DISSERTAÇÃO DE MESTRADO

PROJETO DE MALHAS DE ATERRAMENTO: CONTRIBUIÇÃO AO CÔMPUTO DA ESTRATIFICAÇÃO DO SOLO

Lívia Maria de Rezende Raggi
Lívia Maria de Rezende Raggi

PROJETO DE MALHAS DE ATERRAMENTO:
CONTRIBUIÇÃO AO CÔMPUTO DA ESTRATIFICAÇÃO DO SOLO

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Elétrica da Escola de Engenharia da Universidade Federal de Minas Gerais, como requisito parcial para a obtenção do grau de Mestre em Engenharia Elétrica.
Área de concentração: Aterramentos Eletromagnéticos
Linha de Pesquisa: Sistemas de Energia Elétrica
Orientador: Prof. Silvério Visacro Filho

Programa de Pós-Graduação em Engenharia Elétrica - PPGEE
Centro de Pesquisas e Desenvolvimento em Engenharia Elétrica - CPDEE
Universidade Federal de Minas Gerais - UFMG
Belo Horizonte
Agosto - 2009
Agradecimentos

Primeiramente, agradeço ao professor Silvério Visacro Filho, por sua significativa contribuição e dedicação ao orientar-me e transferir-me parte de seu valioso conhecimento.

Aos meus pais, Luiz e Maria das Dores, agradeço pelo suporte emocional, que associado a sua experiência acadêmica, foram essenciais na realização deste trabalho. Ao meu irmão Gustavo, meu sobrinho Felipe, pelos prazerosos momentos familiares que me proporcionaram durante esta etapa.

Aos meus amigos de infância, família Schun, que, na distância, se fazem sempre presentes em minha vida. Aos meus amigos do curso de Engenharia Elétrica da UFMG e aos amigos do LRC, por me ajudarem, pacientemente, na elaboração deste projeto.

Aos amigos de Brasília pela amizade e apoio proporcionado nesta reta final.

Por fim, agradeço aos demais membros da banca, professores Manuel e Fernando, pelas excelentes contribuições a este texto.
INDICE

RESUMO...i
ABSTRACT...ii

1 INTRODUÇÃO ... 1

2 PROCEDIMENTOS DE PROJETO DO ATERRAMENTO DE UMA SUBESTAÇÃO 3

2.1 INTRODUÇÃO .. 3

2.2 ETAPAS DO PROJETO ... 4

2.3 FATORES CONDICIONANTES DE PROJETO ... 9

2.3.1 Faixa de corrente tolerável pelo corpo humano .. 9

2.3.2 Tensão de toque e tensão de passo ... 11

2.3.3 Circuito acidental de aterramento .. 12

2.3.4 Critério da diferença de potencial admissível ... 15

2.4 DETERMINAÇÃO DA CORRENTE RESULTANTE NO ATERRAMENTO 17

2.4.1 Distribuição da corrente de falta pelo aterramento da subestação e pelos cabos pára-raios .. 17

2.4.2 Exemplo ilustrativo .. 21

2.4.3 Modelos concentrados para o circuito terra das linhas de transmissão 23

2.4.4 Estudo de caso ... 29

3 MODELAGEM DO SOLO: PROPOSTA DE MODELO EQUIVALENTE DE DUAS CAMADAS .. 35

3.1 INTRODUÇÃO .. 35

3.2 MÉTODOS DE MEDIÇÃO DA RESISTIVIDADE DO SOLO ... 36

3.2.1 Método de Wenner ... 36

3.2.2 Método de Schlumberger ... 38

3.3 MODELOS DE SOLO ... 39

3.3.1 Solo uniforme ... 39

3.3.2 Solo estratificado em camadas horizontais ... 39

3.3.3 Variações horizontais da resistividade .. 41

3.4 POTENCIAL ELÉTRICO CAUSADO POR UMA FONTE PONTUAL DE CORRENTE IMERSA EM UM SOLO DE UMA, DUAS E TRÊS CAMADAS HORIZONTAIS – MÉTODO DAS IMAGENS CONVENCIONAL 43

3.4.1 Fonte pontual de corrente em um meio constituido por duas regiões homogêneas separadas por um plano infinito (solo uniforme) ... 44

3.4.2 Fonte pontual de corrente em um solo de duas camadas horizontais 50

3.4.3 Fonte pontual de corrente em um solo de três camadas horizontais 56

3.4.4 Procedimentos para obtenção das imagens .. 58
3.5 Fonte pontual de corrente em um solo multicamadas - Método das imagens

3.5.1 Formulações

3.5.2 Função Kernel

3.6 Determinação de um modelo de estratificação do solo a partir do Método de Wenner

3.7 Proposta de modelo equivalente de duas camadas para solo com perfil de estratificação em três camadas

3.7.1 Considerações iniciais

3.7.2 Procedimentos de cálculo

3.8 Implementação Computacional do programa para identificação de estratificação em duas e três camadas

4 Cálculo de resistência de aterramento e de potenciais no solo: formulação e implementação computacional

4.1 Procedimento de cálculo dos parâmetros do aterramento, formulado a partir da “aproximação potencial constante”

4.2 Montagem da matriz de resistências

4.2.1 Acoplamento resistivo entre os condutores do aterramento (Resistência Mútua)

4.2.2 Resistência Própria dos segmentos

4.2.3 Cômputo da natureza semi-infinita do solo e de suas possíveis estratificações

4.3 Determinação dos potenciais no solo

4.4 Implementação Computacional

5 Resultados

5.1 Introdução

5.2 Modelo de duas camadas equivalente

5.2.1 Exemplo 1

5.2.2 Exemplo 2

5.3 Simulação do desempenho das malhas – cálculo da resistência de aterramento e distribuição de potenciais na superfície do solo

6 Conclusão

6.1 Introdução

6.2 Desenvolvimentos

6.3 Contribuições do trabalho

6.4 Sugestões de continuidade da pesquisa

7 Referências bibliográficas
RESUMO

Neste trabalho é desenvolvida uma abordagem objetiva do projeto de malhas de aterramento de subestações para solicitações de baixa frequência, considerando de forma resumida as atividades e procedimentos envolvidos, sobretudo no que concerne aos modelos de estratificação do solo em camadas de diferentes resistividades.

Baseada numa abordagem heurística, foi proposta uma metodologia de cálculo de um modelo de duas camadas equivalente para a representação de solos com perfil típico de três camadas horizontais. A implementação computacional da metodologia mostrou que os erros resultantes, em termos dos parâmetros condicionantes de projeto (resistência e potenciais), são muito reduzidos numa grande variedade de casos testados, usualmente de ordem inferior a 4%.

Adicionalmente, foram desenvolvidos aplicativos computacionais específicos para estratificação do solo em modelos multicamadas, e para cálculo dos parâmetros de projeto nestas condições de solo, que contemplam a possibilidade de penetração dos eletrodos de aterramento nas camadas mais profundas.

Tais aplicativos estenderam o campo de atuação dos simuladores computacionais já disponíveis no Laboratório de Aterramentos Elétricos do LRC\(^1\), constituindo importante contribuição acadêmica, incorporada ao arsenal de recursos de ensino desta disciplina nesse centro de pesquisa.

\(^1\) LRC (Lightning Research Center) – Núcleo de Desenvolvimento Científico e Tecnológico em Descargas Atmosféricas (Resultado da parceria CEMIG-UFMG).
This work presents an objective approach for the design of grounding grids for low-frequency occurrences, from the simplified consideration of activities and procedures involved in this task. The focus is on models for soil stratification into different-resistivity layers.

Based on a heuristic approach, a methodology to determine an equivalent two-layer model for soils with typical three-horizontal-layer profile is proposed. The computational implementation of this methodology allowed evaluating the errors of such approach. It was found that they were very reduced, in terms of the parameters that govern the grounding design, notably the grounding resistance and potential developed over soil surface, being lower than 4% in most of the evaluated cases.

Furthermore in this work, software were implemented for both to model the soil into multilayered resistivity and to calculate grounding design parameters, allowing the electrodes to penetrate deep layers.

Such software extended the application field of computational simulators available in the LRC\(^2\) Grounding Laboratory, being considered relevant academic contributions for teaching the Grounding subject in addition to the education resources available in this research center.

\(^2\) LRC (Lightning Research Center) – Núcleo de Desenvolvimento Científico e Tecnológico em Descargas Atmosféricas (Resultado da parceria CEMIG-UFMG).
1 INTRODUÇÃO

Este trabalho aborda o projeto de aterramentos de malhas de subestações de energia. Particularmente, é dedicado a aspectos relativos aos modelos de estratificação do solo a serem adotados, e à implementação destes modelos em aplicativos computacionais, destinados à simulação do desempenho de malhas na etapa de projeto. Por meio destas simulações, são definidos o arranjo e a disposição final dos eletrodos.

O aterramento de uma subestação deve prover segurança às pessoas e aos equipamentos, sem afetar adversamente a continuidade do serviço. Ao mesmo tempo, deve atender estes requisitos ao menor custo possível. Isto justifica a importância de se modelarem computacionalmente estes sistemas, para que configurações de eletrodos possam ser exaustivamente simuladas, e posteriormente implantadas na prática.

Esta investigação se insere numa vigorosa linha de pesquisa desenvolvida no LRC, relativa à modelagem de aterramentos elétricos nos seus diversos campos de aplicação, incluindo a implementação de modelos computacionais. Uma descrição sucinta dos capítulos constantes desta dissertação é feita a seguir.

No Capítulo 2, é apresentada uma síntese das etapas do projeto de malhas de aterramento em uma subestação de transmissão de energia elétrica. São descritos os fatores condicionantes de projeto, ou seja, condições a serem satisfeitas pelo sistema de aterramento, que o tornam adequado à sua função. É também feita análise da distribuição da corrente de falta pelos diversos componentes envolvidos no percurso da corrente para a terra de uma
subestação, e das linhas conectadas a ela, com o intuito de se estimar a parcela resultante na malha de aterramento.

No Capítulo 3, estudam-se os modelos de solo mais aplicados na prática, os potenciais gerados por fontes de corrente imersas em meios multicamadas, e as metodologias utilizadas para se modelar um solo com características não homogêneas. Uma proposta de se definir um modelo de duas camadas horizontais, para um solo originalmente modelado em três camadas, é apresentada neste Capítulo.

No Capítulo 4, é descrito o procedimento para cálculo da resistência de aterramento e elevação de potencial na superfície do solo, obtidas para o sistema de aterramento quando este é submetido à injeção da corrente de falta máxima.

Os resultados obtidos no estudo de modelos equivalentes de duas camadas e alguns exemplos de cálculo de malhas em solos estratificados são apresentados no Capítulo 5.

Finalmente, o Capítulo 6 apresenta uma breve discussão a respeito das atividades desenvolvidas, destacando os objetivos atingidos e as propostas de continuidade decorrentes das realizações deste trabalho.
2 PROCEDIMENTOS DE PROJETO DO ATERRAMENTO DE UMA SUBESTAÇÃO

2.1 Introdução

Este capítulo apresenta uma abordagem resumida dos procedimentos a serem utilizados no projeto de aterramento de malhas de subestações, e considera aspectos determinantes destes procedimentos.

Um aspecto fundamental a ser realçado é que o projeto é desenvolvido para prover resposta adequada a solicitações de baixa freqüência, notadamente do tipo curto-circuito. Isto determina uma condição aproximada de potencial constante ao longo dos eletrodos de aterramento durante a solicitação. As formulações exploradas são aplicáveis ao assumir-se esta aproximação.

No item 2.2 são apresentadas as etapas envolvidas em um projeto, e no item 2.3 são estudados os fatores que o condicionam, ou seja, níveis de corrente e tensão aos quais o aterramento deverá atender. O item 2.3 apresenta um estudo para determinação da corrente de falta que efetivamente flui pelo aterramento da subestação.
2.2 Etapas do projeto

O projeto de aterramento de malhas se inicia através de duas atividades, cujos resultados constituem entradas para o processamento de soluções, em termos de arranjos de eletrodos. Estas atividades se referem às definições da corrente máxima que pode percorrer a malha (fonte da elevação de potencial crítica no aterramento) e do modelo de estratificação do solo. Este último é tratado em um capítulo específico neste texto.

Na primeira etapa do projeto é feita a leitura dos dados requeridos para sua implementação e condições de restrição às quais deve atender. Partindo-se destas informações, são sugeridas propostas de arranjo de eletrodos. Desenvolve-se assim, um processo iterativo homem-máquina, relativo à análise dos resultados providos pela proposta, e a proposição de novas alternativas de arranjo. O processo se completa quando alcançada uma configuração que atenda plenamente todas as condições de restrição.

Os procedimentos de projeto são organizados em etapas, aqui denominadas passos, indicados no fluxograma da Figura 2.1. Nos parágrafos seguintes, os aspectos básicos de cada passo são comentados.

Passo 1 - *Entrada dos dados básicos de projeto*

Os dados de entrada do projeto são, basicamente, o modelo de solo utilizado, a corrente máxima a percorrer o aterramento, o tempo máximo de atuação da proteção, a área disponível para instalação da malha e a espessura da camada de brita na subestação.

Modelagem do solo

A representação computacional do solo é utilizada na simulação do comportamento das malhas de aterramento, quando submetidas às solicitações em baixa freqüência. Os procedimentos de modelagem são tratados no *Capítulo 3.*
Determinação da corrente de falta máxima que poderá fluir pelo aterramento

É necessário definir a parcela da corrente de falta que irá percorrer os condutores do aterramento da subestação, já que o circuito de terra é composto por outros elementos, tais como os cabos para-raios das linhas de transmissão, que se tornam caminho alternativo para tal corrente (item 2.4). Considera-se, nesta estimativa, um caso de falta para terra crítico, que resulte na maior corrente possível a percorrer o aterramento.

Área a ser utilizada para instalação do aterramento

A definição da área está condicionada basicamente a dois fatores: sua disponibilidade para realização do projeto (limitações físicas e econômicas) e os valores desejáveis de resistência de aterramento e distribuição de potencial para aquela subestação. Baixos valores de resistência de aterramento e variações suaves do potencial na superfície do solo onde está imersa a malha, na ocorrência de uma falta para terra, implicam em maiores áreas para disposição dos eletrodos de aterramento. Para os casos em que existe limitação quanto à área disponível para o projeto, configurações de eletrodos mais adequadas podem ser utilizadas para que os níveis de segurança desejados sejam atingidos.

Uma estimativa inicial da área necessária para se atingir uma resistência de aterramento \(R \) é obtida pela seguinte formulação, de acordo com [1], [2]:

\[
R = \frac{\rho}{4 \sqrt{A}}
\]

Equação 2.1

em que \(A \) é a área da malha de aterramento, e \(\rho \) é um valor aproximado para a resistividade do solo, considerando-se um meio uniforme. Desta forma, obtém-se a primeira aproximação para a área requerida:

\[
A = \frac{\rho^2 \pi}{16R^2}
\]

Equação 2.2
Passo 2 - Determinação da corrente máxima tolerável pelo corpo humano e das tensões de passo e de toque admissíveis

Neste estágio, considerando o tempo máximo de atuação da proteção, são determinados os valores máximos de corrente que podem percorrer o corpo de
um ser humano, acometido por uma diferença de potencial na região do aterramento, na ocorrência de uma falta. A partir desta corrente, são determinados os valores máximos de tensão de toque e de passo admissíveis naquela região, considerada a eventual presença da camada de brita na superfície. Estes parâmetros constituem as principais restrições de projeto, sendo responsáveis por definirem a resistência de aterramento e a distribuição de potenciais na superfície do solo a serem atendidas pela configuração de eletrodos.

Passo 3 - Proposta de arranjo inicial dos eletrodos

Este arranjo é provido pelo projetista para o início das avaliações. A configuração inicial dos eletrodos deve incluir um condutor, no entorno da área a ser aterrada, adicionando-se condutores transversais que se cruzam, formando um reticulado na parte interior da área. Outros parâmetros, de menor influência na determinação da resistência de aterramento (como o diâmetro dos condutores), também são definidos neste momento.

Passo 4 – Avaliação da resistência de aterramento, da distribuição de potenciais no solo, e da elevação de potencial da malha (GPR - Ground Potential Rise) obtidos com a configuração sugerida

Através de um programa computacional que possui como entradas o modelo do solo, a disposição dos eletrodos de aterramento, e a corrente que efetivamente flui pela malha, são calculadas a resistência de aterramento e a distribuição de potencial na superfície do solo. O GPR é obtido multiplicando-se a resistência de aterramento pela corrente injetada.

Este estudo é considerado de forma mais elaborada no Capítulo 4 deste texto.

Passo 5 – Comparação entre os valores de tensão de toque e de passo obtidos com a configuração sugerida e os valores admissíveis definidos no passo 2

Caso o GPR e as tensões de toque e de passo, obtidos para a configuração proposta, estejam abaixo dos valores limites admissíveis, nenhuma análise
adicional será necessária, excetuando-se os refinamentos descritos no passo 7. Caso contrário, segue-se para o passo 6.

Passo 6 – Revisão da malha proposta anteriormente

Nesta etapa, considerando as diferenças apuradas na etapa anterior, entre os potenciais calculados para o arranjo proposto e os potenciais máximos admissíveis, o projetista deve rever a configuração de eletrodos. Potenciais menores podem ser obtidos através da redução do espaçamento entre os condutores da malha, da adição de novos condutores em seu interior, e (ou) da adição de hastes de aterramento no entorno da malha, ou até mesmo em sua área interna. Retorna-se assim ao passo 4.

Passo 7 – Refinamento da malha de aterramento

Nesta etapa, são realizadas complementações ao projeto. É definida a instalação de condutores adicionais para permitir conexão dos diversos equipamentos ao aterramento principal, além de algumas hastes nos locais de injeção da corrente de terra, como nas conexões com os neutros dos transformadores. Outros detalhes, que se fizerem necessários, também são definidos neste momento. Obtém-se assim, a configuração final do aterramento.
2.3 Fatores condicionantes de projeto

Fundamentalmente, os projetos de aterramento têm dois objetivos:

- Promover meios para que a corrente elétrica flua para a terra em condições normais e em situações de falta, sem exceder nenhum limite operacional ou de equipamentos, e sem afetar adversamente a continuidade do serviço.
- Assegurar que as pessoas na vizinhança do aterramento não estejam expostas às consequências de um choque elétrico, que constituam risco à vida.

Para fins de elucidar os perigos do choque elétrico, em pessoas localizadas na região da malha durante a falta para terra, e definir os critérios de segurança de um aterramento, alguns conceitos importantes são abordados neste item.

2.3.1 Faixa de corrente tolerável pelo corpo humano

2.3.1.1 Efeito da amplitude e da duração

As sensações e efeitos da passagem de uma corrente elétrica no corpo humano variam com a massa corpórea e o sexo de cada um. Estudos permitiram a obtenção de alguns dados estatísticos, que relacionassem tais efeitos com a intensidade da corrente e o tempo de sua duração. A norma NBR6533 define cinco zonas de efeitos para correntes alternadas de 50/60Hz, admitindo a circulação entre as extremidades do corpo (entre uma mão e outra ou entre um pé e uma mão) em pessoas com massa maior ou igual a 50Kg, como se observa no gráfico da Figura 2.2 [3]. A curva b, que separa as zonas 2 e 3 é dada pela Equação 2.3:

\[I = I_s + \frac{10}{t} \]

Equação 2.3

em que \(I \) é a corrente em mA, \(I_s \) é a corrente de largar (10mA), e \(t \) é o tempo de duração em s.
Na fibrilação ventricular, fenômeno distinto ao da parada cardíaca, as fibras musculares do coração tremulam desordenadamente, havendo, como consequência, uma total ineficiência no bombeamento do sangue.

2.3.1.2 Efeito da freqüência

As freqüências de corrente mais perigosas ao corpo humano encontram-se na faixa entre 20 e 100Hz. Correntes contínuas são menos propensas a causarem fibrilação ventricular [4], a não ser se aplicadas durante um instante curto, específico e vulnerável do ciclo cardíaco. Já correntes de freqüências muito elevadas tendem a circular pela parte externa do corpo, devido ao efeito pelicular, tendo como principal consequência queimaduras na pele.
2.3.2 Tensão de toque e tensão de passo

Dentre os potenciais que determinam o nível de segurança do aterramento em uma subestação estão a Tensão de Passo, Tensão de Toque, Tensão de Toque Máxima (Tensão de Mesh) e Tensão Transferida, definidas a seguir:

Tensão de Passo - É a diferença de potencial estabelecida entre os pés de uma pessoa, separados por uma distância de um metro, quando há passagem de corrente no solo local (Figura 2.3).

Figura 2.3: Tensão de Passo

Tensão de Toque – É a diferença de potencial percebida por uma pessoa, quando esta se encontra com uma parte do corpo em contato com alguma estrutura do aterramento (potencial GPR) e outra parte em contato com a superfície do solo, a um potencial diferente do primeiro (Figura 2.4).

Figura 2.4: Tensão de Toque
Tensão de Mesh – É a máxima tensão de toque encontrada em uma malha de aterramento para determinada corrente de falta.

Tensão Transferida – É um caso especial da tensão de toque, em que o potencial é transferido para partes externas à subestação (Figura 2.5).

![Diagrama de Tensão Transferida](image)

Figura 2.5: Tensão Transferida

Em projetos de aterramentos, são considerados nos critérios de avaliação de segurança, os valores de tensão de passo e tensão de toque máximos obtidos em uma malha quando esta é submetida à corrente máxima de curto-circuito (para terra) da subestação em questão.

2.3.3 Circuito acidental de aterramento

A passagem de corrente pelo corpo humano descreve trajetos diferenciados, influenciados pelos pontos de entrada e saída da corrente, vestimentas utilizadas e umidade da pele. Uma parcela da corrente percorre o corpo superficialmente (corrente superficial), causando queimaduras na pele. A outra parcela percorre o corpo de forma volumétrica (corrente volumétrica), sendo responsável pelos danos causados aos órgãos vitais.

Para baixas freqüências, como a freqüência industrial, o corpo humano é considerado um meio puramente resistivo. A resistência é considerada entre as extremidades de entrada e saída da corrente, sendo um parâmetro difícil de estimar, devido às diversas variáveis que o influenciam.
A resistência que o corpo oferece à passagem de corrente é quase exclusivamente devida à camada externa da pele, a qual é constituída de células mortas. Esta resistência está situada entre $100.000\,\Omega$ e $600.000\,\Omega$, quando a pele encontra-se seca e não apresenta cortes [4]. Quando, no entanto, encontra-se úmida, condição mais facilmente observada na prática, a resistência elétrica do corpo pode atingir $500\,\Omega$. A resistência da parte interna do corpo, desconsiderando a pele, é de aproximadamente $300\,\Omega$. Ao se considerar a influência da pele, valores entre 500 e $3000\,\Omega$ são bastante citados na literatura.

O circuito acidental de aterramento é composto pelas partes do corpo humano percorridas pela corrente e por outros caminhos por ela utilizados para compor um circuito fechado. Desta forma, para os casos de tensão de passo e tensão de toque, os seguintes circuitos são formados:

2.3.3.1 Tensão de passo

Circuito acidental:

![Figura 2.6: Circuito acidental – Tensão de passo](image)

A resistência total do circuito acidental, R_T, é uma função da resistência do corpo humano, R_h, e da resistência de “aterramento” dos pés, R_p. Para obtenção de R_p, considera-se o pé humano como sendo um disco condutor metálico e, neste caso, desconsidera-se a resistência de contato do disco com o solo.
As resistências próprias \((R_{pprop})\) e mútuas \((R_{pmut})\) de dois discos de raio \(b\), separados por uma distância \(d\), na superfície de um solo de resistividade \(\rho\), são dadas por [5]:

\[
R_{pprop} = \frac{\rho}{4b} \quad \text{Equação 2.4}
\]

\[
R_{pmut} = \frac{\rho}{2\pi \cdot d} \quad \text{Equação 2.5}
\]

Neste caso, \(b\) representa o raio equivalente para o tamanho de um pé padrão. Considerando-se a camada de brita da subestação, com resistividade \(\rho_s\) e espessura \(h_s\), acima da superfície do solo, as Equações 2.4 e 2.5 são multiplicadas por uma função \(F(x)\), como apresentado a seguir:

\[
R'_{pprop} = \frac{\rho}{4b} \cdot F\left(\frac{h_s}{b}\right) \quad \text{Equação 2.6}
\]

\[
R'_{pmut} = \frac{\rho}{2\pi \cdot d} \cdot F\left(\frac{h_s}{d}\right) \quad \text{Equação 2.7}
\]

em que:

\[
F(x) = 1 + 2 \cdot \sum_{n=1}^{\infty} \frac{k^n}{(n+1)(2 \cdot n \cdot x)^2} \quad \text{e} \quad \text{Equação 2.8}
\]

\[
k = \frac{\rho - \rho_s}{\rho + \rho_s} \quad \text{Equação 2.9}
\]

A função \(F(x)\) representa o efeito das infinitas reflexões da corrente na interface entre a camada de brita e o solo homogêneo.

A resistência de aterramento dos dois pés em série é dada por:

\[
R_{2pserie} = 2 \cdot (R'_{pprop} - R'_{pmut}) \quad \text{Equação 2.10}
\]
A resistência equivalente para o circuito acidental de passo (entre os dois pés) é definida na Equação 2.11.

\[R_T = R_h + R_{2pserie} \]
Equação 2.11

2.3.3.2 Tensão de Toque

Circuito acidental:

![Figura 2.7: Circuito acidental – Tensão de Toque](image)

A resistência de aterramento dos dois pés em paralelo é dada por:

\[R_{2paral} = \frac{1}{2} \left(R_{pprop} + R_{pmut} \right) \]
Equação 2.12

E a resistência equivalente para o circuito acidental de toque (entre uma mão e os dois pés) é definida pela Equação 2.13.

\[R_T = R_h + R_{2paral} \]
Equação 2.13

2.3.4 Critério da diferença de potencial admissível

Se consideradas \(I_a \), a corrente que atravessa o circuito acidental, e \(I_b \), a corrente suportada pelo corpo humano, definida pelo limiar da fibrilação ventricular, deve-se respeitar a seguinte desigualdade para fins de segurança do aterramento:

\[I_a < I_b \]
Equação 2.14
Desta forma, as tensões de passo e de toque de uma malha de aterramento não devem exceder os limites definidos a seguir:

\[V_{\text{passo}} < (R_h + R_{2\text{serie}})I_b \]
Equação 2.15

\[V_{\text{toque}} < (R_h + R_{2\text{paral}})I_b \]
Equação 2.16
2.4 Determinação da corrente resultante no aterramento

Os parâmetros condicionantes do projeto de aterramentos, particularmente as tensões desenvolvidas para os arranjos de eletrodos propostos (transferida, de passo e de toque), apresentam uma relação linear com a intensidade da corrente máxima dispersada pela malha de aterramento.

Por outro lado, sabe-se que apenas uma parcela da componente de seqüência zero é efetivamente injetada no solo pela malha, pois parte desta corrente fecha o circuito de falta por caminhos alternativos, como por condutores neutro ou cabos de blindagem de linhas de transmissão que chegam à subestação de energia.

Neste contexto, interessa identificar a parcela de corrente máxima que poderá fluir pela malha, considerando-se o tipo e a localização do curto-circuito que resulta em maiores níveis de solicitação. Tal aspecto motivou a elaboração do presente estudo.

Neste texto, considera-se a corrente de falta como um dado de entrada, não se abordando os estudos de curto-circuito. Analisa-se apenas sua distribuição pelos elementos do sistema, na existência de cabos pára-raios ou condutores neutros conectados ao aterramento da subestação.

2.4.1 Distribuição da corrente de falta pelo aterramento da subestação e pelos cabos pára-raios

Na ocorrência de uma falta para terra, em uma rede de transmissão, a distribuição da corrente de seqüência zero pelos elementos do sistema está relacionada a diversos fatores. Dentre eles, destacam-se a localização da falta ao longo da linha, a forma como se conectam os elementos do circuito terra, o tipo de ligação dos transformadores nas subestações envolvidas, assim como o número de linhas das subestações.

Um tipo comum de conexão de uma rede de transmissão, que será abordado neste trabalho, é representado na Figura 2.8 [6] e Figura 2.9 [7], a seguir:
O aterramento da subestação está conectado elétricamente aos cabos pára-raios das linhas L_j. Tais cabos são, por sua vez, aterrados nas sucessivas torres de transmissão e, por fim, conectados ao aterramento da subestação subsequente. O tipo de ligação do transformador é estrela-estrela (YY), com o neutro aterrado em ambos os lados, por impedâncias (Z_{nj}). R_s representa a resistência de aterramento da subestação, Z_{ejk} o valor da impedância longitudinal de cada vão dos cabos pára-raios das linhas e R_{jk} o valor da resistência de aterramento das torres, sendo j o número da linha e k o número do vão da linha j.

Apesar de serem parâmetros importantes para o cálculo da corrente de falta, as impedâncias dos neutros dos transformadores foram omitidas nos estudos adiante, já que a análise de curto-circuito, como mencionado, não pertence ao escopo deste trabalho.
A seguir, são ilustrados alguns exemplos de distribuição da corrente no sistema, de acordo com a localização da falta ao longo da linha e a forma como é alimentada, considerando-se curtos-circuitos fase-terra, conforme [8].

2.4.1.1 Tipo de alimentação da falta

A manutenção e alimentação da falta estão relacionadas ao tipo de ligação dos transformadores nas subestações adjacentes. A Figura 2.10 ilustra uma falta alimentada pelas duas extremidades da linha, já que os transformadores são conectados em delta – estrela (ΔY), com o neutro aterrado, permitindo a transmissão de corrente de sequência zero até o ponto da falta.

![Figura 2.10: Faltas alimentadas pelas extremidades](image1)

No caso ilustrado pela Figura 2.11, a conexão do transformador da subestação 2, delta – delta, não alimenta o curto-circuito da linha.

![Figura 2.11: Alimentação radial](image2)

2.4.1.2 Localização da falta

A localização da falta interfere diretamente nos níveis de corrente que circulam pelos componentes do sistema. Para o projeto de uma malha de aterramento, é
necessário avaliar a situação de falta que resulta em maior nível de corrente para o solo. A seguir, são ilustrados três casos distintos para localização da falta e conseqüente dinâmica de circulação das correntes pelo circuito terra. No primeiro caso, Figural 2.12, o curto-circuito se dá entre a fase da linha e o pórtico da subestação. A Figural 2.13 ilustra um curto entre a fase e uma torre de transmissão. A Figura 2.14 ilustra um curto entre a fase e alguma estrutura externa ao sistema de transmissão (solo, árvores, por exemplo), em um vão qualquer da linha.

Figura 2.12: Falta no pórtico da Subestação (com alimentação pelas duas extremidades)

Figura 2.13: Falta em uma torre qualquer da linha (com alimentação radial)

Figura 2.14: Falta em um vão da linha (com alimentação radial)
2.4.2 Exemplo ilustrativo

Neste exemplo, considera-se a ocorrência de uma falta fase-terra no pórtico da subestação de transmissão ilustrada pela Figura 2.9, onde duas linhas infinitas (L_1 e L_2) são conectadas através de um transformador de alta tensão, em YY, com neutrto aterrado. Algumas simplificações são assumidas para se restringir a complexidade do problema, quais sejam:

- As capacitâncias das linhas de transmissão são desprezadas;
- As cargas do sistema são desconsideradas;
- O desequilíbrio geométrico entre as fases da linha e os cabos pára-raios é desprezado.

A Figura 2.15 ilustra com mais detalhes o circuito estudado. Com a ocorrência da falta, parcela da corrente de neutro ($I_{n1}-I_{n2}$) atinge o sistema de aterramento da subestação, os cabos pára-raios e as torres de transmissão. A corrente injetada neste circuito terra pela fase da linha em falta é representada por I_c.

A passagem de corrente pelo aterramento da subestação provoca elevação de potencial nas regiões de aterramento das torres, assim como a passagem de corrente em cada torre eleva o potencial das regiões de aterramento da subestação e das demais torres. As correntes de seqüência zero das fases da linha também provocam elevação de potencial nos cabos pára-raios. Estes efeitos, denominados efeitos mútuos entre componentes do sistema, são caracterizados pelas fontes de tensão da Figura 2.15.
A corrente \(I_s \) corresponde à parcela da corrente de falta que flui pelo aterramento da subestação e, para cada linha, as correntes \(i_1, i_2, \ldots, i_k \) correspondem às correntes que fluem pelos trechos 1, 2, ..., \(k \) dos cabos pára-raios da mesma. Em cada torre \(k \), parcela da corrente do cabo pára-raios flui pelo aterramento da torre \((I_{jk}) \) e a outra parcela segue para o trecho seguinte da linha, sendo \(I_{jk} = i_k - i_{j(k+1)} \). \(E_j \) representa a tensão induzida no cabo pára-raios pela componente de seqüência zero da corrente que flui pelas fases da linha \(j \) \((I_{0j}) \); \(e_s \), o potencial do aterramento da subestação devido às correntes \(I_{jk} \); \(e_{jk} \), o potencial do aterramento da torre \(k \) (da linha \(j \)) devido à corrente \(I_s \) e às correntes dos aterramentos das demais torres. Tem-se assim que:

\[
E_j = Zm_j \cdot I_{0j}, \quad j = 1 ; 2
\]

Equação 2.17

\[
e_s = \sum_{j=1}^{n^\text{linhas}} \left(\sum_{k=1}^{n^\text{torres}} R_{jk} I_{jk} \right)
\]

Equação 2.18

\[
e_{jk} = R_{jk} I_s + \sum_{j'=1}^{n^\text{linhas}} \left(\sum_{k'=1}^{n^\text{torres}} R_{j'k'jk} I_{j'k'j} \right)
\]

Equação 2.19

sendo \(Zm_j \) a impedância mútua de seqüência zero entre o cabo pára-raios e o cabo fase da linha \(j \), \(R_{jk} \) a resistência mútua entre os aterramentos da subestação e da torre \(k \) (pertencente à linha \(j \)), \(R_{j'k'jk} \) a resistência mútua entre os aterramentos das torres \(k' \) e \(k \), pertencentes às linhas \(j' \) e \(j \), respectivamente \((j', j = 1 ; 2) \). Neste trabalho, os efeitos mútuos entre os aterramentos das torres e subestações são desconsiderados devido à sua influência relativamente reduzida na distribuição das correntes, ou seja, \(e_s = e_{jk} = 0 \).

O que se deseja determinar, em suma, é a corrente que flui pelo aterramento da subestação \((I_s) \). Em projetos de aterramentos de torres de transmissão e de dimensionamento de cabos pára-raios, a obtenção de \(I_{jk} \) e \(I_j \) também é relevante. Desta forma, o circuito da Figura 2.15 deve ser reduzido ao circuito equivalente da Figura 2.16.
No intuito de se obterem os parâmetros equivalentes simplificados (\(I_{eq} \), \(Z_{eq} \)), são analisados, no item 2.4.3, os diversos modelos (concentrados) para os cabos pára-raios de uma linha de transmissão, conforme [7]. Nesta análise, são considerados o número de vãos e extensão dos cabos, assim como suas características terminais (conexão com o aterramento de outra subestação, por exemplo).

Nos modelos a seguir apresentados, são utilizados os valores médios dos parâmetros dos cabos e torres, ou seja, valores médios de \(R_{jk} \) e \(Z_{e,jk} \). Desta forma, o cabo pára-raios é representado por vãos idênticos, com um valor de impedância longitudinal médio \(Z_e \). Cada torre possui um valor de resistência médio \(R \). Segundo [8], estes valores representam muito bem o comportamento do circuito terra das linhas de transmissão, quando não são necessários valores mais exatos da corrente em seus vãos e torres.

2.4.3 Modelos concentrados para o circuito terra das linhas de transmissão

2.4.3.1 Modelo ladder infinito

De acordo com [9], considera-se que o conjunto formado pelo cabo pára-raios e as torres adjacentes (ladder) tem extensão tendendo à infinita, para este tipo de análise, se a seguinte condição for satisfeita:

\[
I \cdot \sqrt{\frac{Z_e}{R \cdot s}} > 2
\]

Equação 2.20

em que \(I \) é a extensão total da linha, \(s \) é a extensão média dos vãos, e \(R \) e \(Z_e \) os valores médios da resistência de aterramento das torres e da impedância longitudinal dos vãos do cabo pára-raios, respectivamente.
A impedância Z de um *ladder* infinito é obtida considerando-se o circuito equivalente da Figura 2.17.

![Figura 2.17: Circuito equivalente para o cálculo da impedância Z do cabo para raios](image)

A adição de mais uma unidade série-paralela, como mostrado na Figura 2.18, não modifica a impedância total Z.

![Figura 2.18: Efeito da adição de uma unidade série-paralela](image)

Dessa forma tem-se que:

$$
R \parallel Z + Z_e = Z,
$$

ou seja,

$$
\frac{R \cdot Z}{R + Z} + Z_e = Z
$$

Equação 2.21

Resolvendo-se a Equação 2.21 para Z tem-se:

$$
Z = \frac{Z_e}{2} + \sqrt{\frac{Z_e^2}{4} + Z_e \cdot R}
$$

Equação 2.22

Na maioria dos casos práticos $Z_e << R$. A Equação 2.22 simplifica-se para:

$$
Z \approx \frac{Z_e}{2} + \sqrt{Z_e \cdot R}
$$

Equação 2.23

Considerando-se a injeção de uma corrente i no início do *ladder* (Figura 2.19), tem-se a seguinte distribuição de correntes:
Figura 2.19: Injeção de uma corrente \(i \) no circuito ladder

Em que:

\[
\begin{align*}
\text{Equação 2.24} & \quad i_1 = i \\
\text{Equação 2.25} & \quad i_2 = i_1 \cdot \frac{R}{R + Z}, \quad i_3 = i_2 \cdot \frac{R}{R + Z}
\end{align*}
\]

De forma genérica:

\[
\text{Equação 2.26} \quad i_k = i \left(\frac{R}{R + Z} \right)^{k-1}
\]

Para as correntes nas torres tem-se:

\[
\text{Equação 2.27} \quad I_k = i_k - i_{k+1}
\]

2.4.3.2 Modelo ladder finito

Este modelo é utilizado quando o número limitado de vãos e (ou) a pequena extensão da linha não permitem que o ladder seja considerado “infinito”, do ponto em que é observado. Para se obterem as correntes que fluem pelos vãos e torres do ladder finito, é utilizado, neste trabalho, o método das reflexões [7], esquematizado na Figura 2.20 a seguir. Considera-se um ladder constituído por três torres e a injeção de uma corrente \(i \) em seu primeiro vão. Esta corrente, após ser subtraída pelas correntes que fluem pelas torres, sofre reflexão total ao se deparar com as extremidades a vazio do ladder. Apenas as primeiras reflexões são representadas. C (Equação 2.28) e G (Equação 2.29) representam a parcela da corrente de determinado vão que segue para o vão seguinte, e a outra parcela desta corrente, que flui pelo aterramento da torre adjacente, respectivamente.
\[C = \frac{R}{R + Z} \quad \text{Equação 2.28} \]
\[G = (1 - C) \quad \text{Equação 2.29} \]

Superpondo-se os valores obtidos em cada reflexão, têm-se os valores das correntes em cada vão e torre do cabo pára-raios.

Para se determinarem os expoentes de \(C \) relacionados às correntes de cada torre, é realizado um procedimento bastante simples, que aqui é generalizado para uma linha qualquer. Sendo \(N \) o número de torres da linha, \(k \) o número da
torre de interesse, \(F \) o número de reflexões necessárias ao cálculo com satisfatório erro em relação à situação ideal (infinitas reflexões), \(f_d \) e \(f_e \) o número da reflexão em consideração, nas extremidades direita e esquerda, respectivamente, tem-se:

\[\text{Sentido esquerdo-direito} \]

Expoentes de \(C \): \((2 \cdot N \cdot f_e) + (k - 1)\) com \(f_e = [0,F] \)

\[\text{Sentido direito-esquerdo} \]

Expoentes de \(C \): \((2 \cdot N \cdot f_d - 1) - (k - 1)\) com \(f_d = [1,F] \)

O valor de \(F \) pode ser determinado utilizando-se o seguinte critério:

\[
C^{2NF + k - 1} \leq 10^{-4}
\]

\[
\log(C^{2NF + k - 1}) \leq \log(10^{-4})
\]

\[
(2 \cdot N \cdot F + k - 1) \cdot \log(C) \leq -4 \cdot \log(10)
\]

\[
(2 \cdot N \cdot F + k - 1) \geq \frac{-4}{\log(C)}
\]

\[
(2 \cdot N \cdot F) \geq \frac{-4}{\log(C)} - (k - 1) \quad \text{log}(C) < 0
\]

\[
F \geq \frac{-4}{\log(C)} - (k - 1) \quad \text{Equação 2.30}
\]

A impedância equivalente \(Z \), vista da extremidade inicial da linha (ponto 0), é calculada considerando-se a injeção de uma corrente unitária \((i=1)\) no primeiro vão do \textit{ladder}. Desta forma, tem-se:

\[
V(0) = Z_e \cdot i + V(1) \quad \text{Equação 2.31}
\]
\[Z = Z_e + V(1) \]
Equação 2.32

sendo \(V(1) \) a tensão da primeira torre da linha.

2.4.3.3 Modelo ladder finito terminado por impedância

Na Figura 2.21, a seguir, é representado um ladder finito, constituído por duas torres, terminado por uma impedância \(Z_t \).

![Ladder finito com duas torres](image)

Figura 2.21: *Ladder* finito com duas torres

O circuito anterior pode ser substituído pela forma equivalente (Figura 2.22):

![Ladder finito com duas torres – forma equivalente](image)

Figura 2.22: *Ladder* finito com duas torres – forma equivalente

em que a impedância equivalente \(Z_f \) é dada por:

\[Z_f = \frac{Z_t \cdot R}{R - Z_t} \]
Equação 2.33

A análise deste circuito é realizada através da superposição dos circuitos 1 e 2, apresentados na Figura 2.23, onde:

\[I_f = \frac{-V(3)}{Z_f + Z_q} \]
Equação 2.34

\[Z_q = \frac{V(1)}{I} \]
Equação 2.35
$V(1)$ e $V(3)$ são obtidos do **Circuito 1**. Para a obtenção desses valores, é utilizado o método das reflexões, apresentado anteriormente no estudo de um *ladder* finito.

Novamente através do método das reflexões, obtêm-se as correntes e tensões do **Circuito 2**. Superpondo-se estes valores aos obtidos no **Circuito 1**, determinam-se as tensões e correntes do *ladder* finito (constituído por duas torres), terminado por impedância (Z_t).

Para se calcular o valor da impedância equivalente Z, utiliza-se o mesmo procedimento descrito para o caso do *ladder* finito, sem impedância terminal. Considera-se a injeção de uma corrente $i=1$ em seu primeiro vão, obtendo-se:

$$Z = Z_e + V(1)$$ \hspace{1cm} \text{Equação 2.36}

Neste caso, $V(1)$ é o resultado da superposição das tensões na primeira torre, calculadas para os **Circuitos 1 e 2**.

2.4.4 Estudo de caso

A Figura 2.24 ilustra uma configuração de rede, constituída por duas linhas, duas subestações, A e B, e um gerador G, conectados entre si. Uma falta para terra ocorre na subestação B, com injeção da corrente de curto-circuito I_c. Os
transformadores de ambas as subestações estão conectados em estrela-
estrela, com os neutros aterrados. Assume-se que o circuito terra da linha 1
atende a condição da Equação 2.20, sendo modelado por um ladder infinito.
Deseja-se determinar qual parcela da corrente de seqüência zero percorre o
aterramento da subestação B.

Figura 2.24: Configuração da rede

A Figura 2.25 ilustra o circuito terra estudado.

Figura 2.25: Configuração da rede – circuito terra

O primeiro passo é determinar as correntes injetadas nas subestações pelos
neutros dos transformadores (I_{NA}, I_{NB}) e aquelas oriundas do acoplamento entre
os cabos pára-raios e os cabos fase das linhas 1 e 2 (I_1, I_2), que, em paralelo
às impedâncias do cabo pára-raios, substituem as fontes de tensão (E_1 e E_2)
da Figura 2.15 (teorema de Norton). Para se obterem as correntes de
acoplamento, é preciso conhecer as correntes de falta que percorrem as fases
das linhas (I_{01}, I_{02}), calculadas através de estudos de curto-circuito, não
abordados no presente trabalho. Consideram-se estas correntes parâmetros

![Figura 2.26: Elementos da subestação A](image)

Desta forma, tem-se:

\[I_{NA} = I_{n1A} - I_{n2A} \] \hspace{1cm} \text{Equação 2.37}

\[I_1 = \frac{Zm_1 \cdot I_{01}}{Ze_1} \] \hspace{1cm} \text{Equação 2.38}

\[I_2 = \frac{Zm_2 \cdot I_{02}}{Ze_2} \] \hspace{1cm} \text{Equação 2.39}

sendo \(Ze_j \) a impedância média dos vãos do cabo pára-raios da linha \(j \) e \(Zm_j \) a impedância mútua de seqüência zero entre o cabo pára-raios e os cabos fase da linha \(j \) (\(j = 1,2 \)).

O mesmo procedimento se aplica à subestação B, com a particularidade de que somente a linha 2 deixa esta subestação.

\[I_{NB} = I_{n1B} - I_{n2B} \] \hspace{1cm} \text{Equação 2.40}

Em seguida, determina-se a impedância equivalente do \textit{ladder infinito} 1, vista pela subestação A (Equação 2.41).
sendo R_1 a resistência média de aterramento das torres da linha 1. O circuito terra simplifica-se conforme Figura 2.27.

Para o cálculo da corrente resultante em R_{SEB}, é utilizado o teorema da superposição, considerando-se, separadamente, os efeitos da injeção de corrente na subestação A, representada pela fonte de corrente I_A, e na subestação B, representada pela fonte de corrente I_B, sendo:

$$ I_A = I_{NA} - I_1 + I_2 $$ \hspace{1cm} \text{Equação 2.42} \\

$$ I_B = I_{NB} - I_2 + I_c $$ \hspace{1cm} \text{Equação 2.43} \\

\textbf{Injeção de I_A}
Primeiramente, calcula-se a impedância equivalente do ladder 2, Z_{2A}, vista pela subestação A, através do modelo *ladder finito* terminado por impedância. A impedância terminal, neste caso, é R_{SEB}. Determina-se, então, a parcela da corrente I_A que irá percorrer o ladder 2, $I_{2(A)}$, através do divisor de correntes formado por Z_{2A}, R_{SEA} e Z_1 (Figura 2.29 e Equação 2.44).

Figura 2.29: Circuito equivalente

$$I_{2(A)} = I_A \cdot \frac{R_{SEA} \parallel Z_1}{R_{SEA} \parallel Z_1 + Z_{2A}}; \quad R_{SEA} \parallel Z_1 = \frac{R_{SEA} \cdot Z_1}{R_{SEA} + Z_1} \quad \text{Equação 2.44}$$

Conhecendo-se $I_{2(A)}$, determina-se a parcela que fluirá pela impedância terminal R_{SEB}, $I_{SB(A)}$, utilizando-se a metodologia descrita no item 2.4.3.3 (Figura 2.30).

Figura 2.30: *Ladder* finito terminado pela impedância R_{SEB}
Injeção de \(I_B \)

Primeiramente, calcula-se a impedância equivalente do ladder 2, \(Z_{2B} \), vista pela subestação \(B \), utilizando-se, novamente, o modelo ladder finito terminado por impedância. Neste caso, a impedância terminal é dada pelo paralelo de \(R_{SEA} \) e \(Z_1 \). Através do divisor de correntes formado por \(Z_{2B} \) e \(R_{SEB} \), determina-se a parcela da corrente \(I_B \) que irá percorrer o aterramento da subestação \(B \), \(I_{SB(B)} \) (Figura 2.32 e Equação 2.45).

\[
I_{SB(B)} = I_B \cdot \frac{Z_{2B}}{R_{SEB} + Z_{2B}} \tag{Equação 2.45}
\]

Superpondo-se os efeitos de \(I_A \) e \(I_B \), obtém-se a corrente total no aterramento da subestação \(B \), ou seja, em \(R_{SEB} \).

Observa-se que este procedimento pode ser utilizado para diversas situações de falta, inclusive curtos-circuitos em torres e vãos das linhas.
3 MODELAGEM DO SOLO: PROPOSTA DE MODELO EQUIVALENTE DE DUAS CAMADAS

3.1 Introdução

O modelo de representação da resistividade do solo, no qual ficam imersos os eletrodos de aterramento, tem enorme influência sobre os parâmetros condicionantes de projeto. Para ilustrar este fato, vale citar que, num solo homogêneo, os valores das tensões desenvolvidas no aterramento e da sua resistência são diretamente proporcionais ao valor da resistividade.

O solo apresenta, normalmente, configuração complexa no que concerne à sua composição, resultando num quadro em que raramente pode ser representado como um meio homogêneo. Tipicamente, ele apresenta variações da resistividade com a profundidade, ou mesmo variações horizontais deste parâmetro.

Isto leva à necessidade de desenvolver modelos de representação do solo para aplicação nos projetos de aterramentos. A experiência mostra que para estas situações práticas, é possível representar este meio através de modelos de estratificação, os quais consideram sua constituição em diversas camadas de espessura definida, cada qual com valor específico de resistividade.
Para se avaliar a resistividade da região onde é imerso o aterramento, são comumente utilizados os métodos de Wenner e de Schlumberger, discutidos a seguir. Outras metodologias, não abordadas neste texto, podem ser utilizadas. Dentre elas, se encontra o método de medição direta, em que amostras do solo extraídas a várias profundidades são analisadas em laboratórios especializados, onde se define um valor de resistividade para aquele meio [10].

Os métodos de Wenner e de Schlumberger são, a princípio, utilizados para se avaliar a resistividade do solo, partindo-se do pressuposto que ele apresenta características uniformes ao longo de suas dimensões. Os resultados de medição, decorrentes da aplicação de tais métodos, são extrapolados para definição de modelos de estratificação daquele meio em camadas com resistividades distintas.

Neste texto, são apresentados os modelos de solo estratificado em duas e três camadas horizontais, utilizando-se o método de imagens convencional [11], e modelos de estratificação em multicamadas, analisados através do método das imagens complexas [12]. O aumento do número de camadas torna a modelagem mais complexa e em muitos casos a representação em duas camadas se mostra bastante satisfatória. Um dos pontos chave deste trabalho é a comparação dos modelos de duas e três camadas, com o intuito de verificar se o aumento no número de camadas é relevante do ponto de vista dos resultados.

3.2 Métodos de medição da resistividade do solo

3.2.1 Método de Wenner

O método de Wenner consiste na disposição de quatro eletrodos igualmente espaçados no solo, a uma profundidade \(d \) da sua superfície, como na montagem ilustrada a seguir (Figura 3.1). A corrente de teste (\(I \)) é aplicada entre os eletrodos externos e a tensão (\(V \)) é medida entre os terminais internos. Desta forma, \(V/I \) fornece o valor de uma resistência em ohms (\(\Omega \)), cuja
expressão analítica, considerando-se um solo uniforme de resistividade \(\rho \), é dada pela Equação 3.1:

\[
R = \frac{\rho}{4\pi a} \left(1 + \frac{2a}{\sqrt{a^2 + 4d^2}} - \frac{a}{\sqrt{a^2 + d^2}} \right)
\]

Equação 3.1

Na Equação 3.1, as hastes de corrente são representadas por fontes esféricas localizadas a uma profundidade \(d \) da superfície do solo, sendo uma aproximação razoável para a montagem.

Igualando-se o valor de resistência obtido na medição com a expressão obtida analiticamente, determina-se o valor da resistividade “aparente” (\(\rho_a \)) do solo para o espaçamento \(a \).

\[
R = \frac{V}{I}
\]

Equação 3.2

\[
\rho_a = \frac{4\pi a \frac{V}{I}}{1 + \frac{2a}{\sqrt{a^2 + 4d^2}} - \frac{a}{\sqrt{a^2 + d^2}}}
\]

Equação 3.3

A denominação resistividade aparente decorre do fato de que, na expressão analítica, considerou-se o arranjo de Wenner disposto em um solo com características uniformes, o que pode não ocorrer na prática. Desta forma, a resistividade obtida na Equação 3.3, é um valor aparente para aquele espaçamento \(a \) entre os eletrodos, caso estes estivessem imersos em um solo uniforme.
Se a profundidade d das hastes é significativamente menor que o espaçamento a ($d < 0.1 \cdot a$), a expressão anterior simplifica-se para:

$$\rho_a = 2\pi a \sqrt{\frac{V}{I}}$$

Equação 3.4

3.2.2 Método de Schlumberger

O método de Schlumberger é muito parecido com o método de Wenner, diferenciando-se apenas nos espaçamentos utilizados entre os eletrodos. No método de Schlumberger, os eletrodos internos apresentam um espaçamento a e estes estão espaçados dos eletrodos externos de uma distância b (Figura 3.2), sendo a usualmente maior que b. Isto se justifica pelo fato de que quanto mais próximos os eletrodos de tensão estiverem dos eletrodos de corrente, maiores são as quedas de potencial registradas, contribuindo para a sensibilidade do medidor.

![Figura 3.2: Montagem de Schlumberger](image)

A Equação 3.5 define analiticamente a resistência obtida para a configuração de Schlumberger, considerando-se um solo uniforme de resistividade ρ.

$$R = \frac{\rho}{2\pi} \left(\frac{a}{b(a+b)} + \frac{1}{\sqrt{b^2 + 4d^2}} - \frac{1}{\sqrt{(a+b)^2 + 4d^2}} \right)$$

Equação 3.5

Obtém-se assim, o valor da resistividade aparente para os espaçamentos a e b:
\[\rho_a = \frac{2\pi \left(\frac{V_i}{I} \right)}{\frac{a}{b(a+b)} + \frac{1}{\sqrt{b^2 + 4d^2}} - \frac{1}{\sqrt{(a+b)^2 + 4d^2}}} \]
Equação 3.6

Quando a profundidade das hastes \((d)\) é significativamente menor que os espaçamentos entre elas, a expressão simplificada para a resistividade aparente é dada por:

\[\rho_a = \frac{\pi b(a+b)V_i}{a} \]
Equação 3.7

3.3 Modelos de solo

3.3.1 Solo uniforme

Para se avaliarem as variações da resistividade do solo, neste trabalho, utilizou-se o método de Wenner. O procedimento baseia-se na verificação das resistividades aparentes obtidas, modificando-se a disposição (afastamento entre as hastes) ou a posição do arranjo de Wenner, ao longo do terreno onde será implantada a malha de aterramento. Se as variações destas resistividades aparentes forem relativamente pequenas, da ordem de 30\%, o solo é considerado uniforme [10], podendo ser representado pelo valor médio obtido nas medições \((\rho_{aM})\).

\[\rho = \rho_{aM} \]

Figura 3.3: Modelo de solo uniforme

3.3.2 Solo estratificado em camadas horizontais

Para se estimarem valores de resistividade do solo, de acordo com sua profundidade, varia-se o afastamento \((a)\) das hastes do arranjo de Wenner. Quando as hastes estão mais próximas, a corrente circula mais superficialmente, sendo a resistividade aparente aí calculada representativa da camada superior. Quando as hastes estão mais afastadas, a corrente penetra
camadas mais profundas, tendo estas camadas maior influência no valor da resistividade aparente obtido. Define-se, assim, uma curva $\rho_a \times a$, que relaciona os valores de resistividade aparente medidos para cada espaçamento entre as hastes utilizado.

A partir desta curva, alguns procedimentos são utilizados para se obter um modelo de estratificação do solo, que procura simplificar suas características não homogêneas, através de uma representação em camadas equivalente.

Modelo de duas camadas

Este modelo (Figura 3.4) é caracterizado por três parâmetros: altura da primeira camada (H), resistividade da primeira camada (ρ_1) e resistividade da segunda camada (ρ_2). A variação abrupta da resistividade no limite entre as duas camadas pode ser descrita pelos fatores de reflexão (k_{12} e k_{21}) e transmissão (k'_{12} e k'_{21}), dados por:

\[
k_{12} = \frac{\rho_2 - \rho_1}{\rho_2 + \rho_1} \quad \text{Equação 3.8}
\]

\[
k_{21} = \frac{\rho_1 - \rho_2}{\rho_1 + \rho_2} \quad \text{Equação 3.9}
\]

\[
k'_{12} = 1 - k_{12} \quad \text{Equação 3.10}
\]

\[
k'_{21} = 1 - k_{21} \quad \text{Equação 3.11}
\]

Figura 3.4: Modelo de duas camadas
Modelo de três camadas

Este modelo (Figura 3.5) é caracterizado pelos seguintes parâmetros: altura da primeira camada \((H_1) \), altura da segunda camada \((H_2) \), resistividades das três camadas \((\rho_1, \rho_2, \rho_3) \), e fatores de reflexão e transmissão entre as três camadas, que de forma generalizada são descritos por:

\[
 k_{ij} = \frac{\rho_j - \rho_i}{\rho_j + \rho_i} \quad \text{Equação 3.12}
\]

\[
 k'_{ij} = 1 - k_{ij} \quad \text{Equação 3.13}
\]

![Figura 3.5: Modelo de três camadas](image)

Para se estimarem os parâmetros desses modelos, existem diversos procedimentos, seja através da inspeção da curva \(\rho_a \times a \) [13], ou através de métodos computacionais mais apurados, como apresentado no item 3.6.

3.3.3 Variações horizontais da resistividade

Nas investigações da variação da resistividade do solo com sua profundidade, considerou-se apenas a variação no afastamento das hastes, com o centro da montagem e a direção das medições mantidos constantes. Mas o terreno no qual será disposta a malha pode apresentar características distintas, principalmente se a área demandada pelo aterramento for muito extensa.

No caso de se investigarem variações horizontais da resistividade do solo, a técnica de medição consiste em mover todo o arranjo de Wenner, sem alterar os espaçamentos entre eletrodos, e ortogonalmente à suposta interface entre regiões com resistividades distintas. No caso de uma área retangular de 10.000...
m², recomenda-se um mínimo de cinco pontos de medição, como ilustrado na Figura 3.6, [14]. Se a geometria da área é diferente, deve-se traçar um retângulo imaginário circunscrito a ela e locar os cinco pontos conforme representado na figura. Para área superior a 10.000 m², sugere-se a divisão desta em retângulos menores, procedendo da mesma maneira para cada um deles.

Figura 3.6: Pontos de Medicação

O que se faz, na prática, é registrar, para as posições do arranjo definidas, os valores das respectivas resistividades aparentes medidas, para um determinado espaçamento \(a_y \). Ao final, para cada espaçamento utilizado, calcula-se a média das resistividades (\(\rho_{aM}(a_y) \)), de acordo com a Equação 3.14, [15]:

\[
\rho_{aM}(a_y) = \frac{1}{P} \sum_{p=1}^{P} \rho_{ap}(a_y) \quad \forall \quad y = [1,Y] \quad \text{Equação 3.14}
\]

em que \(Y \) representa o total de espaçamentos empregados, e \(P \) o número de medições efetuadas para o respectivo espaçamento \(a_y \). Em seguida, calcula-se o desvio relativo de cada medida em relação ao valor médio, como segue:

\[
\frac{\left| \rho_{ap}(a_y) - \rho_{aM}(a_y) \right|}{\rho_{aM}(a_y)} \quad \forall \quad y = [1,Y] \quad p = [1,P] \quad \text{Equação 3.15}
\]
Desprezam-se os valores das medidas que tenham um desvio relativo maior que 50%, e recalculam-se os valores médios da Equação 3.14. Têm-se, assim, os valores representativos para se traçar a curva $\rho_a \times a$, ou $\rho_{aM}(a_y) \times a_y$, utilizada na definição de um modelo de estratificação do solo em camadas horizontais.

Modelagens de solo mais complexas, em que se consideram camadas verticais com resistividades distintas, também podem ser utilizadas para representarem as variações horizontais da resistividade naquele meio, principalmente se estas forem muito abruptas. Este tipo de modelagem não é abordado no presente estudo.

3.4 Potencial Elétrico causado por uma fonte pontual de corrente imersa em um solo de uma, duas e três camadas horizontais – Método das Imagens Convencional

Neste item, é estudado um procedimento, conforme [11], para cálculo do potencial elétrico causado por uma fonte pontual de corrente imersa em diferentes tipos de solo. Primeiramente, é analisado um caso simples, em que a fonte está imersa em um solo homogêneo. Em seguida, são considerados solos estratificados em camadas horizontais. A metodologia utilizada para uma fonte pontual de corrente poderá ser aplicada a qualquer configuração de eletrodos, ao se considerar que estes são constituídos por infinitas fontes pontuais.

As formulações apresentadas a seguir são úteis tanto para modelagem do solo, quanto para cálculo da resistência de aterramento e distribuição de potencial em um solo já modelado, e no qual se simula o comportamento de uma malha de aterramento.
3.4.1 *Fonte pontual de corrente em um meio constituído por duas regiões homogêneas separadas por um plano infinito (solo uniforme)*

Considera-se um meio infinito em todas as direções, caracterizado por resistividades ρ_1 e ρ_2, em dois domínios, 1 e 2 (por exemplo, solo e ar), separados por um plano S, em $z=0$, e uma fonte pontual de corrente i, localizada no ponto $P_0(x_0,y_0,z_0)$, meio 1, conforme Figura 3.6:

![Figura 3.6: Fonte de corrente em meio constituído por duas regiões homogêneas.](image)

Em regime estacionário ou de variação muito lenta tem-se, exceto no ponto P_0:

$$\nabla \cdot J \cong 0 \quad \text{Equação 3.16}$$

$$\nabla \times E \cong 0 \quad \text{Equação 3.17}$$

$$J = \sigma \cdot E \quad \text{Equação 3.18}$$

e equações equivalentes, na interface entre os dois meios, que traduzem a continuidade da componente de E tangencial a S e da componente de J normal a S, sendo E o campo elétrico, J a densidade superficial de corrente e $\sigma = 1/\rho$ a condutividade do meio.

Pode-se considerar que as ondas dos campos E e J “irradian” de P_0 de forma simétrica, atenuando-se com o quadrado da distância (à fonte pontual) e se refletem na superfície S.

Satisfazendo-se as condições anteriores, têm-se as ondas incidentes (E_i, J_i), refletidas (E_r, J_r) e transmitidas (E_t, J_t), conforme esquema da Figura 3.7.
Assim:

$$|J_i| \cos \alpha - |J_r| \cos \alpha = |J_t| \cos \alpha$$ \hspace{1cm} \text{Equação 3.19}

$$|E_i| \sin \alpha + |E_r| \sin \alpha = |E_t| \sin \alpha$$ \hspace{1cm} \text{Equação 3.20}

Ou

$$J_i - J_r = J_t$$ \hspace{1cm} \text{Equação 3.21}

$$E_i + E_r = E_t$$ \hspace{1cm} \text{Equação 3.22}

Em que \(J \) e \(E \) representam os módulos dos vetores densidade de corrente e campo elétrico. Tem-se também:

$$E_i = \rho_1 \cdot J_i$$ \hspace{1cm} \text{Equação 3.23}

$$E_r = \rho_1 \cdot J_r$$ \hspace{1cm} \text{Equação 3.24}

$$E_t = \rho_2 \cdot J_t$$ \hspace{1cm} \text{Equação 3.25}

em que:

$$J_i - J_r = J_t$$ \hspace{1cm} \text{Equação 3.26}

$$J_i + J_r = \frac{\rho_2}{\rho_1} \cdot J_t$$ \hspace{1cm} \text{Equação 3.27}
ou ainda:

\[2J_i = \left(1 + \frac{\rho_2}{\rho_1}\right)J_t \quad \text{Equação 3.28} \]

\[J_t = \left(\frac{2\rho_1}{\rho_2 + \rho_1}\right)J_i \quad \text{Equação 3.29} \]

\[J_r = J_i - J_t = \left(\frac{\rho_2 - \rho_1}{\rho_2 + \rho_1}\right)J_i \quad \text{Equação 3.30} \]

Cálculos semelhantes são feitos para o campo elétrico \(E \). Determinam-se assim, os fatores de reflexão (Equação 3.31 e Equação 3.34) e de transmissão (Equação 3.32 e Equação 3.35) para as ondas de densidade de corrente e para as ondas de campo elétrico, apresentados a seguir:

Para as ondas de densidade de corrente:

\[k_{12} = \frac{\rho_2 - \rho_1}{\rho_2 + \rho_1} \quad \text{Equação 3.31} \]

\[k'_{12} = \frac{2\rho_1}{\rho_2 + \rho_1} \quad \text{Equação 3.32} \]

\[1 - k_{12} = k'_{12} \quad \text{Equação 3.33} \]

Para as ondas de campo elétrico:

\[k_{12} = \frac{\rho_2 - \rho_1}{\rho_2 + \rho_1} \quad \text{Equação 3.34} \]

\[k'_{12} = \frac{2\rho_2}{\rho_2 + \rho_1} \quad \text{Equação 3.35} \]

\[1 + k_{12} = k'_{12} \quad \text{Equação 3.36} \]
No meio 1 os campos \(\mathbf{E}, \mathbf{J} \) são equivalentes à sobreposição de ondas incidentes e ondas refletidas, que atenuam-se com \(1/r^2 \), sendo \(r \) a distância total do percurso da onda entre o ponto \(P_0(x_0, y_0, z_0) \) e o ponto em que se calculam os valores dos campos \(P(x, y, z) \):

\[
r = \sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2} \quad \text{ou} \quad \text{Equação 3.37}
\]

\[
r = \sqrt{r_{xy}^2 + (z-z_0)^2} \quad \text{em que} \quad \text{Equação 3.38}
\]

\[
r_{xy} = \sqrt{(x-x_0)^2 + (y-y_0)^2} \quad \text{Equação 3.39}
\]

Já no meio 2, os campos \(\mathbf{E}, \mathbf{J} \) são resultado de ondas transmitidas que atenuam-se com \(1/r^2 \).

Considerando-se apenas os campos no meio 1, o sistema original pode ser substituído por um sistema equivalente, constituído por um meio uniforme de resistividade \(\rho_1 \), com uma fonte pontual de corrente \(i \) localizada em \(P_0 \) e uma fonte pontual de corrente \(i.k_{12} \), denominada imagem de \(i \), localizada em \(P'_0 \), eqüidistante de \(P_0 \) em relação ao plano \(S \) (Figura 3.8).

![Figura 3.8: Sistema equivalente para o meio 1](image)

em que

\[
r' = \sqrt{r_{xy}^2 + (z+z_0)^2} \quad \text{Equação 3.40}
\]
No ponto genérico \(P \), os campos criados pela fonte \(i \) na direção \(P_0P \) são dados por:

\[
J_i = \frac{i}{4\pi \left[r_{xy}^2 + (z - z_0)^2 \right]} \hat{r}
\]

Equação 3.41

\[
E_i = \frac{\rho_1 \cdot i}{4\pi \left[r_{xy}^2 + (z - z_0)^2 \right]} \hat{r}
\]

Equação 3.42

e os campos criados pela imagem \(i.k_{12} \) na direção \(P'_0P \) são dados por:

\[
J_r = \frac{i \cdot k_{12}}{4\pi \left[r_{xy}^2 + (z + z_0)^2 \right]} \hat{r}'
\]

Equação 3.43

\[
E_r = \frac{\rho_1 \cdot i \cdot k_{12}}{4\pi \left[r_{xy}^2 + (z + z_0)^2 \right]} \hat{r}'
\]

Equação 3.44

Os campos \(E_i \) e \(E_r \) estão associados a funções potencias \(V_i \) e \(V_r \), exceto no ponto \(P_0 \), sendo:

\[
E_i = -\nabla V_i
\]

Equação 3.45

\[
V_i = \frac{\rho_1 \cdot i}{4\pi \sqrt{r_{xy}^2 + (z - z_0)^2}} + C_1
\]

Equação 3.46

\[
E_r = -\nabla V_r
\]

Equação 3.47

\[
V_r = \frac{\rho_1 \cdot i \cdot k_{12}}{4\pi \sqrt{r_{xy}^2 + (z + z_0)^2}} + C_2
\]

Equação 3.48

\(C_1 \) e \(C_2 \) são constantes de integração, e igualam-se a zero se admitidos nulos os potenciais em pontos infinitamente afastados.

O campo e o potencial resultantes no meio \(1 \), no ponto \(P \), são dados por:
\[E = E_i + E_r \] \hspace{1cm} \text{Equação 3.49}

\[E = -\nabla V \] \hspace{1cm} \text{Equação 3.50}

\[V = V_i + V_r = \frac{\rho_1 \cdot i}{4\pi} \left(\frac{1}{\sqrt{r_{xy}^2 + (z - z_0)^2}} + \frac{k_{12}}{\sqrt{r_{xy}^2 + (z + z_0)^2}} \right) \] \hspace{1cm} \text{Equação 3.51}

No caso específico em que o meio 1 é o solo e o meio 2 é o ar, tem-se \(\rho_2 \approx \infty \) e \(k_{12} \approx 1 \).

Já no meio 2, o sistema original pode ser representado por um sistema equivalente de resistividade \(\rho_2 \), em que ondas “incidentes” criadas pela fonte \(i \cdot k'_{12} \) irradiam de \(P_0 \) e atenuam-se com \(1/r^2 \), sendo \(r \) a distância entre \(P_0 \) e o ponto no meio 2 em que se deseja calcular os valores dos campos. A Figura 3.9 representa esquematicamente o modelo equivalente:

![Figura 3.9: Sistema equivalente para o meio 2](image)

Os campos gerados no ponto \(P \) pela fonte em \(P_0 \), na direção \(P_0P \), são dados por:

\[J_t = \frac{i \cdot (1 - k_{12})}{4\pi [r_{xy}^2 + (z - z_0)^2]} \hat{r} \] \hspace{1cm} \text{Equação 3.52}

\[E_t = \frac{\rho_2 \cdot i \cdot (1 - k_{12})}{4\pi [r_{xy}^2 + (z - z_0)^2]} \hat{r} \] \hspace{1cm} \text{Equação 3.53}

Ao campo \(E_t \) associa-se uma função potencial, \(V_t \), sendo:
\[E_t = -\nabla V_t \]
Equação 3.54

\[V_t = \frac{\rho_2 \cdot i \cdot (1 - k_{12})}{4\pi \sqrt{r_{xy}^2 + (z - z_0)^2}} + C \]
Equação 3.55

C é a constante de integração que será nula caso o potencial em pontos infinitamente afastados seja considerado nulo.

3.4.2 Fonte pontual de corrente em um solo de duas camadas horizontais

Para esta análise, são consideradas quatro situações distintas para a posição relativa da fonte de corrente e do ponto em que se deseja calcular o campo (objeto).

a) Fonte e objeto localizados na primeira camada.

Supõe-se o caso de uma fonte pontual de corrente, localizada no ponto \(P_0 (x_0, y_0, z_0) \), em um solo de duas camadas \((\rho_1 e \rho_2) \), sendo \(H \) a altura da camada superior, conforme ilustra a figura a seguir:

![Figura 3.10: Fonte e objeto localizados na primeira camada de um solo com duas camadas horizontais](image)

Considerando-se a resistividade do ar tendendo a infinito, tem-se reflexão perfeita na interface do ar com a primeira camada do solo, em \(S_1 \). O sistema anterior pode então ser substituído pelo sistema equivalente da Figura 3.11, em que a reflexão em \(S_1 \) é representada por uma segunda fonte de corrente \(i \), em \(P_0' \), eqüidistante de \(P_0 \) em relação ao plano \(S_1 \).
Figura 3.11: Representação da reflexão total em S_1

Considerando-se as sucessivas reflexões dos campos E e J nos planos S_2 e S'_2, devidas às ondas irradiadas a partir de P_0 e P'_0, tem-se, no meio 1, situação idêntica à criada por uma série infinita de imagens (Figura 3.12), simétricas em relação ao solo, a alturas dadas por:

$$z = \pm 2 \cdot n \cdot H \pm z_0$$

Equação 3.56

Figura 3.12: Imagens equivalentes
O potencial V em um ponto genérico P do meio 1, de coordenadas x, y, z, considerando-se nulo o potencial em pontos infinitamente afastados é dado por:

$$
V = \frac{\rho_1 \cdot i}{4\pi} + \sum_{n=1}^{\infty} k^n \cdot \left[\frac{1}{\sqrt{r_{xy}^2 + (z - z_0)^2}} + \frac{1}{\sqrt{r_{xy}^2 + (z + z_0)^2}} \right]
$$

$$
+ \sum_{n=1}^{\infty} \frac{1}{\sqrt{r_{xy}^2 + (z - 2nH + z_0)^2}} + \frac{1}{\sqrt{r_{xy}^2 + (z - 2nH - z_0)^2}}
$$

$$
+ \frac{1}{\sqrt{r_{xy}^2 + (z + 2nH - z_0)^2}} + \frac{1}{\sqrt{r_{xy}^2 + (z + 2nH + z_0)^2}}
$$

Equação 3.57

b) Fonte localizada na primeira camada e objeto localizado na segunda camada.

Figura 3.13: Fonte localizada na primeira camada e objeto localizado na segunda camada.

Neste caso, é gerado o seguinte conjunto de imagens:
Figura 3.14: Imagens Equivalentes

O potencial no ponto P é determinado pelo somatório dos potenciais gerados por cada imagem:

$$V = \frac{\rho_2 \cdot i}{4\pi} \cdot \left(k'_{12} \right) \cdot \left[\sum_{n=1}^{\infty} k_{12} \cdot \left(\frac{1}{\sqrt{r_{xy}^2 + (z - 2nH - z_0)^2}} + \frac{1}{\sqrt{r_{xy}^2 + (z + z_0)^2}} \right) \right]$$

Equação 3.58

c) Fonte localizada na segunda camada e objeto localizado na primeira camada.
Figura 3.15: Fonte localizada na segunda camada e objeto localizado na primeira camada.

Neste caso são geradas as seguintes imagens:

Figura 3.16: Imagens equivalentes

O potencial no ponto P é determinado pela Equação 3.59.

\[V = \frac{D_1 \cdot i}{4\pi} \cdot k'_{21} \left(\frac{1}{\sqrt{r_{xy}^2 + (z - z_0)^2}} + \frac{1}{\sqrt{r_{xy}^2 + (z + z_0)^2}} \right) \]

\[
+ \sum_{n=1}^{\infty} k_{12} \cdot n \cdot \frac{1}{\sqrt{r_{xy}^2 + (z + 2nH - z_0)^2}} + \frac{1}{\sqrt{r_{xy}^2 + (z - 2nH + z_0)^2}} \]

Equação 3.59

d) Fonte e objeto localizados na segunda camada.

Figura 3.17: Fonte e objeto localizados na segunda camada.

As imagens correspondentes são ilustradas pela Figura 3.18. O potencial no ponto P é definido pela Equação 3.60.

Figura 3.18: Imagens equivalentes.
Para o potencial gerado por uma malha de aterramento cujos eletrodos estão localizados em ambas as camadas do solo, parte-se do pressuposto que o eletrodo é composto por infinitas fontes pontuais de corrente, considerando-se, para cada fonte individualmente, uma das quatro situações descritas anteriormente.

3.4.3 Fonte pontual de corrente em um solo de três camadas horizontais

Para o modelo de três camadas, a penetração dos eletrodos na segunda e terceira camadas aumenta significativamente a complexidade da formulação e o esforço computacional exigido. Neste caso, recorre-se aos métodos numéricos, como apresentado no item 3.5.

Desta forma, para esta formulação, é considerada apenas a situação em que a fonte e o objeto estão situados na primeira camada (Figura 3.19).

Utilizando-se um procedimento semelhante ao realizado para o solo de duas camadas, obtém-se o sistema equivalente a seguir:
As reflexões de \(E \) e \(J \) nos planos \(S_2, S'_2, S_3, S'_3 \) geram o conjunto de imagens apresentadas na Figura 3.21. O efeito das reflexões e das transmissões entre um plano e outro é representado pelos coeficientes \(k_{12}, k_{21}, k_{23}, k'_{12} \) e \(k'_{21} \).

As imagens apresentam-se aos pares, eqüidistantes do solo, a alturas dadas por:

\[
z = \pm \left(2 \cdot n_{12} \cdot H_1 + 2 \cdot n'_{12} \cdot H_1 + 2 \cdot n_{23} \cdot H_2 \pm h_0\right)
\]

Equação 3.61

sendo \(n_{12} \) o número de reflexões entre os meios 1 e 2, \(n'_{12} \) o número de transmissões entre os meios 1 e 2 e \(n_{23} \) o número de reflexões entre os meios 2 e 3. A intensidade das imagens também está relacionada a estes parâmetros, dada por:

\[
i_f = i \cdot k_{12}^{n_{12}} \cdot k'_{12}^{n'_{12}} \cdot k_{23}^{n_{23}} \cdot k_{21}^{n_{21}} \cdot k'_{21}^{n'_{21}}
\]

Equação 3.62
em que n_{21} e n'_{21} correspondem, respectivamente, ao número de reflexões e transmissões entre os meios 2 e 1.

Figura 3.21: Imagens equivalentes

3.4.4 Procedimentos para obtenção das imagens

Para o caso de um solo modelado em duas camadas, as infinitas imagens são de simples implementação. Basta considerar os efeitos das reflexões das
ondas de densidade de corrente e de campo elétrico entre os meios 1 e 2 e entre o meio 1 e o ar. A partir de um determinado número de reflexões, a contribuição das imagens correspondentes torna-se desprezível e as iterações podem ser finalizadas.

Já para o solo modelado em três ou mais camadas, a representação das possíveis reflexões e transmissões entre os diversos meios, mesmo limitando-se a posição da fonte e do objeto na primeira camada, torna-se mais complexa e de difícil convergência. Neste trabalho foram utilizadas duas metodologias para este procedimento em um solo de três camadas. Na primeira, as fontes de corrente foram analisadas individualmente, como apresentado de forma simplificada no item anterior. A segunda metodologia visa agrupar as fontes de corrente de forma a facilitar a definição de sua intensidade e distância à superfície do solo, de acordo com [16].

3.5 **Fonte pontual de corrente em um solo multicamadas - Método das imagens complexas**

O método das imagens complexas baseia-se em artifícios numéricos utilizados para se contornar as dificuldades encontradas no método de imagens convencional, quando se aumenta o número de camadas do solo modelado.

Como o próprio nome diz, as imagens neste novo método apresentam valores no domínio dos números complexos, que se traduzem em “alturas complexas” e “intensidades de corrente complexas” das fontes equivalentes de corrente. Estas imagens podem ser vistas como os pólos e os resíduos da função de transferência de um sistema linear (solo) excitado por fontes de corrente (eletrodos). O número de imagens necessárias à convergência do sistema é muito reduzido quando comparado ao método convencional.

Neste trabalho foi utilizado o método das imagens complexas para se avaliar o comportamento de malhas de aterramento que penetram as camadas mais profundas em solos estratificados em três ou mais camadas [17]. Os eletrodos não se concentram somente na camada superficial do solo. Hastes de maiores extensões podem atingir as demais camadas com resistividades distintas.
Em um solo de duas camadas horizontais, a penetração dos eletrodos de aterramento na segunda camada é representada de forma simples em um método de imagens convencional, como descrito no item 3.4.2. Com o aumento do número de camadas a modelagem torna-se, na maior parte dos casos, inviável, e o método das imagens complexas é uma alternativa para estas limitações.

3.5.1 Formulações

A Figura 3.22 ilustra uma fonte pontual de corrente localizada no ponto $P_0(x_0,y_0,z_0)$, na camada m de um solo estratificado em N camadas horizontais.

![Figura 3.22: Solo estratificado em N camadas horizontais](image)

A solução para o potencial no ponto $P(x,y,z)$, localizado na camada n do mesmo solo, tem a seguinte forma, [18]:

$$
V_{mn}(r_{xy},z,z_0) = \frac{i \cdot \rho_m}{4\pi} \int_0^\infty J_0(\lambda r_{xy}) F(z,z_0) d\lambda
$$

Equação 3.63

em que J_0 é a Função de Bessel de ordem 0 e F a Função Kernel para obtenção da Função de Green.

A solução para a Equação 3.63 deve atender às condições de contorno:

- A corrente na direção z da superfície é nula: $\frac{\partial V}{\partial z} \bigg|_{z=0} = 0$;
- O potencial é contínuo em cada interface;
A componente normal da densidade de corrente é contínua em cada interface:

\[
\left. \frac{1}{\rho_i} \frac{\partial V}{\partial z} \right|_{z=h_j} = \left. \frac{1}{\rho_{i+1}} \frac{\partial V}{\partial z} \right|_{z=h_i}.
\]

A Função Kernel pode ser representada por uma somatória de \(N_f \) funções \(F_i \), como segue:

\[
F = \sum_{i=1}^{N_f} F_i
\]

Equação 3.64

Cada termo \(F_i \) que compõe a função \(F \) é descrito pelo produto da função exponencial de \(f_i(z,z_0) \), dependente apenas da profundidade da fonte e do objeto, por \(u_i(solo) \), uma função dos parâmetros do solo (altura e resistividade das camadas):

\[
F_i(\lambda, z, z_0) = e^{-\lambda f_i(z,z_0)} u_i(solo)
\]

Equação 3.65

No método das imagens complexas, \(u_i(solo) \) é expandida em uma somatória finita de exponenciais:

\[
u_i(solo) = \sum_{j=1}^{N_i} a_{ij} \cdot e^{\lambda b_j}
\]

Equação 3.66

Obtendo-se:

\[
F_i(\lambda, z, z_0) = e^{-\lambda f_i(z,z_0)} \sum_{j=1}^{N_i} a_{ij} \cdot e^{\lambda b_j}
\]

Equação 3.67

Em que os resíduos \(a_{ij} \) e os pólos \(b_{ij} \) são determinados pelo Método de Prony [19], e pertencem ao domínio dos números complexos. \(N_i \) representa o número de termos da expansão em exponenciais. O número de termos \(F_i \) que compõem a função \(F \), \(N_f \), está relacionado com a posição relativa da fonte \(m \) e do objeto \(n \) nas camadas do solo estratificado.

Tem-se que:
\[J_0(\lambda \cdot c)e^{-\lambda \cdot d} \, d\lambda = \frac{1}{\sqrt{c^2 + d^2}} \quad \text{Equação 3.68} \]

em que c e d são constantes em relação à variável de integração \(\lambda \). Portanto, a Equação 3.63 pode ser escrita da seguinte forma:

\[V_{mn}(r_{xy}, z, z_0) = \frac{i \cdot \rho_m}{4\pi} \sum_{i=1}^{N_f} \sum_{j=1}^{N_i} a_{ij} \cdot \frac{1}{\sqrt{(r_{xy})^2 + (f_j(z, z_0) - b_{iy})^2}} \quad \text{Equação 3.69} \]

A Equação 3.69 tem forma similar às expressões dos potenciais, obtidas no método das imagens convencional. A particularidade é que o número de imagens necessárias para se convergir o sistema é bastante inferior neste caso, e os valores de \(a_{ij} \) e \(b_{ij} \), relacionados, respectivamente, à intensidade e à altura das imagens, pertencem ao domínio dos números complexos.

A partir desta formulação, calculam-se a resistência de aterramento e a distribuição de potencial em uma malha, através de procedimento idêntico ao realizado no método das imagens convencional.

3.5.2 Função Kernel

A função Kernel é determinada para cada posição relativa da fonte e do objeto nas camadas do solo. Desta forma, são definidos três posicionamentos distintos [18], quais sejam:

a) Fonte e objeto na mesma camada \((m=n)\).

Para este caso, a função Kernel pode ser descrita da seguinte forma:

\[
F(\lambda, z, z_0) = e^{-|z-z_0|} + e^{i(z+iz_0)} + \\
\left\{ e^{-|z-z_0|} + e^{i(z+iz_0)} \right\} \cdot e^{2jH_m \cdot K_m \cdot K_{m+1}} + \\
+ e^{i(z+iz_0)} \cdot e^{2jH_f(m+1)} \cdot \left(K_m \cdot K_{m+1} \cdot e^{-2jH_f(m)} + K_m - e^{-2jH_f(m-1)} \right) \cdot M_m \quad \text{Equação 3.70}
\]

onde
\[H_T(m) = \sum_{i=1}^{m} H_n \]
Equação 3.71

\[M_m = \frac{1}{1 - K_{-m} \cdot K_m \cdot e^{-2 \lambda H_m}} \]
Equação 3.72

em que

\[K_{-m} = 1 \quad \text{se} \ m = 1 \]
Equação 3.73

\[K_{-m} = \frac{k_{m(m-1)} + K_{-(m-1)} \cdot e^{-2 \lambda H_{m-1}}}{1 + k_{m(m-1)} \cdot K_{-(m-1)} \cdot e^{-2 \lambda H_{m-1}}} \quad \text{se} \ m \neq 1 \]

\[K_{+m} = 0 \quad \text{se} \ m = N \]
Equação 3.74

\[K_{+m} = \frac{k_{m(m+1)} + K_{+(m+1)} \cdot e^{-2 \lambda H_{m+1}}}{1 + k_{m(m+1)} \cdot K_{+(m+1)} \cdot e^{-2 \lambda H_{m+1}}} \quad \text{se} \ m \neq N \]

\[K_{-m} \] e \[K_{+m} \] são os coeficientes de reflexão generalizados vistos da camada \(m \) em relação às camadas \(m-1 \) e \(m+1 \), respectivamente. \(k_{m(m-1)} \), \(k_{m(m+1)} \) são os coeficientes de reflexão entre a camada \(m \) e as camadas \((m-1)\) e \((m+1)\) adjacentes, já descritos no item 3.3.2, em que:

\[K_{ij} = \frac{\rho_j - \rho_i}{\rho_j + \rho_i} \]
Equação 3.75

b) Fonte em camada \(m \) acima da camada \(n \) do objeto \((m < n)\).

\[F(\lambda, z, z_0) = \left(e^{-\lambda(z_0-z)} + e^{i(\lambda(z+z_0+2H_T(m-1)))} \right) \cdot \tau_{n,m} + \]

\[\begin{bmatrix}
 e^{-\lambda(z_0-z)} \cdot \left(1 - \frac{1}{T_{n,m} \cdot M_m} \right) + \\
 + \ e^{i(\lambda(z+z_0+2H_T(m-1)))} \cdot \left(K_{-m} - \frac{1}{T_{n,m} \cdot M_m} \right) + \\
 + \ e^{i(\lambda(z_0+z+2H_T(m-1)) \cdot K_{+n}} + \\
 + \ e^{i(\lambda(z_0-z+2H_T(m-1)-2H_T(n)) \cdot K_{+n} \cdot K_{-m}}
\end{bmatrix} \]
Equação 3.76
em que

\[T'_{n,m} = \prod_{i=m}^{n-1} S_{i(i+1)} \frac{k'_{i(i+1)}}{k'_{i(i+1)}} \]
\begin{equation} \text{Equação 3.77} \end{equation}

\[S_{i(i+1)} = \frac{k'_{i(i+1)}}{1 + k_{i(i+1)} \cdot K_{+(i+1)} \cdot e^{-2\lambda(H_T(i+1)-H_T(i))}} \]
\begin{equation} \text{Equação 3.78} \end{equation}

\[\tau_{n,m} = \prod_{i=m}^{n-1} k'_{i(i+1)} \]
\begin{equation} \text{Equação 3.79} \end{equation}

c) Fonte em camada \(m \) abaixo da camada \(n \) do objeto \((m>n)\).

\(F(\lambda, z, z_0) = \left(e^{-\lambda(z-z_0)} + e^{\lambda(z+z_0+2H_T(n-1))} \right) \cdot \tau_{m,n} + \)
\[\left[e^{-\lambda(z-z_0)} \cdot \left(1 - \frac{1}{T'_{m,n} \cdot M_m} \right) + \right. \]
\[+ e^{\lambda(z+z_0+2H_T(n-1))} \cdot \left(K_{-n} - \frac{1}{T'_{m,n} \cdot M_m} \right) + \]
\[+ e^{-\lambda(z+z_0+2H_T(m))} \cdot K_{+m} + \]
\[+ e^{\lambda(z-z_0+2H_T(n-1)-2H_T(m))} \cdot K_{+m} \cdot K_{-n} \right] \]
\begin{equation} \text{Equação 3.80} \end{equation}

em que

\[T'_{m,n} = \prod_{i=n}^{m-1} S_{(i+1)i} \frac{k'_{(i+1)i}}{k'_{(i+1)i}} \]
\begin{equation} \text{Equação 3.81} \end{equation}

\[S_{(i+1)i} = \frac{k'_{(i+1)i}}{1 + k_{(i+1)i} \cdot K_{-i} \cdot e^{-2\lambda(H_T(i)-H_T(i-1))}} \]
\begin{equation} \text{Equação 3.82} \end{equation}

\[\tau_{m,n} = \prod_{i=n}^{m-1} k'_{(i+1)i} \]
\begin{equation} \text{Equação 3.83} \end{equation}
3.6 Determinação de um modelo de estratificação do solo a partir do Método de Wenner

O método de Wenner [10], como mencionado anteriormente, é frequentemente utilizado para se obter um modelo de estratificação do solo quando este apresenta variações de resistividade com a profundidade. Para se definirem os parâmetros do modelo (alturas e resistividades das camadas), neste trabalho implementou-se uma metodologia resumida nos seguintes passos:

Passo 1 - Medição em campo

Através das medições realizadas na região de interesse, utilizando-se a montagem de Wenner, são obtidos os valores representativos para a definição da curva ρ_a x a.

Passo 2 - Escolha do modelo

Define-se em quantas camadas deseja-se modelar o solo. Para duas camadas, os parâmetros a serem determinados são ρ_1, ρ_2 e H. Para três camadas, os parâmetros a serem determinados são ρ_1, ρ_2, ρ_3, H_1 e H_2.

Passo 3 - Estimativa inicial dos parâmetros

Determinado o modelo a ser utilizado, são estimados os valores iniciais para os parâmetros em questão. Considerando-se um solo modelado por estes valores iniciais, são calculados, utilizando-se os procedimentos descritos no item 3.4 ou 3.5, os valores dos potenciais obtidos com a montagem de Wenner, para cada espaçamento considerado na medição em campo. Em seguida, determinam-se os valores das resistividades aparentes correspondentes, através da Equação 3.4.

Passo 4 - Comparação dos valores

Comparam-se desta forma os valores de ρ_a calculados com os medidos diretamente.
Passo 5 - Variação dos parâmetros do modelo

Através de um critério estabelecido, variam-se os parâmetros iniciais do modelo, obtendo-se diversos conjuntos de parâmetros que se tornam possíveis candidatos à representação daquele solo. Para cada candidato ao modelo, calculam-se os valores de ρ_a para os espaçamentos utilizados na medição (passo 3), comparando-os aos valores medidos diretamente (passo 4).

Passo 6 - Determinação do conjunto de parâmetros que melhor representa o solo

O conjunto de parâmetros que resultar em menores erros em relação aos valores de resistividade aparente medidos, é utilizado na modelagem daquele solo.
3.7 Proposta de modelo equivalente de duas camadas para solo com perfil de estratificação em três camadas

3.7.1 Considerações iniciais

Na prática, verifica-se que, apenas em poucos casos, o solo é satisfatoriamente representado por um meio semi-infinito homogêneo. Na maioria das situações, esta representação requer um modelo de duas camadas horizontais e, menos frequentemente, um modelo de três camadas. Mais raramente, utiliza-se a modelagem em quatro camadas para se adequar à curva $\rho_x \times a$ das medições.

É prudente se considerar que os valores de tensão obtidos pelo método de Wenner possuem incertezas de medição, que afetam diretamente o procedimento de modelagem do solo. Estas incertezas decorrem de erros de implementação do método, de dificuldades práticas da medição e, ainda, do processo de se alcançarem valores médios para um dado espaçamento, a partir da disposição da montagem em diferentes direções. Adicionalmente, no projeto de malhas de aterramento, os parâmetros de interesse, notadamente a resistência de aterramento e a distribuição de potenciais na superfície do solo, não são criticamente afetados pelas variações de resistividade das camadas mais profundas do solo. Por outro lado, o aumento no número de camadas resulta em maior esforço computacional e tempo de processamento do cálculo das malhas.

Tais questões motivaram a busca por uma modelagem simples, mas capaz de representar de forma satisfatória as características não homogêneas do solo. Este contexto justifica a proposta apresentada neste item, de um modelo de estratificação do solo de duas camadas equivalente (Figura 3.24), para solos que originalmente são representados, através dos dados de medição, por modelos de três camadas (Figura 3.23). Para esta metodologia, consideraram-se os eletrodos da malha inteiramente situados na primeira camada de estratificação.
A avaliação da qualidade da proposta, com identificação dos erros máximos resultantes da comparação dos parâmetros de projeto, obtidos para as duas modelagens, é apresentada no Capítulo 5.

Considera-se esta proposta como a contribuição de maior relevância da dissertação.

No procedimento sugerido, a resistividade \(\rho_1 \) e a profundidade \(H_1 \) da primeira camada do modelo equivalente permanecem idênticas às obtidas no modelo original. Para se calcular o valor de \(\rho_{2eq} \) que representa os efeitos das camadas mais profundas do solo, foi desenvolvido um algoritmo, de simples implementação, cujos parâmetros de entrada são \(\rho_1, \rho_2, \rho_3, H_1, H_2 \) e a dimensão linear máxima da malha de aterramento a ser implantada.
3.7.2 Procedimentos de cálculo

Para sistemas de aterramento constituídos por configurações de eletrodos simples e de pequena extensão (quando comparada à espessura da primeira camada de estratificação), uma aproximação razoável para \(\rho_{2eq} \), obtida através de algumas constatações heurísticas, é apresentada na Equação 3.84.

\[
\rho_{2eq}^0 = \frac{(\rho_2 \cdot H_2 + \rho_3 \cdot H_1)}{k \cdot (H_1 + H_2)}, \quad \text{em que} \quad \text{Equação 3.84}
\]

\[
k = \frac{|(\rho_2 - \rho_1) + (\rho_2 - \rho_3)|}{|\rho_2 - \rho_1| + |\rho_2 - \rho_3|} \cdot 0,3 + 1 \quad \text{Equação 3.85}
\]

Na Equação 3.84, observa-se que quanto maior \(H_2 \) em relação a \(H_1 \), maior a influência de \(\rho_2 \) em \(\rho_{2eq}^0 \). De forma análoga, quanto maior \(H_1 \) em relação a \(H_2 \), maior a influência de \(\rho_3 \) em \(\rho_{2eq}^0 \).

Com o aumento do número de eletrodos e da complexidade do sistema, é necessário um procedimento mais elaborado para obtenção de \(\rho_{2eq} \), que leva em consideração a extensão máxima da malha de aterramento.

O algoritmo utilizado neste procedimento consiste em se determinar um conjunto de valores \(\rho_{2eq}^i \), partindo do valor inicial \(\rho_{2eq}^0 \), definido na Equação 3.84, e incrementando-o positivamente ou negativamente por uma porcentagem (i.3\%) de \(\rho_{2eq}^0 \), conforme Equação 3.86:

\[
\rho_{2eq}^i = (1 + 0,03 \cdot i) \cdot \rho_{2eq}^0 \quad - N < i < N \quad \text{Equação 3.86}
\]

Determinam-se desta forma, 2.\(N+1 \) possíveis candidatos a \(\rho_{2eq} \). Para cada \(\rho_{2eq}^i \) sugerido, simula-se o comportamento de uma fonte pontual de corrente \(q_s \), localizada na superfície do solo de duas camadas modelado por \(\rho_1, \rho_{2eq}^i \) e \(H_1 \).

O potencial \(V_{2eq}(\rho_i) \) em pontos específicos \(p_i \), localizados na superfície do solo e em plano paralelo a esta, \(S_1 \), conforme Figura 3.25, é calculado e comparado ao obtido para o modelo de três camadas original (\(V_3(\rho_j) \)).
A altura de S_1, h, é dada pela profundidade máxima atingida pela malha. A disposição dos pontos nos referidos planos é limitada pela maior extensão do sistema, L, e o espaçamento entre eles é dado por $f.L$, em que $0 < f < 1$. Quanto menor o valor de f, maior o número de pontos e, consequentemente, maior o esforço computacional requerido e a qualidade dos resultados obtidos. Tomando-se $f = 0,25$, tem-se um bom equilíbrio entre estas variantes.

O erro quadrático ε^2_i, definido pela Equação 3.87, é então calculado considerando-se o total de P pontos analisados.

$$
\varepsilon^2_i = \left(\sum_{j=1}^{P} \left(\frac{V_3(p_j) - V_{2eq}(p_j)}{V_3(p_j)} \right)^2 \right)
$$

Equação 3.87

O valor de ρ_{2eq}^i que fornece o menor erro ε^2_i, é assumido como a melhor estimativa para ρ_{2eq}, sendo utilizado na determinação do modelo de duas camadas equivalente.

O procedimento descrito anteriormente apresenta implementação simples e o tempo de processamento é significativamente inferior ao obtido nas simulações de sistemas de aterramento em solos multicamadas.

A busca por esta equivalência tem como principal objetivo concluir-se que é possível definir modelos de duas camadas consistentes para meios originalmente modelados em três camadas de estratificação.
3.8 Implementação computacional do programa para identificação de estratificação em duas e três camadas

Para realizar a avaliação da consistência dos modelos de representação de solos com perfil de três camadas, em duas camadas, foi necessário desenvolver um aplicativo computacional capaz de identificar tais modelos de estratificação, a partir dos resultados de medição decorrentes da aplicação do método de Wenner (item 3.6).

Já havia sido desenvolvido pela equipe do LRC um programa para estratificação do solo em duas camadas de diferentes resistividades, a partir do método de Wenner. Neste trabalho, foi implementada uma extensão deste aplicativo, permitindo a modelagem do solo em três camadas, através do procedimento de imagens convencional, e uma versão adicional que utiliza o método das imagens complexas [18].

A Figura 3.26 ilustra a interface do programa, com os campos de entrada a serem preenchidos pelo usuário, como o número de espaçamentos utilizados na montagem de Wenner, seus valores, e as respectivas resistividades aparentes obtidas na medição. Define-se também em quantas camadas deseja-se modelar o solo.

![Figura 3.26: Entrada de dados do Programa](image-url)
Os resultados da simulação são apresentados na forma da Figura 3.27, expondo as seis modelagens que apresentaram menores erros em relação aos valores de medição, em ordem crescente. Cada linha refere-se a um modelo, cujas características ($\rho_1 = Ro1T$, $\rho_2 = Ro2T$, $H_1 = Prof.(m)$) são apresentadas ao longo das colunas, assim como os valores de resistividade aparente ($Ro(ai)$) obtidos considerando-se esta modelagem, para cada espaçamento ai empregado na montagem.

<table>
<thead>
<tr>
<th>Resultado</th>
<th>Error</th>
<th>Ro1T</th>
<th>Ro2T</th>
<th>Prof. (m)</th>
<th>Ro (a1)</th>
<th>Ro (a2)</th>
<th>Ro (a3)</th>
<th>Ro (a4)</th>
<th>Ro (a5)</th>
<th>Ro (a6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.105</td>
<td>1.200</td>
<td>4.050</td>
<td>3.50</td>
<td>1.272</td>
<td>1.543</td>
<td>2.166</td>
<td>2.923</td>
<td>3.523</td>
<td>3.054</td>
<td></td>
</tr>
<tr>
<td>0.113</td>
<td>1.200</td>
<td>4.050</td>
<td>2.99</td>
<td>1.313</td>
<td>1.575</td>
<td>2.365</td>
<td>3.111</td>
<td>3.644</td>
<td>3.895</td>
<td></td>
</tr>
<tr>
<td>0.119</td>
<td>1.200</td>
<td>4.320</td>
<td>3.50</td>
<td>1.275</td>
<td>1.559</td>
<td>2.218</td>
<td>3.037</td>
<td>3.706</td>
<td>4.095</td>
<td></td>
</tr>
<tr>
<td>0.146</td>
<td>1.200</td>
<td>3.930</td>
<td>2.99</td>
<td>1.308</td>
<td>1.551</td>
<td>2.301</td>
<td>2.980</td>
<td>3.442</td>
<td>3.671</td>
<td></td>
</tr>
<tr>
<td>0.155</td>
<td>1.200</td>
<td>4.320</td>
<td>4.30</td>
<td>1.246</td>
<td>1.449</td>
<td>2.013</td>
<td>2.621</td>
<td>3.548</td>
<td>4.002</td>
<td></td>
</tr>
</tbody>
</table>

Observação: todas as resistividades expressas em ohms.m

Figura 3.27: Forma de apresentação dos resultados da simulação
4.1 Procedimento de cálculo dos parâmetros do aterramento, formulado a partir da “Aproximação Potencial Constante”

Na análise de solicitações em baixa frequência, os efeitos reativos (capacitivos e indutivos) podem ser desconsiderados, sendo razoável assumir o solo como um meio puramente condutivo. Condutores imersos neste meio, conectados uns aos outros em uma malha de aterramento, alcançam, aproximadamente, um mesmo potencial (em relação ao terra remoto) quando percorridos por correntes com frequências em torno de 60 Hz.

Esta simplificação, obtida pelo comportamento do solo em baixas frequências, é denominada “Aproximação Potencial Constante” e é bastante prática na obtenção da resistência de aterramento e distribuição de potenciais na região da malha [20]. A metodologia utilizada para determinação destes parâmetros é resumida pelos procedimentos (passos) descritos a seguir, conforme [21]:

Passo 1 – Segmentação dos condutores

Primeiramente, dividem-se os condutores da malha em pequenos segmentos, com o intuito de discretizar o sistema e resolvê-lo em um formato matricial. O tamanho dos segmentos está relacionado à exatidão desejada dos resultados, ou seja, segmentos menores, e, consequentemente, em maior número, resultam em maiores exatidão e esforço computacional requerido. A exatidão neste caso está relacionada à situação ideal de infinitos segmentos.

Passo 2 – Determinação dos elementos da matriz de resistências

Determinam-se as resistências próprias e mútuas dos segmentos do sistema formado pelos condutores da malha. As resistências próprias \(R_{mm} \), estão relacionadas à elevação de potencial de um segmento \(m \) devida à corrente que flui deste mesmo segmento em direção ao terra remoto. A resistência mútua \(R_{nm} \) está relacionada à elevação de potencial do segmento \(n \) devida à corrente que flui do segmento \(m \) em direção ao terra remoto.

O cálculo destes parâmetros é apresentado no item 4.2.

Passo 3 – Constituição do sistema matricial

Com a determinação de \(R_{mm} \) e \(R_{nm} \), forma-se uma matriz de resistências \(R \), que constitui o seguinte sistema matricial:

\[
\mathbf{v} = \mathbf{R}\, \mathbf{i}
\]

Equação 4.1

Em que \(\mathbf{v} \) é o vetor dos potenciais médios dos segmentos e \(\mathbf{i} \) é o vetor das correntes transversais, que fluem do segmento em direção ao terra remoto.

Passo 4 – Resolução do sistema

Para se resolver o sistema, ou seja, obter os valores das correntes dos segmentos, determina-se a matriz de condutância \(\mathbf{G} = \mathbf{R}^{-1} \), em que:

\[
\mathbf{i} = \mathbf{G}\, \mathbf{v}
\]

Equação 4.2
Ao se considerar a Aproximação Potencial Constante, pressupõe-se um valor único para o potencial ao longo dos eletrodos conectados entre si. Assim, o vetor \mathbf{v} é constituído por valores de tensão idênticos, v:

$$
\mathbf{v} = \begin{bmatrix}
 v \\
 v \\
 v \\
 ... \\
 v
\end{bmatrix}
$$

Equação 4.3

Desta forma, constitui-se o seguinte sistema:

$$
\begin{bmatrix}
 i_1 \\
 i_2 \\
 i_n \\
 ... \\
 i_{N_s}
\end{bmatrix} =
\begin{bmatrix}
 g_{11}, g_{12}, g_{13}, ..., g_{1N_s} \\
 g_{21}, g_{22}, g_{23}, ..., g_{2N_s} \\
 g_{n1}, g_{n2}, g_{n3}, ..., g_{nN_s} \\
 ... \\
 g_{N_s1}, g_{N_s2}, g_{N_s3}, ..., g_{N_sN_s}
\end{bmatrix}
\begin{bmatrix}
 v \\
 v \\
 v \\
 ... \\
 v
\end{bmatrix}
$$

Equação 4.4

Determina-se o valor da corrente transversal i_n de cada segmento n, através do produto de v pela somatória dos elementos da linha n da matriz de condutância G:

$$
i_n = (g_{n1} + g_{n2} + g_{n3} + ... + g_{nN_s}) \cdot v
$$

Equação 4.5

Em que N_s representa o número total de segmentos.

Passo 5 – Determinação da corrente total injetada em função de v

A corrente total injetada no aterramento (i_t) é dada pela somatória das correntes transversais dos segmentos.

$$
i_t = \sum_{n=1}^{N_s} i_n
$$

Equação 4.6

Passo 6 – Cálculo da resistência de aterramento da malha
A partir do potencial atingido pelos eletrodos, \(v \), e da corrente total injetada no aterramento, obtém-se o valor da Resistência de Aterramento da malha (Equação 4.7).

\[
R = \frac{v}{I_t} \quad \text{Equação 4.7}
\]

Observa-se que o cálculo de \(R \) independe do valor de \(v \), já que este se encontra no numerador e no denominador da Equação 4.7, anulando-se. Uma alternativa simples é adotar um valor unitário para \(v \), com o intuito de facilitar as operações, sem que se perca a generalidade.

Passo 7 – Determinação do GPR máximo alcançado pela malha

Como o valor da corrente máxima injetada no aterramento é um parâmetro de projeto, calcula-se o potencial atingido pelos eletrodos para este caso crítico, através da resistência definida na Equação 4.7:

\[
v_{max} = R \cdot i_{max} \quad \text{Equação 4.8}
\]

Passo 8 – Determinação das correntes dos segmentos

A partir de \(v_{max} \), calculam-se os valores das correntes transversais dos segmentos através do sistema matricial da Equação 4.2, em que:

\[
\begin{bmatrix}
 v_{max} \\
 v_{max} \\
 v_{max} \\
 ... \\
 v_{max}
\end{bmatrix}
\]

\[
v = \begin{bmatrix}
 v_{max} \\
 v_{max} \\
 v_{max} \\
 ... \\
 v_{max}
\end{bmatrix} \quad \text{Equação 4.9}
\]

Passo 9 – Determinação dos potenciais no solo

Determinadas as correntes transversais dos \(N_s \) segmentos, calcula-se o potencial nos pontos desejados através do somatório da contribuição de cada segmento para o potencial no ponto.
4.2 Montagem da matriz de Resistências

Neste item são apresentadas as formulações para determinação das resistências mútuas e próprias de cada elemento (segmento) do aterramento, que compõe a malha particionada.

4.2.1 Acoplamento resistivo entre os condutores do aterramento (Resistência Mútua)

Como mencionado anteriormente, os condutores da malha são divididos em segmentos, definidos como a unidade constituinte do sistema matricial. A matriz R é composta pelos valores de resistência própria e resistência mútua destes segmentos, cujos procedimentos de cálculo são descritos a seguir.

Considera-se inicialmente um meio infinito de resistividade ρ, em que estão dispostos os segmentos de condutores m e n. O segmento m dispersa a corrente transversal i_m, responsável pela elevação de potencial na região ocupada pelo segmento n.

Assume-se distribuição homogênea da corrente ao longo do segmento m e, desta forma, tem-se a densidade linear de corrente i_m/L_m constante, sendo L_m o comprimento do segmento m. O potencial em um ponto p do segmento n, causado pela corrente $i = i_m/L_m$, que flui de um ponto q do segmento m (Figura 4.2) é dado por:

$$v_{pq} = \frac{\rho \cdot i}{4 \cdot \pi \cdot r_{pq}}$$

Equação 4.10
Figura 4.2: Fonte pontual em q e ponto p dos segmentos m e n, respectivamente

Em que \(r_{pq} \) é a distância entre os dois pontos.

O potencial no ponto \(p \) devido à corrente total dispersada pelo segmento \(m \) é calculado somando-se a contribuição de todos os pontos \(q \) daquele segmento, conforme Equação 4.12:

\[
v_{pm} = \int \frac{\rho \cdot i_m / L_m}{4 \cdot \pi \cdot r_{pq}} dL_m
\]

Equação 4.12

O potencial médio no segmento \(n \) é obtido através da média dos valores calculados para todos os pontos \(p \) que constituem este segmento:

\[
v_{nm} = \frac{1}{L_n} \int \int \frac{\rho \cdot i_m / L_m}{4 \cdot \pi \cdot r_{pq}} dL_m dL_n
\]

Equação 4.13

A Equação 4.13 tem solução numérica simples, tornando relativamente fácil o cálculo da resistência mútua entre os segmentos \(m \) e \(n \), determinada por:

\[
R_{nm} = \frac{v_{nm}}{i_m}
\]

Equação 4.14
Este procedimento deve ser realizado para cada dois segmentos, abrangendo todos os condutores da malha. Formam-se assim os elementos, com exceção dos da diagonal principal, da matriz de resistências R.

4.2.2 Resistência Própria dos segmentos

O cálculo da resistência própria é feito considerando-se um segmento n hipotético, alinhado e paralelamente ao segmento m, admitindo-se a distância de um raio (do segmento) entre eles, ou seja, n estaria localizado na região correspondente à superfície de m (Figura 4.3). Aplicam-se então as Equações 4.13 e 4.14, determinando-se os elementos da diagonal principal da matriz R.

4.2.3 Cômputo da natureza semi-infinita do solo e de suas possíveis estratificações

Ao serem consideradas a interface do solo com o ar e suas possíveis estratificações, os efeitos das imagens devem ser adicionados na formação da matriz de resistência. Ou seja, utilizando-se os mesmos procedimentos aplicados para um meio infinito, deve-se computar em R_{nm} a contribuição de todas as imagens do segmento m na elevação de potencial do segmento n.

Desta forma, tem-se:

$$R_{nm} = R_{nm _ \text{real}} + R_{nm _ \text{imagens}}$$

Equação 4.15

sendo $R_{nm _ \text{real}}$ a resistência mútua entre o segmento real m e o segmento n e $R_{nm _ \text{imagens}}$ a somatória das resistências mútuas entre as imagens do segmento m e o segmento n. A resistência mútua referente à cada imagem deve computar também seu fator de intensidade, devido às reflexões e transmissões dos campos nas interfaces das camadas do solo.
O posicionamento das imagens do segmento \(m \), emissor da corrente \(i_m \), segue a mesma configuração adotada para as imagens pontuais nos casos indicados no Capítulo 3. A justificativa para tal decorre da possibilidade de se assumir que o segmento emissor nada mais é do que um conjunto de fontes pontuais de corrente, de densidade linear \(i_m/L_m \), colocadas ao longo do comprimento \(L_m \).

Assim, para cálculo de \(R_{nm_imagens} \), a expressão 4.14 é aplicada repetitivamente para cada segmento imagem emissor de corrente, sendo o resultado acumulado até que a contribuição das imagens mais distantes para o valor de \(R_{nm} \) torne-se desprezível.

4.3 Determinação dos potenciais no solo

O cálculo dos potenciais na superfície do solo é feito considerando-se a contribuição de cada segmento dispersor de corrente. O potencial em um ponto \(P \), devido à dispersão da corrente transversal \(i_m \), do segmento \(m \), é dado por:

\[

v_{Pm} = \int \frac{\rho \cdot i_m}{L_m} \frac{dL_m}{4 \cdot \pi \cdot r}
\]

Equação 4.16

Ao se considerar a característica não infinita do solo, deve-se computar a contribuição de todas as imagens do segmento \(m \) no cálculo do potencial em \(P \). O potencial total no ponto \(P \) é dado pela somatória das contribuições de todos os segmentos da malha, incluindo suas imagens.

\[

v_P = \sum_{m=1}^{N_z} \left(v_{Pm_real} + v_{Pm_imagens} \right)
\]

Equação 4.17

4.4 Implementação computacional

A equipe de pesquisa do LRC já havia desenvolvido um programa computacional para cálculo da resistência de aterramento e elevação de potenciais na superfície do solo, para configurações de eletrodos imersas em solos modelados por até duas camadas horizontais. Naquele aplicativo, havia a
limitação do posicionamento dos eletrodos, que deveriam estar contidos inteiramente na primeira camada de estratificação.

Por meio deste trabalho, foram ampliadas as possibilidades de simulação para solos de três ou mais camadas, permitindo a penetração dos eletrodos nas diversas camadas do solo, através do método das imagens complexas.

É importante frisar que a estratificação em mais de três camadas possui pouco interesse prático, motivo pelo qual não foi objeto de análise neste trabalho. A Figura 4.4 apresenta a interface do programa com o usuário, onde são inseridas a configuração dos eletrodos, e as características do modelo de solo utilizado.

![Figura 4.4: Entrada de dados do Programa](image)

Os resultados obtidos na simulação são apresentados na forma da Figura 4.5, com o valor da resistência de aterramento da malha, e a distribuição de potenciais obtida ao longo de determinados pontos da superfície do solo, demarcados pela linha diagonal da figura ilustrativa.
Figura 4.5: Apresentação dos resultados da simulação

Apesar de ter como estudo chave a busca por uma representação simples e consistente em duas camadas horizontais, fez-se necessária, para as avaliações do referido estudo, a ampliação das possibilidades de modelagem do solo, aprimorando o arsenal de ferramentas de simulação do LRC.
5 RESULTADOS

5.1 Introdução

Neste capítulo, são apresentados, no item 5.2, alguns resultados de equivalência entre modelos de duas e três camadas, aplicando-se a metodologia desenvolvida no item 3.7, para duas configurações de malhas com dimensões distintas.

No intuito de exemplificar simulações de malhas por meio dos aplicativos desenvolvidos neste trabalho, no item 5.3, são apresentados exemplos do desempenho de algumas configurações de eletrodos de aterramentos, utilizando-se o programa computacional implementado.

5.2 Modelo de duas camadas equivalente

A aplicação da metodologia apresentada no item 3.7 a diversas configurações de eletrodos mostrou resultados bastante satisfatórios. Este item ilustra alguns destes casos, considerando dois exemplos de malhas imersas em ambos os modelos de solo, o de três camadas e o de duas camadas equivalente, submetidas à injeção de uma corrente de falta de 1 kA, em baixa frequência. Em cada caso, são calculados e comparados os valores de resistência de aterramento e distribuição de potenciais na superfície do solo, obtidos para as duas modelagens.
5.2.1 Exemplo 1

O primeiro exemplo consiste em uma malha 10x10 m, a uma profundidade de 0,4 m da superfície do solo, ilustrada pela Figura 5.1. Os condutores, com 0,005 m de diâmetro, estão espaçados em 2 m uns dos outros, formando-se um reticulado. A linha diagonal da figura define os pontos ao longo da superfície do solo onde são calculados os potenciais.

![Figura 5.1: Exemplo 1- Malha de 10x10m](image)

Os valores de \(L \) e \(h \) são, respectivamente, 10 m e 0,4 m, e os pontos \(p_j \) foram espaçados em 0,25L. A Tabela 5.1 resume alguns dos resultados da análise de sensibilidade realizada para diferentes condições de estratificação em três camadas. Ela indica o modelo equivalente em duas camadas encontrado, através da minimização do erro quadrático definido pela Equação 3.87.

<table>
<thead>
<tr>
<th>Caso</th>
<th>(\rho_1 (\Omega \text{m}))</th>
<th>(\rho_2 (\Omega \text{m}))</th>
<th>(\rho_3 (\Omega \text{m}))</th>
<th>(H_1 (\text{m}))</th>
<th>(H_2 (\text{m}))</th>
<th>(\rho_{2eq} (\Omega \text{m}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>500</td>
<td>2500</td>
<td>1000</td>
<td>2,5</td>
<td>5</td>
<td>1480</td>
</tr>
<tr>
<td>2</td>
<td>500</td>
<td>2500</td>
<td>7500</td>
<td>2,5</td>
<td>5</td>
<td>5417</td>
</tr>
<tr>
<td>3</td>
<td>500</td>
<td>100</td>
<td>250</td>
<td>2,5</td>
<td>5</td>
<td>162</td>
</tr>
<tr>
<td>4</td>
<td>500</td>
<td>100</td>
<td>50</td>
<td>2,5</td>
<td>5</td>
<td>70</td>
</tr>
<tr>
<td>5</td>
<td>500</td>
<td>2500</td>
<td>100</td>
<td>2,5</td>
<td>5</td>
<td>850</td>
</tr>
<tr>
<td>6</td>
<td>500</td>
<td>100</td>
<td>2500</td>
<td>2,5</td>
<td>5</td>
<td>396</td>
</tr>
<tr>
<td>7</td>
<td>500</td>
<td>2500</td>
<td>1000</td>
<td>5</td>
<td>10</td>
<td>1600</td>
</tr>
<tr>
<td>8</td>
<td>500</td>
<td>2500</td>
<td>7500</td>
<td>5</td>
<td>10</td>
<td>5333</td>
</tr>
<tr>
<td>9</td>
<td>500</td>
<td>100</td>
<td>250</td>
<td>5</td>
<td>10</td>
<td>144</td>
</tr>
<tr>
<td>10</td>
<td>500</td>
<td>100</td>
<td>50</td>
<td>5</td>
<td>10</td>
<td>82</td>
</tr>
<tr>
<td>11</td>
<td>500</td>
<td>2500</td>
<td>100</td>
<td>5</td>
<td>10</td>
<td>1020</td>
</tr>
<tr>
<td>12</td>
<td>500</td>
<td>100</td>
<td>2500</td>
<td>5</td>
<td>10</td>
<td>324</td>
</tr>
</tbody>
</table>
As resistências de aterramento correspondentes \((R_3 e R_{2eq})\) foram calculadas. A variação entre os valores obtidos para os dois modelos é dada por \(\Delta R\), Equação 5.1, e é apresentada na Tabela 5.2:

\[
\Delta R(\%) = \left(\frac{R_3 - R_{2eq}}{R_3}\right) \cdot 100
\]

Equação 5.1

<table>
<thead>
<tr>
<th>Caso</th>
<th>(R_3 , (\Omega))</th>
<th>(R_{2eq} , (\Omega))</th>
<th>(\Delta R(%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37,92</td>
<td>37,36</td>
<td>1,48</td>
</tr>
<tr>
<td>2</td>
<td>66,39</td>
<td>66,76</td>
<td>-0,56</td>
</tr>
<tr>
<td>3</td>
<td>13,53</td>
<td>13,9</td>
<td>-2,73</td>
</tr>
<tr>
<td>4</td>
<td>11,37</td>
<td>11,23</td>
<td>1,23</td>
</tr>
<tr>
<td>5</td>
<td>29,01</td>
<td>28,4</td>
<td>2,10</td>
</tr>
<tr>
<td>6</td>
<td>19,33</td>
<td>19,7</td>
<td>-1,91</td>
</tr>
<tr>
<td>7</td>
<td>32,32</td>
<td>32,33</td>
<td>-0,03</td>
</tr>
<tr>
<td>8</td>
<td>47,55</td>
<td>47,96</td>
<td>-0,86</td>
</tr>
<tr>
<td>9</td>
<td>16,1</td>
<td>16,22</td>
<td>-0,75</td>
</tr>
<tr>
<td>10</td>
<td>14,97</td>
<td>14,96</td>
<td>0,07</td>
</tr>
<tr>
<td>11</td>
<td>27,62</td>
<td>27,69</td>
<td>-0,25</td>
</tr>
<tr>
<td>12</td>
<td>19,3</td>
<td>19,38</td>
<td>-0,41</td>
</tr>
</tbody>
</table>

Como se pode observar, as variações \(\Delta R\) apresentadas são reduzidas, menores que 3\% para os casos simulados, resultado bastante satisfatório para aplicações de aterramentos.

As Figuras 5.2 a 5.13 ilustram, para ambos os modelos, de forma a compará-los, a distribuição de potencial na superfície do solo, ao longo da diagonal da Figura 5.1, e a curva teórica \(\rho_a \times a\), obtida através da aplicação do método de Wenner. Para o primeiro caso, a curva de potencial é apresentada com o eixo \(y\) partindo de 0, e adicionalmente em um formato ampliado, para evidenciar as diferenças obtidas entre os dois modelos. Nos demais casos, assim como no Exemplo 2, são apresentadas somente as curvas em seu formato ampliado.
Figura 5.2: Exemplo 1- Resultados para o caso 1

Figura 5.3: Exemplo 1- Resultados para o caso 2
Figura 5.4: Exemplo 1- Resultados para o caso 3

\[\Delta R = -2.73\% \]

Figura 5.5: Exemplo 1- Resultados para o caso 4

\[\Delta R = 1.23\% \]

Figura 5.6: Exemplo 1- Resultados para o caso 5

\[\Delta R = 2.10\% \]
Figura 5.7: Exemplo 1- Resultados para o caso 6

\[\Delta R = -1.91\% \]

Figura 5.8: Exemplo 1- Resultados para o caso 7

\[\Delta R = -0.03\% \]

Figura 5.9: Exemplo 1- Resultados para o caso 8

\[\Delta R = -0.86\% \]
Figura 5.10: Exemplo 1- Resultados para o caso 9

$\Delta R = -0.75\%$

Figura 5.11: Exemplo 1- Resultados para o caso 10

$\Delta R = 0.07\%$

Figura 5.12: Exemplo 1- Resultados para o caso 11

$\Delta R = -0.25\%$
5.2.2 Exemplo 2

O segundo exemplo consiste em uma malha 20x20 m, com oito hastes verticais de 2 m de extensão dispostas ao longo do seu perímetro (Figura 5.14). Os eletrodos paralelos do reticulado estão espaçados em 4 m, e todos os condutores possuem 0,005 m de diâmetro.

Figura 5.14: Exemplo 2- Malha de 20x20 m, com oito hastes verticais

Os valores de \(L \) e \(h \) são, respectivamente, 20m e 2,4m. As Tabelas 5.3 e 5.4 mostram, respectivamente, os modelos equivalentes e as variações \(\Delta R \) calculados, considerando-se os mesmos casos do Exemplo 1. A elevação de potencial na superfície do solo e a curva \(\rho_a \times a \) (Figuras 5.15 a 5.26) são apresentadas adiante.
Tabela 5.3: Modelos equivalentes

<table>
<thead>
<tr>
<th>Caso</th>
<th>$p_1(\Omega m)$</th>
<th>$p_2(\Omega m)$</th>
<th>$p_3(\Omega m)$</th>
<th>$H_1(m)$</th>
<th>$H_2(m)$</th>
<th>$p_{2eq}(\Omega m)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>500</td>
<td>2500</td>
<td>1000</td>
<td>2,5</td>
<td>5</td>
<td>1360</td>
</tr>
<tr>
<td>2</td>
<td>500</td>
<td>2500</td>
<td>7500</td>
<td>2,5</td>
<td>5</td>
<td>5833</td>
</tr>
<tr>
<td>3</td>
<td>500</td>
<td>100</td>
<td>250</td>
<td>2,5</td>
<td>5</td>
<td>174</td>
</tr>
<tr>
<td>4</td>
<td>500</td>
<td>100</td>
<td>50</td>
<td>2,5</td>
<td>5</td>
<td>62</td>
</tr>
<tr>
<td>5</td>
<td>500</td>
<td>2500</td>
<td>100</td>
<td>2,5</td>
<td>5</td>
<td>680</td>
</tr>
<tr>
<td>6</td>
<td>500</td>
<td>100</td>
<td>2500</td>
<td>2,5</td>
<td>5</td>
<td>540</td>
</tr>
<tr>
<td>7</td>
<td>500</td>
<td>2500</td>
<td>1000</td>
<td>5</td>
<td>10</td>
<td>1480</td>
</tr>
<tr>
<td>8</td>
<td>500</td>
<td>2500</td>
<td>7500</td>
<td>5</td>
<td>10</td>
<td>5667</td>
</tr>
<tr>
<td>9</td>
<td>500</td>
<td>100</td>
<td>250</td>
<td>5</td>
<td>10</td>
<td>162</td>
</tr>
<tr>
<td>10</td>
<td>500</td>
<td>100</td>
<td>50</td>
<td>5</td>
<td>10</td>
<td>72</td>
</tr>
<tr>
<td>11</td>
<td>500</td>
<td>2500</td>
<td>100</td>
<td>5</td>
<td>10</td>
<td>816</td>
</tr>
<tr>
<td>12</td>
<td>500</td>
<td>100</td>
<td>2500</td>
<td>5</td>
<td>10</td>
<td>432</td>
</tr>
</tbody>
</table>

Tabela 5.4: Resistências de aterramento

<table>
<thead>
<tr>
<th>Caso</th>
<th>$R_3(\Omega)$</th>
<th>$R_{2eq}(\Omega)$</th>
<th>$\Delta R(%)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21,27</td>
<td>20,90</td>
<td>1,74</td>
</tr>
<tr>
<td>2</td>
<td>47,2</td>
<td>47,52</td>
<td>-0,68</td>
</tr>
<tr>
<td>3</td>
<td>6,25</td>
<td>6,34</td>
<td>-1,44</td>
</tr>
<tr>
<td>4</td>
<td>4,51</td>
<td>4,4</td>
<td>2,44</td>
</tr>
<tr>
<td>5</td>
<td>13,63</td>
<td>13,54</td>
<td>0,66</td>
</tr>
<tr>
<td>6</td>
<td>11,65</td>
<td>11,74</td>
<td>-0,77</td>
</tr>
<tr>
<td>7</td>
<td>19,07</td>
<td>18,87</td>
<td>1,05</td>
</tr>
<tr>
<td>8</td>
<td>33,8</td>
<td>34,35</td>
<td>-1,63</td>
</tr>
<tr>
<td>9</td>
<td>7,09</td>
<td>7,25</td>
<td>-2,26</td>
</tr>
<tr>
<td>10</td>
<td>6,04</td>
<td>5,97</td>
<td>1,16</td>
</tr>
<tr>
<td>11</td>
<td>14,59</td>
<td>14,12</td>
<td>3,22</td>
</tr>
<tr>
<td>12</td>
<td>10,2</td>
<td>10,49</td>
<td>-2,84</td>
</tr>
</tbody>
</table>

Figura 5.15: Exemplo 2 - Resultados para o caso 1

a) Distribuição de Potenciais

$\Delta R = 1.74\%$

b) Curva $\rho_a \times a$
Figura 5.16: Exemplo 2 - Resultados para o caso 2

\[\Delta R = -0.68\% \]

Figura 5.17: Exemplo 2 - Resultados para o caso 3

\[\Delta R = -1.44\% \]

Figura 5.18: Exemplo 2 - Resultados para o caso 4

\[\Delta R = 2.44\% \]
a) Distribuição de Potenciais

\[\Delta R = 0.66\% \]

Figura 5.19: Exemplo 2 - Resultados para o caso 5

b) Curva \(\rho_a \times a \)

a) Distribuição de Potenciais

\[\Delta R = -0.77\% \]

Figura 5.20: Exemplo 2 - Resultados para o caso 6

b) Curva \(\rho_a \times a \)

a) Distribuição de Potenciais

\[\Delta R = 1.05\% \]

Figura 5.21: Exemplo 2 - Resultados para o caso 7
a) Distribuição de Potenciais

\[\Delta R = -1.63\% \]

Figura 5.22: Exemplo 2 - Resultados para o caso 8

b) Curva \(\rho_a \times a \)

a) Distribuição de Potenciais

\[\Delta R = -2.26\% \]

Figura 5.23: Exemplo 2 - Resultados para o caso 9

b) Curva \(\rho_a \times a \)

a) Distribuição de Potenciais

\[\Delta R = 1.16\% \]

Figura 5.24: Exemplo 2 - Resultados para o caso 10

b) Curva \(\rho_a \times a \)
![Graphs showing potential distribution and $\rho_x \times a$ curves for cases 11 and 12.](image)

Figura 5.25: Exemplo 2 - Resultados para o caso 11

$\Delta R = 3.22\%$

Figura 5.26: Exemplo 2 - Resultados para o caso 12

$\Delta R = -2.84\%$

Diversas configurações de eletrodos e condições de estratificação do solo foram simuladas. As diferenças obtidas entre as resistências de aterramento e variação de potenciais na superfície do solo, para ambos os modelos, apresentaram-se menores que 4%, alcançando este limite nos casos mais críticos.

5.3 Simulação do desempenho das malhas – cálculo da resistência de aterramento e distribuição de potenciais na superfície do solo

Consideram-se três configurações de malhas, de dimensões 20x20m, compostas por condutores de 0,005m de diâmetro, espaçados a 4m uns dos outros (Figura 5.27). A Configuração A está imersa a 0,4m da superfície do solo. As Configurações B e C estão à mesma profundidade (0,4m) e possuem
quatro hastes verticais dispostas em seu perímetro. A extensão das hastes é de 5m na Configuração B e de 10m na Configuração C.

![Configurações A, B e C]

Simula-se o comportamento dos sistemas A, B e C em dois tipos de solos, modelados por três camadas horizontais, conforme Tabela 5.5. No primeiro caso, as resistividades apresentam valores crescentes com a profundidade, e no segundo caso, valores decrescentes.

Tabela 5.5: Modelos de solo analisados

<table>
<thead>
<tr>
<th>Caso</th>
<th>ρ_1 (Ωm)</th>
<th>ρ_2 (Ωm)</th>
<th>ρ_3 (Ωm)</th>
<th>H_1 (m)</th>
<th>H_2 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000</td>
<td>2000</td>
<td>10000</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>1000</td>
<td>500</td>
<td>100</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

A resistência de aterramento e elevação de potenciais na superfície do solo, ao longo das diagonais da Figura 5.27, foram calculadas, através do método das imagens complexas. Os resultados obtidos para as três configurações de malhas são apresentados na Tabela 5.6 e Figuras 5.28 e 5.29. Considerou-se a injeção de uma corrente de falta de baixa freqüência, 60Hz, e 1kA.

Tabela 5.6: Resistências de aterramento

<table>
<thead>
<tr>
<th>Caso</th>
<th>Resistências (R (Ω))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>65,13</td>
</tr>
<tr>
<td>2</td>
<td>11,97</td>
</tr>
</tbody>
</table>
Observa-se, para o caso 2, em que os valores de resistividades decrescem com a profundidade, uma redução na resistência de aterramento e nos níveis de potenciais do solo, com a adição das hastes verticais. O aumento da extensão de tais hastes promove uma redução ainda mais importante nesses parâmetros. Já para meios com características similares ao do caso 1, o contato das hastes com as camadas mais profundas do solo não contribui de forma eficiente na redução desses valores.

Este exemplo sugere que, para cada tipo de solo, variam-se as medidas a serem tomadas para se atingirem os critérios de projeto de uma malha. O programa computacional implementado permite a realização de diversas análises de sensibilidade, no intuito de se obter uma configuração adequada para o sistema de aterramento de uma subestação.
6 CONCLUSÃO

6.1 Introdução

A presente dissertação teve como principal abordagem os modelos de estratificação do solo a serem adotados no projeto de malhas de aterramentos, e a implementação destes modelos em aplicativos computacionais. Tais aplicativos destinam-se à simulação do desempenho de malhas, frente a solicitações típicas de baixa frequência, para fins de definição do arranjo e da disposição final dos eletrodos.

6.2 Desenvolvimentos

Inicialmente, para contextualização das realizações da dissertação, procedeu-se a uma abordagem objetiva e simplificada do projeto de malhas de aterramento de subestações, considerando-se as atividades e procedimentos envolvidos. Particularmente, foi realizado um estudo minucioso sobre o método das imagens, explorando a sua aplicação em solos estratificados.

Em seguida, foi realizada uma análise cuidadosa sobre modelos equivalentes de duas camadas, e para tal, houve necessidade de implementação de aplicativos computacionais, capazes de incluir modelos de solo multicamadas. Tais programas foram aplicados sistematicamente no cálculo dos parâmetros condicionantes de projetos de aterramentos, para realização das análises de sensibilidade, gerando os resultados deste trabalho.
6.3 Contribuições do trabalho

Considerou-se, como contribuição de maior relevância, a proposta de uma metodologia de cálculo de um modelo de duas camadas equivalente, para a representação de solos com perfil típico de três camadas horizontais, baseada numa abordagem heurística.

A constatação de que os erros nos resultados da aplicação desta metodologia, em termos dos parâmetros condicionantes de projetos, são muito reduzidos numa grande variedade de casos testados, usualmente de ordem inferior a 4%, valoriza a contribuição, e denota a propriedade de sua aplicação no projeto de aterramentos, onde erros da ordem de 5 a 10% seriam aceitáveis face às incertezas envolvidas nos processos de medição da resistividade do solo.

A possibilidade de representar o solo por um modelo consistente de duas camadas traz relevante simplificação ao projeto de malhas, ao reduzir o tempo de processamento demandado pelos programas computacionais relacionados, e permitir maior dedicação à análise de potenciais soluções, em termos de arranjos de eletrodos.

Outras duas contribuições marginais, mas também importantes, referem-se às implementações realizadas para avaliação desta metodologia. Com base em aplicativos já existentes no LRC, foram desenvolvidos dois programas específicos, para estratificação do solo em modelos de três camadas, e para cálculo dos parâmetros de projeto (resistência e potenciais) em solos multicamadas, permitindo a penetração dos eletrodos nas camadas mais profundas. Os programas anteriormente desenvolvidos pela equipe do LRC abordavam apenas modelos de duas camadas, e as simulações do desempenho de malhas era limitada ao posicionamento dos condutores na primeira camada de estratificação. Por meio deste trabalho, ampliaram-se, desta forma, as possibilidades de avaliação dos sistemas de aterramento, incluindo análises de sensibilidade no projeto de malhas constituídas por hastes verticais longas.
Tais programas expandiram o campo de atuação dos aplicativos já disponíveis no LRC, constituindo-se importantes contribuições acadêmicas, naturalmente incorporadas ao arsenal dos recursos de ensino da disciplina Aterramentos Elétricos.

6.4 Sugestões de continuidade da pesquisa

A presente dissertação teve como principal desenvolvimento a avaliação de um método eficiente para identificar um modelo equivalente de duas camadas, para solos com perfis típicos de estratificação em três camadas horizontais. Verificou-se a viabilidade de se alcançar este modelo para condições práticas usuais, mas a metodologia aplicada decorreu da análise de situações hipotéticas, correspondentes a solos estratificados em três camadas, com características bem definidas \((\rho_1, \rho_2, \rho_3, H_1, H_2) \).

Considera-se que a continuidade natural deste trabalho consistiria no desenvolvimento de um procedimento, capaz de identificar modelos de duas camadas consistentes, diretamente a partir dos resultados de medição obtidos da aplicação do método de Wenner.

1967.

em edição.