is presented to illustrate the proposed stabilization conditions.

Example 7.1 (Same example system used in Example 6.3). Consider the nonlinear system given by
equation (7.1) with

A(x) =

[
1 + 3 sin(x1) −4

19−21 sin(x1)
2 −2

]
, B(x) =

[
1

2+18 sin(x1)
2

]
,

and x1 ∈ [−1.2, 1.2], x2 ∈ [−2, 2].
Using the conditions from Theorem 7.1 with 401 partitions in x1 and considering [−2, 2] as the only

region in x2 (since there are only nonlinear terms in x1, we have decided to only partition the state space
in this variable) and choosing φi = φ = 6000, we are able to find a control law that locally stabilizes
the system. Figure 7.3 presents the phase plane of the closed loop system with some of the Lyapunov
level curves. Figure 7.4 presents an estimate of the closed loop domain of attraction (given by the largest
Lyapunov sublevel set that fits inside of the given region) as well as several different trajectories for the
system whose initial conditions are all on the border of the domain of attraction estimated.
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Figure 7.4: Estimated domain of attraction for the closed loop system in example 7.1. The red curves are
the system’s trajectories in closed loop, whereas the red balls are their initial conditions.
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8 Discussion and Future Directions

8.1 Discussion

Exploiting the membership functions

In chapter 3 we presented two different partition strategies for the membership functions’ image space
in order to generate sufficient and asymptotically necessary conditions by means of Theorems 3.1 and
3.2.

Two examples were presented in order to illustrate the proposed methods. The first example dealt
with the stabilization and comparing the proposed methods with others from the literature, whereas the
second one focused in guaranteedH∞ control and comparing the proposed methods among themselves.

It is interesting to note that the proposed partition strategies performed well when compared to
the other strategies (despite having been outperformed by the combination of (Sala and Ariño 2007,
Theorem 5) and (Sala and Ariño 2008, Proposition 3.1)) and that, overall, the second partition strategy
performed better than the first one. However, that increase in performance comes in exchange for the
lost of determinism of the partition strategy and conditions that are not “monotically less conservative”
(i.e. conditions that are guaranteed to be always less conservative as the number of partitions increase).

Some possible enhancements for the partition strategy are:

• Defining a formal stop criterion to be used when the partitions are being used to generate suffi-
cient and asymptotically necessary conditions (i.e. how to we check if the conditions have reached
necessity). So far the criterion used is the number of iterations in the method;

• The use of heuristics, similar to (Kruszewski et al. 2009, Algorithm 2), in order to direct the divi-
sion of the simplices (or groupings) so that more divisions are made in regions that affect/violate
more the LMI conditions and the performance/iteration (or performance/number of simplices)
ratio is increased;

• Defining a systematic and deterministic manner to initialize the center of the clusters used in the
second strategy, making it deterministic without compromising performance;

• The conditions from the Grouping the membership points partition strategy could be made “monot-
ically less conservative” if we were able to impose that the new simplices had to be contained
inside of the previous ones;

• The conditions from the Dividing and Discarding partition strategy could converge faster if a dif-
ferent partition strategy were chosen for the simplicial partition step. An interesting alternative
could be given by (Gonçalves et al. 2006).
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We briefly touched the topic that, even though the conditions presented are sufficient and asymptot-
ically necessary for the parametric LMIs, they might not be for the original quadratic conditions if any of
the premise variables are functions of the state variables (due to the fact that in this case the parametric
LMIs are only sufficient for the quadratic form).

In addition, we also showed that these partitions correspond to an exact switched representation
of the TS model, and this representation inspired the use of the partitions to look for control laws that
switch according to the membership functions. We also showed how these control law conditions could
be modified so that a continuous fuzzy controller could be reconstructed by means of the Tensor Product
Model Transformation.

Rule reduction

Chapter 4 presented an alternative rule reduction technique for TS models based on tensor approxima-
tion by using the HOSVD, as well as how to model the uncertainty generated by this rule reduction.

The proposed approach differs from the usual approaches in the literature since it deals with approx-
imating a tensor composed by the “vertex systems” instead of dealing with approximating the nonlinear
function directly. This approach advantages and disadvantages were discussed throughout the chapter.

The model uncertainty generated by the rule reduction proposed is given in a polytopic form. How-
ever, since the polytopic uncertainty representation is not very common in the TS fuzzy control litera-
ture, we presented LMI conditions that allow converting this uncertainty into either a norm bounded
representation or a structured linear fractional form.

New stability analysis conditions

Chapter 5 proposed the use of local transformation matrices that, unlike the matrices generated by the
membership functions ordering relations (Bernal, Guerra, and Kruszewski 2009), does not increase the
number of LMI conditions.

New conditions were proposed to check the stability of continuous time TS systems. They made use
of two piecewise fuzzy Lyapunov functions and the local transformation matrices.

The first of these conditions, based on the Lyapunov function proposed in (Rhee and Won 2006), lead
to a set of conditions that do not depend on the knowledge of upper bounds on the time derivatives of
the membership functions. However, as in (Rhee and Won 2006), they demand a particular structure on
the matrices parametrizing the Lyapunov functions.

The second, based on the Lyapunov function proposed in (Tanaka, Hori, and Wang 2003), lead to
a set of conditions that impose a less complex structure over the parameter matrices, but that demand
the knowledge of upper bounds on the membership functions time derivatives and that, in some cases,
only check for local stability.

Both conditions made use of the null-term approach (Mozelli, Palhares, and Mendes 2010) in order
to relax the results. Theorem 5.1 can be seen as a generalization of (Bernal, Guerra, and Kruszewski
2009, Theorem 2). If global bounds on the time derivatives of the membership functions are known, then
Theorem 5.2 can also be seen as a generalization of (Bernal, Guerra, and Kruszewski 2009, Theorem 2).

An example was presented to illustrate the relaxation introduced by the proposed conditions and
the proposed local transformation matrices. As can be seen in the example, the proposed conditions
where valid for a larger region than other conditions available in the literature. Its interesting to note
that, for this particular example, the proposed local transformation matrices outperformed those using
the matrices defined by the ordering relations from the membership functions in (Bernal, Guerra, and
Kruszewski 2009).
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A problem regarding the proposed candidate Lyapunov functions is that, in a direct way, the con-
troller synthesis conditions will be BMIs. However, it might be possible to get LMI conditions by using
a derivation similar to the one in (Qiu, Feng, and Gao 2013).

A parallel between chapters 3 and 5 can be traced, and in a similar way as the one discussed in chap-
ter 3, we may say that the use of the local transformation matrices is equivalent to finding a switched
representation, in the state space, for the original TS system.

Nonquadratic Lyapunov functions

Chapter 6 proposed new conditions for the local stability and local stabilization of continuous time TS
fuzzy systems by using a nonquadratic Lyapunov function. These conditions avoid the use of upper
bounds on the time derivative of the membership functions by making use of a novel manipulation
that instead employs the membership functions Jacobian matrix and a polytopic description of the local
region.

From the example presented in Section 6.3, we can see that the proposed stability conditions are
an interesting alternative to other conditions available in the literature, with its main advantage being
the fact that there is no need to choose a value for the upper bound of the membership functions’ time
derivative.

It is important to note that, even though the examples presented performed better than the ones
from (Lee and Kim 2014) for the stability conditions, that was not always the case. It is also noteworthy
that, whenever the stabilization conditions from (Lee and Kim 2014) were feasible, they yielded the
largest domain of attraction out of all conditions we tested against (which in turn led us to present an
example in which it does not work, in order to motivate the use of the proposed conditions).

By choosing a particular structure for M in (6.11), we were able to find a set of conditions for the sta-
bilization problem which are guaranteed to find better results than those found by a quadratic Lyapunov
function (given a suitable choice of µ).

LMI synthesis conditions

Chapter 7 proposed a set of new LMI synthesis conditions for continuous-time TS fuzzy systems by
making use of piecewise-like Lyapunov functions. It adapted the bounding conditions on the member-
ship functions time derivative from (Lee and Kim 2014) to work in this switched scenario and therefore
made use of a chosen bound on the time derivative of the Lyapunov function’s memberhsip functions
in closed loop.

In order to diminish the effects of this time-derivative, we presented an optimal choice of the mem-
bership functions for these Lyapunov functions that guarantees the best worst-case derivative of the
membership functions (and some other interesting properties that allows us to further relax the LMIs).

Finally, the same stabilization example from chapter 6 was used, and, in this case, the stabilization
conditions proposed in chapter 7 were able to find a larger domain of attraction than those from chapter
6.

It is important to note that, for every example we tested in which the conditions from (Lee and Kim
2014) were also feasible, they were always able to find a larger domain of attraction (by correctly choos-
ing the bounds on the membership functions’ time derivative). Which motivates us to keep saerching
for different ways to relax the results from this chapter.
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8.2 Future Directions

Many different possible future directions are possible for the research presented in this thesis starting
from the results presented so far.

A first, more theoretical, direction aims to try and understand under what conditions the feasi-
bility of a parametric LMI is necessary for the feasibility of the quadratic form (a possible numerical
direction could be to rewrite the quadratic form using a polytopic representation and trying to employ
Polya’s Theorem for homogenous polynomials to try and get asymptotically necessary conditions for
the quadratic form).

Still on the topic of Polya’s Theorem for homogenous polynomials, we would like to study if it
could be used to generate a set of sufficient and asymptotically necessary conditions for solving general
copositive programming problems like it has been used to solve fuzzy summation conditions.

Another interesting research direction would be continuing the research on the conditions of chapter
7. More specifically, we would like to determine a more systematic way of choosing the values of the
upper bounds used for ġi.

A different research direction, which would have direct impact over LMI synthesis conditions,
would be to study under what conditions does the stability of the system

ẋ =
r

∑
i=1

hi(x)AT
i x

is related to the stability of the system

ẋ =
r

∑
i=1

hi(x)Aix.

Another research direction would be on the use of sufficient and asymptotically necessary condi-
tions to define a SDP feasibility solver based on approximating LMIs by scalar linear inequalities con-
straints. We are specially interested in using something similar to (Kruszewski et al. 2009, Algorithm 2)
as that would allow for the scalar linear inequalities approximation to be refined only where it mattered.
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