
Guilherme Costa Silva

Theory and Application of Artificial Immune Systems in
Fault Detection and Diagnosis in Dynamic Systems

Thesis presented to the Graduate Program in
Electrical Engineering of the Federal University of
Minas Gerais (PPGEE-UFMG) in partial fulfill-
ment of the requirements for the degree of Doctor
in Electrical Engineering.

Advisor: Prof. Walmir Matos Caminhas
Co-Advisor: Prof. Reinaldo Martinez Palhares

Belo Horizonte, MG
2014



ii
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Resumo

O trabalho busca contribuir no sentido de avaliar a modelagem e contextualização dos
sistemas imunoinspirados, assim como a aplicação destes no problema de detecção de falhas em
sistemas dinâmicos. São apresentadas muitas abordagens para este propósito, algumas delas
novas, como por exemplo o método de Reconhecimento Antigênico Nebuloso, um algoritmo
supervisionado de detecção inspirado no processo de maturação das células T. Outro aspecto
apontado neste trabalho envolve a definição formal do problema segundo o Modelo do Perigo,
com abordagens baseadas na avaliação de evidências de operação normal ou de falhas e a
aplicação de abordagens tradicionais como o Algoritmo das Células Dendŕıticas e o Algoritmo
dos Receptores Toll-Like. Os resultados obtidos com as técnicas, no problema de detecção de
falhas em motor de corrente cont́ınua e no Benchmark DAMADICS, apresentados no trabalho,
são promissores e condizentes com os propósitos da tese, validando as técnicas.

Palavras-chave: Sistemas Imunoinspirados, Detecção de Falhas, Sistemas Dinâmicos,
Modelagem de Algoritmos, .

Abstract

The work aims to contribute in order to assess the modeling and contextualization of arti-
ficial immune systems, as well as their application to the fault detection in dynamic systems
problem. Many approaches are presented for this purpose, some of them are new, such as the
Fuzzy Antigen Recognition method, a supervised detection algorithm inspired on a view on
the T cells maturation process. Another aspect discussed in this work involves the formal def-
inition of the problem according to the Danger Model, with approaches based on the evidence
evaluation of normal operation or faults and the application of traditional approaches such as
Dendritic Cell Algorithm and the Toll-Like Receptors Algorithm. The results obtained with
the techniques, the problem of detecting faults in DC motor and DAMADICS Benchmark,
presented in the study, are promising and consistent with the purposes of the thesis, validating
these techniques.

Keywords: Artificial Immune Systems, Fault Detection, Dynamic Systems, Algorithm
Modeling.
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época do Colégio Padre Eustáquio, ou da época de minha graduação em Sistemas de Informação
na PUC-MG, ou mesmo alguns conhecidos, que sempre torceram por mim, antes, durante e
depois desta etapa.
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School at Padre Eustáquio’s (CPE), or from my undergraduate course of Information Systems
at PUC-MG, or even some acquaintances who always supported me before, during and after
this doctorate.

Special thanks to funding agencies, the CNPq which funded my project for its right time frame
in Brazil; CAPES, which funded my project in the US; and FAPEMIG, which has funded lab
projects.

And to all those I have not mentioned here, however, directly or indirectly, contributed in some
way to my welfare being during this stage of my life...

xi



xii



Contents

Contents xv

List of Figures xix

List of Tables xxii

List of Algorithms xxiii

List of Abbreviations xxvii

List of Symbols xxix

Published Papers xxix

Expanded Abstract (In Portuguese) 1

1 Introduction 23
1.1 Motivation and Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2 Objectives and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2.1 General Purposes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.2.2 Specific Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.2.3 Approaches used in the thesis . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.4 Text Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Fault Detection and Diagnosis in Dynamic Systems 29
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Redundancy in FDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.2 Characterization of faults . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.1 Quantitative Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.2 Qualitative Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 FDI as a classification problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

xiii



xiv CONTENTS

2.5.1 The DC Motor Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.2 The DAMADICS Benchmark . . . . . . . . . . . . . . . . . . . . . . . . 38

3 State of the Art in Artificial Immune Systems 43
3.1 Inspiration from nature to solve problems . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 A brief introduction to Natural Computing . . . . . . . . . . . . . . . . . 44
3.1.2 Nature-Inspired Computing topics . . . . . . . . . . . . . . . . . . . . . . 46
3.1.3 AIS X Other Nature-inspired systems . . . . . . . . . . . . . . . . . . . . 48
3.1.4 Important note about Nature-inspired Systems . . . . . . . . . . . . . . . 52

3.2 Artificial Immune System Approaches . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.1 Immune Response Models . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.2 Clonal Selection and Idiotypic Network approaches . . . . . . . . . . . . 59
3.2.3 Algorithms based on other models . . . . . . . . . . . . . . . . . . . . . . 61

3.3 A brief summary about Hybrid AIS approaches . . . . . . . . . . . . . . . . . . 64
3.3.1 Useful tools for AIS enhancement . . . . . . . . . . . . . . . . . . . . . . 64
3.3.2 Hybridization of AIS and other paradigms . . . . . . . . . . . . . . . . . 66

3.4 Immune Response Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.1 The Classical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4.2 Costimulatory and Infectious Nonself Models . . . . . . . . . . . . . . . . 70
3.4.3 The Danger Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5 Impacts in biological research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Fault Detection and Diagnosis using Fuzzy Model of Antigen Recognition
and Participatory Clustering 81
4.1 Fuzzy Antigen Recognition Algorithms . . . . . . . . . . . . . . . . . . . . . . . 81

4.1.1 Detectors generator algorithm . . . . . . . . . . . . . . . . . . . . . . . . 81
4.1.2 Monitoring algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.1.3 Simulation Results for detector generator . . . . . . . . . . . . . . . . . . 87
4.1.4 Simulation Results for monitoring . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Fault Diagnosis using Participatory Clustering . . . . . . . . . . . . . . . . . . . 90
4.2.1 Description of the Participatory Clustering algorithm . . . . . . . . . . . 91
4.2.2 Application on the fault diagnosis problem . . . . . . . . . . . . . . . . . 93

5 Other Immunological Models and Their Application to Fault Detection and
Diagnosis 97
5.1 Challenging points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1.1 Antigen modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.1.2 Signal modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2.1 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2.2 Data sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.2.3 Data processing applied to signals . . . . . . . . . . . . . . . . . . . . . . 107
5.2.4 New evaluation metrics for DCA . . . . . . . . . . . . . . . . . . . . . . 111

5.3 Validation of novel metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



CONTENTS xv

5.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.4.1 More about the algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6 Concluding Remarks 151
6.1 Main aspects of the research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.2 Further works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

References 154



xvi CONTENTS



List of Figures
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Patógenos)
PCA - Principal Component Analysis (Análise dos Componentes Principais)
PRR or PRRs - Pattern Recognition Receptors
RBF - Radial Basis Function
SDS - System Dynamics Simulation
SIS - Swarm Intelligence-based Systems (Sistemas baseados em Inteligência de Enx-

ame)
SOM - Self-Organizing Maps
STLR - Structured Toll-Like Receptor Algorithm (Algoritmo Estruturado dos Receptores

Toll-Like)
SVM - Support Vector Machine (Máquina de Vetores de Suporte)
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Resumo Expandido

Introdução

Detectar e isolar Falhas são duas atividades que fazem parte do Gerenciamento de Eventos

Anormais (AEM), um conjunto de tarefas que consiste em monitorar um sistema dinâmico

apontando a ocorrência de anomalias e, com isso, evitando posśıveis transtornos decorrente

das mesmas. Entretanto, tais operações ainda são realizadas manualmente e a automatização

destas será necessária com o objetivo de reduzir os problemas e melhorar a confiabilidade.

Nas últimas décadas, os Sistemas Imunoinspirados (AIS) têm sido empregados com sucesso

em diversos problemas de computação e de engenharia, como a detecção de anomalias. Asso-

ciando o problema da Detecção e Diagnóstico de Falhas e os prinćıpios imunológicos, supõe-se

que há diversos pontos em comum entre ambos. Isto possibilita o uso de diversas analogias e,

assim, o desenvolvimento de diversas alternativas que possam oferecer resultados interessantes

para a solução dos problemas.

Objetivos da Tese

Esta tese busca explorar as analogias imunológicas, demonstrando a relação entre os conceitos

da imunologia e a aplicação na pesquisa sobre o problema de detecção e isolamento das falhas

em sistemas dinâmicos e, através de novas contribuições e melhorias, viabilizar a resolução dos

problemas. Especificamente, o trabalho busca atingir os seguintes objetivos.

1. Desenvolvimento de novas técnicas que aperfeiçoam métodos anteriormente desenvolvidos,

como os algoritmos baseados na seleção negativa.

2. Facilitar o desenvolvimento de abordagens inspiradas em outros modelos imunológicos

(como o Modelo do Perigo), melhorar a modelagem do conhecimento de especialistas, e

explorar melhor o uso destes algoritmos aplicados ao problema de FDI.
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3. Propor metodologias de isolamento das falhas capaz de distinguir diferentes tipos de

falhas, uma vez detectadas pelo sistema imunoinspirado.

4. Aprofundar o estudo das inspirações imunológicas e apresentar a aplicabilidade das mes-

mas no problema de detecção de falhas.

Detecção e Diagnóstico de Falhas

O problema pode ser definido como um caso particular da Detecção de Anomalias, no qual um

sistema dinâmico é monitorado e, eventualmente, a falha é detectada. Após a detecção, são

extráıdas informações como a localização (requerida para o isolamento), o tipo e o tamanho

(requeridos para a identificação) e o tempo da falha, caracterizando a etapa de diagnóstico.

Grande parte dos sistemas de FDI empregam modelos de redundância, que consistem na

estimação das variáveis de sáıda do sistema dinâmico para gerar o reśıduo a partir da diferença

entre o valor estimado e o valor obtido. Uma vez gerado, este reśıduo é analisado pelo sistema

de FDI para a tomada de decisão em relação ao status do sistema dinâmico, conforme os valores

obtidos. A Figura 1 mostra um sistema de FDI conforme descrito.

Fig. 1: Modelagem de um sistema dinâmico.

Um outro aspecto é a caracterização das falhas quanto à natureza temporal das mesmas,

definidas a seguir:

1. Abruptas - Caracterizadas pela mudança abrupta e repentina do valor observado.
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2. Incipientes - Caracterizadas pela mudança gradual e progressiva do valor observado. São

falhas mais dif́ıceis de detectar.

3. Intermitentes - Caracterizadas pela repetição de variações anormais no valor observado.

Nesta tese, os dois primeiros tipos são considerados. O problema de detecção e isolamento

de falhas pode também ser definido como um problema de classificação, no qual são posśıveis

as seguintes situações, também utilizadas como fatores de desempenho:

• Alarme falsos (Dado de operação normal classificado como falha);

• Falha detectada e corretamente isolada;

• Falha detectada mas incorretamente isolada;

• Falha não detectada (Falha classificada como operação normal);

• e o Tempo de detecção da falha.

A Figura 2 ilustra o cenário descrito acima.

Fig. 2: Problema de Detecção e Isolamento de Falhas como um problema de classificação.

Nos casos estudados nesta tese, a etapa de diagnóstico é realizada após a detecção, e em

todos os casos, é considerado que as falhas não são conhecidas a priori.
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Sistemas Imunoinspirados

Os sistemas imunoinspirados são desenvolvidos com base em abstrações oriundas do sistema

imune da biologia, cujas analogias servem como metáforas para o desenvolvimento de métodos

e técnicas com a finalidade de prover soluções eficientes para problemas computacionais ou de

engenharia. A linha de pesquisa foi consolidada como um método emergente de inteligência

computacional e também como uma das principais linhas de pesquisa da computação natural.

Estes sistemas exploram vários tipos de analogias, que podem ser analisadas em pontos de

vistas diferentes e de acordo com o contexto do problema em questão. As principais abordagens,

assim como as principais aplicações estão listadas a seguir, dentre outros exemplos:

• Resposta Imune - Detecção de Anomalias / Novidades:

– Discriminação Self-Nonself ;

– Modelo do Nonself Infeccioso;

– Modelo do Perigo;

• Seleção Clonal - Otimização e Aprendizado;

• Rede Idiot́ıpica - Agrupamento.

As primeiras abordagens foram inspiradas na discriminação self-nonself e aplicadas a prob-

lemas de segurança computacional. Os algoritmos então desenvolvidos possuem um mecanismo

de geração de detectores inspirado na seleção negativa, que é análogo ao treinamento de algorit-

mos de aprendizado de máquina para uma classe, conforme ilustrado na Figura 3. Os detectores

gerados são comparados com os demais dados (ant́ıgenos), exatamente como na etapa de teste

de tais abordagens.

Após a consolidação da linha de pesquisa, uma segunda geração de algoritmos imunoinspi-

rados foi introduzida com base nos outros modelos de resposta imune conhecidos. Dentre estes

algoritmos estão o Algoritmo das Células Dendŕıticas (DCA), inspirado no modelo do perigo,

e o Algoritmo de Receptores Toll-Like (TLR), inspirado principalmente no modelo do nonself

infeccioso. Estes algoritmos têm sido aplicados a problemas de segurança computacional com

resultados promissores. Ao longo da tese, estes algoritmos são estudados sob o ponto de vista

da aplicação ao problema de FDI.

O modelo do nonself infeccioso considera a importância de um sinal caracteŕıstico para a de-

tecção de uma anomalia, mesmo com o uso de dados de treinamento para a definição dos limites

entre falhas e operação normal, representados pelo ant́ıgeno. Já o modelo do perigo é voltado
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Fig. 3: Comparação entre o treinamento de algoritmos supervisionados e a geração de detectores
nos algoritmos de seleção negativa.

para a definição e uso mais elaborado de tais conhecimentos, sendo o ant́ıgeno considerado

apenas como um identificador para os sinais analisados.

Em termos computacionais, estes modelos são inerentemente complementares, definindo a

necessidade de um mecanismo de treinamento (biologicamente representado pela seleção t́ımica)

ou a necessidade do conhecimento de especialistas sobre o problema (biologicamente repre-

sentado pela apoptose e necrose celular, segundo o modelo do perigo). Nessa representação

transitória, quatro modelos são definidos a seguir.

• Discriminação Self-Nonself ;

• Self-Nonself com sinal Co-estimulatório;

• Modelo do Nonself Infeccioso;

• Modelo do Perigo;

Estes modelos imunológicos possuem v́ınculos de transição entre os sistemas imunoinspi-

rados, que podem servir de referência para o desenvolvimento de abordagens imunoinspiradas

mais elaboradas.

Nesta tese, estes modelos são utilizados para entender como as abordagens imunoinspiradas

funcionam no contexto do problema em questão, no caso o problema de detecção e isolamento

de falhas (FDI).
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Reconhecimento Antigênico Nebuloso

O método do Reconhecimento Antigênico Nebuloso foi proposto a partir de uma visão nebu-

losa da seleção ocorrida no timo, conforme a Discriminação Self-Nonself. Segundo esta visão,

ilustrada na Figura 4, as células T que estiverem associadas com uma afinidade intermediária

aos ant́ıgenos Self sofrem seleção positiva e sobrevivem ao processo. Isso indica que o objetivo

deste processo é selecionar os clones reativos sub-ótimos com base nos padrões Self.

Fig. 4: Descrição do reconhecimento antigênico nebuloso e consequente maturação das células
T.

A partir deste prinćıpio, são considerados dois métodos que exploram estas ideias em um

sistema de detecção de anomalias, conforme descrito a seguir:

1. Geração de Detectores - Usando qualquer algoritmo baseado na seleção negativa, o modelo

nebuloso é aplicado para decidir se o detector será alocado ou não.

2. Monitoramento - Usando apenas os dados de treinamento e uma métrica de distância,

classifica-se os dados de teste como ’normal’ ou ’anomalia’.
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O primeiro método reforça a geração dos detectores no espaço nonself através da regra

nebulosa aplicada à distância entre o potencial detector e os dados self de treinamento. Na

Tabela 1, as funções nebulosas estão representadas e definidas.

Tab. 1: Regras nebulosas do método de reconhecimento antigênico nebuloso baseado em geração
de detectores.

Rule Feedback
1 Se distancia é Então resposta é

baixa selecao_negativa

2 Se distancia é Então resposta é

media selecao_positiva

3 If distancia é Então resposta é

alta morte_or_negligencia

Já o segundo método dispensa a etapa de geração dos detectores, uma vez que a distância

entre o dado self de treinamento mais próximo e o dado de teste determina a classificação

deste último. Porém, são necessárias apenas duas regras (das três consideradas no modelo)

para o funcionamento deste método, conforme Tabela 2. Ambos os métodos estão ilustrados

na Figura 5.

Tab. 2: Regras nebulosas do método de reconhecimento antigênico nebuloso baseado em mon-
itoramento.

Rule Feedback
1 Se distancia é Então resposta é

baixa selecao_negativa

2 Se distancia é Então resposta é

alta selecao_positiva

Agrupamento Participativo

O algoritmo de agrupamento participativo é baseado na metodologia de aprendizado participa-

tivo, proposta na década de 90 como um mecanismo que define o funcionamento do aprendizado

humano no contexto de revisão de conceitos aprendidos.

Este método de agrupamento consiste no emprego de um ı́ndice de compatibilidade aplicado

aos grupos gerados e de um ı́ndice de alerta que é utilizado para medir a necessidade da geração

de um novo grupo.

O algoritmo de agrupamento conta também com quatro variáveis de entrada: a taxa de

aprendizado α para atualizações nos grupos, o tamanho de janela w que verifica mudanças no
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(I) (II)

Fig. 5: Ilustração dos métodos propostos na tese: (I) Geração dos Detectores e (II) Monitora-
mento.

ı́ndice de compatibilidade, o nivel de significância λ, e o valor inicial da matriz de espalhamento

Mtx, usada ao gerar os grupos.

O algoritmo consiste em gerar e verificar um conjunto de grupos c ao verificar a distância

entre um ponto xk e o centro do grupo cg e através da matriz de espalhamento Mtxg conforme

(1).

D(xk, cg) = (xk − cg)(Mtxg)
−1(xk − cg)

′ (1)

Em (2), é calculado o ı́ndice de compatibilidade ρg de um grupo.

ρg = exp{−
1

2
D(xk, cg)} (2)

Em seguida, o valor de ρg é comparado com um limiar Tρ, de acordo com o cálculo em (3).

Tρ = exp{−
1

2
χ2
n,λ} (3)

Através de variáveis booleanas Ok que indicam violações no ı́ndice de compatibilidade ao

longo do tempo, o ı́ndice de alerta ag é calculado segundo uma distribuição de Bernoulli em

(4). Em seguida, um limiar de alerta Ta é definido em (5).

ag =

(

w

v

)

λv(1− λ)(v−w), v = 0, ..., w (4)

Ta = 1−
λ

w
(5)

Conforme violações percebidas nos limiares, o algoritmo pode gerar novos grupos ou atu-
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alizar um grupo existente. No segundo caso, o centro do grupo cg e a matriz de espalhamento

Mtxg após o cálculo do fator Gg em (6).

Gg = α(ρg
1−ag) (6)

cg = cg +Gg(xk − cg) (7)

Mtxg = (1−Gg)(Mtxg −Gg(xk − cg)
′(xk − cg)) (8)

Em alguns casos, pode haver redundância na geração de grupos, em (9), um mecanismo de

comparação de grupos é utilizado para tratar este problema.

D(ca, cb) = (cb − ca)(Ma)
−1(cb − ca)

′ (9)

E em seguida, um ı́ndice de compatibilidade é calculado entre os grupos a e b, que são

unidos caso este ı́ndice seja maior que o limiar Tρ.

Este algoritmo de agrupamento é utilizado para o diagnóstico das falhas detectadas com

o método de reconhecimento antigênico nebuloso, no estudo de caso do Motor de Corrente

Cont́ınua, apresentado nesta tese.

Estudo de caso - Motor de Corrente Cont́ınua

O sistema de acionamento do motor de corrente cont́ınua é uma simulação de um motor baseada

em equações de estado elaboradas para o estudo das condições normais ou de falha. O sistema

é composto por duas fontes de alimentação, conversores estáticos controlados, uma máquina de

corrente cont́ınua e uma carga mecânica, como ilustrado na Figura 6.

Neste benchmark, existem onze falhas que podem ser simuladas de acordo com as pos-

śıveis situações ocorridas em um motor, influenciando as variáveis observadas. Destas, sete são

avaliadas neste estudo de caso, conforme a Tabela 3. Neste estudo de caso, os algoritmos de

reconhecimento antigênico nebuloso e o algoritmo de agrupamento participativo são aplicados.

Para todos os testes, considera-se 1000ms de dados de treinamento (operação normal) e

3000ms de teste (normal e/ou falha), para o motor em regime, sem rúıdos e sem uso de

modelos de redundância. Todos os resultados são apresentados em termos de um problema

de classificação.

Com o método de geração de detectores, utiliza-se os limiares T1 = 0.15 e T2 = 0.95, o
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Fig. 6: Reprentação do benhcmark do motor de corrente cont́ınua.

Tab. 3: Falhas do motor de corrente cont́ınua.

Índice Tipo de falha
da falha

1 Desconexão do conversor da armadura
2 Desconexão do conversor de campo
3 Curto circuito no conversor da armadura
4 Curto circuito no conversor de campo
9 Falha no sensor de armadura
10 Falha no sensor de campo
11 Falha no sensor de velocidade

algoritmo utilizado é o V-Detector,com a cobertura desejada de 97, 5%, e o critério de parada

após 250 detectores alocados ou 100 tentativas. Os resultados estão dispońıveis na Tabela 4.

Para o método de monitoramento, adota-se um limiar thr = 0.95. Os resultados estão

dispońıveis na Tabela 5.

Ambos os métodos apresentaram resultados interessantes, principalmente a abordagem

baseada em monitoramento, na qual foi posśıvel distinguir os dados normais dos dados de

falha.

A definição do método de monitoramento pode ser uma boa alternativa para os problemas de

custo computacional dos demais algoritmos baseados na seleção negativa, uma vez que dispensa

a geração de detectores e a posterior comparação dos dados de teste com os mesmos.

Em seguida, foram feitos os experimentos com o algoritmo de agrupamento participativo,

com o objetivo de isolar as falhas encontradas. A taxa de aprendizado foi definida como α = 0.1,

enquanto os valores de w e de λ variam conforme análise paramétrica. O melhor resultado foi
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Tab. 4: Resultados com o algoritmo de geração de detectores.

Cenário Pontos Atraso FP FN
detectados

Normal 0 - 0% 0%
Falha 1 2001 0 0% 0%
Falha 2 2001 0 0% 0%
Falha 3 2001 0 0% 0%
Falha 4 1994 6 0% 3%
Falha 9 2001 0 0% 0%
Falha 10 2001 0 0% 0%
Falha 11 2001 0 0% 0%

Detectores Detectores Detectores
Usados Inúteis Descartados

Número 83 17 0

Tab. 5: Resultados com o algoritmo de monitoramento.

Cenário Pontos Atraso FP FN
detectados

Normal 0 - 0% 0%
Falha 1 2000 0 0% 0%
Falha 2 2000 0 0% 0%
Falha 3 2000 0 0% 0%
Falha 4 2000 0 0% 0%
Falha 9 2000 0 0% 0%
Falha 10 2000 0 0% 0%
Falha 11 2000 0 0% 0%

o obtido para w = 3000 e λ = 0.0005, conforme a Tabela 6.

O agrupamento participativo é uma alternativa interessante, porém com uma sensibili-

dade paramétrica alta, no sentido de influenciar na geração dos grupos conforme variação nos

parâmetros escolhidos, seja na distinção entre grupos, seja no número de grupos gerados.

Algoritmos de Segunda Geração

Nesta tese, mais dois algoritmos são apresentados como alternativas para detecção de falhas em

sistemas dinâmicos: o Algoritmo das Células Dendŕıticas (DCA) e o Algoritmo dos Receptores

Toll-Like (TLR), com aplicabilidade até então desconhecida ao problema de FDI.
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Tab. 6: Resultados para w = 3000 e λ = 0.0005.

Cenário Acertos Erros Grupos
Normal 4000 0 1 (0)
Falha 1 2000 0 1 (1)
Falha 2 2000 0 1 (2)
Falha 3 2000 0 1 (3)
Falha 4 2000 0 1 (4)

Estes métodos, porém, requerem o uso de um conhecimento baseado de especialistas sobre

a aplicação, que neste contexto são representados pelos sinais. Estes sinais são os responsãveis

pela emissão do alarme nestes métodos, enquanto o ant́ıgeno é o dado a ser classificado por

estes algoritmos.

No problema de FDI, este fator pode ser considerado um desafio, uma vez que o conhec-

imento sobre o sistema dinâmico nem sempre está disponv́el ou pode ser inferido no mesmo,

pois em muitos sistemas dinâmicos, os dados sÃčo limitados. Além disso, tais dados do sistema

dinÃćmico muitas vezes possuem caracteŕısticas como rúıdos e perturbações por exemplo.

Os modelos de redundância, definidos para gerar o reśıduo utilizado na comparação com

a sáıda do sistema, podem ser interpretados pelos métodos como os sinais requeridos para a

detecção da falha. Outros testes foram feitos, considerando por exemplo a diferença entre dados

entre instantes de tempo, porém, em sistemas não lineares ou com rúıdos consideráveis, estes

dados podem corromper a análise, gerando alarmes falsos.

Nestes algoritmos, o ant́ıgeno foi definido como sendo a sáıda do sistema dinâmico, o dado

a ser classificado.

Algoritmo das Células Dendŕıticas

O DCA funciona através da correlação entre os sinais processados, que representam o comporta-

mento da aplicação, e os ant́ıgenos, coletados para serem classificados e associados ao contexto

relativo aos sinais analisados. As células dendŕıticas são os agentes que coletam os ant́ıgenos e

estão expostas às informações representadas pelos sinais, coletadas de forma cumulativa.

Os sinais possuem quatro categorias na formulação original do algoritmo, sendo que duas

delas, o sinal apoptótico (SS) que evidencia o comportamento normal do sistema e o sinal

necrótico (DS) que evidencia uma posśıvel anomalia, são consideradas nesta tese, considerando

a versão determińıstica do algoritmo. A partir destes sinais, são gerados outros dois sinais, um

sinal migratório CSM , calculado em (10), que representa o tempo de vida da célula antes

de ser analisada, e o sinal resultante K, calculado em (11), cujo valor revela o contexto da
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aplicação, conforme a célula e os ant́ıgenos analisados. Todos os passos acima são resumidos

no fluxograma da Figura 7.

CSM = DS + SS (10)

K = 2DS − SS (11)

Fig. 7: Fluxograma que descreve os principais passos do DCA.

Para calcular SS e DS, é utilizado o seguinte conjunto de equações em (12) e (13).

r(k) =

∑N
i=1(y(k,i) − ŷ(k,i))2

N
jo = max(1, k − w)

SS(k) =

∑k
j=jo

r(j)

k − jo
(12)

DS(k) =
N
∑

i=1

(max(r(k), w)−min(r(k), w)) (13)
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Sendo os sinais normalizados conforme as regras em (14) e (15).

DS ′

(k) = min(0, max(100DS(k), 10)) (14)

SS ′

(k) = max(0, min(1 − 10SS(k), 1)) ∗ 5 (15)

Em seguida, métricas são utilizadas para determinar o status da aplicação de acordo com

os valores obtidos. Nesta tese foram propostos duas novas métricas para serem usadas no DCA

aplicado ao problema de detecção de falhas: o Alarme de Falha Ciente do Contexto Celular

(CCAFA) usado para a emissão do alarme e calculado conforme (16), e o Índice Antigênico

de Diferenciacção da Falha (AIFD), usado para medir a associacção dos ant́ıgenos ao contexto

do sistema e calculado em (17).

∑

DC

G+
K =

∑

DC K+

∑

DC M

∑

DC

G−

K =

∑

DC K−

∑

DC Sm

f(φ) = 1− e−φ

CCAFA = f(G+
K)− f(G−

K) (16)

AIFD(a) =

{

Jaccard(a,M) ∗
∑

(K(a)), CCAFA > thr

0, Caso contrário
(17)

Algoritmo dos Receptores Toll-Like

O Algoritmo TLR estruturado possui um mecanismo de treinamento no qual são modelados

tanto o espaço de classificação do ant́ıgeno, relativo à discriminação self-nonself, quanto as

regras para definições dos sinais processados pelo algoritmo. De forma semelhante ao DCA,

células são utilizadas para o processamento do algoritmo, porém, com um processamento muito

diferente.

Existe apenas um sinal a ser avaliado, que é relativo às regras constrúıdas durante o treina-

mento. Neste caso a categorização é binária, relativa ao sinal estar de acordo com as regras

processadas . O valor 1 provoca a maturação da célula, enquanto o valor 0, persistente até

um determinado limiar, causa semimaturação da célula. Para a ativação do alarme, a célula
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deve sofrer maturação e o ant́ıgeno deve ser classificado como nonself, qualquer outro resultado

classifica o status da aplicação como normal. Estes passos são resumidos no Fluxograma da

Figura 8.

Fig. 8: Fluxograma que descreve os principais passos do algoritmo TLR.

O TLR, assim como o DCA, são aplicados ao estudo de caso do benchmark DAMADICS,

com o objetivo de verificar o desempenho dos métodos em diferentes tipos de falhas e aplica-

bilidade destes ao problema de detecção de falhas.

Estudo de Caso - DAMADICS

O DAMADICS é um benchmark de um processo industrial que consiste em simular as condições

da operação de uma fábrica polonesa de açúcar. São obtidos como sáıda as informações sobre o

status de atuadores do sistema, de acordo com a Figura 9. O benchmark contém 19 falhas que

podem ser simuladas, destas, seis são estudadas no trabalho conforme descrição da Tabela 7,

tanto nas formas abruptas quanto incipientes, quando houver.

Para este estudo de caso, além dos dois algoritmos estudados neste trabalho, outras duas

abordagens são usadas para o estudo de caso. Uma delas consiste na modelagem de um método
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Fig. 9: Descrição do benchmark DAMADICS.

Tab. 7: Falhas simuladas no estudo de caso do DAMADICS.

Código Localização Descrição
f0 - Operação Normal
f1 Válvula de Controle Entupimento
f7 Válvula de Evaporação ou

Controle Fluxo cŕıtico
f13 Posicionador Falha no sensor de

posicionamento da haste
f15 Posicionador Falha na mola do posicionador
f17 Geral ou Variação inesperada de pressão

Externa ao longo da válvula
f19 Geral ou Externa Falha no sensor de fluxo

inspirado no modelo do perigo, desenvolvido anteriormente para o problema de detecccão de

falhas e que utiliza apenas reśıduos como sinais, o método é utilizado neste trabalho tanto para

análise quanto para comparaccão. A outra abordagem consiste no classificador SVM de uma

classe com pré processamento realizado pelo PCA, usada apenas para comparaccões com os

outros três métodos.

Para o Algoritmo das Células Dendŕıticas, utiliza-se o número de 25 células, que podem

armazenar até 10 ant́ıgenos, um tempo de vida de aproximadamente 10 avaliações e o tempo

de Amostragem na faixa de valores de Ts = {120, 60, 30, 2}.

No Algoritmo dos Receptores Toll-Like, são usadas 20 células APC, tempo de vida de 5

avaliações, e com possibilidade de usar dois algoritmos para avaliar o espa.ço self: o reconheci-

mento antigênico nebuloso ou o SVM de uma classe. Além disso, o ant́ıgeno pode ser avaliado
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em uma janela móvel na faixa de valores de W = {10, 5, 1}.

O Algoritmo baseado no Modelo do Perigo usa entradas e sáıdas do modelo nebuloso nor-

malizadas no intervalo [0, 1] conforme (18), e o limiar de alarme imune correspondente a função

de estresse do sistema. Sendo que rmax = 80std(rtr).

S̄S(t) =

{

1, rts(t) > rmax
rts(t)−rmin
rmax−rmin

, Caso contrário
(18)

Para o SVM de uma classe com pré processamento usando PCA, usa-se µ = 0.0000028, o

kernel de base radial e um ı́ndice de tolerância AT = 2, para minimizar alarmes falsos ocorridos

previamente.

Nos testes realizados com o DCA (Tabela 8, todas as falhas foram detectadas na maioria

dos casos. O algoritmo não apresentou alarmes falsos e o tempo entre o instante de ocorrência

da falha e a detecção foi relativamente baixo. As falhas incipientes foram detectadas, porém

apenas uma delas apresentou um baixo ı́ndice de atraso. O algoritmo apresenta um custo

computacional consideravelmente baixo, mas com um pré processamento considerável.

Tab. 8: Detectando falhas com o DCA, com Ts = 2.

Test

(ID)
Scenario dr% fa% ∆̄t(TS)

f0 No fault - 0% -

f1

ASm 99.1667% 0% 2.4349

AMe 100% 0% 2.4771

ALa 100% 0% 2.2715

f7

ASm 100% 0% 1.5479

AMe 100% 0% 1.5219

ALa 100% 0% 1.5376

f13

ASm 99.1667% 0% 1.8702

AMe 100% 0% 1.6303

ALa 99.1667% 0% 2.4545

Inc 100% 0% 3.3937

f15 ALa 97.5% 0% 19.2597

f17
ALa 100% 0% 1.5631

Continued on next page
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Tab. 8 – continued from previous page

Test

(ID)
Scenario dr% fa% ∆̄t(TS)

Inc 97.5% 0% 19.2597

f19

ASm 100% 0% 3.9451

AMe 100% 0% 2.2386

ALa 100% 0% 1.9204

Nos testes realizados com o Algoritmo TLR, a maioria das falhas foram detectadas, apenas

uma delas o algoritmo não foi capaz de detectar (f19 de baixa intensidade). O algoritmo

também não apresentou alarmes falsos. O tempo de resposta à falha foi um pouco maior que

o do DCA na maior parte dos casos. Quanto ao uso do algoritmo SVM (Tabela 9) em relação

ao NSA fuzzy (Tabela 10) não houve uma diferença significantemente grande. O TLR possui

um custo computacional considerável devido às avaliações necessárias.

Tab. 9: Detectando falhas com o TLR usando o SVM para o espaço Nonself e W = 1.

Test

(ID)
Scenario dr% fa% ∆̄t(sec)

f0 No fault - 0% -

f1

ASm 99.1667% 0% 112.9664

AMe 100% 0% 42.9667

ALa 100% 0% 99.275

f7

ASm 100% 0% 1.3

AMe 100% 0% 1.3167

ALa 100% 0% 1.2917

f13

ASm 99.1667% 0% 24.3866

AMe 100% 0% 12.7417

ALa 99.1667% 0% 44.437

Inc 100% 0% 157.8917

f15 ALa 100% 0% 20.5333

f17
ALa 100% 0% 1.2667

Inc 97.5% 0% 1608.2393

f19

ASm 0% 0% -

Continued on next page
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Tab. 9 – continued from previous page

Test

(ID)
Scenario dr% fa% ∆̄t(sec)

AMe 96.6667% 0% 270.1379

ALa 100% 0% 20.9917

Tab. 10: Detectando falhas com o TLR usando o Reconhecimento Antigênico Fuzzy para o
espaço Nonself e W = 1.

Test

(ID)
Scenario dr% fa% ∆̄t(sec)

f0 No fault - 0% -

f1

ASm 99.1667% 0% 112.9244

AMe 100% 0% 42.8833

ALa 100% 0% 99.3417

f7

ASm 100% 0% 1.325

AMe 100% 0% 1.2333

ALa 100% 0% 1.3

f13

ASm 99.1667% 0% 24.437

AMe 100% 0% 12.7833

ALa 99.1667% 0% 44.4706

Inc 100% 0% 157.8667

f15 ALa 100% 0% 20.5333

f17
ALa 100% 0% 1.2583

Inc 97.5% 0% 1608.3077

f19

ASm 0% 0% -

AMe 96.6667% 0% 270.2069

ALa 100% 0% 21.1583

Nos testes realizados com o algoritmo baseado no modelo do perigo (Tabela 11), a maioria

das falhas foram detectadas, com ı́ndices menores de acertos em algumas falhas, como nos

outros dois algoritmos, sem alarmes falsos. O tempo de resposta à falha foi consideravelmente

grande. A maior vantagem desta abordagem se deve a seu custo computacional baixo em

relação às demais abordagens.
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Tab. 11: Detectando falhas com o método baseado no Modelo do Perigo.

Test

(ID)
Scenario dr% fa% ∆̄t(sec)

f0 No fault - 0% -

f1

ASm 99.1667% 0% 380.46

AMe 99.1667% 0% 432.16

ALa 95.85% 0% 430.96

f7

ASm 99.1667% 0% 132.03

AMe 100% 0% 118.89

ALa 100% 0% 136.8

f13

ASm 96.6667% 0% 287.02

AMe 100% 0% 225.03

ALa 95.8333% 0% 452.85

Inc 99.1667% 0% 365.56

f15 ALa 97.50% 0% 351.3846

f17
ALa 99.1667% 0% 139.1765

Inc 99.1667% 0% 1297.4

f19

ASm 96.6667% 0% 2326.2

AMe 95% 0% 820.44

ALa 95.85% 0% 464.36

Nos testes realizados com o SVM de uma classe (Tabela 12), a taxa de detecção foi rela-

tivamente baixa e houve alarmes falsos em todos os testes. O tempo de resposta à falha foi

muito alto, mostrando que os algoritmos imunoinspirados obtiveram um desempenho maior em

relação a esta estratégia.

Tab. 12: Detectando falhas com o SVM de uma classe, e com pré processamento realizado pelo
PCA.

Test

(ID)
Scenario dr% fa% ∆̄t(sec)

f0 No fault 0% 42% 0

f1

ASm 90.8333% 9.1667% 44.6606

AMe 0% 10.8333% 0

Continued on next page
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Tab. 12 – continued from previous page

Test

(ID)
Scenario dr% fa% ∆̄t(sec)

ALa 88.3333% 11.6667% 37.5566

f7

ASm 86.6667% 13.3333% 2.7885

AMe 86.6667% 13.3333% 2.8942

ALa 82.5% 17.5% 2.899

f13

ASm 45.8333% 15% 12947.0182

AMe 43.3333% 13.3333% 14046.4231

ALa 0% 15% 0

Inc 87.5% 10.8333% 735.3905

f15 ALa 86.6667% 13.3333% 13.6827

f17
ALa 89.1667% 10.8333% 2.972

Inc 90% 10% 380.0093

f19

ASm 23.3333% 13.3333% 23389.3214

AMe 1.6667% 13.3333% 29916

ALa 0.83333% 13.3333% 39102

Para isolamento de falhas utilizando o DCA, foi considerada uma similaridade máxima de

D < 0.4 entre os pontos de falha, usando a distância euclideana, conforme aplicação do algo-

ritmo, todos os ant́ıgenos com ı́ndice AIFD > 0 são armazenados e marcados para avaliação.

Com este procedimento, os dados de ant́ıgenos são agrupados e medidos mutuamente quanto

a taxas de distinguibilidade (Tabela 13) e de ambiguidade (Tabela 14). Na primeira, quanto

mais distante de 0, mais distintas é a classe/falha detectada. Já na segunda, a ambiguidade é

menor quando os valores são próximos de 0.

Os resultados mostram que o DCA consegue isolar algumas falhas através da correlação

antigênica seguido do uso de uma métrica de distinção.

Tais resultados obtidos são promissores para estes algoritmos, embora a exigência de modelos

esteja evidente na aplicação destas técnicas, tornando-se uma condição essencial para o uso

destas no problema, tais abordagens podem prover recursos interessantes para a detecção das

falhas.
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Tab. 13: Valores de Taxa de Distinguibilidade de Distância para os ant́ıgenos coletados pelo
DCA.

f1 f7 f13 f15 f17 f19

f1 0 0.9074 0.7437 1.3932 0.7168 1.8803
f7 0.9074 0 1.2187 1.7834 1.2938 1.3155
f13 0.7437 1.2187 0 1.1213 0.6342 1.0069
f15 1.3932 1.7834 1.1213 0 1.2237 1.1003
f17 0.7168 1.2938 0.6342 1.2237 0 0.7284
f19 1.8803 1.3155 1.0069 1.1003 0.7284 0

Tab. 14: Valores de Taxa de Ambiguidade para os ant́ıgenos coletados pelo DCA.

f1 f7 f13 f15 f17 f19

f1 1 0.0202 0.0909 0 0.0241 0
f7 0 1 0 0.0309 0 0
f13 0 0.0349 1 0.0844 0.1530 0
f15 0 0.0268 0 1 0.0057 0
f17 0 0.0419 0 0.1057 1 0
f19 0 0.0132 0.0909 0 0.0494 1



Chapter 1

Introduction

This chapter presents the main aspects of this Thesis: motivations - describing the relevance

of the problem in question - objectives, methodologies, contributions and its structure.

1.1 Motivation and Relevance

The Abnormal Events Management (AEM) in real-time processes provides a set of tasks, which

includes detection, diagnosis and anomalies correction. These tasks should be effectively ob-

served and planned. The AEM is useful since the anomaly early detection allows a high degree

of reliability to operate the systems, avoiding any downtime, material losses, fall in production

quality and even accidents involving humans.

According to [Venkatasubramanian et al., 2003a], 7 out of 10 accidents are caused by human

error that are usually ignored or misdetected. The need for automation of these processes comes

from their size and complexity due to the fact, that these tasks has been performed manually.

For these reasons presented, the demand for such systems that provides automatic management

of abnormal events increases.

In order to reduce these problems and increase the reliability, the Fault Detection and

Isolation systems (FDI), also termed as Fault Detection and Diagnostic Systems (FDD) have

been widely used to automate the processes of AEM. Several principles and methodologies are

discussed in works as [de Almeida et al., 2010, de Almeida et al., 2011,D’Angelo et al., 2011].

Definitions and terminology used are considered in [Isermann, 2011].

Artificial Immune Systems (AIS) is a research field, part of Computational Intelligence and

Nature-inspired Computing that emerged in the mid 1980s and has grown in recent times,

offering the analogy with the body’s defense system as an alternative that seeks to provide

solutions to different categories of computational and engineering problems, such as anomaly

23
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detection, optimization problems, clustering, pattern recognition, among others.

The biological immune system and the problem of Fault Detection and Isolation have many

points in common that can be exploited, such as the need of differentiation and adaptability

in the case of unknown fault detection. These functions, among others, may provide some

powerful tools that can cope with FDI applications accordingly.

AIS research has increased with works such as those in [De Castro and Timmis, 2002], which

provides various methodologies inspired by immunology. It is considered that FDI problems

have features that AIS approaches can deal with, and after the research in [Forrest et al., 1994],

most approaches have presented interesting results with some anomaly detection problems.

Some new initiatives related to the development of immune-inspired systems were advocated

in [Aickelin and Cayzer, 2002] by proposing the Danger Model as a more suited alternative to

the problem of detecting anomalies. The subsequent work in [Aickelin et al., 2003] demonstrates

how to develop such systems applied to computer security.

Fault detection tasks have been addressed in works such as [Guzella et al., 2007], based on

the dynamics of regulatory T cells; [de Almeida et al., 2010,de Almeida et al., 2010,de Almeida

et al., 2011], with approaches based on Negative Selection, Danger Model and NK cells, respec-

tively.

This thesis aim at exploring in depth some immunological analogies, showing the relationship

between the concepts in immunology and application in the detection of faults in dynamical

systems and, through new contributions and enhancements, provide new ways of solving FDI

problems.

1.2 Objectives and Methodology

1.2.1 General Purposes

The purpose of this work is to review and improve immunological analogies to study the Fault

Detection and Isolation (FDI) application since such systems have many points in common

with the biological immune system. The main objective of FDI systems is the recognition of

anomalies of a process component, or even the process itself through its monitoring. Fault

detection is the first task of the system, the next step is its proper isolation.

1.2.2 Specific Objectives

1. Development of new fault detection approaches, which improve previously developed

methods, such as Negative Selection based approaches.
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2. To facilitate the development of Danger model-based approaches, improving the expert

modeling considered, to better explore the use of these algorithms applied to this problem.

3. To propose Fault Isolation methodologies capable of distinguish different types of faults,

once a fault is detected by the AIS approach.

4. To deepen immunological models and to present the applicability of all models to Fault

Detection applications.

1.2.3 Approaches used in the thesis

One of proposed approaches for fault detection makes use of an approach based on a fuzzy model

of antigen recognition (Self-nonself Discrimination), which measures recognition of anomalies

across the distance between the data and the Self space, as two models:

1. Detector generator-based model. In this model, detectors generated in the Self space

(normal patterns) suffer negative selection, the detectors generated away from the other

regions are eliminated by neglect. The detectors generated in the nonself region (outliers)

remain through Positive Selection.

2. Monitoring-based model. In this case, there is no generation of detectors, since the fuzzy

system which defines the region where the data are entered.

The proposed method, unlike other techniques, sets the fuzzy model of self-nonself discrimi-

nation.

Other methodologies define the inspiration of new FDI systems inspired by the Infectious

Nonself and Danger Models. Some of these approaches are listed below:

• The Dendritic Cell algorithm (DCA) from [Greensmith and Aickelin, 2008];

• The Toll-like Receptors (TLR) algorithm from [Nejad et al., 2012];

• The Danger Model approach in [de Almeida et al., 2010].

However, as Danger model inspired still has several issues related to the context of the algo-

rithm, data monitoring will require an expert modeling so that the system operates correctly.

Most of these approaches are based on a previously proposed algorithm, such as most

NSA approaches. The CSPRA, proposed in [Yu and Dasgupta, 2008] is based on the original

NSA, but is based on the INS model, and the Multioperational Negative Selection Algorithm

(MO-NSA), proposed in [de Almeida et al., 2010] is based on the V-detector algorithm. The
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Deterministic DCA, proposed in [Greensmith and Aickelin, 2008], and the Structured TLR

algorithm, proposed in [Nejad et al., 2012], were proposed as improvements on DCA and TLR,

respectively. A schematic preview of all presented and related approaches based on their origin

is depicted in Figure 1.1.

Fig. 1.1: Preview of all studied AIS approaches and their origins and immunological models of
inspiration.

1.3 Thesis Contributions

This study has been proposed to achieve the following contributions:

• Some new concepts, among them the transitional link between immune response models

(Self-nonself, Infectious Nonself and Danger-based) and their features related to appli-

cations. These concepts aim at ease the development and adoption of immune inspired

techniques, according to the application focus and type of data used. In literature, im-

mune response models have inspired some detection methods, but without considering
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how far their features should be properly exploited. In [Aickelin and Cayzer, 2002], a

brief study was done in favor of proposing novel approaches based on the Danger Model.

• Analysis of expert knowledge gathering in the context of Fault Detection in Dynamic

Systems, which identifies each process and then application of AIS approaches. Some

immune-inspired models rely on expert knowledge, and since most FDI systems use re-

dundancy models to provide residuals, this work presents how residuals can be combined

to immune-inspired methods and provide decision. This was done in [de Almeida et al.,

2010], but this analysis was not the focus of the authors’ research.

• A New Negative Selection model based on Fuzzy Antigen Recognition. Differently from

most negative selection-based approaches, which are mostly based on detectors genera-

tion, this model is inspired on the theory of sub-optimal antigen recognition to the immune

response, and the algorithm focuses on the decision making process regarding the detec-

tion of an anomaly. This mechanism, as it can be noticed along this work, may provide

an interesting training mechanism for some algorithms. In this model, two approaches

were considered, as follows:

– An extension of detector generation-based Negative Selection algorithms, in which

the decision process defines where anomaly detectors can be generated.

– Monitoring algorithm based on Self data (training) analysis, as the decision process

defines the classification of the data as a normal or anomaly process.

• A study on algorithms inspired in other immunological models that employ mechanisms

of innate immunity and analyzing the important fundamentals and basic considerations

for their use in FDI applications. Some approaches, such as the Dendritic Cell Algo-

rithm [Greensmith, 2007] and the Toll-Like Receptors [Twycross et al., 2010] were devel-

oped for other anomaly detection problems, such as IDS, but their applicability to FDI

Problems has not been widely studied in literature as well as their performance in this

class of problems are still unknown.

• Some improvements in dendritic cell algorithm-based approaches and their application

to FDI problems, as well as in other algorithms, the Toll-Like Receptor based algorithm.

Since these kind of techniques were not initially developed for FDI problems, these im-

provements were proposed in order to provide a suitable detection for these algorithms.

A comparison among these techniques, the method developed in [de Almeida et al., 2010],

and some other machine learning were also considered, as well as a fault isolation mech-

anism for DCA.
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1.4 Text Organization

This Thesis is organized as follows: Chapter 2 presents the most important aspects of the

problem of Fault Detection and Isolation, main application of the thesis. In Chapter 3, a

survey about AIS, with description of the state-of-the-art, methodologies, applications and also

a brief description of each immunological model with their transitional link, are presented and

discussed. In Chapter 4, the negative selection algorithm is discussed and the fuzzy model

of antigen recognition is introduced, as well as their respective results applied to the Direct

Current motor (DC Motor) benchmark proposed in [Caminhas, 1997]. In Chapter 5, systems

based on other immunological models (infectious nonself and danger model) are presented,

as well as their application to Fault Detection, the discussion about expert knowledge in the

problem, and some improvements to each algorithm in order to provide a proper solution to

FDI problems, in particular the DAMADICS benchmark, which is the main application in this

chapter. Finally, the Chapter 6 presents the concluding remarks and contributions made in

this work, as well as further and ongoing research still to be considered.



Chapter 2

Fault Detection and Diagnosis in

Dynamic Systems

2.1 Introduction

Fault detection in dynamic systems is a particular case of anomaly detection, which according

to [Chandola et al., 2009], consists of the activity or task to find the data, patterns that do not

match the expected behavior. These standards are defined as anomalies, outliers, exceptions,

among other terms. The anomaly detection is applicable to various contexts and domains,

such as intrusion detection in computer networks, fraud detection, fault detection, lie detection,

among other applications.

Developing these approaches is an ongoing challenge in the literature, considering various

aspects defined in [Chandola et al., 2009] or inferred during the research, such as:

• the definition of normal behavior, due to the uncertainties encountered in establishing

boundaries between patterns of normality and abnormality;

• the existence of malicious actions that make such behaviors as normal to the system;

• the notion of normal behaviors may change with time;

• differences between the exact notion of anomaly in various application domains;

• availability of training data;

• existence of factors like noise, which complicate the analysis techniques;

• uncertainties or inaccuracies in the existing models built for detection, which can lead to

errors in the analysis (False Positives, and False Negatives);

29
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• many techniques do not contextualize the scope of the considered problem.

The definition of abnormality is closely related to the context of novelty detection, which

according to [Markou and Singh, 2003], aims identify data or signals considered novel or un-

known, not contextualized by a learning machine during the training phase. In [Steinwart et al.,

2005], both are similar, as anomaly can be seen as something different from what is normal or

not in accordance with the standards and therefore is not considered satisfactory.1

The context of fault detection systems involves the monitoring of a dynamic system. In

addition to this, diagnosis task should be performed, which generally considers some prior

knowledge, the obtaining of these is often a difficult task to be performed. The diagnosis is

usually made during or after the detection of a fault, considering some relevant information,

as the type, location and time of a fault. A Fault Detection and Diagnosis system, according

to [Gao and Dai, 2013], may detect the occurrence of faults as soon as possible and identify

location and type of these faults with the best accuracy. These systems are a particular case

of anomaly detection systems, since their goal is, once a fault is detected, to verify each fault

behavior, identify them and then classify the fault based on its characteristics. According

to [Yang, 2004], there are two categories of diagnostic methods considered: Knowledge-based

(or Physical model based) Methods and Data-driven Methods.

2.2 Problem Statement

In process engineering, the importance of system monitoring for fault conditions has been

widely defended, since the detection, the diagnosis and correction of system conditions, are

components of AEM [Taylor and Sayda, 2005].

The major challenge in this context is to automate the process, since the AEM has been

performed manually and increasingly complex processes have been analyzed. In the literature,

many studies have been conducted to automate the processes of fault detection, according

to [de Almeida et al., 2011], whose line of research predicts detection and isolating a fault (FDI

- Fault Detection and Isolation).

According to [Yu et al., 2012], three steps are defined as follows.

1. Detection, in which occurrence of a fault is indicated after its occurrence;

2. Isolation, which defines the fault location;

3. Identification, in which the fault size and other features are estimated.

1Definition provided by the Cambridge dictionary
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In this chapter, some related concepts are presented to the fault detection problem, focusing

on the application environment and approaches based on Intelligent Systems for solving the

problem. Some relevant information for fault detection in dynamic systems can be checked

in [de Almeida et al., 2011,D’Angelo et al., 2011].

2.2.1 Redundancy in FDI

Redundancy models, as defined in [Frank, 1990], are based on the following methodologies:

1. Physical Redundancy - defined as replication elements required for performance measure-

ment and process.

2. Analytical Redundancy - defined by calculating the residue corresponding to differences

between measured values and the estimated / observed variables, defined by the models

to be shown in section 3.4.

3. Abstraction - representation which corresponds to the adequacy of the data obtained

in the process to algorithms. The goal of this representation is to adapt the models to

algorithms that require a more abstract representation of the problem. This represen-

tation can be based on the two previous terminology, often being interpreted as some

calculations on the measured data in the process.

According to [Chow and Willsky, 1984], which defines mechanisms for robust fault detection

and whose work is based on analytical redundancy, there are two steps in the task of FDI

systems:

1. Generation of residuals;

2. Decision making.

The first task is the use of models for fault detection and the second consists in analyzing

the information represented by the residuals to detect and to even isolate a fault. The follow-

ing section discusses these strategies in the analysis of dynamical system state of qualitative

approaches, instead of using redundancy models, a symptom extraction can be performed us-

ing classifiers, as implied in [Liu, 2004]. According to [Mayorga and Sellier, 2006], adaptive

observers can be employed for state and unknown values estimation at same time, when certain

values are unknown and subject to changes.
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2.2.2 Characterization of faults

In [Liu, 2004], faults are defined by their location, informed by their actuators, sensor or

components, and according to variables, as additive or multiplicative. According to [Nayyeri,

2013,Carl et al., 2012], faults can be described according to their temporal characteristics, these

concepts are relevant considering the nature of each fault.

1. Abrupt - Faults characterized by sudden and abrupt change of an observed value. Usually

modeled by the step function.

2. Incipient - Faults characterized by gradual and progressive change of an observed value,

different from abrupt faults, this type can be more difficult to detect, because it represents

a more subtle signal variation. Can be modeled through the ramp function, whose slope

indicates the speed at which the fault progresses. Depending on the process, is not a

trivial type of fault is detected due to delay in detection issues.

3. Intermittent - Fault characterized by the repetition of abnormal variations in the observed

values. Can be modeled by pulses at different instants.

In a study applied to power systems in [Joshua, 2012], two types of faults are considered

(abrupt and incipient faults), since these are most common in case studies, as most of them

consider the occurrence of a fault as an event.

Throughout this work, especially in Chapters 4 and 5, it can be seen that the modeling of

these detectors is a difficult process due to the occurrence of noise considered in many existing

dynamic systems in daily life.

2.3 Approaches

Many strategies have been adopted to provide detection with a high degree of reliability of

operation of the systems. According to [D’Angelo et al., 2011], this demand resulted in the

need for these systems supervision, which may be based on knowledge of the process or data

using mathematical models or computational intelligence systems.

In a more general classification, strategies for fault detection can be based on quantitative

models (residual or classification based models), and qualitative models (symptom or search

based models).
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2.3.1 Quantitative Models

Quantitative models employ analytical approaches for the signals generation measuring differ-

ences between measured and observed values of a dynamic system to measure the state of the

system as its normality degree, as in [Wang et al., 2011b]. These approximations are generated

by state observers, or also by neural networks trained with data to be in the Normal states, as

in the flowchart in Figure 2.1.

Fig. 2.1: Generic Model of a fault detection system, based on [Ding, 2008].

Residuals can also be used to isolate faults, and also can be used in same way as in pattern

recognition, enabling the use of various tools. Some of these methods are described in [Venkata-

subramanian et al., 2003a]. And the first stage of an FDI system is the fault detection, consid-

ered on most algorithms presented in this work.

2.3.2 Qualitative Models

Qualitative models are developed, according to [Venkatasubramanian et al., 2003b], based on

some fundamental understanding of physical features of a dynamic system. These models are

usually based on causal properties (cause and effect analysis) or on diagnostic search (based on

topographies or symptoms) of possible abnormal states.

These systems may have some advantages over quantitative approaches, and the major

disadvantage of them is the generation of spurious solutions and the need of a reasoning tool

in order to generate the qualitative knowledge based on the modeling.
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2.4 FDI as a classification problem

It is assumed that the main objective of a Fault Detection and Isolation system is the recognition

of abnormal behavior (faults) of a process component, or process itself, through the monitoring

of its variables and then recognizing adequately the fault patterns or the normal operation.

This idea of this approach can be understood from Figure 2.2. To enable a two-dimensional

preview, consider a dynamic system which can be associated with this pattern to obtain this

information on their operation. Consider coordinates xp1(t) and xp2(t) as inputs, outputs,

estimated states, residue, or combination of these parameters. These coordinates define the

space characterized as the ordered pair (xp1(t), xp2(t)).

Fig. 2.2: Illustration of the Fault Classification Problem, based on [Caminhas, 1997].

For this system, consider three operating situations (classes): normal; Class-1 Fault and

Class-2 Fault. These situations are separated by the border highlighted in Figure 2.2. Whereas

the boundary is obtained by a pattern classification algorithm used to detect and isolate faults.

Based on the boundaries of separation and classification may be illustrated indices for assessing

the quality of a system fault detection, namely:

• False alarm (a normal operation classified as a fault class);

• Fault detected and properly isolated;
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• Fault detected but incorrectly isolated;

• Failure to detect (a fault classified as a normal operation);

• and The fault detection time.

To graphically analyze these situations assume that the initial situation is normal system

operation at t = t0, characterized by the pair (xp1(t0),xp2(t0)) represented by the point P1.

Consider the following situations:

• System operation at point P2, which belong to the region defined by the separation

border, corresponding to a Class-1 fault operation. Based on the classification border,

this point is also a Class-1 fault operation. Therefore, for the situation, the point P2 is

detected and the fault is isolated correctly;

• The P3 point, based on the classification border, is classified as Class-2 fault operation,

but corresponds to a normal condition, which is seen as a false alarm;

• The P5 point is labeled as Class-2 fault operation. As this point corresponds to a Class-1

fault operation, in which case the fault is detected, but isolated incorrectly;

• The point P4 represents a failure to detect the fault (Class-2 fault operation labeled as a

normal point);

• The fault detection time: if a Class-1 fault occurs, represented by P2 point, the time

spent to detect it is defined as the time in which the dynamic system has led P1 to reach

Class-1 border.

It is observed that the more closer to the real separation border is the classification border,

the better detection is provided by the FDI system.

Usually, the first stage of an FDI system is the fault detection, considered on most algorithms

studied in this thesis. Fault isolation is performed if and only if an alarm is triggered by fault

detection system. In addition, some fault types are not prior known, as considered in all case

studies in this work.

2.5 Benchmarks

Some benchmarks were employed in the literature in order to provide validation on most FDI

techniques. In this thesis, two benchmarks are employed and simulated to validate the algo-

rithms proposed in this work.
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2.5.1 The DC Motor Benchmark

The DC Motor benchmark was proposed in [Caminhas, 1997] in order to simulate the conditions

of a Direct Current Motor in normal and anomalous states.

This benchmark can be described as a drive system which consists of two power supplies,

controlled static converters, a direct current machine and a mechanical load. The system can be

represented in shown in Figure 2.3. The block diagram of the entire system, including control,

is shown in Figure 2.4. The speed controller, proportional integral gives the value of armature

current reference. The control of the armature current is done by varying the supply voltage.

This voltage is a function of trigger angle of the converter provided by current controller. The

loop field, and provide the current control allows the drive system to operate above the rated

speed at constant power, through field weakening.

Fig. 2.3: Representation of the DC Motor system.

In Figure 2.3, we can describe each variable as the following:

• va represents the voltage of the armature circuit,

• vfd represents the voltage of the field circuit,

• ia represents the armature circuit current,

• ifd represents the field circuit current.

and in Figure 2.4:

• ωr represents mechanical rotation speed in rad/s,



2.5 Benchmarks 37

Fig. 2.4: Block diagram of the DC Motor system.

• αfd represents the trigger angle of the field circuit converter,

• αa represents the trigger angle of the armature circuit converter,

Those variables are indexed by n, which is related to the machine nominal values. The state

variables are defined by:

• x1 = ia,

• x2 = ifd,

• x3 = ωr

All state variables are measured, i.e. y(t) = Ix(t).

In terms of fault analysis of the benchmark, three groups can be defined:

1. Actuators (armature and field converters);

2. Plant or process (in the DC Motor);

3. Sensors (current meters and speed).

Actuator faults usually occur in static converters. In the context of the DC Motor, this

type of fault is characterized by short-circuit or disconnection of the machine components.

Plant faults can be represented by variations in resistance and inductance of the armature

and field, faults in the ventilation system, that results in simultaneous variations of armature

and field resistances, or poorly lubricated bearings, caused by variation in friction in the motor.
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Sensor faults are characterized by shutdowns of current sensors (armature and field) and

the velocity sensor.

Considering the three faults types discussed above, a summary of the fault modeling in the

DC Motor benchmark is given in Table 2.1.

Tab. 2.1: Summary of DC Motor system faults.

Fault Fault Type
Index
1 Armature converter disconnection
2 Field converter disconnection
3 Armature converter short circuit
4 Field converter short circuit
5 Armature turns short-circuit
6 Field turns short-circuit
7 Ventilation system fault
8 Bearing lubrication fault
9 Armature current sensor fault
10 Field current sensor fault
11 Machine speed sensor fault

This benchmark has been previously used in [de Almeida et al., 2010] for tests with the

multioperational version of NSA. In this work, the DC Motor is tested at Chapter 4, for tests

with the fuzzy antigen recognition method, and at Chapter 5 for the validation of Dendritic

Cell Algorithm metrics.

2.5.2 The DAMADICS Benchmark

This benchmark was proposed in [Bartys et al., 2006], for its purpose, three industrial actuators

have been considered, with their structure being the same. The benchmark actuator belongs

to the class of intelligent electro-pneumatic devices and is considered as an assembly of devices

consisting of:

1. Control valve;

2. Spring-and-diaphragm pneumatic servomotor;

3. Positioner.

The actual conditions of the operation of a Polish sugar factory are simulated, in order

to model actuators for industrial valves and to generate valid databases to validate detection

methods and fault diagnosis features. The Figure 2.5 presents an illustration of the actuators.
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Fig. 2.5: The actuator of DAMADICS benchmark, based in [bmd, 2002].

Basically, according to [Kourd et al., 2013], this benchmark has the following mesurements:

process control external signal CV , liquid pressures on the valve inlet P1 and outlet P2, liquid

temperature T , liquid flow rate F and servomotor rod displacement X . Based on these inputs

and outputs, the model is described in Figure 2.6.

Fig. 2.6: Inputs and Outputs of DAMADICS.

DAMADICS faults can be simulated according to their intensity or nature (abrupt or in-

cipient). There are 19 faults described for simulation in Table 2.2.

The DAMADICS benchmark was applied in several works in [Guzella et al., 2007,de Almeida

et al., 2011,Lemos et al., 2013,D’Angelo et al., 2011], as well as in the earlier implementation of

the Danger-based method, in [de Almeida et al., 2010], among others. Some previous researches

have applied immune-inspired algorithms in DAMADICS using neural networks to generate
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residuals for the decision phase, performed by AIS approaches.

In Chapter 5, some faults of the benchmark are tested with several immune-inspired tech-

niques.
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Tab. 2.2: Summary of DAMADICS benchmark faults.

Fault Fault Description
Index Location
0 - Normal Conditions
1 Control Valve Valve clogging
2 Control Valve Valve or valve

seat sedimentation
3 Control Valve Valve or valve

seat erosion
4 Control Valve Increase of

valve friction
5 Control Valve External leakage
6 Control Valve Valve tightness
7 Control Valve Medium evaporation or

critical flow
8 Servomotor Twisted servomotor stem
9 Servomotor Servomotor housing or

terminal tightness
10 Servomotor Servomotor diaphragm

perforation
11 Servomotor Servomotor spring fault
12 Servomotor Electro-pneumatic

transducer fault
13 Positioner Stem displacement

sensor fault
14 Positioner Pressure sensor fault
15 Positioner Positioner spring fault
16 General or Positioner supply

External pressure drop
17 General or Unexpected pressure change

External across valve
18 General or Fully or partly opened

External bypass valves
19 General or External Flow rate sensor fault
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Chapter 3

State of the Art in Artificial Immune

Systems

Artificial Immune Systems, alternatively known as Immune-inspired Systems or Immunological

Computation, is a research line which is developed based on abstractions derived from the

biological immune system. These abstractions are based on analogies that serve as metaphors

for the development of methods and techniques inspired by the immune system in order to

reproduce some features found in the biological immune system.

The AIS research field has been consolidated in [De Castro and Timmis, 2002], as an

emerging computational intelligence method. Since then, some algorithms and methods have

been developed in order to provide efficient solutions to many computational or engineering

problems, such as anomaly detection, optimization, clustering, machine learning, among others

as described in [Dasgupta and Niño, 2008, Dasgupta et al., 2011].The following section will

bring some concepts and advances in these approaches.

3.1 Inspiration from nature to solve problems

Natural systems may be considered one of the richest sources of inspiration for the development

of new systems, according to [De Castro, 2006,Afaq and Saini, 2011,Rozenberg et al., 2012].

Due to the complexity of most problems, obtaining reasonable solutions may be a demanding

task and most conventional methods are unable to perform this task in a feasible time.

Many computational paradigms have been proposed, some of these inspired by natural phe-

nomena to provide a system with same or similar features in order to solve complex problems,

such as optimization, classification, clustering, machine learning, anomaly detection, among

others.

43
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These paradigms have been rearranged and categorized into a research field named Nature-

Inspired Systems, a subdivision of Natural Computing research field which, according to [De Cas-

tro, 2006], consists of extracting ideas from nature to develop computational systems, or sim-

ulating and emulating natural phenomena, or even using natural resources to perform compu-

tation. And according to [Rozenberg et al., 2012], this field of study investigates models and

computational techniques inspired by nature, as well as phenomena taking place in nature in

terms of information processing.

3.1.1 A brief introduction to Natural Computing

Many computational systems or events have inspirations in natural or biological mechanisms.

As defined by [De Castro, 2006], this principle, which provides several methods or solutions

based on natural resources or inspirations, is the essential of the Natural Computing research

field, which has three branches, namely:

1. Nature-Inspired Computing models - Solving of problems using nature as inspiration;

2. Simulation and Emulation of Natural Phenomena - Simulation of natural phenomena and

mechanisms in computers;

3. Computing with Natural mechanisms - Using nature as source for hardware or information

processing.

Data structures implementation that can complement or replace current computers devel-

oped in silicon may be studied in the third subdivision, Computing with Natural mecha-

nisms. Such structures may constitute in DNA, RNA, quantum bits or membranes, allowing

the development of “natural” computers.

The study of behaviors, patterns and natural or biological processes, as well as their sim-

ulations are discussed in the second subdivision, Simulation and Emulation of Natural

Phenomena. In which Artificial Life models and some phenomena such as Fractal Geometry

are considered.

Finally, the study of computational tools inspired by natural phenomena is the main pro-

posal of the first subdivision, Nature-Inspired Computing models. In this group, strategies

based on biological or natural mechanisms are proposed in order to provide the same features

found in biological systems for solving complex problems. This subdivision includes the main

focus of this research, as Artificial Immune Systems researches are methods inspired by natural

and biological phenomena.
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Some researches, as in [Kari and Rozenberg, 2008], may consider subdivisions 1 and 2 as

a single subdivision in which nature serves as inspiration, including other researches, such as

Cellular Automata and L-Systems, those applied both for problem solving and simulations;

Membrane Computing, which has some applications as natural mechanism or to solve com-

putational problems; and even Artificial Life simulations. However, in this particular case,

simulating life or natural phenomena cannot be considered equal to use nature abstractions to

solve problems, as the context and purpose of both subdivisions are different. Figure 3.1 shows

a schematic representation of the connection between all main paradigms of Nature Computing,

as well as their recurrent subjects in literature.

Fig. 3.1: The Natural Computing paradigms and their main research topics, with focus on
Nature-Inspired Systems, based on [De Castro, 2006,Kari and Rozenberg, 2008].

As an emerging field the Natural Computing research has three major challenges according

to [de Castro et al., 2011]: its consolidation as a transdisciplinary discipline, a more refined

definition of information processing, and the definition of engineering of these systems. It is

stated in the paper that this research field represents an environment of intellectual synergy

that instigates the scientific community to reflect and rethink ideas and proposals in a trans-

disciplinary way. It is described in [De Castro, 2006] that Natural Computing yields novel and

exciting capabilities for computer science, engineering, philosophy and the biosciences.
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The Nature-Inspired Computing paradigm can be alternatively known as Bio-Inspired Com-

puting, Computing with Biological Metaphors or even Biological Motivated Computing [De Cas-

tro, 2006], considering many of these inspirations related to biological phenomena. In addition,

biology can have a broad meaning which incorporates not only biological, but also chemical and

physical systems as well [De Castro, 2006]. This paradigm is widely applied to a large number

of complex problems in literature, which will be further discussed.

3.1.2 Nature-Inspired Computing topics

The list of Nature-inspired systems includes, but is not limited to, the following types of com-

putational intelligence approaches:

• Artificial Neural Networks

• Evolutionary Computation

• Swarm Intelligence-based Systems

• Artificial Immune Systems

All these systems have the biological inspiration as a feature, and may be applied to a

wide number of problems. Computational intelligence systems have been heavily influenced by

biological inspiration, especially in this context.

The biological influence is due to relevant features present in biological systems, such as

memory, organization, learning, recognition, adaptation, robustness, tolerance and diversity in

employment of these techniques. The expected result of using bio-inspired systems in their

applications is to achieve better results in the solution of problems as the same features from

biological system are provided by their computational counterpart.

For example, Artificial Neural Networks systems have an analogy with the brain and human

connectionism. These systems are bio-inspired alternatives for machine learning systems. These

systems can use supervised learning, as Perceptron or Radial Basis Functions, or unsupervised

learning, as Kohonen’s Self-organizing maps.

Evolutionary Computation systems are based on the evolution theory and use population

based concepts. These algorithms rely on crossover operators, in which individuals from a

given generation are able to produce new individuals, and mutation operators, in which an

individual undergoes changes. These individuals are also influenced by selection mechanisms,

which determines how satisfactory is the solution for a given application. Mostly applied for



3.1 Inspiration from nature to solve problems 47

optimization problems, some examples of systems from this paradigm are Genetic Algorithms,

Differential Evolution, and Genetic Programming approaches.

Systems based on swarm intelligence, are also based on populations. However, unlike Evo-

lutionary Computation systems, they are based on the influence of some individuals on the

population according to the environment. In these systems, the behavior of one individual can

influence the behavior of others and of the overall system according to predetermined rules.

Systems based on Ant Colony follow this reasoning. Another system considered in this group

is Particle Swarm Optimization, whose rules are based on the behavior of the best individual,

either globally or locally.

Artificial Immune Systems are typically dependent on the application environment. For

example, Anomaly Detection are determined by system functions according to the inspiration

model adopted, which will be further discussed. For other applications, as in the case of Clonal

Selection or Idiotypic Network based systems, this paradigm may have great similarities with

Evolutionary Computation, however, within immunological contexts.

In addition to their application to Anomaly Detection problems, Artificial Immune Systems

can also be applied to optimization, pattern recognition, clustering, machine learning, among

other problems. As the biological immune system have many aspects to serve as inspirations,

it is possible to apply AIS to these problems according to them [Dasgupta et al., 2003, De

Castro and Timmis, 2002,Dasgupta and Niño, 2008,Dasgupta et al., 2011]. In Figure 3.2 AIS

and their algorithms and abstractions are illustrated as a Nature-inspired system as well as the

other paradigms.

Fig. 3.2: Nature-inspired systems examples, with focus on Artificial Immune Systems. (adapted
from [De Castro, 2006]
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Newer AIS approaches are focused on innate immunity, possibly because of its relation

to adaptive immunity in some immunological models, like the Infectious Nonself [Janeway Jr.,

1989] and the Danger Model [Matzinger, 1994], considering the role of innate immunity in these

models. Since Antigen Presenting Cells (APCs) such as dendritic cells and macrophages are

represented as mediators for Th cells, some applications have exploited these features, one of

them is the Dendritic Cell Algorithm (DCA), proposed in [Greensmith et al., 2005] and based

on the Danger Model and APC functions.

Some other functions and models may include other functions or models that are not usu-

ally employed for analogies, such as the T-Cell Receptor Density [Owens et al., 2013], the

Complement System [Aitken et al., 2008], Natural Killer Cells [de Almeida et al., 2011, Fu

et al., 2012], Cross-Regulation mechanism [Abi-Haidar and Rocha, 2010], Tunable Activation

Threshold [Antunes and Correia, 2009a] and the Cohen’s Cognitive model [Andrews and Tim-

mis, 2007], among others.

As AIS have many approaches which may be suitable for many sets of applications, they

also can be compared to most Nature-inspired approaches as well. This comparison is also

considered in [De Castro and Timmis, 2002] and may be extended as novel immune-inspired

approaches have been introduced to literature.

3.1.3 AIS X Other Nature-inspired systems

In the Nature-inspired computing research field, Immune-inspired systems can be defined by

their multiple aspects, incorporating some features from other approaches in different ways.

These features in common with other nature-inspired systems will be further defined in a

comparison between these approaches.

One of the advantages of Immune-inspired system is its applicability in various contexts and

the possibility of multiple applications. Most nature-inspired paradigms would be applied to a

particular set of applications, as further described in this comparison between AIS and them,

based on some considerations of [De Castro and Timmis, 2002].

Artificial Immune Systems and Artificial Neural Networks

Artificial Neural Networks (ANN) are inspired by the human nervous system in the same way as

AIS are inspired by human immune system as the neuron represents the information processing

agents, interconnected by other neurons and forming the neural network, in order to provide

learning features. Each neuron relies on weights, which defines the learning function and are

adjusted during the training phase. Learning is the main feature found at these systems.
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Tab. 3.1: Parallel between AIS and ANN

Artificial Immune Artificial Neural
Systems (AIS) Networks (ANN)

Bioinspiration Antigen recognition by immune cells Connection among neurons
(According to a given model or feature)

Representation Shape-space, agents or Mathematical modeling
mathematical modeling based. based

Architecture Population or network based Network based
Adaption Learning (NSA) or evolution (CSA/AIN) Learning
Plasticity and According to their Using constructive or
Diversity components evaluation pruning algorithms
Applications Classification, anomaly/novelty Classification or regression

detection, regression, clustering, problems.
optimization, among other problems.

ANNs are mainly represented by Multi-Layer Perceptrons, which may use a Feedforward

architecture and the Backpropagation algorithm for a supervised learning; Radial Basis Func-

tions, another supervised method; and Self-Organizing Maps, an unsupervised method which

relies on a competition mechanism applied to neurons in the network. Recurrent Networks and

Reinforcement Learning algorithms also represent this set of bio-inspired applications.

AIS, like ANN, can be applied to a large set of learning problems. Based on immune memory

concepts, as memory cells are able to store information of a particular antigen in order to provide

a faster and more effective response, learning is a feature implied by the immune memory in

the adaptive immune system and can be provided by some immune-inspired approaches like

Clonal Selection based algorithms.

The negative (and also positive) selection of lymphocytes, according to Self and Nonself

Discrimination and assuming that a naive cell is presented to a given self antigen from body,

is also a valid analogy which matches to the same supervised machine learning principles that

are adopted by most neural network models. This feature will be further discussed throughout

this work. At most, learning feature is the recurring similarity between both approaches. In

Table 3.1, the differences between AIS and ANN are shown.

Artificial Immune Systems and Evolutionary Computation

Evolutionary Computation approaches are inspired by evolution theories, in which a population

of individuals represents the set of potential solutions to a given problem and each individual
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Tab. 3.2: Parallel between AIS and EC

Artificial Immune Evolutionary
Systems (AIS) Computation (EC)

Bioinspiration Antigen recognition by immune cells Evolution of individuals
(According to a given model or feature) based on chromosomes

Representation Shape-space, agents or Stochastic modeling
mathematical modeling based. based

Architecture Population or network based Population based
Adaption Learning (NSA) or evolution (CSA/AIN) Evolution
Plasticity and According to their Selection of most
Diversity components evaluation fitted chromosomes
Applications Classification, anomaly/novelty Mostly for optimization

detection, regression, clustering, problems.
optimization, among other problems.

has a genotypic (variables) and a phenotypic representation (fitness function). Best values

for fitness solution represent potential best solutions for the problem. Through processes of

reproduction, selection and genetic operations, population evolves in order to improve these

solutions by generations.

Evolutionary Algorithms are mainly represented by Genetic Algorithms (GA), which relies

on crossover and mutation operators as well as its selection operator applied to the population

individuals, usually represented as binary chromosomes. Older algorithms as Evolutionary

Programming (EP) and Evolution Strategies (ES) were also considered. Genetic Programming

(GP), which is applied in a different context, as representation of computer programs, and

Differential Evolution (DE), another evolutionary algorithm, also represent this paradigm.

Some AIS approaches applied to optimization problems have evolution based mechanisms.

The main difference between these algorithms is regarding how the selection of best solutions

may occur. In essence, clonal selection based algorithms have some resemblances with evolu-

tionary approaches. In Table 3.2, the differences between both paradigms are shown.

Artificial Immune Systems and Swarm Intelligence-based Systems

Swarm Intelligence systems are a set of applications inspired in the dynamics of populations in

a group, these approaches reproduce collective behaviors of a swarm, which can also represent

good solutions for many applications, in particular, for optimization related problems.

This set of applications includes the Ant Colony Optimization System (ACO), inspired in the
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Tab. 3.3: Parallel between AIS and Swarm Intelligence

Artificial Immune Swarm Intelligence
Systems (AIS) based Systems (SIS)

Bioinspiration Antigen recognition by immune cells Collective behavior of many
(According to a given model or feature) individuals

Representation Shape-space, agents or Stochastic and mathematical
mathematical modeling based. modeling based

Architecture Population or network based Population based
Adaption Learning (NSA) or evolution (CSA/AIN) Collective behavior
Plasticity and According to their Population changing according
Diversity components evaluation to collective behavior
Applications Classification, anomaly/novelty Mostly for optimization

detection, regression, clustering, or clustering problems.
optimization, among other problems.

ant communication through pheromones which represents pathways to find food; the Particle

Swarm Optimization System (PSO), inspired in the collective behavior by most individuals

imitate the best of their population or their own best experiences; and other algorithms such as

Bee Colony [Bitam et al., 2010,Maia et al., 2012,Xu et al., 2013], Bacterial Foraging [Passino,

2002], Water Drops [Shah-Hosseini, 2009], Fish Swarms [Neshat et al., 2012], among others.

The main idea of these algorithms is to exploit the main features of such inspirations as long

as a given problem can be solved, once necessary.

These nature-inspired paradigm have been widely applied to optimization problems and

then, comparisons to AIS approaches have been discussed in [Timmis et al., 2010], since both

paradigms have many aspects of direct parallels, since Swarm Intelligence exploits the result of

individual behaviors in coordinated population behavior as a whole and AIS exploits immune

functions and models. Both approaches have been also discussed in terms of self-organization,

positive and negative feedbacks, amplification factors and multiple signals of phenomena. The

scientific and abstract aspects of swarm interactions have been discussed and both approaches

can be considered as complementary fields of research that also can be combined to develop

new techniques. In Table 3.3, the differences between both approaches are shown.

Similarities between AIS and SIS have been discussed in [Xiao et al., 2011], such as structure

of individuals, their interaction, and system structures, as well as their learning, memory,

feedback, and adaptability aspects, among other points. It is possible that Swarm Intelligence-

based approaches, as well as AIS, are emerging approaches whose potential is still high for
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analogy exploiting.

3.1.4 Important note about Nature-inspired Systems

Importantly, Nature-inspired systems do not necessarily have all the features of a particular

biological system. For practical reasons, some implementation or specification of these systems

may omit or even extrapolate some aspects. Moreover, Nature-inspired systems do not imitate

biology like in Artificial Life based applications. Instead, nature serves as inspiration to develop

computational systems in order to reproduce the same effect as a biological phenomenon to solve

a problem.

3.2 Artificial Immune System Approaches

Artificial Immune Systems are developed based on abstractions derived from mechanisms

present in the human immune system. According to the literature some of these mechanisms

may provide key features such as distributed detection, imperfect detection, anomaly detec-

tion, adaptability, use of only positive samples, and uniqueness for solving problems, among

others. These and the immune memory feature, are attractive for solving some engineering or

computational problems.

Early works, starting from [Forrest et al., 1994], are focused on the Self/Nonself Discrimi-

nation principle applied to anomaly detection. These methods consist on supervised learning

based techniques inspired on the negative selection process, which has a censoring feature oc-

curred in the thymus.

As the biological immune system is a complex and distributed system with a large set

of cells and molecules, and molecules serve as communicators, maintenance, transportation

and signaling for cells, AIS-based solutions may rely on signaling based data applied to these

systems, mainly for the novel approaches that requires a prior expert knowledge about the

system behavior. Even some Self-Nonself based algorithms may require signal-based resources

for a proper anomaly detection, as in [Guzella et al., 2007,Yu and Dasgupta, 2008].

The reason for inspiration in the biological immune system may be related to its robustness

and the faster response provided in the human immune system, in which a more effective and

faster response to an antigen is expected for its next occurrences, after the first time this same

antigen was seen in the body. The expected objective of developing such approaches applied

to a given problem is to reproduce expected behaviors from the biological inspiration in order

to solve the problem effectively.
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A first survey about AIS was done in [Dasgupta and Attoh-Okine, 1997]. A brief description

about immune models, such as Immune Networks and Negative Selection, and applications of

first immune-inspired approach, such as Computer Security, Pattern Recognition, Time Series

Anomaly Detection and Fault Diagnosis, were reported in the survey, and then, in the first

book about these systems in [Dasgupta, 1998].

The development of novel engineering tools based on immunological theories and models

have been provided for many applications as seen on [de Castro, 2001], in which a framework

for the development of immune-inspired engineering systems, as well as their applications,

comparisons to other computational intelligence paradigms and also proposal for some hybrid

systems were considered. Since then, applications such as Optimization approaches based on

the Clonal Selection Theory or on the B cells, Pattern Recognition approaches and Clustering

approaches based on the Immune Idiotypic Network.

Novel approaches to anomaly detection based on alternate models of the biological immune

system, like the infectious nonself and danger models, have appeared. These models, implied

by their biological counterpart, may depend on prior expert knowledge which defines normal

and abnormal events, suggested by biological analogies, as the Self-Nonself principle, which

relies on the Negative Selection process, analogous to a supervised machine learning method

that defines the normal and anomalous feature space.

Most aspects of these algorithms, including alternate versions and improvements developed,

are seen in [Dasgupta and Niño, 2008], a book in which many aspects and most immunological

computation objectives and proposals are reviewed and discussed.

Algorithms that adopt multiple models for immunological abstraction (i.e. clonal selection

algorithm applied to optimization of negative selection algorithms), the predominant model

related to its research and applications focus will be considered in the list of methods in each

subsection, since these methods can be combined and are not mutually exclusive.

3.2.1 Immune Response Models

An anomaly detection system evaluates data and verifies that these data follow normal patterns

usually defined by prior knowledge achieved under training algorithms or some information

provided by experts. As the accuracy of these systems relies on the specificity of normal data,

some systems may present significant false alarm rates and misdetect some anomalies. For

this reason, computational intelligence based systems has been widely employed, including

Immune-inspired methods.

The main bottleneck of immunology was to define how the nature of the immune responses

is in fact. The first accepted model in biology is the one based on clonal selection, whose
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improvements are usually related to the concepts of Self-nonself Discrimination. However, as

this principle has some controversial points, other immunological models have been proposed

in order to explain some issues regarding some biological functions and immunity.

The Self-Nonself principle, which relies on the Negative Selection process, is analogous to a

supervised machine learning method that defines the normal and anomalous feature space, as

the Negative Selection Algorithms use Self-based training data for detectors generation through

Nonself space.

As in biology, it was discovered that“nonself”antigens alone is not sufficient to trigger T cell

activation, the model of costimulation signals would explain this issue, and then, other models

of immune response were proposed to explain several immunological phenomena. These models

have offered other analogies for AIS approaches, mainly related to anomaly detection systems,

which would be applied to different problems, depending on the analogy.

Novel approaches to anomaly detection based on alternate models of the biological immune

system. The danger model was stated at [Aickelin and Cayzer, 2002,Aickelin et al., 2003] as

another way to develop novel AIS approaches, incorporating some aspects, such as, according

to the authors: signals being indicators of behavior in the application rather than antigens;

signals may indicate not only ’danger’, but ’interesting’ or ’relevant’ information; and data

analysis may require less human intervention than previous approaches, among other aspects.

Some of these aspects were considered in further approaches, as in [Greensmith, 2007,

Greensmith and Aickelin, 2008, Twycross et al., 2010]. These alternate models, implied by

their biological counterpart, may depend on prior expert knowledge, represented by signals,

that defines how normal and abnormal events are detected.

All immune models, suggested by how response is triggered, according to their biological

analogies, can be defined on Figure 3.3. Each approach has differences related to data analysis.

However, all of them have a transitional link as described in [Costa Silva et al., 2012b]. With

complementary functions to be further discussed, each immunological model has advantages

and disadvantages that should be taken into account for each application environment.



3.2 Artificial Immune System Approaches 55

Fig. 3.3: All immunological models related to the immune response. [Matzinger, 2002] This
illustration may provide analogies to anomaly detection applications.

Usually, Self-nonself and negative selection approaches are seen as a distinct group in AIS

approaches, as well as immune networks and clonal selection approaches. In this survey, Self-

nonself approaches and most models of immune response are grouped into algorithms based on

the immune response, since these techniques are applied to anomaly detection and they have

points in common, being a part of a transitional link.

The response models which inspire anomaly detection systems will be further discussed

regarding the corresponding model, usually based on T cells or their interaction with antigen

presenting cells (APCs), but not limited to this analogy. Since the immune system analogy is

closely related to the anomaly detection problem, by providing a response to pathogens which

may threaten the body, most algorithms are related to anomaly detection, but not all of them,

as there are other aspects to be explored in these models. The following section will bring some

concepts and advances in these approaches.

Self-Nonself/Negative Selection-based Algorithms

The concept of Self-nonself Discrimination defines the Biological Immune System with the pur-

pose of defending the body against foreign substances (nonself). Considering these substances

as potential causes of diseases, the body must respond to these. For this purpose, the immune

cells, especially lymphocytes, should not recognize the substances in the body (Self) through a
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maturation process, known as the negative selection. This process eliminates all lymphocytes

which have high affinity to self antigens.

In Computer Networks Security, there are many problems related to system reliability and

some Intrusion Detection Systems (IDS) are based on anomaly detection. In this case, according

to [Catania and Garino, 2012] and [Chen et al., 2010], the normal traffic behavior is analyzed

in order to generate a normal activity profile, and then, any deviation from this profile is

considered an anomaly. The main advantage of these approaches is the high performance

of unknown attacks recognition. However, these systems may provide some false positive or

changes on user behavior problems. Some statistical or machine learning based methods, as

well as some AIS approaches have been developed to provide more accurate systems. Initial

works were performed in [Forrest et al., 1996] and an initial framework for NIDS was proposed

in [Dasgupta, 1999].

In order to improve the training mechanism of NSA, several approaches were considered, as

the V-detector, a well developed Negative Selection-based approach with coverage estimation.

This algorithm was exposed to sensitivity tests in [Ji and Dasgupta, 2009] in order to expose

its advantages and drawbacks.

Some other improvements for NSA were employed, as in [de Almeida et al., 2010] with some

operators such as radius and detector overlap checking, in [Li et al., 2010] with an outlier robust

inspired by immune suppression and applied for noise in [Wang et al., 2011a] with boundary

management for detectors and in [Gong et al., 2012] with a further training mechanism. De-

tector generation aspects were reviewed in [Jinyin and Dongyong, 2011], and the cooperative

co-evolution detector generation, a parallel gene-based model, is included. In [Wang et al.,

2012], fractional distances are tested in order to verify their applicability to high dimensional

problems, since data relative contrast is related to data dimensionality.

The traditional shape-space representations were evaluated in [McEwan and Hart, 2009],

then, some classifiers and an alternative representational abstraction based in linear squares

were presented to demonstrate the flaws of a n-dimensional based technique and how they

can be outperformed by alternative representations. The basis discovery and decomposition in

the immune repertoire representation were represented by a Matching Pursuit like process and

based on equivalent algebraic and algorithmic mechanisms. The shape-space representation for

machine learning AIS was considered inferior, because it is considered to reduce potential value

of immune-inspired approaches.

The development of NS based approaches without detectors was considered in [Lískiewicz

and Textor, 2010], for string based applications. In this work, a fuzzy view of negative and

positive selection processes was discussed with approaches proposed. In this view, antigen
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recognition has a fuzzy nature and the objective of thymic selection is the maturation of cells

with an intermediate affinity to self. This model considers both positive and negative selection

mechanisms. Two approaches were proposed based on the model, one of them without detector

generation but considering the nonself space as a deviation of self patterns according to a fuzzy

inference system. The work in [Costa Silva et al., 2012a] introduces this method.

The main advantages of Negative Selection based algorithms are the ease implementation

and intuitive principle, based on the input training data, the shape-space concepts, often based

on r-contiguous or r-chunks for binary or strings data, and distance metrics like euclidean or

hamming distance, depending on the data. The training phase of the algorithm also favors the

approach by the management of the nonself Space. However, the algorithm has issues regarding

the test phase, mainly because of its limitations due to the curse of dimensionality issue, as

considered in [Balachandran et al., 2007]. In addition, these approaches may have some context

issues that may represent a hindrance to a proper anomaly detection.

The Infectious Nonself/Pattern Recognition Receptors-based Algorithms

Some models were proposed in order to provide a proper explanation about biological immune

system and its problems. One of them was the Infectious Nonself model, which extends the two-

signal costimulatory model and tries to explain some elements that could lead to an immune

response.

An approach considered in this group was the Conserved Self Pattern Recognition Algo-

rithm, applied to a recurrent database of anomaly detection problems and improved with selec-

tive mechanisms and tests performed with comparative datasets among different approaches.

The algorithm is also based on the Negative Selection, however, with costimulatory mecha-

nisms based in the PRRs. An improved version of the algorithm applied to computer security

was developed in [Yu and Dasgupta, 2011] with a near deterministic mechanism of detector

allocation.

The Infectious Nonself model has also inspired a Dendritic Cell based approach: The Toll-

like Receptor Algorithm was designed to intrusion detection problems with training mechanisms

and a simplified signal scheme. The interaction between APCs and T cells is the basis of the

algorithm. A Structured version of the algorithm was proposed in [Nejad et al., 2012], this

version considers the Nonself space analysis a criterion for antigen recognition after signal

exposure.

A NSA-based approach with PRR inspired mechanisms was proposed in [Zheng et al.,

2013]. The named PRR-2NSA combines the inspiration on Pattern Recognition Receptors,

whose data are generated via hard clustering and dissimilarity measurements, and a “Dual
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Negative Selection” strategy, in which NSA is applied to classifier maturation to assure if it

does not match with any other classifier, and once again to training data, to assure if it does

not match with any normal data. The proposed algorithm is tested to dataset benchmarks

and is compared to the 2NSA without PRR and the V-detector, with better performance. A

similar strategy for APC data generation was adopted in the Semi-supervised Immune Classifier

Generation Algorithm (SICGA) in [Ying, 2013], but with APC and PRR data being generated

based on K-means algorithm and APC radius metric, and tests being performed in Iris, Chess

and Breast Cancer Wisconsin datasets in comparison to V-detector results.

In summary, there are few approaches inspired on the Infectious Nonself model of immune

response. However, this model is supposed to be a halfway between Self-Nonself-based Model

and the Danger Model in terms of development of AIS approaches, as the concept of signals,

implied by the pattern recognition receptors, and contextualization of anomaly represented by

PAMPs or by a conserved self pattern are features that indicate anomalies in an application.

Danger Model-based Algorithms

Another proposal was the Danger Model, usually referred as Danger Theory1, which defines

that the immune response occurs during a distress event from the body, and activation signals

are sent by damaged cells. Both models also define a higher influence of innate immunity on

adaptive immunity.

Introduced in [Aickelin and Cayzer, 2002] as a new immune-inspired paradigm and designed

for computer security applications in [Aickelin et al., 2003], this immunological model would

provide a second generation of immune-inspired algorithms. Mainly represented by the Den-

dritic Cell Algorithm, proposed in [Greensmith et al., 2005,Greensmith, 2007,Greensmith and

Aickelin, 2008] and evaluated in [Greensmith and Aickelin, 2009], these algorithms were based

in the correlation between system behavior (Danger and Safe signals) and potential anomalous

processes (Antigens).

The algorithm was further simplified in order to work as a deterministic algorithm, with

further formalization, formulations, advances, comparison to other algorithms, functionality

analysis and complexity analysis, which clarifies most implementing issues for the algorithm.

Mathematical aspects related to its geometrical interpretation and linearity are also discussed.

A progress analysis and some suggestions about all these DCA mechanisms were discussed

in [Ding et al., 2013], and an updated study is seen in [Gu et al., 2013].

Besides DCA, there are more approaches inspired on this immunological model, such as an

1The Danger Model is seen as a theory, but according to immunologists, it is postulated as a model rather
than a theory. This is also applied to Infectious Nonself Model.



3.2 Artificial Immune System Approaches 59

optimization method (DMIA), seen in [Xu et al., 2012]; another fault detection method, seen

in [de Almeida et al., 2010], a classification method in [Zhang and Yi, 2010], among others.

The Danger Model inspiration can provide many interpretations about the problem envi-

ronment, mainly in anomaly detection problems, for which this paradigm is widely employed.

The expert knowledge is one of the main forms of representation for the analogy, which does

not necessarily need to represent danger contexts. Unlike most models representation, Danger

Model based approaches may not need a training phase for its algorithms, but a proper repre-

sentation of its signals is necessary, as stated in [Costa Silva et al., 2012b], and how to obtain

this representation for some problems is still a recurring challenge in literature. Some tests in

malware detection in [Shafiq et al., 2008] indicate that DCA detection is good, as it has a low

rate of false alarms, but compared to other approaches, is far from perfect, even the real-valued

negative selection has a higher detection rate according to some results.

Even in some intrusion detection problems, the Danger Model has some limitations such as

antigen sampling, robust signal selection and time correlation problems, and some adaptations

may be provided for the analogy, as discussed in [Vella et al., 2010]. Depending on the context,

these algorithms may need an expert model to be employed and provide proper results.

3.2.2 Clonal Selection and Idiotypic Network approaches

The Clonal Selection Theory2 is related to the expansion of lymphocytes, antibody formation

in response to the antigen presence, and faster responses in further new exposures to the same

antigen. This theory has inspired the Clonal Algorithm (CLONALG) [de Castro and Von

Zuben, 2002] applied to optimization and machine learning problems, as well as classification

problems, as in [Sharma and Sharma, 2011]. The algorithm has somatic hypermutation, with

some insights reported in [Jansen and Zarges, 2011] and their importance to an application

context in [Ulutas and Kulturel-Konak, 2013], diversity features and is able to search for local

and global optima solutions. Since then, it has been widely applied to many optimization

problems in the literature. A deep and comparative survey of some approaches, with the

emerging research about these algorithms are discussed in [Al-Sheshtawi et al., 2010, Ulutas

and Kulturel-Konak, 2011].

Some possibilities of improvements are being considered, such as in [McEwan and Hart,

2010], the Competitive Exclusion mechanism of clonal selection was discussed, based on gen-

eration and filtering aspects, the mathematical models involved and some biological aspects

discussed. And in [Oliveira et al., 2013] which adopts an alternative representation for the

algorithm inspired by the Pittsburgh-style representation in Genetic-Based Machine Learn-

2The Clonal Selection, according to immunologists, is in fact accepted as a theory.
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ing, selecting as few instances as possible to represent the training set data without accuracy

losses and number of required instances is set dynamically and evaluated during the affinity

assessment.

Some other interesting algorithms were also developed, such as multiobjective versions

of the algorithm evaluated in [Yunfang, 2012], a Genetic Programming based approaches

in [Jabeen and Baig, 2010,Gan et al., 2009] or a combination with the Gene Expression Pro-

gramming (GEP) in [Karakasis and Stafylopatis, 2008,Tang et al., 2010], implementation of

Immunoglobulin-based mechanisms in [Chung and Liao, 2013], some improvements in AIRS

algorithm in [Jenhani and Elouedi, 2012,Golzari et al., 2011], the application to reinforcement

learning in [Karakose, 2013,Riff et al., 2013], associative rules for classification in [Mohamed El-

sayed et al., 2012] and as a motif tracker for time series in [Wilson et al., 2010], among other

approaches.

Clonal selection theory has contributed in several aspects for the development of different

systems, many of them applied to optimization related problems. Immunological memory and

cloning have been explored, and some operations such as somatic hypermutation, affinity matu-

ration and the selection itself, have been exploited in order to solve more complex optimization,

or even machine learning problems. Since the proposal of Clonal Selection-based algorithms,

these approaches have been widely studied and some improvements were proposed.

The Artificial Immune Network paradigm is inspired on the Idiotypic Network Hypoth-

esis [Jerne, 1973], in which is postulated that immune responses may be triggered through

idiotypes, possibly unique to antibody and supposely expressed on Immunoglobins (B-cells),

also discovered on TCRs. These idiotypes are able not only to recognize antigens, but they can

recognize paratopes from other receptors, allowing mutual interactions between immune cells

and providing more effective responses. The network theory has inspired some approaches,

such as an immune network for diagnosis in [Ishida, 1990], a learning model in [Hunt and

Cooke, 1996] and a data mining application in [Knight and Timmis, 2001,Timmis et al., 2000],

among other models. These approaches may share many features with Clonal Selection-based

approaches and employs more sophisticated features.

The aiNET approaches, which shares some functions with clonal selection algorithms, are

studied in [de França et al., 2010, Zhang et al., 2013, Xu et al., 2010, Liu et al., 2010], for

different applications. Some example of Immune Network approaches can be applied to data

mining applications as a decentralized algorithm in [Świȩcicki, 2008] or the autopoietic model

based in [Nanas et al., 2010], or clustering applications as the Adaptive Immune Response

Network in [Liu et al., 2009] or a hierarchical clustering approach in [Chen and Zang, 2011], or

resource allocation in [Li and He, 2013,Yang et al., 2011], and multi-agent systems as in [Hilaire
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et al., 2010], among other applications.

Some interesting applications of immune network theory are in automated systems, such as

in [Khan and de Silva, 2012], in which the immune network is applied to a self regulated fault

tolerant multi-robot cooperation system, as a robot is modeled an antibody and its interaction

environment is modeled as antigen. The objective of the application is to provide coordination

and cooperation among robots. Other robotic-based applications of immune-inspired systems

can be seen in [Raza and Fernandez, 2012].

Some earlier immune network approaches have been developed as an extension for the clonal

selection based methods. However, since the analogy has been more explored throughout last

years, some novel and interesting approaches have also appeared in literature in order to provide

solution of other problems, such as robotics and data mining. Clustering and optimization are

still a recurrent application of the immune network based approaches as well. These aspects

will be further discussed in the research analysis.

3.2.3 Algorithms based on other models

The further approaches presented here are based on other models or features of the immune

system and these approaches are focused on other analogies provided by the immune system.

Some of them can serve as alternative approaches to different applications.

A novel AIS approach based on the density of T cell receptors is proposed in [Owens et al.,

2009] and further explained in [Owens et al., 2013], the algorithm is based on a mathematical

model of TCR density and feedback estimation, with a comparative to some kernel density

estimation based techniques. The algorithm was applied to 2-type anomaly detection tests, to

a chemical agent monitor detection in [Hilder et al., 2012], and in a system of fraud detection

in [Huang et al., 2011].

The Artificial Immune system with DENsity sensitiveness (AIDEN), proposed in [Pathak

et al., 2012], is a clustering method that also adopted a density concept. The method considers

the stimulation of the TCRs and their interaction to B cells in the form of Antigen Recognition

Balls. Some tests were performed in artificial data, with qualitative evaluation of clusters found.

The complement system, which has three pathways for its activation, was explored in [Aitken

et al., 2008], as the algorithm developed is inspired on its alternative pathway, based also on

the message passing process among software agents and requires a matching function. The

authors, however, have discussed the model aplicability to engineering problems, which is still

unknown.

In [de Almeida et al., 2011], a novel AIS appied to fault detection was developed. The

novel approach is inspired on Natural Killer cells functions, which employs receptor balance
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and the education process, features of NK cells in their lifetime. The algorithm was tested in

DAMADICS benchmark and evaluated, with interesting results compared to other approaches.

Natural Killer Cells have inspired another algorithm in [Fu et al., 2012], in which are ex-

ploited the analogy of activating and inhibitory signals to monitor a computational system for

spyware detection. The induction of cytokines by NK cells corresponds to each action per-

formed by the system through web, indicating the presence of spyware. Experiments have

shown some promising results and the applicability of NK analogies to the problem.

A constraint optimization algorithm based on T cells was developed in [Aragón et al., 2008],

in which T cell are divided in three groups and the model is adapted througt the dynamic tol-

erance factor, which changes according to a new population and is calculated according to

violated constraints and their relation to each cell type population. Three mutation opera-

tors are proposed according to cell types. Benchmark problems were tested and compared to

stochastic ranking algorithm. An improved version of the algorithm was proposed in [Aragón

et al., 2010] to handle constrained optimization problems and in [Aragón et al., 2011] for dy-

namic optimization problems.

The Dynamic Effector Regulatory Algorithm (DERA) was proposed in [Guzella et al., 2007].

This method incorporates cytokines and regulatory cells in the algorithm and adopts a different

concept of Self and Nonself spaces, which relies on the distribution of effector and regulatory

cells that recognize normal and abnormal processes. The algorithm was applied to the fault

detection DAMADICS benchmark, with a considerable performance over other approaches.

In [Twycross and Aickelin, 2010] it is shown how innate immunity can be modeled in terms of

multi-level data fusion mechanisms and how real-world problems should reflect an environment

which can be seen as a combination of innate and adaptive immune systems as well. These

models should provide a framework for realtime computer intrusion detection and further AIS

approaches.

The Humoral Artificial Immune System (HAIS) in [Narayanan and Ahmad, 2012] applies

diverse concepts for supervised learning and relies on similarity measures, affinity thresholds,

maturation and hypermutation, among other mechanisms. The algorithm is applied to some

benchmark datasets, with its parameters explained and memory cells feature evaluated in com-

parison to ANN training. The HAIS has a comparable performance as the obtained by AIRS

algorithm.

In [Suarez-Tangil et al., 2011] the immune system learning and memory features are explored

to study how to turn the generation of event correlation rules an automatic and efficient features

and detect novel multi-step attacks by applying AIS to optimize Security information event

managements.
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The work in [Figueredo et al., 2011] proposes some comparison regarding two types of

simulation: Simulation of Dynamic System (SDS), a mathematics-based immune model, and

Simulation Based in Agents (ABS), in which effector cells of the immune system and their

behavior facing tumor cells are modeled. For these two models, two AIS approaches were

derived.

The T-cell Cross-Regulation model has inspired an application in [Abi-Haidar and Rocha,

2011,Abi-Haidar and Rocha, 2010], which consists in an agent-based method inspired by the

dynamics of a population of T-cells and APCs for a single antigen recognition. The model is

applied to data classification and feature selection, particularly in Biomedical Article Classifi-

cation problem, for which the proposed method is tested and validated, the authors, however,

state that the model needs to be improved with more sophisticated features.

Another AIS approach was developed in [Antunes and Correia, 2009a,Antunes and Correia,

2010,Antunes et al., 2009], the algorithm is based in the tunable activation threshold (TAT),

which is a key mechanism for homeostasis, a dynamic equilibrium which represents one of two

immunological concepts adopted in the algorithm, the other is cells clonal size regulation. The

algorithm (TAT-AIS) employs this model for T cells and is able to recognize unknown patterns

in temporal anomaly detection problems. The TAT hypothesis based algorithm has also applied

to intrusion detection in [Antunes and Correia, 2009b,Antunes and Correia, 2011].

The cognitive paradigm of immune system [Cohen, 2000], which states that immune system

recognizes both self and nonself and immune responses are mediated through cooperation of

immune cells, has inspired an information retrieval architecture in [Hu et al., 2008]. The pro-

posed system relies on interactive networks between agents of the system and a co-evolutionary

mechanism led by an affinity maturation through the networks. Studies about development of

systems inspired on this paradigm have started in [Andrews and Timmis, 2007,Voigt et al.,

2007], but since then, few works have explored this paradigm of immune system, which can

provide interesting analogies.

According to [Hart et al., 2009], modeling collaborative network among immune entities

can lead to the development of novel approaches fit for their purpose of solving engineering

problems. Analogies are taken from innate immunity and their interaction to the adaptive

immunity elements, modern models of immune networks, and the cognitive paradigm. These

analogies were discussed and then related to some real-world applications.
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3.3 A brief summary about Hybrid AIS approaches

AIS can also be combined to other approaches as described in [De Castro and Timmis, 2002],

with description of diverse combinations of paradigms, and in [Dasgupta and Niño, 2008], with

the example of Negative Selection and Self Organized Maps model described. The development

of hybrid systems has increased in the literature, not only for AIS, but for many other nature-

inspired algorithms. This survey will further describe the influence of hybrid approaches in AIS

research.

Hybrid system can be divided in two groups. In the first group, it will be discussed the

use of tools or methods that can extend or enhance AIS to provide proper features in problem

solving, such as Probability Theory, Fuzzy Logic, Information-based Tools, among others. In

the other group, systems that employ different algorithms or techniques with their functions

mixed will be discussed, such as Artificial Neural Networks, Evolutionary Algorithms, Swarm

Intelligence Algorithms, other machine learning methods, among others.

3.3.1 Useful tools for AIS enhancement

Several tools can be employed in order to extend AIS features or to enhance most aspects,

such as probability or tools based on the Bayesian theory, fuzzy set theory, information theory,

kernel methods, among others since they are not considered as specific algorithms. Hybrid

approaches involving multiple algorithms will be further discussed in the other group.

Some of these tools have been already adopted in early approaches, as in the example of

the first Self-Nonself based system in [Forrest et al., 1994], whose detection is probabilistic.

Several methods rely on these tools for modeling purposes, according to features that should be

provided for a particular problem. In addition, algorithms based on clonal selection need these

features because of their stochastic nature as these are applied to generation of antibodies and

in the somatic hypermutation operators. However, since these features were not the focuses

of their respective approaches, but features incorporated to these systems, they cannot be

considered as hybrid approaches at all. As each tool can enhance AIS functionalities, a further

discussion will be presented of some of these tools.

In this group, some tools can be used to provide enhancement for AIS, in terms of functions

and mechanisms. The following list includes, but is not limited to these considered approaches:

• Probabilistic methods, such as Gaussian or Bayesian;

• Fuzzy and Rough sets theory;

• Information theory tools;
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• Kernel Functions;

• Other learning and memory mechanisms;

• Chaos theory, quantum computing and other methods.

These tools can be used to improve or replace mechanisms on AIS approaches, in the case

of probabilistic methods. Examples of these techniques are the family of Probabilistic Ar-

tificial immune Systems based on Negative Selection in [Mohammadi et al., 2012] and both

Bayesian Artificial Immune System (BAIS) [Castro and Von Zuben, 2008] and Gaussian Artifi-

cial Immune System (GAIS) [Castro and Von Zuben, 2010] applied to optimization, with these

algorithms also having multiobjective versions.

Fuzzy Set Theory, which can deal with uncertain or imprecise information, may offer proper

models of aspects and mechanisms of the immune systems, providing powerful interactions,

according to [De Castro and Timmis, 2002]. These aspects are considered mainly for adaptive

immunity features, as the antigen recognition is approximate. However, the use of Fuzzy Logic

is not limited to these aspects, as the immune system has several components. Some examples

of algorithms are an Immune Network based in [Szabo et al., 2012], a Dendritic Cell-based

in [Chelly et al., 2012], and the fuzzy recognition algorithms proposed in [Costa Silva et al.,

2012a].

Information theory tools have been used to enhance AIS functions through entropic di-

vergence metrics, such as Kullback-Leibler, Rényi and von Neumann, or the Dempster-belief

Theory, which performs classification by computing evidences. One example of these approaches

are the Local Concentration (LC), proposed in [Zhu and Tan, 2011b], to perform feature ex-

traction and is based on tendency calculation via probability of occurrences, the vector of local

concentrations is constructed by sliding window measurements of both censored and legitimate

genes. The LC model can be constructed based on term selection that can be employed by

information-based methods.

The use of kernel functions was less considered, and the discussion in [Guzella et al., 2008]

has presented how kernel functions should extend AIS functions and features in the same way as

used in machine learning paradigms such as SVM algorithms. The possibility of replacement of

affinity functions by kernel functions were considered to map feature space. A test using aiNet

approach mapped in a Gaussian space was performed in the research. In [Ozsen et al., 2009],

a kernel-based AIS for classification inspired on clonal selection was proposed, and the affinity

function between Ag-Ab is replaced by a kernel-based distance measurement. Benchmarks of

UCI Database were applied to the proposed method.
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These are some examples of useful tools in the development of different techniques or the

improvement of existing ones without altering significantly the main idea of either the abstract

model of an algorithm or functions for which these algorithms were designed for. Instead,

these tools should provide a better suitability of the model or even permit the feasibility of an

analogy for the development of new techniques applied to problem solving. Approaches that

are developed mixing multiple techniques or employing features of different algorithms or even

paradigms will be further discussed in the next subsection.

3.3.2 Hybridization of AIS and other paradigms

In this subsection, hybrid approaches that use mechanisms from AIS and other algorithms

or even multiple algorithms will be discussed. Differently from the other group, in which

paradigms or tools are implemented in terms of AIS modeling, in this group, all approaches

employ different algorithms in the same system, in a high level of system hybridization. The

list of approaches that can be used for this purpose include, but are not limited to the following:

• Nature Inspired approaches:

– Artificial Neural Networks;

– Genetic Algorithms and other evolutionary algorithms;

– Swarm intelligence approaches;

• other Machine Learning systems:

– Naive Bayes;

– K-Nearest Neighbors (KNN);

– Support Vector Machines (SVM);

– most Clustering algorithms.

• Fuzzy systems:

– Fuzzy C-means;

– Takagi-Sugeno systems;

• Meta-heuristics;

• Meta-learning tools;
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Examples of applications for possible hybrid AIS are mining rules from neural networks,

weight optimization, ensemble in classification problems and generation of rule bases, among

others.

Other examples of these approaches are combinations of AIS and PSO, as PSO may be

applied to antibody improvements under mutation operators in classifiers or clustering methods.

Several approaches were discussed in [Wu, 2012], including a novel immune-inspired method,

presented to solve constrained global optimization problems.

There are many possibilities of hybrid approaches, since there are many paradigms to be

considered. How these algorithms can be applied to a given problem is also another aspect of

these mixed systems, since these algorithms, as well as AIS approaches, can serve as ensemble

for one or many algorithms, or improve features or results of a given algorithm, or even be a

part of the algorithm processing. The approaches cited here are some examples of how AIS can

improve or be improved by other techniques to solve harder problems, as for their complexity,

a single algorithm may not be enough.

Some of these combinations, however, may imply redundant features, since AIS have features

in common with other paradigms of machine learning or mainly nature-inspired applications,

which are subject to similarities between paradigms, as in the example of Clonal Selection

algorithms and Evolutionary Algorithms approaches. Some other examples will be further

discussed in the sense of AIS research.

3.4 Immune Response Algorithms

According to [Beutler, 2004], a “true” immune system, independent of its complexity, must

provide three features: the recognition of diverse array of pathogens, their posterior elimination,

and protection of host tissues through self-tolerance. If these concepts provide an analogous

vision of an immune response based anomaly detection, the features considered in these systems

should be described as follows:

1. An AIS is able to recognize diverse types of anomalies;

2. Once recognized, an alarm signal is sent, or proper actions are performed;

3. Performs detection without interference on other operations, or in the normal operation

as well.

Early works have been inspired by self-nonself discrimination principle, such as the com-

puter virus detection approach of Forrest in [Forrest et al., 1994], and many approaches and

improvements were done since then.
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The models studied in this work follow the description of [Greensmith and Aickelin, 2009],

describing the evolution of immunological theories, along with the corresponding immune in-

spired approaches. These models are based on signal presences required for immune response,

as defined in Figure 3.4.

Fig. 3.4: Description of immunological models discussed.

In the following subsections, some immunological models and their respective algorithms

will be discussed. Their characteristics and applicable situations, as well as the advantages and

disadvantages of these algorithms will be exposed in the research.

3.4.1 The Classical Model

The model is based on the Self-Nonself Discrimination principle, in which immature cells which

recognize Self patterns are eliminated by the Negative Selection process. The first immune

inspired algorithms were developed from this principle.

The Negative Selection Algorithm (NSA), defined in [Forrest et al., 1994], is an anomaly

detection system that consists of analyzing the feature space, and through it, generating de-

tectors in the Nonself region. The algorithm has resemblance to supervised machine learning

methods, since the Self data is used as a reference, so that the detectors are located outside of

Self region.

The method in fact, can be summarized as the one-class supervised classification problem,

in which only one of the patterns (Self) is known and the outliers may belong to another class

(Nonself), as shown in Figure 3.5.
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Fig. 3.5: Illustration of similarities between one-class supervised classification and anomaly
detection based on Self/Nonself principles.

Many approaches appeared trying to improve operational aspects such as optimization of

the coverage area to detectors [Ji and Dasgupta, 2004b], allocation considering boundaries of

Self space [Ji, 2005], or overlap on two or more detectors [de Almeida et al., 2010]. In [Gong

et al., 2012], it is considered a training method that optimizes the computational cost of the

algorithm. Other improvements are considered in [Ji and Dasgupta, 2007].

The algorithm is very intuitive and quite simple but has many issues: to allocate the

detectors and measure the similarity between these and the data may imply something quite

costly and redundant, especially in high-dimensional problems. Furthermore, the algorithm has

serious problems concerning the system context. Other issues can be seen in the analysis of [Ji

and Dasgupta, 2006].

Despite the issues, the NSA is applicable to problems where there are few abstractions on

the application and it is possible to set normal behavior. However, the algorithm is very limited

considering the application environment.
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3.4.2 Costimulatory and Infectious Nonself Models

The costimulatory model defines that two signals are required for the activation of the immune

response: the nonself antigen presence and a signal emitted by Antigen-Presenting Cells. This

model has inspired few researches in computer networks, such as [Hofmeyr, 1999, Balthrop,

2005]. These models can be considered intermediate or transitional between the Negative

Selection and the Danger Model.

The model was proposed in [Janeway Jr., 1989] in attempting to explain some phenomena

that, in theory, Self-nonself discrimination could not deal with. In this model, T cells rely on

pattern recognition receptors (PRR) which recognize infectious pathogens and collect Pathogen

Associated Molecular Patterns (PAMP) for the activation of immune response.

This model represents a “half-way” between the classical immunology, and the next model

combining known data sampling and some priori information about the application context.

The Infectious Nonself has provided few AIS models in the literature so far. One of these

techniques is the Toll-Like Receptors algorithm. Proposed in [Twycross et al., 2010] with ideas

presented in [Aickelin and Cayzer, 2002], the TLR is inspired by an immune model defined

in [Kapsenberg, 2003], and employs functions analogous to Toll-like receptors in information

processing tasks, as explained in Figure 3.6.

Fig. 3.6: Biological processing of Toll-Like Receptors and its analogy with data processing
systems.
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This algorithm consists of a technique based on the interaction between two agents: APCs

and T cells that are exposed to stimulus analogous to PAMPs and collect the antigens repre-

sented by process identifiers. These agents and their possible states are illustrated in Figure 3.7.

Fig. 3.7: Agents used by the algorithms of Toll-Like Receptors and their possible states.

Signals are defined by Boolean variables and once the APCs are exposed to these signals,

they suffer full maturation. This is essential for antigen recognition by T cells in communication

with mature APCs. When APCs cannot see this signal, during their lifetime, these cells goes

semimature, and if a semimature APC presents an antigen to the T-cell, the latter undergoes

apoptosis. This mechanism can be summarized by Figure 3.8.

Fig. 3.8: Summary of the Toll-Like Receptor algorithm.
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Despite the ease of abstraction, implementation requires the definition of mechanisms of

training, a proper definition of signals and most features of the algorithm for the two types of

considered cells.

In [Nejad et al., 2012], the Structural TLR (STLR) algorithm was proposed. The algorithm

provide some changes in which T cells were related to the self and nonself spaces with the

detection mechanism provided by antigen-presenting cells. Once exposed to the signals and

defined as mature cells. This algorithm associates T cells to nonself space modeling, defined

as the complement of the self space. Then, the nonself space is defined by antigen structure

as recognition is given by the binding function between the antigen and a sample self space,

according to (3.1).

ζAg =

{

1, ∀i ∈ Tr, Dist(Tri, Ag) > rs

0, otherwise
(3.1)

(3.2)

Where Ag is the antigen (data structure) and Dist(a, b) is a distance metric between a and

b, and is usually defined by the Euclidean distance or the Mahalanobis distance. In summary,

the STLR has features of algorithms based on Negative Selection, however, most mechanisms

are described in the original TLR in [Twycross et al., 2010].

Main functions of Toll-like Receptor Algorithm can be summarized in the flowchart of

Figure 3.9 and in Algorithm 3.1.

STLR was applied to intrusion detection problems with interesting results and a relative

superiority to the original TLR. As this algorithm has been only applied to intrusion detection

problems, some changes should be considered for its application FDI problems. Some ways to

process the algorithm will be described in the following sections, considering its modeling.

3.4.3 The Danger Model

The Danger model3, postulated by [Matzinger, 1994], is an alternative to classical immunology

defending another point of view related to the immune system: immune response aims to

respond to the damage suffered by cells instead of reacting against foreign antigens.

This immunological model would inspire a set of new AIS approaches [Aickelin and Cayzer,

2002,Aickelin et al., 2003] in which the application context can be exploited, once the set of

3In the literature, this model is often called “Danger Model”. However, considering its nature, the best name
should be “Damage Model”.



3.4 Immune Response Algorithms 73

Algorithm 3.1 Pseudocode of TLR Algorithm

1: procedure TrainingTLRAlgorithm(AgTr,SignalTr)
2: Self ← BuildNonselfSpace(AgTr) ( Build Nonself Space with a detection

algorithm.
3: SignalRules ← BuildSignalRules(SignalTr) ( Build rule database from training.
4: return Self ,SignalRules
5: end procedure

6: procedure TestTLRAlgorithm(AgTs,SignalTs,Self ,SignalRules,NumCells)
7: Cell ← GenerateCells(NumCells) ( Generate cells to evaluate data.
8: c ← 1
9: k ← 1

10: while not(StopCriteria) do
11: Cell(c).Ag ← GetAntigen(AgTs, k) ( Cell collects antigen.
12: Unseen ← UnseenSignal(Cell(c), SignalTs, k, SignalRules) ( Cell receptor

senses signals.
13: if Unseen = true then
14: Cell(c).Status ← Mature
15: Migrated ⇐ c
16: else
17: if Cell(c).Lifetime ≤ 0 then
18: Cell(c).Status ← Semimature
19: else
20: Cell(c).Lifetime ← Cell(c).Lifetime − 1
21: Migrated ⇐ c
22: end if
23: end if
24: for all m ∈ Migrated do
25: Match ← EvaluateNonselfSpace(Cell(m), Self)
26: if Cell(m).Status = Mature then ( APC is mature.
27: if Match = true then ( Antigen is Nonself.
28: Alarm ← true
29: else ( Antigen is Self.
30: Alarm ← false
31: end if
32: else ( APC is semimature.
33: Alarm ← false
34: end if
35: Cell(m) ← RenewCell(Cell(m)) ( Replace migrated cells.
36: end for
37: Migrated ⇐ ∅
38: c ← mod(c, NumCells)
39: k ← k + 1
40: end while
41: return Alarm
42: end procedure
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Fig. 3.9: Flowchart of the Toll-Like Receptor Algorithm.

signals and analogies are well defined in this model.

Dendritic Cell Algorithm, proposed in [Greensmith et al., 2005], has these characteristics.

Antigen in this approach are identifiers to be evaluated and the signals set corresponds to the

system behavior. The original algorithm formulation determines four possible types of input

signals, two stimuli signals (Danger and PAMPs), an inhibition signal (Safe) and an amplifier

that depends on the other three signals; and three output signals, one of which corresponding

to the lifespan of the cell and the other two corresponding to the context of dendritic cells,

indicating that the immune response.

Unlike the TLR algorithm, DCA does not represent the T cell by an agent of the algorithm.

Their representation is inferred by a decision mechanism that evaluates the antigen according

to the maturation of dendritic cells that have collected. Such signals consider the conditions of

the application environment in the problem, without training on the system.
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Em [Greensmith, 2007], the algorithm would be applied to problems related to intrusion

detection in computer networks, among they SYN scan, and is promising for the application

in the problem. Then the algorithm was applied to similar applications in [Al-Hammadi et al.,

2008,Manzoor et al., 2009,Fu et al., 2010], and engineering [Bi et al., 2010,Amaral, 2011,Hart

and Davoudani, 2009].

These signals correspond to representations of expert knowledge about a particular problem

and for the application of DCA to a specific problem, by the context of an application.

In [Greensmith and Aickelin, 2008], Danger and Safe signals are required and the other

two signals are optional. The input signals are processed to generate the CSM values in(3.3),

which determines the lifespan of the cell, and K values in (3.4), which combines two maturation

signals. These equations define the basic formulation of anomaly detection problems in DCA.

CSM = DS + SS (3.3)

K = 2DS − SS (3.4)

Usually, safe signals is stronger than danger signals, so the equation defines a high weight

to the latter in K.

When the variable CSM reaches a threshold for cell migration, a maturation process occurs.

If K is positive, cell becomes mature, which means the activation the immune response, and if

K is negative, cell becomes semimature, which means suppression.

After maturation of dendritic cells, antigens collected by such cells should be placed accord-

ing to mature cells obtained considering the type and maturity suffered by these cells. One way

to classify the antigen using the DCA is under an index of cells collected by a certain antigen

(MCAV ) calculated in (3.5). This index has been proposed in the classical DCA [Greensmith,

2007], and if an antigen reaches a MCAV value larger than a certain threshold, the antigen is

flagged as anomalous.

MCAV (a) =
M(a)

M(a) + Sm(a)
(3.5)

Another metric considered is the Kα, proposed in [Greensmith and Aickelin, 2008]. Unlike

theMCAV , theKα considers the magnitude ofK related to all cells which collected the antigen

a, as in (3.6).

Kα(a) =

∑

K(a)
∑

DC(a)
(3.6)
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Basically, the illustration of Figure 3.10 summarizes the main functions of the algorithm.

Fig. 3.10: Fundamental steps of the DCA.

The Dendritic Cell Algorithm main idea can be summarized in the flowchart of Figure 3.11

and in Algorithm 3.2.

Analogies and knowledge representation implied by the algorithm makes it an interesting

alternative to problems of anomaly detection, with some potential applications. However, the

prior knowledge of these problems are very important, especially in FDI applications.

In [de Almeida et al., 2010] another algorithm based on the danger model was developed

especially for the problem of fault detection. Unlike DCA, the algorithm does not use cells

agents, neither depend on interpretation of antigen data, but defines signals as a basis for its

operation and provides a fuzzy inference model as an input and an immune mathematical model

as an output, and alarms according to model metrics.

Other approaches that also exploit aspects contained in the Danger model consist in [Zhu

and Tan, 2011a] regarding a model applied to different classifiers, and in [Zhang et al., 2008]

which applies concepts to define an interest region of an algorithm applied to optimization

problems.
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Algorithm 3.2 Pseudocode of DCA

1: procedure DendriticCellAlgorithm(Data,NumCells,NumRecep,MaxLifetime)
2: DataSet ← PreProcessing(Data) ( Perform Pre-processing and normalization in

system knowledge data.
3: Cell ← GenerateCells(NumCells, NumRecep,MaxLifetime) ( Generate cells to

evaluate data.
4: c ← 1
5: k ← 1
6: while not(StopCriteria) do
7: if DataSet(k).T ype = Antigen then ( Data evaluated are antigens.
8: Ag ← DataSet(k).Content
9: Cell(c).Antigens ⇐ Ag

10: if AntigenExists(AntigensList, Ag) then
11: AntigensList ⇐ Ag
12: end if
13: c ← mod(c, NumCells)
14: else if DataSet(k).T ype = Signal then ( Data evaluated are signals.
15: for all dc ∈ Cell do
16: SignalSet ← DataSet(k).Content
17: Cell(dc).Lifetime ← Cell(dc).Lifetime −CalculateCSM(SignalSet)
18: Cell(dc).Output ← Cell(dc).Output+CalculateK(SignalSet)
19: if Cell(dc).Lifetime ≤ 0 then
20: if NumberOfAntigens(Cell(dc)) > 0 then
21: Migrated ⇐ dc
22: end if
23: end if
24: end for
25: end if
26: for all m ∈ Migrated do
27: for all a ∈ Cell(m).Antigens do
28: idx ← AntigenIndex(AntigensList, Cell(m).Antigens(a))
29: if Cell(m).Output > 0 then ( DC is mature.
30: M(idx) ← M(idx) + 1
31: else ( DC is semimature.
32: Sm(idx) ← Sm(idx) + 1
33: end if
34: K(idx) ← K(idx) + Cell(m).Output
35: {Alarm,AntigenStatus(idx)} ← AnomalyMetric(M(idx), Sm(idx), K(idx))
36: end for
37: Cell(m) ← RenewCell(Cell(m)) ( Replace migrated cells.
38: end for
39: Migrated ⇐ ∅
40: k ← k + 1
41: end while
42: return Alarm,AntigensList, AntigenStatus
43: end procedure



78 State of the Art in Artificial Immune Systems

Fig. 3.11: Flowchart of the Dendritic Cell Algorithm.

3.5 Impacts in biological research

Immunology serving as a source of inspiration for computational systems may provide some

multidisciplinary links and many interactions among researchers from different fields of study

and a perspective of benefits for immunology, computer science and engineering respective

researches, as further discussed in terms of AIS impact in biology and how computation could

inspire biological models in research.

Reviews done in [Timmis et al., 2008] point that the development of AIS algorithms may

provide interdisciplinary links between immunology, computer science, mathematics and engi-

neering, since the immunology provides metaphors for the creation of novel solutions to prob-

lems. The authors have provided a framework for modeling novel approaches from immunology

through a methodology evaluation, some reference models and the further development of
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techniques from the abstract model, as well as some features to be provided in newer AIS

approaches. It is also suggested that these models may help immunologists in bringing some

understanding of the immune system as well as proper representations in AIS for engineering

systems through greater interaction between each group of researchers.

As immunology may inspire computer systems, computation can also be an inspiration for

insights about immunology, as defined by Cohen [Cohen, 2007], in this work are described

the view of the immune system as a computational entity and immunological concepts and

functions in terms of computation. Some computation concepts were applied to immunological

components, such as the system states, its cells and their actions in the immune system. The

paper also reinforces the need of interactions between immunologists and computer scientists.

The research in [Navlakha and Bar-Joseph, 2011] was related to biological modeling and

inspiration for strategies to problem solving as well as the similarities between computation

and biology and their differences. According to the authors, computational systems are often

focused on speed and biological systems are focused in dynamic adaptability to changes and

their decision-making mechanisms. This suggests that biological inspirations are very useful

to computational systems. Features of biological and analogous computational systems are

discussed and their research was considered as a computational thinking of biological systems,

which provides more understanding of biological processes as well as improvements in algorithms

development.

The ecology of immune system is discussed in [Tauber, 2008], in this paper, the author also

discuss the ‘Immunocomputing’ research described as immunology formalization aspects and

its quality as a fruitful source for applications to various problems. It is also implied that AIS

is involved in multidisciplinary studies including fields of immunology modeling, mathematical

modeling and computer simulations, among other forms of simulating immune models.

The artificial immune systems research, as seen on these works, may provide some signif-

icant contributions to immunology in the sense of understanding the immune system, as well

as providing a multidisciplinary research between immunologists and computer scientists or

engineers in order to establish interactions that should improve the understanding of the real

functions of immune systems and reinforce the development of novel techniques and provide

better results in problem solving.

At the present moment, there are few works pointing this aspect of AIS. However, there are

some definitions stated in [Hart et al., 2009], such as ‘Immunoengineering’, which is inspired on

immunoecology (study of principles applied to immunological functions) and immunoinformat-

ics (related to decision making paradigms), whose elements are reunited to provide adaption

and applications. Thus, the concept of an ‘Immunoengineering’ has been started in [de Castro,



80 State of the Art in Artificial Immune Systems

2001], with the purpose of AIS approaches for problem solving.

These studies would provide a framework that supports the development of mathematical

and computational models, as well as their validation through benchmark problems. In sum-

mary, understanding AIS may reinforces the understanding of immunological principles and

models, as well as provide the growth of the research on bio-inspired systems.

Algorithms that adopt multiple models for immunological abstraction (i.e. clonal selection

algorithm applied to optimization of negative selection algorithm), the predominant model

related to its research and applications focus will be considered in the list of methods in each

subsection, since these methods can be combined and are not mutually exclusive.



Chapter 4

Fault Detection and Diagnosis using

Fuzzy Model of Antigen Recognition

and Participatory Clustering

A model which presents the immune response as a process of fuzzy nature is defined in [Leng

and Bentwich, 2002]. The model considers the T and B cells selection in the body through

on fuzzy recognition of molecules as follows: i) in the case of low affinity, cell suffers death

by neglect and ii) when affinity is high, cell dies in the negative selection process. This model

defines that the immune response objective would be the generation of sub-optimal clones.

This model is illustrated in Figure 4.1 and can provide inspiration for anomaly detection

systems, mainly for negative selection based algorithms, which can be described by these rules.

The inference system considered in this work is described in [Chen and Mahfouf, 2009], in which

the fuzzy output is used for the immune response of the fault detection system.

4.1 Fuzzy Antigen Recognition Algorithms

4.1.1 Detectors generator algorithm

The presented model complements some previous algorithms used for negative selection based

detector generation, with the fuzzy inference mechanism to control detectors generated in a

proper way.

The algorithm uses some system normal operation sampling as reference (training) data

and system with fuzzy recognition of antigens to manage the allocation of detectors in nonself

region. The rules are described in Table 4.1, and these rules provide fuzzy inference system in

81
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Fig. 4.1: Illustration of the hypothesis of T cell fuzzy recognition according to [Leng and
Bentwich, 2002]. The process of self / nonself discrimination, their membership functions
describing the relationship between the affinity between cell and antigen with a biological
reaction of the immune system.

Figure 4.2, based on the model described in Figure 4.1.

Analyzing the model, the fuzzy system considers negative selection process as the allocation

of a detector in the region of normal operation and positive selection as the successful allocation

of a detector (in the anomaly region), detectors placed in regions considered unfeasible, far away

compared to other detectors, suffer a process called death by neglect, i.e. these detectors are

considered useless for system monitoring.

Figure 4.3 shows some examples of the algorithm functioning in a two-dimensional space.

Membership functions are generated through two thresholds T1 and T2, which are respec-

tively for the positive selection (Rule 3 to rule 2) and negative selection (rule 2 to rule 1),
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Tab. 4.1: fuzzy rules used in the antigen recognition system for the generation of detectors.

Rule Feedback
1 If distance is Then response is

low negative_selection

2 If distance is Then response is

medium positive_selection

3 If distance is Then response is

high death_by_neglect

Fig. 4.2: Membership functions for detectors generator version.

Fig. 4.3: Description of the proposed algorithm in a two-dimensional space.

and being T1 < T2. The set of thresholds specifying detector borders and the stopping criteria

(number of detectors or the same coverage rate) are parameters evaluated by the algorithm,

described as in flowchart of Figure 4.4 and also in Algorithm 4.1.

This algorithm can also be used to enhance other negative selection based techniques which

employ detectors to assess fault detection in the system.
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Algorithm 4.1 Pseudocode of Detector Generation in Fuzzy NSA

1: procedure FuzzyNSATraining(AgTr,T1,T2)
2: S ⇐ ∅
3: while not(StopCriteria) do
4: D ← Randomize(n) ( Generate a random n-dimensional point.
5: parameters ← NegativeSelectionRules(D) ( Calculate parameters based on

the NSA version.
6: for all i ∈ AgTr do
7: disti ← EuclideanDistance(D,AgTr(i)) ( Calculate distance of D between

Training Data.
8: end for
9: bind ← AffinityNSA(min(dist), parameters) ( Calculate affinity based on NSA

version.
10: decision ← FuzzyRules(bind, T1, T2) ( Apply fuzzy system.
11: for all m ∈ Migrated do
12: if decision = positive_selection then ( Positive Selection.
13: S ⇐ D ( Allocate S in Detector Set.
14: end if
15: end for
16: end while
17: return S
18: end procedure
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Fig. 4.4: Flowchart describing the steps of Detector Generation in Fuzzy NSA.

4.1.2 Monitoring algorithm

This model serves as a simplification of the negative selection algorithm and uses the Euclidean

distance as a anomaly metric, in which the similarity to the training data defines conditions

of sampled (validation) data. The fuzzy inference system used will define the data labeling

based on the distance between the data and reference. Assuming that outliers may represent

anomalous compared to normal data, it is possible to detect anomalies in this way.

The algorithm works fundamentally using the distance between sampling to the nearest

reference for labeling the sampling data as normal or anomalous and the fuzzy inference system

is similar to the one described in detectors generation algorithm, except for the rule of death by

neglect, which is not considered in this approach because the context for its use in this model

is still unknown. In this case, the monitoring is reduced to two rules: positive selection and

negative selection.

The rules are represented as in Table 4.2. Inputs are fuzzified as membership functions in
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trapezoid form, representing the degree distance between data presented and reference data,

and outputs are represented by triangular membership functions, which represent the immune

response (status of the system). The membership functions are represented in Figure 4.5.

Tab. 4.2: rules used in fuzzy system for monitoring of antigen recognition.

Rule Feedback
1 If distance is Then response is

low negative_selection

2 If distance is Then response is

high positive_selection

Fig. 4.5: Membership functions for monitoring algorithm version

The algorithm depends on a threshold used to adjust the membership function and to

define boundaries between normal data and data anomaly. The threshold is dependent on the

problem, because there are cases where the outliers can be quite common.

This algorithm differs from other negative selection algorithms, because there is no need to

generate detectors for discovering anomalous processes in a system. The algorithm verifies if

test data are sufficiently discrepant for the indication of an anomaly.

The algorithm also relies on a normalization factor of the distance metric, based on a hill

function. This factor is used to avoid values out of the range, and is shown in (4.1).

ζAgk = 1−
Dist(Agk, T rnearest)h

1 +Dist(Agk, T rnearest)h
(4.1)

Where Dist(Agk, T rmin) is the distance metric between antigen and training samples, usu-

ally the Euclidean Distance, and h is the value for the hill function. In all tests performed,

h = 2 is adopted.
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Figure 4.6 shows some examples of the functioning of the algorithm in a two-dimensional

space, with the training data functioning as a reference for evaluation of data validation.

Fig. 4.6: Description of the proposed algorithm in a two-dimensional space.

The method follows that specified in Figure 4.6 and Table 4.2: The membership functions are

generated based on a threshold thr. Besides this, reference data (training) and the sampling

to be classified (validation) are the evaluated parameters by the algorithm, described as in

flowchart of Figure 4.7 and also in Algorithm 4.2.

4.1.3 Simulation Results for detector generator

The algorithms were applied in the case of DC motor presented in [D’angelo et al., 2010] and

described in Chapter 2.

The distances between the data and reference data are normalized to 0 to 1 in order to make

easier the data processing by fuzzy inference system. In addition, we used the data output of

the model, with reference data using 1000 points in continuous normal operation, while each

simulation has 3000 points in steady state. Faults occur at the point of each simulation 1000 (1

millisecond of operation). Results are presented in terms of classification rate, as well as delay

in detection.

For detectors generation, these thresholds were adopted: T1 = 0.15 and T2 = 0.95 all of

them based on significance levels considering the probability of false alarms (T2 is based on error
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Fig. 4.7: Flowchart describing the steps of Monitoring of Fuzzy NSA.

correlation) or the probability of a detector being placed in an infeasible region (T1 is based

on the coverage through self area distance). The fuzzy system was applied in the V-Detector

algorithm presented in [Ji and Dasgupta, 2004a], which uses some mechanisms that may provide

high coverage of the nonself area. The self radius is about rs = 0.1, the desired coverage is up

to 97.5 % coverage per detector and the other stopping criterion is occurs when 150 detectors

are placed or after 250 attempts. The algorithm was run 50 times, as the algorithm places

detectors in random locations through positive selection.

The proposed algorithm, according to the results in Table 4.3, is able to detect most faults in

the test without false alarms, however, in fault 4, the algorithm was unable to detect few points,

The algorithm succeeded to generate most detectors and no detectors have been discarded

(Allocated in the region of normal operation). The useless detectors suffer death by neglect,

which happened in some cases.

In Table 4.4, we can see the results with the same algorithm, but without the fuzzy inference

system for antigen recognition. The purposed system has improved the algorithm performance,
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Algorithm 4.2 Pseudocode of Monitoring based on Fuzzy NSA

1: procedure FuzzyNSAMonitoring(xTs, xTr, thr, h)
2: for all i ∈ xTs do
3: for all j ∈ xTr do
4: dist(j) ← EuclideanDistance(xTs(i), xTr(j)) ( Calculate distance of Test

sample between Training Data.
5: end for
6: nearest ← argmin(dist)

7: ζ ← 1−
disth(nearest)

1+disth
(nearest)

( Calculate affinity between all Training Data.

8: decision ← FuzzyRules(ζ, thr) ( Apply fuzzy system.
9: if decision = positive_selection then ( Positive Selection.

10: yi ← anomaly
11: else ( Negative Selection.
12: yi ← normal
13: end if
14: end for
15: return y
16: end procedure

considering that the algorithm was able to detect more fault points than the original algorithm.

4.1.4 Simulation Results for monitoring

For the monitoring algorithm, it is expected to overcome weak points of the detectors generation

algorithm. Threshold adopted for use by the fuzzy inference system was thr = 0.95.

According to Table 4.5, in all simulations the monitoring algorithm was able to detect faults

in the instant in which they occurred, this indicates that the algorithm was able to distinguish

the normal points from anomaly points with no false alarms or misdetection.

In fact, the algorithm works on normal data and the same distance in relation to sampled

data. Anomaly detection is performed when the data are far from the reference data, through

the threshold of the fuzzy system.

This result shows that the approach based on monitoring may be an alternative to the

generation of detectors and is promising as the proposed objectives, detecting faults, however,

still requires some modifications to achieve the objectives. With its fuzzy nature, other immune-

inspired fuzzy inference rules may be implemented in order to provide a more enhanced data

processing and its subsequent detection.
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Tab. 4.3: Results of tests performed on the generator algorithm detectors.

Scenario Found Delay False Misdetection
points Alarms

Normal 0 - 0% 0%
Fault 1 2001 0 0% 0%
Fault 2 2001 0 0% 0%
Fault 3 2001 0 0% 0%
Fault 4 1994 6 0% 3%
Fault 9 2001 0 0% 0%
Fault 10 2001 0 0% 0%
Fault 11 2001 0 0% 0%

Generated Discarded Detectors Discarded Detectors
Detectors (Death by Neglect) (Negative Selection)

Number 83 17 0

4.2 Fault Diagnosis using Participatory Clustering

The participatory clustering algorithm was developed in [da Silva et al., 2007] as an algorithm

that uses the method of participatory learning, defined in [Yager, 1990]. The model represents

better the functioning of human learning because it contains a mechanism that allows reviewing

in learned concepts.

The algorithm is based on two indices: the Compatibility index of data cluster centers,

which measures in which group data may be included, and the Alert index, which measures the

reliability of the acquired knowledge in each cluster, checking if its structure should be revised,

which implies the inclusion of a new group in the system.

In [Lemos et al., 2011], the participatory clustering algorithm has been improved with some

mechanisms complementary to compatibility and alert threshold. In Compatibility index, we

use a distance metric which uses a scattering matrix to measures the co-variance of the groups,

and the threshold definition follows a chi-square distribution. The Alert index calculation is

based on a sliding window mechanism that defines how many observations are made in relation

to compatibility threshold violations, analyzed by a Bernoulli distribution which have a window

size dependent level of significance.

Thus, the participatory clustering algorithm was defined through four influence parameters:

a learning rate α which updates the cluster parameters, the window size w that monitors

changes in compatibility index, the level of significance λ used in the calculations, and initial

scattering matrix Mtx, which defines the creation of new groups.
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Tab. 4.4: Results of tests performed on a normal Negative Selection Algorithm, for comparison
purposes.

Scenario Found Delay False Misdetection
points Alarms

Normal 0 - 0% 0%
Fault 1 1964 37 0% 18.56%
Fault 2 2001 0 0% 0%
Fault 3 1951 50 0% 2.48%
Fault 4 1994 6 0% 0%
Fault 9 1841 160 0% 8%
Fault 10 2001 0 0% 0%
Fault 11 1961 40 0% 2%

Used Useless Discarded
Detectors Detectors Detectors

Number 17 - 0

4.2.1 Description of the Participatory Clustering algorithm

The participatory clustering algorithm is used when the Fuzzy Antigen Recognition Algorithm

sends an alarm signal. After the fault event, the system searches the list c of the existing

clusters and calculates the distance between the detected data xk and the center cg of the

cluster, and using the scattering matrix Mtxg information, as shown in (4.2).

D(xk, cg) = (xk − cg)(Mtxg)
−1(xk − cg)

′ (4.2)

Thus, the calculation of the compatibility index ρg is performed using (4.3).

ρg = exp{−
1

2
D(xk, cg)} (4.3)

Then, the ρg compatibility index is compared with a threshold Tρ, calculated by the chi-

square distribution χ2 with a significance level λ and depends on the number of dimensions of

input data n, as shown in (4.4).

Tρ = exp{−
1

2
χ2
n,λ} (4.4)

A boolean variable Ok stores the value resulting from comparing ρg and Tρ, then the sum

v of w last observations in Ok value is calculated. The alert index ag is calculated through the

Bernoulli distribution in (4.5). If the number of points is greater than the window w or equal
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Tab. 4.5: Results of tests made with the monitoring algorithm.

Scenario Found Delay False Misdetection
points Alarms

Normal 0 - 0% 0%
Fault 1 2000 0 0% 0%
Fault 2 2000 0 0% 0%
Fault 3 2000 0 0% 0%
Fault 4 2000 0 0% 0%
Fault 9 2000 0 0% 0%
Fault 10 2000 0 0% 0%
Fault 11 2000 0 0% 0%

to it, otherwise the rate of alert is 0.

ag =

(

w

v

)

λv(1− λ)(v−w), v = 0, ..., w (4.5)

The alert threshold Ta, used to generate new clusters, is defined through (4.6).

Ta = 1−
λ

w
(4.6)

Once compatibility is compared to the indexes of the nearest cluster g and the alert index ag

with their respective thresholds, the algorithm can generate a new cluster or update an existing

cluster g including the new point and by modifying center position and the scattering matrix

Mtxg . The factor Gg is calculated to update existing clusters.

Gg = α(ρg
1−ag) (4.7)

cg = cg +Gg(xk − cg) (4.8)

Mtxg = (1−Gg)(Mtxg −Gg(xk − cg)
′(xk − cg)) (4.9)

However, in some cases, the algorithm can create redundant clusters. To minimize this

problem, as new clusters a and b are created, these are compared, as in (4.10).

D(ca, cb) = (cb − ca)(Ma)
−1(cb − ca)

′ (4.10)

Likewise, the distance between clusters is calculated by (4.3), using the generated value in

(4.10). If this metric is greater than the threshold Tρ, a and b are united.
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With the clustering algorithm used in the system used at work, it can distinguish the

faults occurred to aid in the diagnose task. It is noteworthy that only the data classified by

the system as faults pass through the stage of generating and updating of the groups by the

clustering algorithm participatory, which can also update the structure of groups as new data

is entered.

In short, the system can be described using the flowchart in Figure 4.8 and in Algorithm 4.3.

Fig. 4.8: Flowchart representing the participatory clustering applied after NSA detection.

This algorithm will be applied to the same scenario presented in section 4.1.2, where the

fuzzy antigen recognition monitoring algorithm was used to fault detection alarms.

4.2.2 Application on the fault diagnosis problem

The fuzzy antigen recognition system with diagnosis based on participatory clustering is applied

to DC Motor experiments. The algorithm will use the four fault data in sequence as data
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Algorithm 4.3 Pseudocode of the Participatory Clustering applied to the Fuzzy NSA

1: procedureParticipatoryClusteringFaultDiagnosis(xTs, xTr, thr, h, α, β, w, λ,Mtx1st)
2: ng ← 1
3: c1 ← CreateNewGroup(xk,Mtx1st)
4: Ta ← 1− λ

w

5: Tρ ← exp{−1
2χ

2
n,λ}

6: for all k ∈ xTs do
7: yk ← FuzzyNSAMonitoring(xTs(k), xTr, thr, h)
8: if yk ← anomaly then
9: for g ← 1 to ng do

10: dist(g) ← DistanceMetric(xk, cg,Mtxg)
11: ρg ← exp{−1

2dist(i)}
12: end for
13: b ← argmin(ρ)
14: ok ← IsFalse(dist(g) < χ2

n,α)
15: abest ← ObservationViolations(λ, w, o)
16: if ρg < Tρ and abest > Ta then
17: ng ← ng + 1
18: {cng,Mtxng} ← CreateNewGroup(xk,Mtx1st)
19: idx ← ng
20: else
21: {cb,Mtxb} ← UpdateGroup(xk, cb,Mtxb, β, ρb, ab)
22: idx ← b
23: end if
24: for i ← 1 to ng do
25: dist ← DistanceMetric(ci, cidx,Mtxidx)
26: ρi ← exp{−1

2dist}
27: if ρg < Tρ then
28: merge ⇐ i
29: end if
30: end for
31: for all i ∈ merge do
32: cidx ← MergeGroups(ci, cidx,Mtxidx)
33: UpdateGroupIndex(C, idx)
34: end for
35: merge ⇐ ∅
36: Ck ← idx
37: else
38: Ck ← 0
39: end if
40: end for
41: return y, C
42: end procedure
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sampled (with a total of 12,000 points), using 1000 points of normal operation as reference

data.

Using the threshold thr of the fuzzy system, the parameters of the clustering algorithm

should be defined as the rate of learning α, the window size w, the significance level λ and the

initial values of the matrix Mtx scattering.

For these tests, we set the following parameters, thr = 0.95, α = 0.1 and the initial matrix

M has been obtained covariance of the starting point, since values of the covariance matrix

groups can make a scattering singular matrix along the iterations.

The values of w is test dependent, showing situations in which the algorithm has good

performance, when the values of λ vary the values of w also vary, because the lower is the level

of significance, the larger should the window size be, considering that lower window values can

generate allocation of data in wrong clusters, while it can also happen spurious generation of

many clusters for the same fault case, in addition, any inappropriate combination of values can

generate a very large number of clusters for the same fault.

Table 4.6 shows the result with w = 1000 and λ = 0.005, the values in parentheses are the

clusters indicated by the algorithm, some values that classified as a fault of the group, while

Table 4.7 shows the result with w = 2000 and λ = 0.0001, which led to one more group.

Tab. 4.6: Results for w = 1000 and λ = 0.005.

Scenario Hits Errors Clusters
Normal 4000 0 1 (0)
Fault 1 2000 0 1 (1)
Fault 2 1983 17 (1) 1 (2)
Fault 3 1983 17 (1) 1 (3)
Fault 4 1983 17 (1) 1 (4)

Tab. 4.7: Results for w = 2000 and λ = 0.0001.

Scenario Hits Errors Clusters
Normal 4000 0 1 (0)
Fault 1 1000 (1) 0 2 (1

1000 (2) and 2)
Fault 2 2000 0 1 (3)
Fault 3 2000 0 1 (4)
Fault 4 2000 0 1 (5)

These values indicate that the performance is close to the desirable, where the goal is to

generate the smallest number of clusters as possible, so the algorithm can distinguish each fault

as correctly as the clusters are being generated by the algorithm.
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The best result was obtained in Table 4.8, where it was possible not only generate all clusters

correctly, but also allocate the data correctly in the appropriate form in this experiment, the

window size is 3000, corresponding to the number of simulation points.

Tab. 4.8: Results for w = 3000 and λ = 0.0005.

Scenario Hits Errors Clusters
Normal 4000 0 1 (0)
Fault 1 2000 0 1 (1)
Fault 2 2000 0 1 (2)
Fault 3 2000 0 1 (3)
Fault 4 2000 0 1 (4)

The results indicate that a combination of values of w and λ, as well as a value that is close

to characteristics of the data. Table 4.9, there was the similar, but with an error in one of

the faults. The situation ideal has been achieved with a combination of values, however, as a

combination of Table 4.10 can cause an undue generation of many clusters in the same one.

Tab. 4.9: Results for w = 4000 and λ = 0.0005.

Scenario Hits Errors Clusters
Normal 4000 0 1 (0)
Fault 1 2000 0 1 (1)
Fault 2 1999 1 (1) 1 (2)
Fault 3 2000 0 1 (3)
Fault 4 2000 0 1 (4)

Tab. 4.10: Results for w = 3000 and λ = 0.0001.

Scenario Hits Errors Clusters
Normal 4000 0 1 (0)
Fault 1 2000 0 1 (1)
Fault 2 2000 0 1 (2)
Fault 3 2000 0 1 (3)
Fault 4 2000 0 32 (4 to 36)

The results in Table 4.10 also show that the generation of clusters is highly sensitive to

the level of significance, which can confuse the system by creating many clusters to a single

anomaly.

Analyzing the results, it is confirmed that the values of the window and level of significance

are dependent on each other and dependent on the problem studied and are in fact important

to distinguish between faults.



Chapter 5

Other Immunological Models and

Their Application to Fault Detection

and Diagnosis

5.1 Challenging points

The new approaches have significant representation for anomaly detection problem, with a

greater contextualization of data for a given application. Such alternatives, however, may face

some limitations regarding the context analysis of the problem: prior expert knowledge should

be suitable as represented by these algorithms. In many anomaly detection problems, such as

FDI applications, such representation may not be trivial.

In the Fault Detection and Isolation (FDI) particular case, there are some features that

imply challenges in the approach due to difficulties of the adequacy of the data to the problem.

In some cases, the use of redundant models is quite common and according to [Chow and

Willsky, 1984], two steps may be defined in the task of FDI: the generation of residuals through

these models and the decision making regarding system state. The first task is the use of

models to generate relevant data and the second is the analysis of information represented by

residuals.

The immune-inspired algorithms reviewed considered in Chapter 3 would be responsible

for decision making tasks after residuals generation, which would be considered as a suitable

representation for expert knowledge required by these algorithms and abstracted translation of

input signals. However, these representations can be redundant for these algorithms and may

result in high computational costs.

Since these approaches were designed to require a more abstract representation for anomaly

97
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detection, such information required for a given event to be classified as a faulty behavior may

not be trivial to obtain, depending on the dynamic system.

These algorithms usually adopt some representations of signals corresponding to the evalu-

ation of dynamic system behavior through prior knowledge. Obtaining this model is one of the

steps implied in the development of FDI systems.

For a dynamic system, antigen-based data correspond to the output data, and may be

evaluated according to the behavior. In DCA and TLR, the correlation mechanisms between

signals and antigens can be interpreted as the process classification scheme.

However, many of these systems are not consistent with the representation by these algo-

rithms required and often this model must be inferred using the available data.

This scenario can be summarized by Figure 5.1, which also describes the organization re-

lated to monitoring systems based on the immune-inspired techniques further presented in this

chapter.

Fig. 5.1: Fundamental steps of Fault Detection tasks.

The anomaly detection inspired by the self-nonself discrimination applied to fault detection

is based on direct evaluation of the antigen represented by feature space considering two impor-

tant characteristics: the need for training data, implied by the process negative and/or positive

selection, and similarity measures for evaluation of the data as the space characteristics.

Despite these facilities, these algorithms have problems arising from the lack of context in

relation to the application environment and the computational cost provided by the evaluation

of these algorithms, making the implementation unfeasible in real time applications.

It is considered that immunological models have, in the transcription of AIS features that

represent transitional links considering how to handle input data and treatment of the problem

of detecting anomalies. In Figure 5.2, such features are defined as a way of understanding how
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AIS can be applied to Anomaly Detection problems, such as Fault Detection.

Fig. 5.2: Relationship among immunological models that can be considered in the development
of new immune-inspired systems.

With these considerations, it is possible to represent immune-inspired approaches according

to the following principles.

• The Infectious Nonself and Danger models should consider the use of signals, usually

defined by expert knowledge;

• In Self-Nonself Discrimination in association with the training of machine learning algo-

rithms is inherent, since the Self patterns should be known;

• The signals used by AIS algorithms must adequately represent the current status of

important events to the objective of the problem;

• Prior knowledge models can also be obtained through training based methods (ANN, for

example);

• The representation of antigens is not a mandatory feature in algorithms based on Infec-

tious nonself or Danger models (as in [de Almeida et al., 2010]).
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Importantly, some of these assumptions are interpreted according to the adopted immuno-

logical model for the development of a technique. For FDI problems, some abstractions are

necessary for the implementation of such algorithms.

Some techniques for processing information used in this work will be presented to generate

the signals interpreted and used by these AIS approaches.

5.1.1 Antigen modeling

Most dynamic systems have only the input and output variables as available information with-

out markers or identifiers. However, there are some ways to deal with this issue.

Since the goal of FDI problems is the classification of fault data, output data can be used

as antigens, which will simply indicate the current state of the system.

The disadvantage of this principle comes from the problem dimensionality. However, con-

sidering data storage, each information must be identified by a code, as in a database system.

This code, which represent the antigen used by the algorithm, can be generated by several

ways.

Another possible method is to use similarity metrics and consider zero as the exact location

of the antigen, in addition, searches can be approximated by a threshold based similarity of

the antigen, as demonstrated in the examples using the equation (5.1), however, the problem

of this approach is precisely the overlap of some antigens in certain cases.

N
∑

i=1

(Y(k,i) − Agi)
2 <= thr (5.1)

Antigen overlap is similar to the approximate recognition seen in Self-nonself discrimination,

the adoption of this data format using the feature space becomes intuitive, and the overlap is

regarded as a similarity data, which has been used in the STLR algorithm in [Nejad et al.,

2012].

However, if the antigen is used as an identifier, a discretization process in data may be

considered or even the ID can be associated with antigen data.

In fact, the antigen processing of these algorithms is important in terms of correlation with

the signals to evaluate system behavioral aspects. In AIS based on the Infectious nonself model

the antigen can be considered in training or procedural rules, the signal can be modeled through

these mechanisms.

In the Danger Model, signals modeling is the most important aspect. On the issue of

FDI, it is one of the challenges of application modeling. This point will be further discussed,

considering some important information regarding processing and practicality.
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5.1.2 Signal modeling

There are two options of signal modeling: using a quantitative model as a reference, such

that the immune inspired algorithm acts as a supervisor, or measuring variations between data

output between past and current instants.

In any case, the information should be pre-processed so that the anomaly will be accurately

detected. The following aspects should be considered:

• Adequacy of available information in the application;

• Data processing with time and space properties;

• Evaluation of the data quality and relevance.

Besides these there are many other aspects that can be crucial to a successful anomaly

detection, such aspects can also be included within these mentioned as a detection delay due

to sampling problems, for example.

Some alternatives for the signals modeling applied to the immune-inspired fault detection

in dynamic systems will be further presented.

Using Redundancy Models

A redundancy model has the advantage of being robust to noise and allows other ways of

interpreting the data, and it can be used for periodic time series. This approach is characterized

by the use of residuals as the expert knowledge interpretation of the immune-inspired algorithm

and their conversion to required signals.

In TLR algorithm, a signal is modeled by the square error of the estimated value by the

observer states relative to the value observed at the output of the dynamic system, according

to (5.2).

Signal(k) = (y(k,i) − ŷ(k,i))
2 (5.2)

The signal is a binary value that characterizes the signal was perceived or not by APCs,

therefore, this condition is checked in (5.3), through a threshold thr, corresponding to the

maximum value allowed by the residual, to be considered in the training algorithm.

SeenSignal ← Signal(k) ≥ thr (5.3)

In DCA, the basic formulation requires the use of two signals which verify system conditions,

considering the information obtained by the observer .
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Thus, the problem safe signal (SS) is similar to the one required by TLR Algorithm, but

without the threshold, as in (5.4), and danger signal (DS), which considers the conditions of a

possible faulty state, is calculated through the absolute value of variations in residue considered

in (5.5).

SS(k) = Signal(k) (5.4)

DS(k) =

{

SS(k,i) − SS(k−1,i), SS(k,i) > SS(k−1,i)

0, SS(k,i) ≤ SS(k−1,i)∀i
(5.5)

The redundancy models has the advantage of requiring less details on the system, however,

has many disadvantages: Using these models to generate signals, algorithms can treat data

and generate alarms but it may reduce the utility of these algorithms. Furthermore, the use of

many tools can lead to high computational cost in some cases.

An analytical model can ease the FDI problem solving, considering that the system is

observable and data collection is trivial, regardless how to obtain the model.

The possibility of obtaining data without using the redundancy models will be further

studied, as these methods will take advantage only from the output of dynamic system.

Using output differential information

Data extraction from variations in output data of a dynamic systems may correspond to a

practical alternative for data evaluation.

This solution has some advantage, such as using only data from the system without re-

dundancy models and using it in the immune-inspired approaches. However, the generation of

such signals in many cases may be a difficult task, subject to some issues of extracting data in

engineering problems, such as noise, for example.

For TLR algorithms, which relies on antigen processing for the definition of signals or their

rules, the problem is only regarding the required signals for the fault detection task. In DCA

case, however, the problem is regarding the quantitative and qualitative features of each signal,

since the detection is entirely dependent on their behavior.

The most intuitive signal that can be considered is the Euclidean distance between data from

an instant k compared to its predecessor, according to (5.6). This metric variation considers

that a high value should indicate that the dynamic system has an anomalous behavior.
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Signal(k) =
N
∑

i=1

(X(k,i) −X(k−1,i))
2 (5.6)

However, considering the set of null hypothesis of Table 5.1:

Tab. 5.1: Null hypothesis regarding signal variations.

Hypothesis Description
A signal defined algebraically

H1 based on variations of a
dynamic system is applicable in
any case.
The presence of noise in the system

H2 does not alter significantly the
evaluation of AIS algorithms.

Consider a variation based on step functions whose impulse response results in the changing

values, as shown in Figure 5.3. The signal conversion in (5.6) has resulted as expected.
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Fig. 5.3: Example of a converted variable in the safe signals.

However, if we consider a periodic signal, the behavior of the proposed metric will be

significantly different from the expected, as shown in Figure 5.4. Rejecting H1, a different

formulation for this case is necessary.

X(k) = sin(k/50) (5.7)
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Fig. 5.4: Example with periodic signals (5.7) which invalidates H1.

Another recurring problem in dynamic systems is the noise issue. It is assumed a secondary

danger signal based on the safe signal, considering the weighted average of the earlier values,

according to (5.8).

DS(k) =
k

∑

kk=1

SS(k) −
W(kk)

k
(5.8)

W(k) =
k − SS(k)

k − SS(argmax)
(5.9)

Consider the same signal of Figure 5.3, the signal behaves as described in Figure 5.5, which

possibly measures a change indicator. However, the situation in Figure 5.6 is shown, considering

a noisy signal.

Figure 5.6 shows that the noise feature affects most values of danger signals, leading to the

rejection of H2, as the metric is not robust to noise.

The classification of noisy data was considered in [Gu et al., 2011], in which some tests

using a supervised algorithm were performed. The main problem is to produce input signals

that are robust to noise effects in the preprocessing step.
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Fig. 5.5: Example of a converted variable in the danger signals.
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Fig. 5.6: Analysis of a noisy signal converted to danger signal metric.

5.2 Data processing

5.2.1 Normalization

The step of data normalization is a factor of great importance, especially in generation of

numerical input signals, which follow certain values.
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One way to normalize the signals is to adopt ranges of values for them, as an example in

(5.10) valid for PAMP and Danger signals.

DS(k) =











0, DS(k) < DSmin
DS(k)−DSmin

DSmax−DSmin
, DSmin < DS(k) < DSmax

Vmaxd
, DS(k) > DSmax

(5.10)

In these equations, DSmin e DSmax are thresholds and Vmaxd
is the maximum value of signal

range, during k instant.

For safe signals, the process is different, as higher values indicate that system may be

operating in normal conditions, so these values have to be inverted as at the example in (5.11).

Importantly, Vmaxs and Vmaxd
may be different according to each problem.

SS(k) =











Vmaxs , SS(k) < SSmin
DSmax−SS(k)

SSmax−SSmin
, SSmin < SS(k) < SSmax

0, SS(k) > SSmax

(5.11)

In addition, as the safe signal has a very large suppressive effect, output calculation must

reflect these factors in order to provide better performance.

Normalization of signals provides a well organized and finite range of data. For DCA

algorithms it results in structured and non biased data processing, as well as a proper cell

lifetime distribution and signals with reasonable values, without outliers.

The TLR algorithm also relies on signal normalization, these should be not only finite, but

also discretized. This factor implies the need of discretization signals, and normalization. All

these signals are considered in the rules applied to TLR and whose signals unseen in training

will be considered a possible anomaly in the algorithm. On DCA, discretization of data is

not required, and to solve this problem of TLR algorithm, processing rules are used as further

described.

5.2.2 Data sampling

The DCA, being based on cell population, should consider the sampling factor during the

pre-processing step, since these cells can collect antigens during the algorithm processing time.

Furthermore, it is estimated that the algorithm processes the input signals by approximately

1 second. In a shorter sampling, DCA loses in performance due to the delays inherent in runtime
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cells processing.

The observation time To of a dynamic system is considered, from the data obtained. The

DCA should process the data in a sampling time Ts, which must satisfy the condition of (5.12)

for the correct processing of the algorithm.

Ts ≥ To (5.12)

For example, a dynamic system operates To = 1ms, such as the DCA has default ts = 1s,

sampling should contain 1000 observable points. For instant k = 0, the first point of the

sample is used, then for k = 1 is applied from 1 to 1001 point, and signal is generated from

these information.

It is stipulated that the ratio To and Ts should not be smaller, because in this case the DCA

will have a reduced performance, neither larger, to minimize delays in detection.

Besides its importance in processing the DCA, there is another factor: other signals based

on the input samples can be generated from sampling, such as some statistical resources for

example.

TLR algorithm does not have an explicit definition on temporal factor, although the method

can be similarly employed. In this work, sampling is restricted to the DCA, while TLR is

employed by iterations.

Antigen multiplier and interpolation

A particular case of sampling in which multipliers are applied to the fault points in a range of

values between Xk e Xk−1. Antigens are replicated or interpolated to allow cells to analyze

them, once exposed by signals.

This procedure is applied in cases where Ts = To.

Another way to amplify antigen sampling to be considered is the Sliding Window mech-

anism. As most fault detection problems are considered as time series representations, each

sample can be collected multiple times as information required. This mechanism has several

purposes, such as reproducing observed patterns and to improve performance.

An example of antigen sampling by sliding window mechanisms is shown in Figure 5.7.

5.2.3 Data processing applied to signals

The signals used by immune-inspired algorithms must correspond properly to the problem in

which the algorithm is being applied. These algorithms have differences concerning the way

how these signals are processed:
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Fig. 5.7: Example of sliding window mechanisms applied to antigen data.

• In Toll-Like Receptor algorithms (TLR and STLR), the signal is evaluated for its presence

in Boolean form, 0 for signal absence and 1 for signal presence, as specified in [Aickelin and

Greensmith, 2007]. These signal are indicative of abnormal activity and are analogous to

PAMPs.

• In DCA, each signal is numerical and they have specific and well-defined categories, being

converted to output signals based on weights whose calculation defines the influence of

input categories in each output. This processing is described by a matrix, according

to [Greensmith, 2007]. In the deterministic version [Greensmith and Aickelin, 2008], this

calculation is simplified.

• The algorithm in [de Almeida et al., 2010] considers two signals, which are based on fuzzy

processing and whose output is based on a defined mathematical model for fault alarm

calculus.

Such processing can be used both to combine some signals that have complementary fea-

tures, and in terms of adequacy of data to a certain algorithm. The processing of DCA does not

require a rigorous use of these mechanisms. For the other algorithms, one of these processing

can be defined:

• Direct, with the definition of thresholds for the signal, once necessary;

• Fuzzy, based on inference rules and language processing.
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These processing forms are further discussed. Importantly, these processing activities are

related to the interaction between the signals and detection agents (APCs), analogous to re-

ceptors in a cell. These models are similar to signal receptors by APCs.

Direct Processing

In this processing model, processing rules will always be based on thresholded values and the

produced output signal will be binary, where its value is related to the presence of a certain

signal.

This type of processing is based on If-Then-Else rules, and depending on the need, all

rules are aggregated in common, processed by the logical operator OR. Figure 5.8 shows an

illustrative example with a flowchart.

Fig. 5.8: An illustrative example of direct rule processing.

This is the type of processing algorithms as adopted by TLR in [Twycross et al., 2010] with

description also in [Aickelin and Greensmith, 2007] mentions the processing as a signal presence

indicator, a condition of APCs receptor activation, all rules are considered in this processing

regardless of relevance or influence on signal generation.

Fuzzy Processing

The fuzzy processing method combines elements of the other processes, based on the use of fuzzy

set theory and the use of rules defined by the membership functions characterizing relations

between signals and an output.
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The variable type generated by the method is defined by categorical attributes of rules devel-

oped through membership functions and fuzzy operators. According to inference mechanisms,

numeric variables can also be generated by this method.

The rules used come from the membership functions associated with dynamic system model-

ing, as in the example of Figure 5.9 which shows the association between membership functions,

rules and output processing, corresponding if those signals have been seen (in TLR algorithm).

Fuzzy Signal Processing
Example:
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Fuzzy Rules:

1. If Signal1 is Function1 , ThenOutput =
absent

2. If Signal1 is Function2 AND Signal2 is
Function1 AND Signal3 is Function1 ,
Then Output = absent

3. If Signal1 is Function2 AND Signal2 is
Function1 AND Signal3 is Function2 ,
Then Output = absent

4. If Signal1 is Function2 AND Signal3 is
Function3 , Then Output = present

5. If Signal1 is Function2 AND Signal2 is
Function2 AND Signal3 is Function1 ,
Then Output = absent

6. If Signal1 is Function2 AND Signal2 is
Function2 AND Signal3 is Function3 ,
Then Output = present

7. If Signal1 is Function3 AND Signal2 is
Function1 , Then Output = absent

8. If Signal1 is Function2 AND Signal2 is
Function2 , Then Output = present

9. If Signal3 is Function4 , ThenOutput =
present

Fig. 5.9: Fuzzy processing example.

This processing model is used in immune-inspired algorithm [de Almeida et al., 2010] for

detecting faults in such work, the fuzzy processing is used in the induction of signals with

associated rules to four input functions and four output functions, used as numerical information

based on mathematical modeling of NK cells production against tumors in [de Pillis et al., 2005],

whose variables would be used to generate an alarm index in the method.

The major disadvantage of this modeling is the case of using various inputs and functions

related pertinence in which is necessary to include a large number of rules to match these
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information.

These methods are considered a part of the process between the treatment of the information

generated and the stage of decision making by the immune-inspired algorithm applied to the

problem of FDI. There are some other processing forms, however, in this work, only these two

forms were used.

5.2.4 New evaluation metrics for DCA

The Dendritic Cell algorithm has two anomaly detection metrics considered in [Greensmith

and Aickelin, 2008]: MCAV and Kα, both adopted for antigens and are associated to system

contexts, the Kα metric is defined by signals magnitude of exposed cells, proposed to solve

difficulties related to biased values of signals (signals of value −1 are treated in the same way

that the signal value −100 are treated).

The the MCAV and Kα metrics can be properly exploited for detection or even prevention

purposes. However, for the development of an appropriate metric for the FDI applications,

both metrics are specific for antigens evaluation and are not suitable in terms of evaluating

faults in the dynamic system.

Since the FDI problem is different from anomaly detection problems for which DCA was

originally proposed in [Greensmith, 2007], the anomaly metrics applied to the problem should

explore the objectives of FDI systems using the outputs of DCA.

In order to achieve the objectives of FDI systems, two additional metrics were proposed

in this work. Similar to the other metrics, the outputs of DCA are processed and indexed

according to FDI problems.

The Cell Context-Aware Fault Alarm

A new metric, Cell Context-Aware Fault Alarm (CCAFA), is proposed to provide alarms for

DCA. This metric consists in the calculation of alarms according to cell responses.

Unlike earlier metrics, the CCAFA is not focused on antigens, instead, this metric relies

on the information provided by K, as well as the cell analysis, considering the cell maturation

(signal of K).

In CCAFA variable, cells that achieved positive and negative signals of K are evaluated

separately and independently of antigens, and then collected in GK variables, as in (5.13) and

(5.14).
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∑

DC

G+
K =

∑

DC K+

∑

DC M
(5.13)

∑

DC

G−

K =

∑

DC K−

∑

DC Sm
(5.14)

To generate normalized and optimized values between −1 and +1, the exponential func-

tion is employed for both variables, as in (5.15), which turns the metric suitable to detection

purposes.

f(φ) = 1− e−φ

CCAFA = f(G+
K)− f(G−

K) (5.15)

The alarm condition is given by CCAFA > Alarmthr, whose value is usually greater than

0 to avoid false alarms. The objective of this metric is to provide a proper fault alarm in the

DCA, since most metrics may provide imperfect detection features.

Once presented a detection alarm, an isolation feature will be also presented.

The Antigen Index of Fault Differentiation

Another metric is proposed in this work, The Antigen Index of Fault Differentiation (AIFD) is

employed to perform fault isolation in the Dendritic Cell Algorithm. Unlike the CCAFA, this

metric is a database oriented index which relies in the antigen correlation and is related to the

magnitude of K.

As first implementations of DCA in [Greensmith et al., 2005] were designed to be applied

to computer data-based anomaly detection problems, antigens were designed as an identifier of

processes, with few influences in signals processing of DCA. Instead, the antigens are influenced

by these signals.

In AIS applied to FDI problems, antigens are analogous to the output data of a dynamic

system and signals correspond to the behavioral model or some expert system that lead to

indicative of faults. In this approach, each antigen can also be evaluated by content, after the

evaluation of signals within the cell.

However, at first, the main evaluation consists on identify such differences by DCA variables.

Antigens may be defined by their collection by DCs and their association to the exposed signals.

The other proposed metric, Antigen Index of Fault Differentiation, aims to collect all antigens
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by their quantitative features in the analysis. The index is calculated in (5.16). With J(a,M)

being the Jaccard Coefficient of antigens collected by mature cells. The value of K is useful as

antigens collected with different magnitude are grouped differently.

AIFD(a) =

{

J(a,M) ∗
∑

(K(a)), Alarm = 1

0, Otherwise
(5.16)

After antigen indexing through DCA variables, all non-zero values are grouped through this

indexes, then, each index is compared to the others by using Euclidean Distance. If the distance

does not match any set of stored indexes in the database, a new pattern is stored in database

and a new profile is assigned to the detected fault.

Fault profile construction

Once defined both metrics, a fault profile based on antigens is defined through their evaluation.

Antigen data will compose rules for fault diagnosis. These rules will be applied for each antigen

collected during signal evaluation and fault databases are updated with these information.

As the algorithm performs this task in a deterministic way and each fault has a pattern of

antigen collection, each fault point collected through non-zero AIFD variables is attached to a

fault profile, even if this antigen is a normal pattern collected during abnormal behavior. The

entire scheme is illustrated in Figure 5.10.

It is expected that DCA may achieve satisfactory performance for fault detection and a

reasonable results for fault diagnosis based on this strategy.

5.3 Validation of novel metrics

In order to validate the DCA proposed metrics, some tests were performed on the simulations

of DC Motor Benchmark. In the experiments analyzed, actuators faults are considered and

appropriate signals for detection (the residuals) generated from a linear observer based on the

physics of the process.

To provide these simulations, data were collected with observation time To = 1ms. Each

point is collected by their features and all test samples were simulated by Ts = 4s. A training

sample of Ts = 1s was also collected.

Safe signals are represented as described in Section 5.2.1 for Danger model-based algorithms,

and danger signals of DCA are also defined similarly. The algorithm parameters are defined in
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Fig. 5.10: Complete steps of fault diagnosis applied after DCA detection in this work.

Table 5.2. These parameters were defined based on the problem complexity and according to

other works in literature.

Deterministic DCA results are presented in Table 5.3, with information about gathered data

and the most relevant variables, such as Kα and the proposed metric CCAFA, each test has

been performed using 4000 points, corresponding to 1ms of observed data.

These results point that antigen collection features, which is an important feature of DCA,

may not provide the collection of all antigens, related to the exposed signals, by the algorithm

agents. Instead, these cells can collect antigens that were exposed to these once during the

sampling. However, the fault starts by one second after tests have started. All data processed

are represented in figs. 5.11 to 5.14 for Normal Data and figs. 5.15 to 5.30 for Faulty Data.
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Tab. 5.2: DCA parameters and functions.

Algorithm Data
Algorithm dDCA-FDI, adapted from dDCA
Version [Greensmith and Aickelin, 2008].
DC population 50
Antigen Storage 10
Average Lifetime 5
PAMP ND
Safe Signal (SS) Based on Eq. 5.11
Danger Signal (DS) Based on Eq. 5.10
Min / Max SS [0 5]
Min / Max DS [0 10]
Sampling Time (Ts) 1s
Evaluation Metrics MCAV , Kα and CCAFA

Tab. 5.3: Test results for DCA applied to Fault Detection.

Test Detection Antigens Kα Max Kα Mean CCAFA
Scenario Instant Collected value value Mean value
Normal - - 0 -29.8 -0.60
Fault 1 1s 3 200 +8.69 +0.51
Fault 2 1s 1 200 -0.27 +0.35
Fault 3 1s 40 190 +2.6 +0.49
Fault 4 1s 200 13 -0.32 +0.11
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Fig. 5.11: DC Motor system data for Normal Case.
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Fig. 5.12: DC Motor residuals data for Normal Case.
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Fig. 5.13: DC Motor converted signals for Normal Case.
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Fig. 5.14: DC Motor alarm data for Normal Case.
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Fig. 5.15: DC Motor system data for Fault 1.
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Fig. 5.16: DC Motor residuals data for Fault 1.
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Fig. 5.17: DC Motor converted signals for Fault 1.
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Fig. 5.18: DC Motor alarm data for Fault 1.
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Fig. 5.19: DC Motor system data for Fault 2.
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Fig. 5.20: DC Motor residuals data for Fault 2.
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Fig. 5.21: DC Motor converted signals for Fault 2.
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Fig. 5.22: DC Motor alarm data for Fault 2.
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Fig. 5.23: DC Motor system data for Fault 3.

0 500 1000 1500 2000 2500 3000
−15000

−10000

−5000

0

5000
Fault 3 Residual Data

Ar
m

at
ur

e 
ci

rc
ui

t c
ur

re
nt

0 500 1000 1500 2000 2500 3000
−1

−0.5

0

0.5

1

1.5

Fi
el

d 
ci

rc
ui

t c
ur

re
nt

0 500 1000 1500 2000 2500 3000
−0.4

−0.2

0

0.2

0.4

Time (milliseconds)

M
ec

ha
ni

ca
l r

ot
at

io
n 

sp
ee

d 
(ra

d/
s)

Fig. 5.24: DC Motor residuals data for Fault 3.
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Fig. 5.25: DC Motor converted signals for Fault 3.
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Fig. 5.26: DC Motor alarm data for Fault 3.
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Fig. 5.27: DC Motor system data for Fault 4.
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Fig. 5.28: DC Motor residuals data for Fault 4.

Despite the sampling time is different from observed time of the dynamic system, the de-

tection of faults was performed in a relatively accurate time. An interesting data is regarding

the mean values of Kα and CCAFA indexes, the latter was proposed to serve as an alarm

feature rather than another value to classify antigens, since signals are more relevant to detect

faults, which can be shown in Table 5.31. In these data, the CCAFA index seems to be more

applicable to detection than Kα, according to their mean values.
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Fig. 5.29: DC Motor converted signals for Fault 4.
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Fig. 5.30: DC Motor alarm data for Fault 4.

However, to verify their suitability for the fault detection problems, a comparison among

these indexes may provide such aspects. For this purpose, the detection through each index

was measured using a detection threshold as follows.

• ThrMCAV = 0.6

• ThrKα = 2

• ThrCCAFA = 0.2
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Fig. 5.31: Evaluation of the CCAFA variable with sample time Ts = 1s.

The results are given in Table 5.4. Most faults are detectable in such conditions, and the

alarm generation is based on these indexes. Unlike in disconnection cases (1 and 2), detection

was possible in all instants of detection, short circuit cases (3 and 4) have presented some

differences.

Tab. 5.4: Alarm duration time according to anomaly metrics.

Test
Scenario MCAV Kα CCAFA
Normal 0s 0s 0s
Fault 1 3s 3s 3s
Fault 2 3s 3s 3s
Fault 3 2s 2s 3s
Fault 4 3s 3s 3s

These tests point that the new alarm metric proposed in this work is a proper metric for

fault detection using DCA functions, since this metric can detect most faults like the other

metrics and a comparable performance in most tests as well.

Unlike most anomaly detection cases, FDI problems need some special resources in order

to provide identification of different anomaly cases. Most AIS approaches have been often

developed to provide well defined detection features. Fault isolation is, however, still limited

to other methods.

In the Dendritic Cell Algorithm, an isolation index for antigens, the AIFD was proposed
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in Subsection 5.2.4 as an aggregation factor that identifies the fault sequence in the algorithm.

In Table 5.5, some information about the indexes found and antigen patterns are presented

with the number of collected antigens with these indexes and when these antigens were collected

during DCA evaluation.

Tab. 5.5: Results of antigen indexation through the proposed AIFD index.

Test AIFD Antigens No. of Order of
Scenario Indexes Evaluated Antigens Occurrences
Normal - 0 11 -

67.20 2 3, 98
Fault 1 38.82 2 98 55-56

2.69 1 54
Fault 2 250 1 552 3

100.81 1 3
Fault 3 0.65 12 808 Both between

0.16 13 629 and 652
Fault 4 7.59 1 2010 3

0.07 26 636-660

This index can also generate distinct sequences of antigen patterns based on the DCA

correlation mechanism, as in some cases, consecutive antigens has the same value of AIFD

index. Noteworthy, this index is only applicable to the deterministic version of DCA, since the

index is a pattern generator that can be reproduced under the same circumstances, according

to antigen data.

5.4 Simulations

In this sections, the algorithms reviewed analyzed will be tested, applied to some fault detection

benchmarks aiming is to achieve faults as effective as possible. The methods used are the

following:

• The Deterministic Dendritic Cell Algorithm (dDCA-FDI).

• Structural Toll-Like Receptors Algorithm (STLR).

• Danger Model-based approach of [de Almeida et al., 2010] (DM-FD).

These tests are proposed to verify and validate all of immune-inspired approaches studied

in this work based on performance and how the problem is addressed in each of the employed
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methods. These are not explicitly compared to each other, although the performance of each

approach is analyzed.

One of the common benchmarks of application in FDI problems is the DAMADICS, intro-

duced in [Bartys et al., 2006] and described in Chapter 2.

There are some methods to generate a redundancy model of the given system, as in [Kourd

et al., 2011,Kourd et al., 2013], in which two neural networks are employed to generate the

model X ′ and F ′ for the residuals of the two outputs, obtained for fault-free and faulty cases.

The fault-free case is illustrated in Figure 5.32, whose variables are often evaluated to detect

and isolate faults.

Fig. 5.32: Neural Network for residuals calculation in fault-free simulations of DAMADICS,
based in [Kourd et al., 2011].

In those works, detection is based on threshold and residuals evaluation. Some faults can

be detected through these strategies, which compare residuals to some sets of range values.

Tests are organized as shown in Table 5.6, with some information as the faults simulated

and their strength in the benchmark.
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Tab. 5.6: Description of tests performed in DAMADICS benchmark.

Fault Intensity/Type

ID
Type of fault

Abrupt (Intensity)
Inc

ASm AMe ALa
f0 - - - -
f1 X X X -
f7 X X X -
f13 X X X X
f15 N/A N/A X -
f17 N/A N/A X X
f19 X X X -

Caption for fault types

None No Fault
ASm Abrupt, Small
AMe Abrupt, Medium
ALa Abrupt, Large
Inc Incipient

Residual calculation is provided through the MSE (Mean Square Error) of the estimated and

obtained values in all N output variables (Eq. 5.17). For the DCA detection, the calculation

of SS is based on a sliding window mechanism, defined by the w value, defined by the period

k of the evaluation.

r(k) =

∑N
i=1(y(k,i) − ŷ(k,i))2

N
(5.17)

SS(k) =

∑k
j=jo

r(j)

k − jo
(5.18)

jo = max(1, k − w) (5.19)

This is the information provided for signals of the evaluated methods. In DCA, the Safe

Signal is based on Eq. 5.18, considering the sliding window mechanism calculated upon Eq. 5.19,

as the benchmark samples are provided in Ts = 1s. Noteworthy, initial value of safe signal is

the residual at first instant (i.e. SS(0) = r(0)). In this approach, tests are performed in

Samples are given in different observed periods, To = {2, 10, 30, 60, 120}secs. And each window,

proportional to the period (w = To

Ts
) is evaluated once.

DS calculation is based on the distance between minimum and maximum values of the

sliding window, based on (5.20).

DS(k) =
N
∑

i=1

(max(r(k), w)−min(r(k), w)) (5.20)
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Normalization equations are defined in Eq. 5.21 for DS and Eq. 5.22 for SS, defining that

danger signals have values within range [0, 10] and safe signals have values within range [0, 5].

DS ′

(k) = min(0, max(100DS(k), 10)) (5.21)

SS ′

(k) = max(0, min(1 − 10SS(k), 1)) ∗ 5 (5.22)

Finally, both proposed indexes CCAFA and AIFD are used in these tests as well, in order

to provide detection and isolation of faults in this context.

For the TLR algorithm, the antigen is sampled through the sliding window mechanism,

instead of the signals, whose processing are still based on the residuals (Eq. 5.17). The sliding

window of antigens have the following variation of values W = {1, 5, 10, 20}, according to the

processing, based on the signals. Noteworthy, processing starts from the first instant after the

sliding window. (i.e. if W = 10, ko = 10 as well), sliding window is also used during the

training, as required by processing. As the antigen size is aN = 2, with the sliding window,

antigen size becomes aN = 2 ∗W .

The FD-DM method uses only signal information, which is the same as previous algorithms,

and training data (from TLR) will be used during pre-processing. Signals are based on SS used

for DCA with normalization considered in 5.23 for rmax = 80std(SStr). The Immune Alarm

Threshold ITA is based on the stressed fuzzy membership.

¯Signal(t) =

{

1, SSts(t) > rmax
SSts(t)−rmin
rmax−rmin

, Otherwise
(5.23)

For these tests, DCA parameters are defined in Table 5.7, TLR algorithm parameters in Ta-

ble 5.8 and DF-DM Model in Table 5.9, based on this study.

Each scenario is simulated 120 times, and each simulation is considered as an event in

which the first detection alarm or maximum time reached are the stopping criteria of the

evaluated algorithms. These simulations have random duration (among 4, 8, 16 and 24 hours),

and random instant of fault occurrence. Performance measurements, such as detection rate

(dr%), false alarm rate (fa%), and the average detection delay time (∆̄t) are displayed for

each scenario.
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Tab. 5.7: DCA parameters and functions.

Algorithm Data
Algorithm Version dDCA-FDI

APC population 25
Antigen Storage 10
Average DC Lifetime 10
PAMP ND
Safe Signal (SS) Based on Eq. 5.18
Danger Signal (DS) Based on Eq. 5.20
Min / Max SS [0 5]
Min / Max DS [0 10]
Sampling Time (Ts) 2, 30, 60 or

120 seconds.
Evaluation Metrics CCAFA

Tab. 5.8: TLR parameters and functions.

Algorithm Data
Algorithm Version STLR

APC Population 20
Average Lifetime 5
Anomaly Detection Fuzzy-NSA
Algorithms (T-Cell) or oc-SVM
Signals Residuals-based rules
Processing Direct, based on

Nonself signals.
Sampling Time (Ts) 1s
Antigen Sliding Window 1, 5 or 10

5.4.1 More about the algorithms

Some points that can be highlighted are using a detector of anomalies that corresponds to

the action of T-Cell in TLR Algorithm, whose version used in this work corresponds to the

structured version (STLR), and being used with two choices of anomaly detectors, the method

of fuzzy antigen recognition proposed in the previous chapter, or a machine learning technique:

One-Class SVM proposed in [Schölkopf et al., 2001]. Moreover, two models presented for

information processing are adopted: for TLR, the direct processing, based on the original

formulation of the algorithm, and the fuzzy processing for the Danger-based approach. And for

the Dendritic Cell algorithm, the proposed anomaly detection metrics (CCAFA and AIFD,

the latter in a further analysis), are considered in this work for evaluation purposes.

The approach in [de Almeida et al., 2010] has few parameters required, and most operations
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Tab. 5.9: Method of [de Almeida et al., 2010] parameters and functions.

Algorithm Data
Algorithm DM-FD

Safe Signal Based on Eq. 5.11
Min / Max SS [0 1]
Processing Fuzzy with 4 inputs

and 4 outputs.
Input Based on Costimulatory
rules Signals or Cytokines
Output Based on tumor modeling
rules in [de Pillis et al., 2005].

in the method are based on fuzzy inference analogous to costimulatory signal. The system

output was normalized considering the maximum value obtained using training data.

Once defined the three algorithms and their applications, the work will evaluate each algo-

rithm and discuss their obtained performance. The original purpose of these tests is to evaluate

the detection capability of the algorithms.

5.4.2 Results

The Benchmark DAMADICS has several points which require a deep analysis of each fault and

how to detect them. Each algorithm, as shown throughout this work, has different aspects in

which fault detection is performed and the analysis of the benchmark implies analyzing the

detection in these different perspectives. Results will be shown in terms of accuracy, detection

rate and false alarms.

Deterministic DCA

Deterministic DCA results are presented in Table 5.10 in which sampling is performed in

different periods, as shown in the test presentation.

Performance measurements are provided by the Benchmark, whose detection is provided by

the CCAFA index. The alarm threshold is CCAFA ≥ 0.05 for all cases.
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Tab. 5.10: Test results for DCA applied to Fault Detection.

Test

(ID)
Scenario Conditions dr% fa% ∆̄t(TS)

f0 No fault

TS = 120 - 0% -

TS = 60 - 0% -

TS = 30 - 0% -

TS = 2 - 0% -

f1

ASm

TS = 120 99.17% 0% 2.37

TS = 60 99.17% 0% 2.43

TS = 30 99.17% 0% 2.82

TS = 2 99.17% 0% 2.43

AMe

TS = 120 100% 0% 2.32

TS = 60 100% 0% 2.48

TS = 30 100% 0% 3.02

TS = 2 100% 0% 2.48

ALa

TS = 120 100% 0% 2.11

TS = 60 100% 0% 2.27

TS = 30 100% 0% 2.80

TS = 2 100% 0% 2.27

f7

ASm

TS = 120 100% 0% 1.54

TS = 60 100% 0% 1.55

TS = 30 100% 0% 1.54

TS = 2 100% 0% 1.55

AMe

TS = 120 100% 0% 1.49

TS = 60 100% 0% 1.52

TS = 30 100% 0% 1.52

TS = 2 100% 0% 1.52

ALa

TS = 120 100% 0% 1.54

TS = 60 100% 0% 1.54

TS = 30 100% 0% 1.57

TS = 2 100% 0% 1.54

ASm

TS = 120 99.17% 0% 1.74

Continued on next page
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Tab. 5.10 – continued from previous page

Test

(ID)
Scenario Conditions dr% fa% ∆̄t(Ts)

TS = 60 99.17% 0% 1.87

TS = 30 99.17% 0% 2.14

TS = 2 99.17% 0% 1.87

AMe

TS = 120 100% 0% 1.55

TS = 60 100% 0% 1.63

TS = 30 100% 0% 1.77

TS = 2 100% 0% 1.63

ALa

TS = 120 99.17% 0% 2.34

TS = 60 99.17% 0% 2.45

TS = 30 99.17% 0% 3.23

TS = 2 99.17% 0% 2.45

Inc

TS = 120 100% 0% 2.61

TS = 60 100% 0% 3.39

TS = 30 100% 0% 5.39

TS = 2 100% 0% 3.39

f15 ALa

TS = 120 100% 0% 1.88

TS = 60 100% 0% 1.95

TS = 30 100% 0% 2.23

TS = 2 100% 0% 1.95

f17

ALa

TS = 120 100% 0% 1.60

TS = 60 100% 0% 1.56

TS = 30 100% 0% 1.56

TS = 2 100% 0% 1.56

Inc

TS = 120 97.5% 0% 10.24

TS = 60 97.5% 0% 19.26

TS = 30 97.5% 0% 39.21

TS = 2 97.5% 0% 19.26

f19

ASm

TS = 120 99.17% 0% 2.91

TS = 60 100% 0% 3.94

TS = 30 100% 0% 6.81

Continued on next page
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Tab. 5.10 – continued from previous page

Test

(ID)
Scenario Conditions dr% fa% ∆̄t(Ts)

TS = 2 100% 0% 3.94

AMe

TS = 120 100% 0% 2.1735

TS = 60 100% 0% 2.24

TS = 30 100% 0% 2.689

TS = 2 100% 0% 2.24

ALa

TS = 120 100% 0% 1.81

TS = 60 100% 0% 1.92

TS = 30 100% 0% 2.08

TS = 2 100% 0% 1.92

These results point that DCA may have a good performance when applied to fault detection

problems. In most cases, DCA has been successfully applied for most fault cases in DAMADICS

Benchmark, even for the incipient faults (f13 and f17), in which the algorithm has detected

the fault with minimum delay. For abrupt faults, DCA has achieved good performance mainly

in the strong cases.

The algorithm has achieved satisfactory performance for Ts = 2s, which is the best sampling

time for such experiments, as this sampling time provides the most realistic simulation case.

This sampling time has achieved good results considering the detection delay, however, for 10

seconds of sampling, the detection delay was longer than most cases.

All of these tests presented no false alarms, as faulty behavior has not been detected during

normal behaviors, indicating that DCA is able to monitor dynamic systems without indicating

normal behaviors as faults.

Structural TLR

The other algorithm considered, the Structural version of Toll-like Receptors algorithm has

been tested and its results are presented in Tab. 5.11.
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Tab. 5.11: Test results for TLR algorithm applied to Fault Detection.

Test

(ID)
Scenario Conditions dr% fa% ∆̄t(sec)

f0 No fault

W = 10 and

ocSVM
100% - -

W = 5 and

ocSVM
100% - -

W = 1 and

ocSVM
100% - -

W = 10 and

FuzzyNSA
100% - -

W = 5 and

FuzzyNSA
100% - -

W = 1 and

FuzzyNSA
100% - -

f1

ASm

W = 10 and

ocSVM
99.17% 0% 112.93

W = 5 and

ocSVM
99.17% 0% 112.95

W = 1 and

ocSVM
99.17% 0% 112.97

W = 10 and

FuzzyNSA
99.17% 0% 113.04

W = 5 and

FuzzyNSA
99.17% 0% 113

W = 1 and

FuzzyNSA
99.17% 0% 112.92

AMe

W = 10 and

ocSVM
100% 0% 42.96

W = 5 and

ocSVM
100% 0% 42.97

W = 1 and

ocSVM
100% 0% 42.97

Continued on next page
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Tab. 5.11 – continued from previous page

Test

(ID)
Scenario Conditions dr% fa% ∆̄t(sec)

W = 10 and

FuzzyNSA
100% 0% 42.90

W = 5 and

FuzzyNSA
100% 0% 42.93

W = 1 and

FuzzyNSA
100% 0% 42.88

ALa

W = 10 and

ocSVM
100% 0% 99.26

W = 5 and

ocSVM
100% 0% 99.23

W = 1 and

ocSVM
100% 0% 99.28

W = 10 and

FuzzyNSA
100% 0% 99.29

W = 5 and

FuzzyNSA
100% 0% 99.26

W = 1 and

FuzzyNSA
100% 0% 99.34

f7

ASm

W = 10 and

ocSVM
100% 0% 1.28

W = 5 and

ocSVM
100% 0% 1.34

W = 1 and

ocSVM
100% 0% 1.30

W = 10 and

FuzzyNSA
100% 0% 1.28

W = 5 and

FuzzyNSA
100% 0% 1.32

W = 1 and

FuzzyNSA
100% 0% 1.33

Continued on next page
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Tab. 5.11 – continued from previous page

Test

(ID)
Scenario Conditions dr% fa% ∆̄t(sec)

AMe

W = 10 and

ocSVM
100% 0% 1.23

W = 5 and

ocSVM
100% 0% 1.36

W = 1 and

ocSVM
100% 0% 1.32

W = 10 and

FuzzyNSA
100% 0% 1.21

W = 5 and

FuzzyNSA
100% 0% 1.36

W = 1 and

FuzzyNSA
100% 0% 1.23

ALa

W = 10 and

ocSVM
100% 0% 1.24

W = 5 and

ocSVM
100% 0% 1.32

W = 1 and

ocSVM
100% 0% 1.29

W = 10 and

FuzzyNSA
100% 0% 1.28

W = 5 and

FuzzyNSA
100% 0% 1.23

W = 1 and

FuzzyNSA
100% 0% 1.30

ASm

W = 10 and

ocSVM
99.17% 0% 24.46

W = 5 and

ocSVM
99.17% 0% 24.51

W = 1 and

ocSVM
99.17% 0% 24.39

Continued on next page
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Tab. 5.11 – continued from previous page

Test

(ID)
Scenario Conditions dr% fa% ∆̄t(sec)

W = 10 and

FuzzyNSA
99.17% 0% 24.42

W = 5 and

FuzzyNSA
99.17% 0% 24.47

W = 1 and

FuzzyNSA
99.17% 0% 24.44

AMe

W = 10 and

ocSVM
100% 0% 12.75

W = 5 and

ocSVM
100% 0% 12.78

W = 1 and

ocSVM
100% 0% 12.74

W = 10 and

FuzzyNSA
100% 0% 12.83

W = 5 and

FuzzyNSA
100% 0% 12.70

W = 1 and

FuzzyNSA
100% 0% 12.78

ALa

W = 10 and

ocSVM
99.17% 0% 44.48

W = 5 and

ocSVM
99.17% 0% 44.42

W = 1 and

ocSVM
99.17% 0% 44.44

W = 10 and

FuzzyNSA
99.17% 0% 44.49

W = 5 and

FuzzyNSA
99.17% 0% 44.48

W = 1 and

FuzzyNSA
99.17% 0% 44.47

Continued on next page
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Tab. 5.11 – continued from previous page

Test

(ID)
Scenario Conditions dr% fa% ∆̄t(sec)

Inc

W = 10 and

ocSVM
100% 0% 157.87

W = 5 and

ocSVM
100% 0% 157.85

W = 1 and

ocSVM
100% 0% 157.89

W = 10 and

FuzzyNSA
100% 0% 157.88

W = 5 and

FuzzyNSA
100% 0% 157.92

W = 1 and

FuzzyNSA
100% 0% 157.87

f15 ALa

W = 10 and

ocSVM
100% 0% 20.58

W = 5 and

ocSVM
100% 0% 20.59

W = 1 and

ocSVM
100% 0% 20.60

W = 10 and

FuzzyNSA
100% 0% 20.53

W = 5 and

FuzzyNSA
100% 0% 20.57

W = 1 and

FuzzyNSA
100% 0% 20.53

f17

ALa

W = 10 and

ocSVM
100% 0% 1.26

W = 5 and

ocSVM
100% 0% 1.31

W = 1 and

ocSVM
100% 0% 1.27

Continued on next page
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Tab. 5.11 – continued from previous page

Test

(ID)
Scenario Conditions dr% fa% ∆̄t(sec)

W = 10 and

FuzzyNSA
100% 0% 1.33

W = 5 and

FuzzyNSA
100% 0% 1.31

W = 1 and

FuzzyNSA
100% 0% 1.26

Inc

W = 10 and

ocSVM
97.5% 0% 1608.27

W = 5 and

ocSVM
97.5% 0% 1608.15

W = 1 and

ocSVM
97.5% 0% 1608.24

W = 10 and

FuzzyNSA
97.5% 0% 1608.19

W = 5 and

FuzzyNSA
97.5% 0% 1608.28

W = 1 and

FuzzyNSA
97.5% 0% 1608.31

f19

ASm

W = 10 and

ocSVM
0% 0% -

W = 5 and

ocSVM
0% 0% -

W = 1 and

ocSVM
0% 0% -

W = 10 and

FuzzyNSA
0% 0% -

W = 5 and

FuzzyNSA
0% 0% -

W = 1 and

FuzzyNSA
0% 0% -

Continued on next page
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Tab. 5.11 – continued from previous page

Test

(ID)
Scenario Conditions dr% fa% ∆̄t(sec)

AMe

W = 10 and

ocSVM
96.67% 0% 270.11

W = 5 and

ocSVM
96.67% 0% 270.10

W = 1 and

ocSVM
96.67% 0% 270.14

W = 10 and

FuzzyNSA
96.67% 0% 270.10

W = 5 and

FuzzyNSA
96.67% 0% 270.14

W = 1 and

FuzzyNSA
96.67% 0% 270.21

ALa

W = 10 and

ocSVM
100% 0% 21.06

W = 5 and

ocSVM
100% 0% 21.04

W = 1 and

ocSVM
100% 0% 20.99

W = 10 and

FuzzyNSA
100% 0% 21.01

W = 5 and

FuzzyNSA
100% 0% 21.09

W = 1 and

FuzzyNSA
100% 0% 21.16

The TLR algorithm achieved a good performance even for incipient faults without false

alarms in any test. However, for f19, TLR failed to detect them in the small case. The

detection time was relatively satisfactory in some faults, but DCA achieved a better result in

most cases.

Using the antigen sliding window mechanism for 10 samples, TLR has achieved a good

performance, mainly for incipient faults. however, changing the size of the window, the per-
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formance has not increased significantly. TLR can also achieve detection for 1 sample in the

sliding window

It was assumed that use of another algorithm to define self and nonself regions should also

influence in the performance, however, comparing the One Class SVM method and the Fuzzy

version of Negative Selection, TLR has achieved similar performance in both cases.

In counterpart, the mechanism used for detection has prevented the occurrence of false

alarms in the algorithm, in a similar way to DCA. Compared to the latter algorithm, TLR had

better performance, but still with some false alarms in few cases.

Danger Model inspired fault detection

The danger model approach proposed in [de Almeida et al., 2010] used for simulations is tested

for comparisons among all approaches. The Table 5.12 presents the results achieved in the

research.

Tab. 5.12: Test results for the danger model approach applied to Fault Detection.

Test

(ID)
Scenario dr% fa% ∆̄t(sec)

f0 No fault - 0% -

f1

ASm 99.17% 0% 380.46

AMe 99.17% 0% 432.16

ALa 95.85% 0% 430.96

f7

ASm 99.17% 0% 132.03

AMe 100% 0% 118.89

ALa 100% 0% 136.80

f13

ASm 96.67% 0% 287.02

AMe 100% 0% 225.03

ALa 95.83% 0% 452.85

Inc 99.17% 0% 365.56

f15 ALa 97.50% 0% 351.38

f17
ALa 99.17% 0% 139.18

Inc 99.17% 0% 1297

f19

ASm 96.67% 0% 2326

AMe 95% 0% 820.44

Continued on next page
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Tab. 5.12 – continued from previous page

Test

(ID)
Scenario dr% fa% ∆̄t(sec)

ALa 95.85% 0% 464.36

The algorithm was able to detect most faults, but with poor performances, mainly for f1,

f15 and f19 cases. A reasonable performance for incipient faults was achieved, but in some

cases, the algorithm had some problems related to the delay in fault detection.

Another algorithm - One-class SVM and PCA

The One-class Support Vector Machine, proposed in [Schölkopf et al., 2001], was chosen in

order to provide comparisons to immune-inspired approaches. Once used as nonself space in

TLR tests in this work, the method was evaluated taking into account that one-class methods

are more suitable approaches for fault detection problems.

The SVM approach was tested with the output pre-processed by PCA considering the

strategy performed in [Zhanchun et al., 2006], using gaussian kernel as separation surface, with

threshold µ = 0.0000028. Considering the high rate of false alarms of such methods, an alarm

tolerance index AT was considered, with AT = 2, which means that only the third point of

negative class being an alarm. Results for this test are presented in Figure 5.13.
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Tab. 5.13: Test results for the SVM one class with PCA applied to Fault Detection.

Test

(ID)
Scenario dr% fa% ∆̄t(sec)

f0 No fault 0% 42% 0

f1

ASm 90.83% 9.17% 44.67

AMe 0% 10.83% 0

ALa 88.33% 11.67% 37.56

f7

ASm 86.67% 13.33% 2.79

AMe 86.67% 13.33% 2.89

ALa 82.5% 17.5% 2.89

f13

ASm 45.83% 15% 12947

AMe 43.33% 13.33% 14046

ALa 0% 15% 0

Inc 87.5% 10.83% 735.4

f15 ALa 86.67% 13.33% 13.68

f17
ALa 89.17% 10.83% 2.97

Inc 90% 10% 380

f19

ASm 23.33% 13.33% 23389

AMe 1.67% 13.33% 29916

ALa 0.83% 13.33% 39102

Compared to AIS approaches, these algorithms had some false alarm rate. In addition, the

strategy failed to detect some faults and provided a longer delay in detection, being unfeasible

for this application.

Computational Costs and Runtime Complexity analysis

It is known that classical immune-inspired approaches based on the negative selection have

high computational costs, as described in [de Almeida et al., 2010]. Regarding the approaches

considered in this work, particularly in the case study of DAMADICS, some information has

been achieved.

Based on [Gu et al., 2013], the runtime complexity of DCA has been calculated based on

theorems. These theorems state that complexity relies on the data size and, in segmented
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processing, also relies on the population of APCs and the segment size. The DCA worst case

has a quadratic runtime complexity based on the data size. Other algorithms, such as TLR

Algorithm, have not been analyzed so far in the literature.

In this work, most of the DCA computational cost is regarding the consequences of its

pre-processing phase, in which data are converted to signal and antigen format in order to be

analyzed by the algorithm, whose computational cost can be relatively low.

The TLR Algorithm, however, have its computational cost based on the signal rules and

antigen data evaluations, implying a possibly high computational cost, depending on the pro-

cessed data.

The approach proposed in [de Almeida et al., 2010] presents a low computational cost as

implied by its data processing, which requires few evaluations compared to the other approaches.

In order to evaluate these aspects, some data regarding the runtime of algorithms applied

to DAMADICS were obtained and presented in Table 5.14. These data are presented in terms

of execution time.

Tab. 5.14: Runtime execution data of the algorithms evaluated in this study (in seconds).

Algorithm Min Max Mean Median Standard
Deviation

DCA Ts = 120 (Pre-processing) 0.741 38.11 11.37 13.39 11.47
DCA Ts = 120 (Algorithm) 0.049 18.78 4.99 4.03 4.21
DCA Ts = 60 (Pre-processing) 0.734 41.02 11.37 13.39 11.42
DCA Ts = 60 (Algorithm) 0.036 20.36 5.35 4.03 4.56
DCA Ts = 30 (Pre-processing) 0.782 38.98 11.69 13.76 11.78
DCA Ts = 30 (Algorithm) 0.028 24.03 6.09 4.82 5.32
DCA Ts = 2 (Pre-processing) 1.468 53.9 15.76 18.81 14.62
DCA Ts = 2 (Algorithm) 0.014 465 92.29 43.08 115
TLR+ocSVM W = 1 0.0023 54.06 14.87 11.49 12.52
TLR+ocSVM W = 5 0.0019 53.75 14.91 11.53 12.57
TLR+ocSVM W = 10 0.0012 53.03 14.75 11.37 12.44
TLR+FuzzyNSA W = 1 0.0037 99.91 27.83 21.47 23.44
TLR+FuzzyNSA W = 5 0.0036 131.46 36.58 28.18 30.83
TLR+FuzzyNSA W = 10 0.0034 170.38 47.40 36.57 39.96
FD-DM 0.014 69.0 17.52 13.71 14.46

Considering these data, most immune-inspired approaches may present some complexity as

implied by their mechanisms. For the 2-second sampling case, DCA presented a large runtime

complexity, probably because of the cell evaluation. TLR also presents large execution runtimes,

considering these results, however, using One-class SVM, the runtime execution can be lower

than using the Fuzzy Antigen Recognition. For the Danger Model method, as expected, low
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Tab. 5.15: DDR values for antigens collected by DCA in DAMADICS tests.

f1 f7 f13 f15 f17 f19

f1 0 0.9074 0.7437 1.3932 0.7168 1.8803
f7 0.9074 0 1.2187 1.7834 1.2938 1.3155
f13 0.7437 1.2187 0 1.1213 0.6342 1.0069
f15 1.3932 1.7834 1.1213 0 1.2237 1.1003
f17 0.7168 1.2938 0.6342 1.2237 0 0.7284
f19 1.8803 1.3155 1.0069 1.1003 0.7284 0

runtime execution data was obtained, since this method performs few evaluations in signal

data.

DCA Fault Isolation Scheme

The AIFD index generated by DCA has produced 6 to 8 distinct profiles related to a part of

the monitored variables of the benchmark. In DAMADICS Benchmark, the isolation considers

the antigen related to the monitored output and its gathered values during fault occurrence.

The stimulated variables present AIFD values greater than zero, as these are properly

influenced by DCA detection. This stimulation may depend on the fault strength and the

type of fault considered. Noteworthy, the minimum threshold of isolation for each antigen is

D < 0.4, considering the Euclidean Distance between each monitored point.

In order to provide a proper fault isolation, two metrics were adopted, the Distinguishable

Distance Ratio (DDR) proposed in [Wang and Liu, 2009], and the Ambiguity Ratio (AR)

improved in [Wang and Liu, 2011]. These metrics can be used to provide measurements on

class ambiguity in classification problems.

The DDR is a metric based on the Euclidean Distance between two centroids and the

standard deviation of both classes, as described in (5.24). This metric consists of measuring

the distinction of a class i related to j, values close to zero imply that both classes are similar.

In addition, the relation of DDR is symmetric, that is, DDR(i,j) = DDR(j,i).

DDR(i,j) =
Dist(ci, cj)

γ ∗ (stdi + stdj)
(5.24)

Where γ is a given constant considering the number of standard deviations from each

centroid.

A matrix of distincion between classes was obtained. This matrix is shown at Table 5.15.
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Tab. 5.16: AR values for antigens collected by DCA in DAMADICS tests.

f1 f7 f13 f15 f17 f19

f1 1 0.0202 0.0909 0 0.0241 0
f7 0 1 0 0.0309 0 0
f13 0 0.0349 1 0.0844 0.1530 0
f15 0 0.0268 0 1 0.0057 0
f17 0 0.0419 0 0.1057 1 0
f19 0 0.0132 0.0909 0 0.0494 1

The AR metric has a different context, consists of an algorithm that provides the ambiguous

degree of class j relative to class i. The algorithm equations are available in 5.25 to 5.28.

AR(i, j) =
A(i, j)

A(i, i)
(5.25)

A(i, j) =

∑nj

q=1 Ui(Xjq) ∗ Pi(Xjq)

nj

(5.26)

Ui(Xjq) =

{

1, Dist(Xjq, ci) ≤ Dist(Xjq, cj)

0, Dist(Xjq, ci) > Dist(Xjq, cj)
(5.27)

Pi(Xjq) =















0, Dmaxi < Dist(Xjq, ci)
√

Dmaxi−Dist(Xjq ,ci)
Dmaxi

, Dmini ≤ Dist(Xjq, ci) ≤ Dmaxi

1, Dist(Xjq, ci) < Dmini

(5.28)

Where Dmin and Dmax are the minimum and the maximum of Euclidean Distances from

all instances in i to the centroid ci, respectively, for all ni values of class i.

In AR, values close to one indicate a high ambiguity degree between two classes, while values

close to zero indicate that both classes are not ambiguous. Different from DDR, the relation of

AR(i, j) is not symmetric, that is, AR(i, j) *= AR(j, i).

The ambiguity matrix between isolated faults is shown at Table 5.16.

According to both matrices, faults could be isolated properly, with high degrees of distinction

and low degrees of ambiguity. Some cases, such as distinction relations between f13 and f17

for example, may indicate possibilities of the fault being isolated wrongly. Noteworthy, faults

like f1 and f19 are difficult to isolate, as AIFD values were critically low at most tests for

these faults.

These results point that the AIFD index is applicable, and most faults in these tests are
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possible to isolate. However, isolation can be harder than in other benchmark studies and it

can occur under certain circumstances.

Discussion

The main point in common about these approaches is the false alarm rate, which is nonexistent

for all approaches tested in this work. Considering the performance in DAMADICS tests and

the use of certain threshold values, these approaches have different ways to deal with processing,

mainly in the decision phase.

Dendritic Cell and Toll-Like Receptor algorithms have achieved good performance in these

tests. DCA has provided a persistent detection, as well as a satisfactory isolation mechanism,

and the TLR algorithm has provided two signals for detection: residuals (PAMP) and a different

pattern (Antigen). Both algorithms have detected most faults in DAMADICS case study.

The other Danger Model inspired approach has achieved reasonable, but worse results con-

sidering the delay in fault detection. Since the processing is totally different from the other

algorithms, the delay in detection may represent an issue in this algorithm.

These algorithms are capable to provide a low rate of false alarms. But since the expert

knowledge is very important for the application, the discussion regarding the application of

these approaches as FDI systems may be conditioned to the use of models. For all purposes,

Danger Model inspired approaches, mainly the DCA, may provide some interesting resources

for detection in these cases.
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Chapter 6

Concluding Remarks

This chapter presents the overall conclusion of the work, as well as subjects for future researches

that are yet to be explored in AIS studies.

6.1 Main aspects of the research

In this work, several studies were consolidated, such as the study of immunological models and

which features they can offer to provide some enhanced techniques for fault detection and, in

some cases, fault isolation.

Initially, an immune-inspired anomaly detector based on fuzzy antigen recognition of T cells

was presented in two forms: one of them verifies if a detector to be allocated is in a feasible

region (nonself) in order to detect anomalies; the other form detects anomalies based on the

distance between of training and validation points.

Both algorithms are based on the two phases of negative selection, each of them correspond-

ing to an algorithm, both approaches uses information of distance and fuzzy inference system

to achieve the anomaly detection.

Although the algorithms based on negative selection has inherent flaws on context or appli-

cations, it is possible to make them applicable in certain cases, especially in learning machine

problems, moreover, the addition of other immune mechanisms algorithms can be considered.

Infectious Nonself and Danger Models based algorithms have an expert knowledge required

to model the signals, which usually is not implicit in the databases. However, this feature may

be extended to statistical or qualitative aspects.

The main issue about using Dendritic Cell Algorithm in the FDI problems is the antigen

correlation mechanism, which performs a pattern building rather than collecting the faulty

points during signal evaluation through cells. This function has been exploited in this work
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and adds a question in the research: how good the exploitation of the antigen correlation

mechanism in FDI problems should be.

The Toll-Like Receptor Algorithm has a scheme similar to DCA representation, inspired in

the Infectious nonself model and innate immunity. This algorithm requires a minimum experts

knowledge, and also has a training mechanism which defines signals and conditions of activation.

The algorithm in [Twycross et al., 2010] was based on data from censorship, both for signals

as to the antigens. Receptors may, however, be based on processing rules, consideration taken

in this work, which makes it simpler to define if these signals are infectious.

In fact, many dynamic systems have few operational information, it becomes the indication

of possible anomalies a challenging task. It is assumed that traditional approaches can also be

applied, based on the supervised training mechanism, which can also be adopted for modeling

experts knowledge database. This study studies also confirmed some idea about these algo-

rithms: There is no better immune inspired model than another, thus, some features of each

model can be integrated in some approaches, allowing possible extensions in the AIS theory.

Overall, the present work has offered some alternatives to improve the reviewed AIS ap-

proaches and apply them to fault detection problems in order to provide satisfactory and en-

couraging results with good detection rates and no false alarm rates, showing that the alternate

immune response models can represent a good metaphor for fault detection.

6.2 Further works

The modeling of immune inspired systems has been significantly enhanced with the study of the

transitional link between the approaches, allowing some analogies to be employed as follows.

For the fuzzy antigen recognition algorithm, other immune-inspired fuzzy rules may be

exploited in some future works, some of them related to other immunological models, which

may be used to define the valid conditions for negative selection rules, and others such as anergy,

exploited in [Cayzer and Sullivan, 2007], when the system may not respond to anomalous

conditions in some cases. In addition, the mechanism can also be applied to evaluation of

training performance in machine learning algorithms, as the negative selection may provide a

good strategy in order to avoid over-fitting in these approaches.

It is noteworthy that the model is incomplete and may require other mechanisms to improve

their operation. However, the results show that it is possible to apply the algorithm approaches

relatively simple, with some applicability in the literature, since the fuzzy recognition immune

system may be an attractive alternative in terms of systems engineering.

The fuzzy antigen recognition algorithm still has features that should be analyzed, such as
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implementation of other fuzzy rules inspired by immunological mechanisms and the thresholds

generation for fault detection, as well as the mechanism of death by neglect in monitoring,

which may play a role that is still unknown.

In DCA, there are still many other factors to be considered in addition to the expert knowl-

edge required to assess the problem. Among them study of the parameters and the challenge

of finding an optimal combination of parameters. In this deterministic version, considered in

the work, there are few parameters required for adjustments. Since biological inspiration may

offer other analogies, there are some other ways to improve such algorithms and gather better

results for anomaly detection problems. Another aspect that can be studied is the applicability

of DCA to fault prognosis problems, as the signal analysis can be used to assess the remaining

useful life of a system.

However, TLR and FD-DM approaches have not a potential mechanism for fault isolation

as the antigen correlation for DCA, for this purpose, these algorithms may have to suffer some

changes to allow fault isolation and identification tasks. Some other aspects yet to be studied

are alternatives to redundancy models in order to serve as expert model for these approaches.

Since the transitional links among immunological models have been studied, these aspects

can be combined in order to offer an evolving model for AIS approaches based on each feature

provided by these models, then developing an alternate immune inspired system able to evolve

and optimize its structure to improve detection and isolation capabilities.

Another feature of the biological immune system that studies should deepen is the biological

signaling feature. Some AIS have immune signaling features, but these features are treated

basically. Since immune signaling rules the biological immune system in order to provide

changes, the study of signaling features and their application to engineering problems can be

an interesting study and may enrich the analysis.

The cognitive paradigm of immune system also have interesting features that can enrich AIS

approaches and provide an interesting inspiration for novel approaches. There are few studies

in this paradigm and its analysis can also improve some existing approaches significantly. A

combination of these features (evolving, signal-focused and cognition) may provide interesting

models for novel AIS approaches.

Most approaches, however, are designed for centralized dynamical systems. For large dis-

tributed systems, the application of these methods would be a complicated task. Such systems

require the employment of methods that evaluate data hierarchically and these method also

must be distributed to deal with system complexity. Most AIS approaches are centralized and

they may not work on distributed environments. Deal with large distributed systems is quite

challenging and novel approaches should be developed in order to solve these problems.
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